2016年湖南省长沙市中考数学模拟试卷(五)
2016年湖南省长沙市数学中考模拟试卷【答案】(二)
2016年湖南省长沙市中考数学模拟试卷(二)一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3 B.6 C.﹣6 D.6或﹣62.(3分)下列计算正确的是()A.a3+a4=a7 B.a3•a4=a7 C.(a3)4=a7D.a6÷a3=a23.(3分)2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为()A.42×103米B.0.42×105米 C.4.2×104米D.4.2×105米4.(3分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°5.(3分)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2 C.y=3(x﹣2)2+2 D.y=3(x+2)2+2 6.(3分)要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠17.(3分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150° D.180°8.(3分)下列说法正确的是()A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D.想要了解长沙市民对“全面二孩”政策的看法,宜采用抽样调查9.(3分)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)10.(3分)如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1 C.x l=1,x2=﹣2 D.x l=2,x2=﹣111.(3分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元12.(3分)若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.(3分)有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为.15.(3分)已知x,y满足方程组,则x﹣y的值是.16.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.17.(3分)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O 上一点,若∠CAB=55°,则∠ADC的大小为(度).18.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是.三、解答题(本题共8个小题,第19、20小题,每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.20.(6分)先化简,再求值:﹣,其中a=﹣1.21.(8分)为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)参加调查的人数共有人,在扇形统计图中,表示“C”的扇形的圆心角为度;(2)补全条形统计图,并计算扇形统计图中m的值;(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少?22.(8分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.23.(9分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?24.(9分)如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.25.(10分)已知抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),直线1的解析式为y 2=2mx+3m2+4nm+4n2,且l与x轴、y轴分别交于A、B两点.(1)求b、c的值;(2)若函数y1+y2的图象与x轴始终有公共点,求直线l的解析式;(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB为等腰角形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(10分)在平面直角坐标系中,点C的坐标为(0,1.5),我们把以点C为圆心,半径为1.5的圆称为点C的朋友圈,圆周上的每一个点叫做点C的一个好友.(1)写出点C的两个好友坐标;(2)直线l的解析式是y=x﹣4,与x轴、y轴分别交于A、B两点,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当点C的朋友圈有好友落在直线上时,直线将受其影响,求在点C向下运动的过程中,直线受其影响的时间;(3)抛物线y=ax2+bx+c过原点O和点A,且顶点D恰好为点C的好友,连接OD.E为⊙C上一点,当△DOE面积最大时,求点E的坐标,此时△DOE的面积是多少?2016年湖南省长沙市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3 B.6 C.﹣6 D.6或﹣6【解答】解:设这个数是x,则|x|=3,解得x=+3或﹣3.故选:A.2.(3分)下列计算正确的是()A.a3+a4=a7 B.a3•a4=a7 C.(a3)4=a7D.a6÷a3=a2【解答】解:A、a3与a4是相加,不是相乘,不能利用同底数幂的乘法计算,故本选项错误;B、a3•a4=a7,正确;C、应为(a3)4=a3×4=a12,故本选项错误;D、应为a6÷a3=a6﹣3=a3,故本选项错误.故选B.3.(3分)2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为()A.42×103米B.0.42×105米 C.4.2×104米D.4.2×105米【解答】解:将42千米用科学记数法表示为4.2×104,故选C.4.(3分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°【解答】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°﹣∠BAC=40°,故选:A.5.(3分)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2 C.y=3(x﹣2)2+2 D.y=3(x+2)2+2【解答】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向下、向左平移2个单位(﹣2,﹣2),所以在新坐标系中此抛物线的解析式为y=3(x+2)2﹣2.故选:B.6.(3分)要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:A.7.(3分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150° D.180°【解答】解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.8.(3分)下列说法正确的是()A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D.想要了解长沙市民对“全面二孩”政策的看法,宜采用抽样调查【解答】解:A:抛硬币是一个随机事件,不能保证反面朝上,所以A错误;B:本组数据应该有两个众数,3、5都出现了两次,所以B错误;C:获奖概率为是一个随机事件,所以C错误;D:对长沙市民的调查涉及的人数众多,适合用抽样调查,所以D正确.故选:D.9.(3分)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)【解答】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.10.(3分)如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1 C.x l=1,x2=﹣2 D.x l=2,x2=﹣1【解答】解:由图可知,两函数图象的交点坐标为(1,2),(﹣2,﹣1),故关于x的方程kx+b=的解为x l=1,x2=﹣2.故选C.11.(3分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元【解答】解:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,则x+20%x=240,解得x=200,y﹣20%y=240,解得y=300,∴240×2﹣(200+300)=﹣20(元).即:这个服装店卖出这两件服装亏本了,亏本20元.故选:D.12.(3分)若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64【解答】解:由题意得:a n+1=a n+a n+2,a n+2=a n+1+a n+3,a n+3=a n+2+a n+4,三式相加,得:a n+a n+2+a n+4=0,同理可得:a n+1+a n+3+a n+5=0,以上两式相加,可知:该数列连续六个数相加等于零,2016是6的倍数,所以结果为零.故选:B.二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件AF=CE,使四边形AECF是平行四边形(只填一个即可).【解答】解:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.14.(3分)有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为4.【解答】解:a=5×5﹣2﹣4﹣6﹣8=5,s2=[(2﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(8﹣5)2]=4.故答案为:4.15.(3分)已知x,y满足方程组,则x﹣y的值是﹣1.【解答】解:,②﹣①得:x﹣y=﹣1.故答案为:﹣1.16.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.17.(3分)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O 上一点,若∠CAB=55°,则∠ADC的大小为35(度).【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=55°,∴∠B=90°﹣∠CAB=35°,∴∠ADC=∠B=35°.故答案为:35°.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是6.【解答】解:Rt△ABC中,由勾股定理求AB==10,由旋转的性质,设AD=A′D=BE=x,则DE=10﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=3,∴S=DE×A′D=×(10﹣2×3)×3=6,△A′DE故答案为:6.三、解答题(本题共8个小题,第19、20小题,每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.【解答】解:原式=2﹣1+3﹣2×=4﹣.20.(6分)先化简,再求值:﹣,其中a=﹣1.【解答】解:原式=+===,当a=﹣1时,原式==1﹣.21.(8分)为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)参加调查的人数共有300人,在扇形统计图中,表示“C”的扇形的圆心角为108度;(2)补全条形统计图,并计算扇形统计图中m的值;(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少?【解答】解:(1)参加调查的人数为69÷23%=300(人),∵“C”的人数为:300﹣60﹣69﹣36﹣45=90(人),∴表示“C”的扇形的圆心角为×360°=108°,故答案为:300,108.(2)补全条形图如下:∵m%=×100%=20%,∴m=20;(3)=,答:喜欢该项目的小丽同学被选中的概率是.22.(8分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.【解答】(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)解:过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF==3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=,即⊙O的直径为.23.(9分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据题意得:950(1+x)2=1862,解得:x1=0.4=40%,x2=﹣2.4(不合题意,舍去),答:这两年我市推行绿色建筑面积的年平均增长率是40%;(2)根据题意得:∵2016年绿色建筑面积是:1862×(1+0.4)=2606.8万平方米>2400万平方米,∴2016年我市能完成计划目标.24.(9分)如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)判断∠PED=45°.证明:∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°﹣(∠PDC+∠PEC)﹣∠BCD=360°﹣180°﹣90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.25.(10分)已知抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),直线1的解析式为y2=2mx+3m2+4nm+4n2,且l与x轴、y轴分别交于A、B两点.(1)求b、c的值;(2)若函数y1+y2的图象与x轴始终有公共点,求直线l的解析式;(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB为等腰角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),∴,解得:,∴b的值为2,c的值为2.(2)y1+y2=x2+2x+2+2mx+3m2+4nm+4n2=x2+(2+2m)x+3m2+4nm+4n2+2,∵函数y1+y2的图象与x轴始终有公共点,∴△=(2+2m)2﹣4×1×(3m2+4nm+4n2+2)≥0,即﹣4(m﹣1)2﹣4(m+2n)2≥0.∵(m﹣1)2≥0,(m+2n)2≥0,∴m=1,n=﹣,∴直线l的解析式为y=2x+2.(3)如图,A(﹣1,0),B(0,2).AB==,对称轴x=﹣1,①当BA=BP时,可得P1(﹣1,4),②当AB=AP时,可得P2(﹣1,),P3(﹣1,﹣),③当PA=PB时,可得P4(﹣1,2).综上所述,当△PAB是等腰三角形时,点P坐标为(﹣1,4)或(﹣1,)或(﹣1,﹣)或(﹣1,2).26.(10分)在平面直角坐标系中,点C的坐标为(0,1.5),我们把以点C为圆心,半径为1.5的圆称为点C的朋友圈,圆周上的每一个点叫做点C的一个好友.(1)写出点C的两个好友坐标;(2)直线l的解析式是y=x﹣4,与x轴、y轴分别交于A、B两点,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当点C的朋友圈有好友落在直线上时,直线将受其影响,求在点C向下运动的过程中,直线受其影响的时间;(3)抛物线y=ax2+bx+c过原点O和点A,且顶点D恰好为点C的好友,连接OD.E为⊙C上一点,当△DOE面积最大时,求点E的坐标,此时△DOE的面积是多少?【解答】解:(1)1.5﹣1.5=0,1.5+1.5=3,∴点(0,0)、(0,3)到点C的距离为1.5,∴点(0,0)、(0,3)为点C的好友.(2)设圆心C往下运动了t秒,则点C的坐标为(0,1.5﹣0.5t),直线l:y=x﹣4可变形为4x﹣3y﹣12=0,点C到直线l的距离d==|0.3t﹣3.3|,当直线受圆C影响时,有d≤1.5,即|0.3t﹣3.3|≤1.5,解得:6≤t≤16.∴在点C向下运动的过程中,直线受其影响的时间为6≤t≤16.(3)令y=x﹣4中y=0,则x﹣4=0,解得:x=3,即点A的坐标为(3,0).依照题意画出图形,如图1所示.∵抛物线y=ax2+bx+c过原点O和点A,点O(0,0),点A(3,0),∴抛物线的对称轴为x==1.5,∵点D恰好为点C的好友,∴点D的坐标为(1.5,1.5).连接OD,过点C作CM⊥OD于点M,延长MC交圆C于点E,连接EO、ED,此最大,如图2所示.时S△DOE∵OD是圆C的弦,CM⊥OD,∴点M为线段OD的中点,∴点M的坐标为(,)、OM==,在Rt△CMO中,OM=,CO=1.5=,∴CM==.∵CE=1.5=,EM=EC+CM,∴EM=,=OD•EM=OM•EM=×=.此时S△DOE设直线CM的解析式为y=mx+n,∵点C的坐标为(0,1.5)、点M的坐标为(,)即(0.75,0.75),∴,解得:,∴直线CM的解析式为y=﹣x+1.5.设点E的坐标为(x,﹣x+1.5)(x<0),∵EC==1.5,∴x=﹣,或x=(舍去),∴点E的坐标为(﹣,).故当△DOE面积最大时,点E的坐标为(﹣,),此时△DOE的面积是.。
2016年湖南省长沙市中考数学试卷-答案
【考点】列表法,树状图法
三、解答题
19.【答案】 .
【提示】本题各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、绝对值、二次根式化简、乘方等考点的运算.
【考点】特殊角的三角函数值,绝对值,二次根式化简,乘方
【提示】解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了 的符号.从抛物线与x轴最多一个交点及 ,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到 ,从而得到①②为正确;由 及 时y都大于或等于零可以得到③④正确.
【考点】二次函数的解析式与图象的关系
【提示】根据众数和中位数的概念分别进行求解即可.一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【考点】众数,中位数
11.【答案】A
湖南省长沙市2016年初中毕业学业水平考试
数学答案解析
第Ⅰ卷
一、选择题
1.【答案】D
【解析】根据有理数比较大小的方法,可得 ,故四个数中,最大的数是6.故选D.
【提示】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【考点】有理数大小比较
3.【答案】A
【解析】 ,故A选项正确; ,故B选项错误; ,故C选项错误; ,故D选项错误.故选A.
【提示】直接利用二次根式乘法运算法则以及结合同底数幂的乘除运算法则分别化简求出答案.
湖南省长沙市2024年中考模拟数学试题
湖南省长沙市2024年中考模拟数学试题一、单选题1.3-的倒数为( ) A .3B .3-C .13D .13-2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为( ) A .0.42×105B .4.2×104C .44×103D .440×1023.下列等式成立的是( ) A .1232a a a+=B .11111a a a a a ++=--- C .1111x x x +=++ D .()()()222112222m m m m m ---=---4.下列图形中,不是轴对称图形的是( ) A .B .C .D .5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .5cm ,7cm ,10cm B .5cm ,7cm ,13cm C .7cm ,10cm ,13cmD .5cm ,10cm ,13cm6.某市教育体育局想要了解本市初二年级8万名学生的期中数学成绩,从中抽取了2000名学生的数学成绩进行统计分析,以下说法正确的是( ) A .2000名学生是总体的一个样本 B .每位学生的数学成绩是个体 C .8万名学生是总体D .2000名学生是样本的容量7.如图所示,已知正方形ABCD 的面积是8平方厘米,正方形EFGH 的面积是62平方厘米,BC 落在EH 上,ACG V 的面积是4.9平方厘米,则ABE V 的面积是( )A .0.5平方厘米B .2平方厘米CD .0.9平方厘米8.如图,在V ABC 中,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,则∠ACD 的度数为( )A .30°B .40°C .60°D .90°9.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.张浩有红牌和蓝牌各75张,已知张浩能在一个摊位上用2张红牌换1张银牌和1张蓝牌,还能在另一个摊位上用3张蓝牌换1张银牌和1张红牌,若他按照上述方法继续换下去,直到手中的牌无法交换为止,则张浩手中最后有银牌( )张A .62B .26C .102D .103二、填空题11.因式分解:21x -=.12.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=.13.在x 2+( )+4=0的括号中添加一个关于x 的一次项...,使方程有两个相等的实数根. 14.如图,双曲线ky (k 0)x=>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为.15.如图,OA 是O e 的半径,BC 是O e 的弦,OA BC ⊥于点D ,AE 是O e 的切线,AE 交OC 的延长线于点E .若45AOC ∠=︒,2BC =,则线段AE 的长为.16.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为150°,AB 的长为32cm ,BD的长为14cm ,则»DE的长为cm .三、解答题17.(1)计算:())121--+﹣sin30°(2)化简:2a 11a a a++-. 18.(1)计算:()()21122x x x ⎛⎫--+- ⎪⎝⎭;(2)先化简,再求值:()()()23366a a a a +---+,其中1a =-.19.位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD 和头像AD 两部分组成.某数学兴趣小组在塑像前50米处的B 处测得山体D 处的仰角为45°,头像A 处的仰角为70.5°,求头像AD 的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分): 87 99 86 89 91 91 95 96 87 97 91 97 96 86 96 89 100 91 99 97 整理数据:分析数据:解决问题:(1)直接写出上面表格中的a ,b ,c ,d 的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率; (3)请估计该校1500名学生中成绩达到95分及以上的学生人数.21.如图,已知点B E C F ,,,在一条直线上,BE CF =,AC DE ∥,A D ∠=∠. 求证:ABC DFE △≌△.22.某游船先顺流而下,然后逆流返回.已知水流速度是每小时3千米,游船在静水中的速度是每小时18千米.为使游船在4小时内(含4小时)返回出发地,则游船顺流最远可行多少千米?23.如图,在ABC V 中,AB AC =,30B ∠=︒,线段AB 的垂直平分线MN 交BC 于D ,连接AD .(1)求DAC ∠的度数; (2)若2BD =,求BC 的长.24.在平面直角坐标系xOy 中,对于直线l 及点P 给出如下定义:过点P 作y 轴的垂线交直线l 于点Q ,若PQ ≤1,则称点P 为直线l 的关联点,当PQ =1时,称点P 为直线l 的最佳关联点,当点P 与点Q 重合时,记PQ =0.例如,点P (1,2)是直线y =x 的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy 中,已知直线1l :y =﹣x +3,2l :y =2x +b .(1)已知点A (0,4),3(,1)2B ,C (2,3),上述各点是直线1l 的关联点是;(2)若点D (﹣1,m )是直线1l 的最佳关联点,则m 的值是;(3)点E 在x 轴的正半轴上,点A (0,4),以OA 、OE 为边作正方形AOEF .若直线l 2与正方形AOEF 相交,且交点中至少有一个是直线1l 的关联点,则b 的取值范围是.25.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若D为AB的中点,CD=6,AB=16,求⊙O的半径;(3)在(2)的基础上,点F在⊙O上,且»»,△ACF的内心点G在AB边上,求BGBC BF的长.。
中考数学模拟试卷(5)(含解析)(2021年整理)
湖南省益阳市2017年中考数学模拟试卷(5)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市2017年中考数学模拟试卷(5)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市2017年中考数学模拟试卷(5)(含解析)的全部内容。
2017年湖南省益阳市中考数学模拟试卷(5)一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是( )A.﹣B.2﹣C.4﹣D.﹣25.若不等式组的解集是x<2,则a的取值范围是( )A.a<2 B.a≤2 C.a≥2 D.无法确定6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是( )A.0 B.1 C.1008 D.2016二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是.10.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= .11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= .12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为.13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?19.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?20.如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?五、解答题(本题满分12分)21.如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN 是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.六、解答题(本题满分14分)22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.2017年湖南省益阳市中考数学模拟试卷(5)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.【考点】实数大小比较.【分析】先确定2与3的大小关系,再比较﹣2与﹣3的大小,因为这四个数中,正数大于0,0大于负数.【解答】解:∵2=,3=,∵,∴2<3,∴﹣2>﹣3,∴﹣3<0,∴最小的数是﹣3,故选A.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定【考点】比较线段的长短.【分析】由AB=CD,可得,AC=BD,又BC=2AC,所以,BC=2BD,所以,CD=3AC;【解答】解:∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC;故选B.3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差【考点】统计量的选择.【分析】根据平均数、中位数、众数及方差的有关知识判断即可.【解答】解:喜欢红色的学生最多,是这组数据的众数,故选C.4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.2﹣C.4﹣D.﹣2【考点】实数与数轴.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,的对应点分别为C,B,∴CB=﹣2,∵点C是AB的中点,则设点A的坐标是x,则x=4﹣,∴点A表示的数是4﹣.故选C.5.若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【考点】解一元一次不等式组.【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC 绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】根据旋转的性质得出∠ABF=∠C,求出∠ABC=∠C=30°,即可判断①;根据三角形外角性质求出∠ADC=∠BAE,根据相似三角形的判定即可判断②;求出∠EAC大于30°,而∠DAE=30°,即可判断③;求出△AFD是直角三角形,但是不能推出是等腰三角形,即可判断④.【解答】解:∵在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴△AEC≌△AFB,∴∠ABF=∠C=30°,∴∠FBD=30°+30°=60°,∴①正确;∵∠ABC=∠DAE=30°,∴∠ABC+∠BAD=∠DAE+∠BAD,即∠ADC=∠BAE,∵∠ABC=∠C,∴△ABE∽△DCA,∴②正确;∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,∴∠BAD+∠EAC=120°﹣∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,即△AFD是直角三角形,∵在△DAE中,∠ADE=∠BAC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,∴∠ADE和∠AED不相等,∴AD和AE不相等,即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;故选B.7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选:B.8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是()A.0 B.1 C.1008 D.2016【考点】规律型:数字的变化类;有理数的除法.【分析】由(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!知,可将原式两边都加上1!+2!+3!+…+2016!,即可得S=2017!﹣1,从而得出答案.【解答】解:∵(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!,∴S+1!+2!+3!+…+2016!=1×1!+2×2!+3×3!+…+2016×2016!+1!+2!+3!+…+2016!,即S+1!+2!+3!+…+2016!=1!+2!+3!+…+2017!,则S=2017!﹣1,∴==2016!…1,故选:B.二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是36 .【考点】有理数的混合运算.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=12+28﹣4=40﹣4=36,故答案为:3610.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= ﹣1 .【考点】解一元一次方程.【分析】根据规定,得:当n=2时,则(x2)′=2x,解方程即可.【解答】解:根据题意得:2x=﹣2,x=﹣1.故答案为:﹣1.11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= 25或16 .【考点】等腰三角形的性质;一元二次方程的解;根的判别式.【分析】讨论:根据等腰三角形性质当AB=BC=8,把x=8代入方程可得到m=16,此时方程另一根为2,满足三角形三边关系;当AB=AC,根据根与系数得关系得AB+AC=10,所以AB=AC=5,所以m=5×5=25.【解答】解:当AB=BC=8,把x=8代入方程得64﹣80+m=0,解得m=16,此时方程为x2﹣10x+16=0,解得x1=8,x2=2;当AB=AC,则AB+AC=10,所以AB=AC=5,则m=5×5=25.故答案为:25或16.12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为(3,﹣1).【考点】菱形的性质;坐标与图形性质.【分析】首先连接AB交OC于点D,由菱形OACB中,点C的坐标是(6,0),点A的纵坐标是1,即可求得点B的坐标.【解答】解:∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(6,0),点A的纵坐标是1,∴OC=6,BD=AD=1,∴OD=3,∴点B的坐标为:(3,﹣1).故答案为:(3,﹣1).13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【考点】切线的性质.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=6tan30°﹣2=2﹣2时,原式=.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入解得k、b可得解析式;(2)将x=﹣2代入一次函数解析式可判断结果.【解答】解:(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入得,,解得,,∴一次函数解析式为:y=2x+1;(2)把x=﹣2代入y=2x+1,解得y=﹣3,∴点P(﹣2,1)不在一次函数图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.【考点】作图—复杂作图;全等三角形的判定;平行四边形的性质.【分析】(1)作∠CBM=∠ADE,其中BM交CD于F;(2)根据平行四边形的性质可得∠A=∠C,AD=BC,由ASA可证△ADE≌△CBF.【解答】(1)解:如图所示.(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA).四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?【考点】概率公式;用样本估计总体;频数(率)分布直方图;扇形统计图.【分析】(1)根据扇形统计图中公租房所占比例以及条形图中公租房数量即可得出,新开工的住房总数,进而得出经济适用房的套数;(2)根据申请购买经济适用房共有950人符合购买条件,经济适用房总套数为475套,得出老王被摇中的概率即可;(3)根据2016年廉租房共有6250×8%=500套,得出500(1+10%)=550,即可得出答案.【解答】解:(1)根据题意得:住房总数为1500÷24%=6250(套),则经济适用房的数量为6250×7。
【3套试卷】长沙市中考模拟考试数学试题含答案
【3套试卷】长沙市中考模拟考试数学试题含答案中考⼀模数学试卷及答案试卷内容:九年级上册---九年级下册2.4;满分120分⼀.选择题(共10⼩题,每⼩题3分,共30分)1.如图,在平⾯直⾓坐标系xOy 中,直线y =k 1x +2与y 轴交于点C ,与反⽐例函数2k y x在第⼀象限内的图象交于点B ,连接BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是()A .﹣3B .1C .2D .32.若关于x 的⼀元⼆次⽅程(k +2)x 2﹣3x +1=0有实数根,则k 的取值范围是() A .k <14且k ≠﹣2 B .kC .k ≤14且k ≠﹣2 D .k3.等腰△ABC 的⼀边长为4,另外两边的长是关于x 的⽅程x 2﹣10x +m =0的两个实数根,则等腰三⾓形底边的值是() A .4B .25C .4或6D .24或254.如果△ABC 中,AB =AC ,BC =AB ,那么∠A 的度数是() A .30°B .36°C .45°D .60°5.如图,在△ABC 中,DE ∥BC ,若S △ADE :S △BDE =1:2,S △ADE =3,则S △ABC 为()A.9B.12C.24D.276.如图,在直⾓坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′与矩形OABC的相似⽐为12,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)7.设tan 69.83°=a,则tan 20.17°⽤a可表⽰为()A.﹣a B.1aC.3aD.a8.由于各地雾霾天⽓越来越严重,2018年春节前⼣,安庆市政府号召市民,禁放烟花炮⽵.学校向3000名学⽣发出“减少空⽓污染,少放烟花爆⽵”倡议书,并围绕“A类:不放烟花爆⽵;B类:少放烟花爆⽵;C类:使⽤电⼦鞭炮;D 类:不会减少烟花爆⽵数量”四个选项进⾏问卷调查(单选),并将对100名学⽣的调查结果绘制成统计图(如图所⽰).根据抽样结果,请估计全校“使⽤电⼦鞭炮”的学⽣有()A.900名B.1050名C.600名D.450名9.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0D.a=﹣1,b=0,c=610.如图所⽰,点A,B,C,D在⊙O上,CD是直径,∠ABD=75°,则∠AOC 的度数为()A.15°B.25°C.30°D.35°⼆.填空题(共8⼩题,每⼩题3分,共24分)11.⽤配⽅法将⽅程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=.12.若,则=.13.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂⾜为D,若AD=BC,则cos∠B =.14.若点P(﹣m2﹣1,m﹣3)在第三象限,则反⽐例函数y=的图象在第象限.15.如图是抛物线y=ax2+bx+c的⼀部分,其对称轴为直线x=2,若其与x轴的⼀个交点为(5,0),则由图象可知,不等式ax2+bx+c<0的解集是.16.如图,有⼀座拱桥洞呈抛物线形状,这个桥洞的最⼤⾼度为16m,跨度为40m,现把它的⽰意图放在如图的平⾯直⾓坐标系中,则抛物线对应的函数关系式为.17.如图,⊙M经过点A(﹣3,5),B(1,5),C(4,2),则圆⼼M的坐标是.18.如图,四边形ABCD内接于⊙O,∠DCB=40°,连接OC,点P是半径OC上任意⼀点,连接DP,BP,则∠BPD的取值范围是.三.解答题(共8⼩题,19—20,每⼩题5分;21—22,每⼩题7分;23—25,每⼩题10分;26题12分;满分66分)19.解下列⽅程:(x+2)2=3x+6.20.计算:﹣2-?﹣tan45°(1tan60)21.如图,有⼀座拱桥是圆弧形,它的跨度AB=60⽶,拱⾼PD=18⽶.(1)求圆弧所在的圆的半径r的长;(2)当洪⽔泛滥到跨度只有30⽶时,要采取紧急措施,若拱顶离⽔⾯只有4⽶,即PE=4⽶时,是否要采取紧急措施?22.为迎接2019年中考,对道⾥区西部优质教育联盟九年级学⽣进⾏了⼀次数学期中模拟考试,并随机抽取了部分学⽣的测试成绩作为样本进⾏分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学⽣共有多少⼈,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆⼼⾓度数;(3)若该联盟九年级共有1050⼈参加了这次数学考试,估计九年级这次考试共有多少名学⽣的数学成绩可以达到优秀?23.正⽅形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之⽐是4:3,求NC的长.24.如图1,2分别是某款篮球架的实物图与⽰意图,已知底座BC的长为0.60⽶,底座BC与⽀架AC所成的⾓∠ACB=75°,点A、H、F在同⼀条直线上,⽀架AH段的长为1⽶,HF段的长为1.50⽶,篮板底部⽀架HE的长为0.75⽶.(1)求篮板底部⽀架HE与⽀架AF所成的⾓∠FHE的度数.(2)求篮板顶端F到地⾯的距离.(结果精确到0.1⽶;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.73232≈1.414)25.⼗⼀黄⾦周期间某旅游景点的⽇游客量y(万⼈)是门票价格x(元)的⼀次函数,其函数图象如图所⽰:(1)求y关于x的函数解析式;(2)经过景点⼯作⼈员统计发现:此景点⽇游客承载量的极限为10万⼈,为了确保安全“⼗⼀”黄⾦周期间⽇游客量不能多于9万⼈,每卖出⼀张门票所需成本为20元,那么要想获得⽇利润300万元,该⽇的门票价格应该定为多少元?26.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C(0,﹣3).(1)求出该抛物线的函数关系式;(2)设抛物线y=ax2+bx+c的顶点为M:①求四边形ABMC的⾯积;②点D为抛物线在第四象限内图象上⼀个动点,是否存在点D,使得四边形ABDC的⾯积最⼤?若存在,请求出点D的坐标;若不存在,请说明理由;(3)在抛物线y=ax2+bx+c上求点Q,使△BCQ是以BC为直⾓边的直⾓三⾓形.湖南省澧县张公庙中学2018—2019学年(秋季)湘教版九年级数学期末模拟试卷(⼀)参考简答⼀.选择题(共10⼩题,每⼩题3分,共30分)1.D.2.C.3.C.4.B.5.D.6.D.7.B.8.C.9.D.10.C.⼆.填空题(共8⼩题,每⼩题3分,共24分)11.41.12.﹣11.13.512-.14.⼆、四.15.﹣1<x<5.16y=﹣125(x﹣20)2+16.17.(﹣1,0).18.40°≤∠BPD≤80°.三.解答题(共8⼩题,19—20,每⼩题5分;21—22,每⼩题7分;23—25,每⼩题10分;26题12分;满分66分)19.解下列⽅程:(x+2)2=3x+6.【解】:(x+2)2=3x+6.(x+2)2﹣3x﹣6=0,(x+2)2﹣3(x+2)=0(x+2)[(x+2)﹣3]=0,x+2=0,(x+2)﹣3=0,∴x1=﹣2,x2=1.20.计算:﹣2(1tan60)-?﹣tan45°【解】:原式=31)﹣1323﹣12.21.如图,有⼀座拱桥是圆弧形,它的跨度AB=60⽶,拱⾼PD=18⽶.(1)求圆弧所在的圆的半径r的长;(2)当洪⽔泛滥到跨度只有30⽶时,要采取紧急措施,若拱顶离⽔⾯只有4⽶,即PE=4⽶时,是否要采取紧急措施?【解】:(1)连结OA,由题意得:AD=12AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.22.为迎接2019年中考,对道⾥区西部优质教育联盟九年级学⽣进⾏了⼀次数学期中模拟考试,并随机抽取了部分学⽣的测试成绩作为样本进⾏分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学⽣共有多少⼈,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆⼼⾓度数;(3)若该联盟九年级共有1050⼈参加了这次数学考试,估计九年级这次考试共有多少名学⽣的数学成绩可以达到优秀?【解】:(1)22÷44%=50,所以这次被调查的学⽣共有50⼈;成绩为中的⼈数为50﹣10﹣22﹣8=10,补图条形统计图为:(2)360°×1050=72°,答:“优”所对应的圆⼼⾓度数72°;(3)1050×1050=210,答:估计九年级这次考试共有210名学⽣的数学成绩可以达到优秀.23.正⽅形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之⽐是4:3,求NC的长.(1)【证明】:∵四边形ABCD是正⽅形,正⽅形ABCD的边长为4,∴AB=BC=4,∠B=∠C=90°,∵AM和MN垂直,∴∠AMN=90°,∴∠BAM+∠AMB=90°,∠NMC+∠BMA=180°﹣90°=90°,∴∠BAM=∠NMC,∵∠B=∠C,∴△ABM∽△MCN;(2)【解】:∵△ABM∽△MCN,∴ABCM =BMCN,∵△ABM∽△MCN,△ABM的周长与△MCN周长之⽐是4:3,∴△ABM的周长与△MCN边长之⽐也是4:3,∴ABCM =BMCN=43,∵AB=4,∴4CM =43,∴CM=3,∴1CN =43,∴NC=34.24.如图1,2分别是某款篮球架的实物图与⽰意图,已知底座BC的长为0.60⽶,底座BC与⽀架AC所成的⾓∠ACB=75°,点A、H、F在同⼀条直线上,⽀架AH段的长为1⽶,HF段的长为1.50⽶,篮板底部⽀架HE的长为0.75⽶.(1)求篮板底部⽀架HE与⽀架AF所成的⾓∠FHE的度数.(2)求篮板顶端F到地⾯的距离.(结果精确到0.1⽶;参考数据:cos75°≈0.2588,sin75°≈0.9659,t an75°≈3.732≈1.414)【解】:(1)由题意可得:cos∠FHE=HEHF=12,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=AB BC,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=FG AF,∴FG≈2.17(m),∴FM=FG+GM≈4.4(⽶),答:篮板顶端F到地⾯的距离是4.4⽶.25.⼗⼀黄⾦周期间某旅游景点的⽇游客量y(万⼈)是门票价格x(元)的⼀次函数,其函数图象如图所⽰:(1)求y关于x的函数解析式;(2)经过景点⼯作⼈员统计发现:此景点⽇游客承载量的极限为10万⼈,为了确保安全“⼗⼀”黄⾦周期间⽇游客量不能多于9万⼈,每卖出⼀张门票所需成本为20元,那么要想获得⽇利润300万元,该⽇的门票价格应该定为多少元?【解】:(1)设y关于x的函数解析式为y=kx+b(k≠0),将(50,10),(100,5)代⼊y=kx+b,得:,解得:,∴y关于x的函数解析式为y=﹣0.1x+15.(2)根据题意得:(x﹣20)(﹣0.1x+15)=300,整理得:x2﹣170x+6000=0,解得:x1=50,x2=120.∵“⼗⼀”黄⾦周期间⽇游客量不能多于9万⼈,∴﹣0.1x+15≤9,解得:x≥60,∴x=120.答:该⽇的门票价格应该定为120元.26.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C(0,﹣3).(1)求出该抛物线的函数关系式;(2)设抛物线y=ax2+bx+c的顶点为M:①求四边形ABMC的⾯积;②点D为抛物线在第四象限内图象上⼀个动点,是否存在点D,使得四边形ABDC的⾯积最⼤?若存在,请求出点D的坐标;若不存在,请说明理由;(3)在抛物线y=ax2+bx+c上求点Q,使△BCQ是以BC为直⾓边的直⾓三⾓形.【解】:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3),(2)①∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,∴M(1,﹣4);如图1∴S△BCM=S梯形OCMD+S△BMD﹣S△BCO=12(3+4)×1+12×2×4﹣12×3×3=3;②如图2设D(x,x2﹣2x﹣3),∴OH=x,DH=2x+3﹣x2,HB=3﹣x ∴S四边形ABDC=S△AOC+S四边形OCDH+S△HDB =32++=﹣32;∴x=32时,S四边形ABDC的最⼤值为758,y=,∴D(32,154).(3)如图3过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C.∵CO=BO=3,∴∠CBO=45°,∴∠EBO=45°,BO=OE=3.∴点E的坐标为(0,3).将(0,3),(3,0)代⼊y=kx+b得:,解得,∴直线BE的解析式为y=﹣x+3,由,解得,,如图4,过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2.∵∠CBO=45°,∴∠CFB=45°,OF=OC=3.∴点F的坐标为(﹣3,0).∴直线CF的解析式为y=﹣x﹣3.由,解得,,∴点Q2的坐标为(1,﹣4).综上,在抛物线上存在点Q1(﹣2,5)、Q2(1,﹣4),使△BCQ1、△BCQ2是以BC为直⾓边的直⾓三⾓形.中考⼀模数学试卷及答案⼀、选择题(4分×6=24分)1.下列⼆次根式中,最简单⼆次根式是()【A】45【B】21【C】2x【D】x12、下列⽅程中,⽆实数解的是()【A】2+x=0【B】2-x=0【C】2x=0【D】2x=03、下列函数中y随着x的增⼤⽽减⼩的是()【A】y=3x【B】y=x3【C】y=-3x【D】y=-x34、对于数据:6,3,4,7,6,0,9.下列判断中正确确的是()【A】这组数据的平均数是6,中位数是6【B】这组数据的平均数是5,中位数是6【C】这组数据的平均数是6,中位数是7【D】这组数据的平均数是5,中位数是75、下列图形中,中⼼对称图形有()【A】4个【B】3个【C】2个【D】1个6、下列命题中,真命题是()【A】如果⼀个四边形两条対⾓线相等,那么这个四边形是矩形【B 】如果⼀个四边形两条对⾓线相互垂直,那么这个四边形是菱形【C 】如果⼀个四边形两条对⾓线均平分所在的⾓,那么这个四边形是菱形【D 】如果⼀个四边形两条对⾓线相互垂直平分,那么这个四边形是矩形⼆、填空题(4分×12=48分) 7、计算:()222a= .8、不等式组{20240x x +>-≥的解集是 .9、⽅程221x x -=的根是 .10、已知函数 2()1f x x =+,那么 =-)23(f __________ 11、将直线y x =-沿着y 轴向上平移3个单位将得到直线L ,那么该直线与两条坐标轴围成的三⾓形的周长为。
2016年长沙市中考数学模拟卷答案1-5
(2)当△ABC 为等腰直角三角形时,过点 C 作 CD⊥AB,垂足为 D,则 AB=2CD. ∵a>0, AB ∴ b 2 4ac
18a 26(6 a ) 130 1 ,解得 2≤a≤ 3 .∵a 是正整数,∴a=2 或 a=3. 4 18a 26(6 a ) 140
当购买 A 型车 2 辆、 B 型车 4 辆时, 购车费用为 140 万元; 当购买 A 型车 3 辆、 B 型车 3 辆时,购车费用为 132 万元.两种方案中,显然购买 A 型车 3 辆、B 型车 3 辆时购车费用最低. ∴共有两种方案:方案一:购买 2 辆 A 型车和 4 辆 B 型车;方案二:购买 3 辆 A 型车和 3 辆 B 型车,且方案二购车费用最低. (8 分) 24. (1)证明:∵△ABC 是等边三角形,DG//BC, ∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°. ∴△AGD 是等边三角形,AG=GD=AD. ∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB. ∵∠AGD=∠BAD=60°,AG=DA,∴△AGE≌△DAB(SAS) . (4 分) (2)解:由(1)知 AE=BD,∠ABD=∠AEG.∵EF//DB,DG//BC, ∴四边形 BFED 是平行四边形.∴EF=BD.∴EF=AE. ∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°. ∴△AFE 是等边三角形,∠AFE=60°. (9 分) b c 25.解: (1)∵ x1 x2 , x1 x2 ,且 a>0,b2−4ac>0, a a
2016年湖南省长沙市中考数学试卷含答案
2016年湖南省长沙市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.下列四个数,最大的数是( )A .-2B .31C .0D .62.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需 24分钟,从长沙到湘潭只需25分钟,这条铁路全长99 500米,则数据99 500用科学记数法表示为( )A .0.995×105B .9.95×105C .9.95×104D .9.5×1043.下列计算正确的是( ) A.2×5=10 B .x 8÷x 2=x 4 C .(2a )3=6a 3 D .3a 5 • 2a 3=6a 64.六边形的内角和是( )A .540°B .720°C .900°D .360°5.不等式组⎩⎨⎧<-≥-048512x x ,的解集在数轴上表示为( )A B C D6.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )(第6题图)A B C D7.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .6B .3C .2D .118.若将点A (1,3)先向左平移2个单位长度,再向下平移4个单位长度得到点B ,则点B 的坐标为( )A.(-2,-1)B.(-1,0)C.(-1,-1)D.(-2,0)9.下列各图,∠1与∠2互为余角的是()A B C D10.若一组数据为75,80,80,85,90,则它的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,8011.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为()(第10题图)A.1603m B.1203m C.300 m D.1602m12.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a-b+c≥0;④ab cb a-++的最小值为3.其中,正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本题共6小题,每小题3分,满分18分)13.分解因式:x2y-4y=.14.若关于x的一元二次方程x2-4x-m=0有两个不相等的实数根,则实数m的取值范围是.15.如图,扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为.(结果保留π)(第15题图)16.如图,在⊙O 中,弦AB =6,圆心O 到AB 的距离OC =2,则⊙O 的半径为 .(第16题图)17.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为 .(第17题图) 18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .三、解答题(本题共8小题,共66分)19.(6分)计算:4sin 60°-|-2|-12+(-1)2 016.20.(6分)先化简,再求值:b a a -(b 1-a 1)+b a 1-,其中a =2,b =31. 21.(8分)为了积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:(第21题图)请根据所给信息解答以下问题:(1)这次参与调查的居民人数为 .(2)请将条形统计图补充完整.(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数.(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人.22.(8分)如图,AC是ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC.(2)若AB=2,AC=23,求ABCD的面积.(第22题图)23.(9分)2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次分别运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?24.(9分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数.(2)求证:DF是⊙O的切线.(3)若AC=25DE,求tan∠ABD的值.(第24题图)25.(10分)若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时,直线l 叫作抛物线L 的“带线”,抛物线L 叫作直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =x6的图像上,它的“带线”l 的表达式为y =2x -4,求此“路线”L 的表达式;(3)当常数k 满足21≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.26.(10分)如图,直线l :y =-x +1与x 轴,y 轴分别交于A ,B 两点,点P ,Q 是直线l 上的两个动点,且点P 在第二象限,点Q 在第四象限,∠POQ =135°.(1)求△AOB 的周长.(2)设AQ =t >0,试用含t 的代数式表示点P 的坐标.(3)当动点P ,Q 在直线l 上运动到使得△AOQ 与△BPO 的周长相等时,记tan ∠AOQ =m ,若过点A 的二次函数y =ax 2+bx +c 同时满足以下两个条件:①6a +3b +2c =0;②当m ≤x ≤m +2时,函数y 的最大值等于m2,求二次项系数a 的值.(第26题图)参考答案 一、1.D 【分析】根据有理数比较大小的方法知,6>31>0>-2,故在四个数中,最大的数是6.故选D .2.C 【分析】将99 500用科学记数法表示为9.95×104.故选C .3.A 【分析】A.2×5=10,正确;B.x 8÷x 2=x 6,错误;C.(2a )3=8a 3,错误;D.3a 5 • 2a 3=6a 8,错误.故选A .4.B 【分析】根据题意,得(6-2)×180°=720°.故选B .5.C 【分析】解不等式2x -1≥5,得x ≥3.解不等式8-4x <0,得x >2.故不等式组的解集为x ≥3.故选C .6.B 【分析】从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.故选B .7.A 【分析】设第三边长为x ,则7-3<x <7+3,即4<x <10,所以符合条件的整数为6.故选A .8.C 【分析】∵将点A (1,3)先向左平移2个单位长度,再向下平移4个单位长度得到点B ,∴点B 的横坐标为1-2=-1,纵坐标为3-4=-1,∴点B 的坐标为(-1,-1).故选C .9.B 【分析】∵三角形的内角和为180°,∴选项B 中,∠1+∠2=90°,即∠1与∠2互为余角.故选B .10.D 【分析】把这组数据按照从小到大的顺序排列为75,80,80,85,90,最中间的数是80,则中位数是80;在这组数据中出现次数最多的是80,则众数是80.故选D .11.A 【分析】如答图,过点A 作AD ⊥BC 于点D ,则∠BAD =30°,∠CAD =60°,AD = 120 m .在Rt △ABD 中,BD =AD • tan 30°=120×33=403(m ).在Rt △ACD 中,CD =AD • tan 60°=120×3=1203(m ).∴BC =BD +CD =1603(m ).故选A .(第11题答图)12.D 【分析】∵b >a >0,∴-ab 2<0,∴该抛物线的对称轴在y 轴左侧,故①正确;∵抛物线与x 轴最多有一个交点,∴b 2- 4ac ≤0,∴在关于x 的方程ax 2+bx +c +2=0中, =b 2-4a (c +2)=b 2-4ac -8a <0,∴关于x 的方程ax 2+bx +c +2=0无实数根,故②正确;∵a >0及抛物线与x 轴最多有一个交点,∴当x 取任何值时,y ≥0,∴当x =-1时,a -b +c ≥0,故③正确;当x =-2时,4a -2b +c ≥0,∴a +b +c ≥3b -3a ,∴a +b +c ≥3(b -a ),即a b c b a -++≥3,故④正确.故选D .二、13.y (x +2)(x -2) 【分析】x 2y -4y =y (x 2-4)=y (x +2)(x -2).14.m >-4 【分析】由题意,得∆=b 2-4ac =(-4)2-4×1×(-m )=16+4m >0,解得m >-4.15. 2π 【分析】∵扇形OAB 的圆心角为120°,半径为3,∴该扇形的弧长为1803π120⨯=2π. 16.13 【分析】∵弦AB =6,圆心O 到AB 的距离OC =2,∴AC =BC =3,∠ACO =90°. 由勾股定理,得OA =OC AC 22+=2322+=13.17.13 【分析】∵DE 是AB 的垂直平分线,∴EA =EB .∴△BCE 的周长为BC +EC + EB =BC +EC +EA =BC +AC =8+5=13.18.65 【分析】由题意作出树状图如答图,一共有36种情况,“两枚骰子朝上的点数互不相同”的情况有30种,所以P =3630=65.(第18题答图)三、19.解:4sin 60°-|-2|-12+(-1)2 016 =4×23-2-23+1 =23-2-23+1=-1.20.解:b a a -(b 1-a 1)+b a 1-=b a a - • ab b a -+b a 1-=b 1+b a 1-=ba . 当a =2,b =31时,原式=312=6. 21.解:(1)1 000. 分析:这次参与调查的居民人数为%5.37375=1 000.(2)选择“樟树”的有1 000-250-375-125-100=150(人).补全条形统计图如答图.(第21题答图)(3)360°×1000100=36°. 答:扇形统计图中“枫树”所在扇形的圆心角度数为36°.(4)8×1000250=2(万人). 答:估计这8万人中最喜欢玉兰树的有2万人.22.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC =∠BCA .∵∠BAC =∠DAC ,∴∠BAC =∠BCA ,∴AB =BC .(2)解:如答图,连接BD 交AC 于点O .∵四边形ABCD 是平行四边形,AB =BC ,∴四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =21AC =3,OB =OD =21BD , ∴OB =OA AB 22-=)3(222-=1,∴BD =2OB =2. ∴ABCD 的面积为21AC • BD =21×23×2=23.(第22题答图) 23.解:(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨. 由题意,得⎩⎨⎧=+=+,,70653132y x y x 解得⎩⎨⎧==.58y x ,答:一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨.(2)设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x 辆、y 辆.由题意,得⎪⎩⎪⎨⎧≥≥+=+,,,21485820y y x y x 解得⎩⎨⎧==218y x ,或⎩⎨⎧==317y x ,或⎩⎨⎧==.416y x , 故有三种派车方案,第一种方案:大型渣土运输车18辆,小型渣土运输车2辆;第二种方案:大型渣土运输车17辆,小型渣土运输车3辆;第三种方案:大型渣土运输车16辆,小型渣土运输车4辆.24.(1)解:∵对角线AC 为⊙O 的直径,∴∠ADC =90°,∴∠EDC =90°.(2)证明:如答图,连接DO .∵∠EDC =90°,F 是EC 的中点,∴DF =FC ,∴∠FDC =∠FCD .∵OD =OC ,∴∠OCD =∠ODC .∵∠OCF =90°,∴∠ODF =∠ODC +∠FDC =∠OCD +∠DCF =90°,∴DF 是⊙O 的切线.(第24题答图) (3)解:(方法一)设DE =1,则AC =25.由AC 2=AD •AE ,得20=AD (AD +1),解得AD =4(负值已舍去).∵DC 2=AC 2-AD 2,∴DC =2(负值已舍去).∴tan ∠ABD =tan ∠ACD =DCAD =2. (方法二)如答图,则∠ABD =∠ACD .∵∠E +∠DCE =90°,∠DCA +∠DCE =90°,∴∠DCA =∠E .又∵∠ADC =∠CDE =90°,∴△CDE ∽△ADC , ∴DCDE AD DC =,∴DC 2 = AD • DE . ∵AC =25DE ,∴设DE =x (x >0),则AC =25x ,∴AC 2-AD 2=AD • DE ,即(25x )2-AD 2=AD • x .整理,得AD 2+AD • x -20x 2=0.解得AD =4x 或AD =-5x (舍去).∴DC =)4()52(22x x -=2x .∴tan ∠ABD =tan ∠ACD =DC AD =x x 24=2. 25.解:(1)令直线y =mx +1中x =0,得y =1,即直线y =mx +1与y 轴的交点为(0,1).将(0,1)代入抛物线y =x 2-2x +n ,得n =1.∵抛物线的表达式为y =x 2-2x +1=(x -1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入直线y =mx +1,得0=m +1,解得m =-1.∴m 的值为-1,n 的值为1.(2)将y =2x -4代入y =x 6,得2x -4=x6, 即2x 2-4x -6=0,解得x 1=-1,x 2=3.∴该“路线”L 的顶点坐标为(-1,-6)或(3,2). 令“带线”l :y =2x -4中x =0,得y =-4,∴“路线”L 的图像过点(0,-4).设该“路线”L 的表达式为y =m (x +1)2-6或y =n (x -3)2+2. 由题意,得-4=m (0+1)2-6或-4=n (0-3)2+2,解得m =2,n =-32. ∴此“路线”L 的表达式为y =2(x +1)2-6或y =-32(x -3)2+2. (3)令抛物线L :y =ax 2+(3k 2-2k +1)x +k 中x =0,得y =k ,即该抛物线与y 轴的交点为(0,k ).抛物线L :y =ax 2+(3k 2-2k +1)x +k 的顶点坐标为(-a k k 21232+-,a k k ak 4)123(422+--). 设“带线”l 的表达式为y =px +k .∵点(-a k k 21232+-,a k k ak 4)123(422+--)在y =px +k 上, ∴a k k ak 4)123(422+--= -p 22132k k a -+∙+k , 解得p =21232+-k k . ∴“带线”l 的表达式为y =21232+-k k x +k . 令“带线”l :y =21232+-k kx +k 中y =0,得0=21232+-k k x +k , 解得x =-12322+-k k k . 即“带线”l 与x 轴的交点为(-12322+-k k k ,0),与y 轴的交点为(0,k ). ∴“带线”l 与x 轴,y 轴所围成的三角形面积S =21|-12322+-k k k |×|k |. ∵21≤k ≤2,∴21≤k1≤2, ∴S =12322+-k k k =)1(2312k k +-=2)11(12+-k , ∴当k 1=1时,S 有最大值,最大值为21; 当k 1=2时,S 有最小值,最小值为31. 故抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围为31≤S ≤21. 26.解:(1)在函数y =-x +1中,令x =0,得y=1,∴B (0,1),令y =0,得x =1,∴A (1,0).∴OA =OB =1,∴AB =2.∴△AOB 的周长为1+1+2=2+2.(2)∵OA =OB ,∴∠ABO =∠BAO =45°,∴∠PBO =∠QAO =135°.设∠POB =x ,则∠OPB =∠AOQ =135°-x -90°=45°-x ,∴△PBO ∽△OAQ ,∴AQOB OA PB =, ∴PB =AQ OB OA ∙=t 1. 如答图,过点P 作PH ⊥OB 于点H ,则△PHB 为等腰直角三角形.∵PB =t1,∴PH =HB =t 22,∴P (-t 22,1+t 22). (3)由(2)可知,△PBO ∽△OAQ ,若它们的周长相等,则相似比为1,即全等,∴PB =OA ,∴t1=1,解得t =1. 同理可知,Q (1+t 22,-t 22),∴m =t t 22122+=2-1.∵抛物线经过点A ,∴a +b +c =0.又∵6a +3b +2c =0,∴b =-4a ,c =3a .∴对称轴为直线x =2,取值范围为2-1≤x ≤2+1,①若a >0,则开口向上,由题意知,当x =2-1时,取得最大值,最大值为m 2=22+2, 即(2-1)2a +(2-1)b +c =22+2,解得a =72811+. ②若a <0,则开口向下,由题意x =2时取得最大值,最大值为22+2,即4a +2b +c =22+2,解得a =-22-2.综上所述,a 的值为72811+或-22-2.(第26题答图)。
2020年湖南省长沙市教科院中考数学第五次模拟试卷 (Word 含解析)
2020年中考数学模拟试卷(五)一、选择题1.2-的绝对值是( ) A .12-B .2-C .12D .22.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += )A .4-B . 3C .43-D .439.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .410.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F 位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .3D .3212.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= .14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是 . 15.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为 .16.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .17.如图,一张三角形纸片ABC ,90C ∠=︒,8AC cm =,6BC cm =.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是 .三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B组人数所占的百分比为%a,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A . (1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由. (2)若1235a <<,求证:54n -<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒 (1)求抛物线的解析式; (2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.参考答案一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分) 1.2-的绝对值是( ) A .12-B .2-C .12D .2【分析】根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则2-的绝对值就是表示2-的点与原点的距离. 解:|2|2-=, 故选:D . 2.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母230x -≠,解得x 的范围.解:根据题意得:230x -≠, 解得:32x ≠. 故选:B .3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 解:数字338 600 000用科学记数法可简洁表示为83.38610⨯. 故选:A .4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意; B 、是轴对称图形,故此选项不合题意; C 、是轴对称图形,故此选项不合题意;D 、是轴对称图形,故此选项不合题意;故选:A .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒【分析】首先设此多边形为n 边形,根据题意得:180(2)540n -=,即可求得5n =,再由多边形的外角和等于360︒,即可求得答案. 解:设此多边形为n 边形, 根据题意得:180(2)540n -=, 解得:5n =,∴这个正多边形的每一个外角等于:360725︒=︒. 故选:C .6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则分别化简求出答案. 解:A 、87a a a -=,故此选项错误;B 、44()a a -=,正确;C 、325a a a =g ,故此选项错误;D 、222()2a b a ab b -=-+,故此选项错误;故选:B .7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【分析】根据各象限内点的坐标特征解答即可 . 解:Q 点(,)A a b -在第一象限内,0a ∴>,0b ->, 0b ∴<,∴点(,)B a b 所在的象限是第四象限 .故选:D .8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += ) A .4-B . 3C .43-D .43【分析】由方程的各系数结合根与系数的关系可得出“1243x x +=”, 由此即可得出结论 . 解:Q 方程23440x x --=的两个实数根分别为1x ,2x ,1243b x x a ∴+=-= 故选:D .9.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .4【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.解:①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是必然事件,故正确,是真命题, 真命题有4个, 故选:D .10.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒【分析】先求出70ABC ∠=︒,进而判断出35ABD CBD ∠=∠=︒,最后用同弧所对的圆周角相等即可得出结论. 解:如图,连接BD ,AB Q 为O e 的直径, 90ACB ∴∠=︒, 20CAB ∠=︒Q , 70ABC ∴∠=︒,Q ¶¶AD CD=, 1352ABD CBD ABC ∴∠=∠=∠=︒, 35CAD CBD ∴∠=∠=︒.故选:D .11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .23D .32【分析】取BC 的中点G ,连接EG ,根据三角形的中位线定理得:4EG =,设CD x =,则2EF BC x ==,证明四边形EGDF 是平行四边形,可得4DF EG ==. 解:取BC 的中点G ,连接EG , E Q 是AC 的中点, EG ∴是ABC ∆的中位线,118422EG AB ∴==⨯=, 设CD x =,则2EF BC x ==, BG CG x ∴==, 2EF x DG ∴==, //EF CD Q ,∴四边形EGDF 是平行四边形,4DF EG ∴==,故选:B .12.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >【分析】根据点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…,可知该抛物线开口向上,对称轴是直线x m =,则322m -+<,从而可以求得m 的取值范围,本题得以解决.解:Q 点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…, ∴322m -+<, 解得12m >-,故选:C .二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= 1 .【分析】直接利用已知得出221x x +=,再代入原式求出答案. 解:2210x x +-=Q , 221x x ∴+=,223623(2)23121x x x x ∴+-=+-=⨯-=.故答案为:1.14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是14. 【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率. 解:画树状图如下:P ∴(两次摸到同一个小球)41164== 故答案为:1415.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为22.【分析】设(,2)D x则(2,1)E x+,由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.解:设(,2)D x则(2,1)E x+,Q反比例函数kyx=在第一象限的图象经过点D、点E,22x x∴=+,解得2x=,(2,2)D∴,2OA AD∴==,2222OD OA OD∴=+=.故答案为216.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题解:设这个圆锥的底面圆的半径为R,由题意:18042180Rππ=g,解得2R=.故答案为2.17.如图,一张三角形纸片ABC,90C∠=︒,8AC cm=,6BC cm=.现将纸片折叠:使点A与点B重合,那么折痕长等于4.【分析】根据折叠得:GH 是线段AB 的垂直平分线,得出AG 的长,再利用两角对应相等证ACB AGH ∆∆∽,利用比例式可求GH 的长,即折痕的长. 解:如图,折痕为GH ,由勾股定理得:226810AB cm =+=, 由折叠得:1110522AG BG AB cm ===⨯=,GH AB ⊥, 90AGH ∴∠=︒,A A ∠=∠Q ,90AGH C ∠=∠=︒, ACB AGH ∴∆∆∽, ∴AC BCAG GH =, ∴865GH=, 154GH cm ∴=. 故答案为:154.18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是26+ .【分析】如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒,得到ACD ∆为等边三角形根据AC AD =,CE ED =,得出AE 垂直平分DC ,于是求出122EO DC ==,sin 606OA AC =︒=g ,最终得到答案26AE EO OA =+=+.解:如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒, ACD ∴∆为等边三角形,AD CA ∴=,60DAC DCA ADC ∠=∠=∠=︒; 90ABC ∠=︒Q ,2AB BC ==,22AC AD ∴==, AC AD =Q ,CE ED =,AE ∴垂直平分DC , 122EO DC ∴==,sin 606OA CA =︒=g, 26AE EO OA ∴=+=+,故答案为26+.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒【分析】直接利用绝对值的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式1(31)33=----+ 3=-.20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.【分析】(1)利用第二象限点的坐标特征写出A ,C 两点的坐标;(2)利用关于原点对称的点的坐标特征写出1A 、1B 、1C 的坐标,然后描点即可; (3)利用网格特点和旋转的性质画出点A 、B 、C 的对应点2A 、2B 、2C ,然后描点得到△222A B C ,再利用弧长公式计算点C 旋转至2C 经过的路径长. 解:(1)A 点坐标为(4,1)-,C 点坐标为(1,3)-; (2)如图,△111A B C 为所作;(3)如图,△222A B C 为所作,221310OC =+=点C 旋转至2C 经过的路径长9010101802ππ==g g .21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题: (1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B 组人数所占的百分比为%a ,则a 的值为 15 ,表示C 组扇形的圆心角θ的度数为 度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【分析】(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.解:(1)D的人数是:2001030407050----=(人),补图如下:(2)B组人数所占的百分比是30100%15% 200⨯=,则a的值是15;C组扇形的圆心角θ的度数为4036072200⨯=︒;故答案为:15,72;(3)根据题意得:702000700200⨯=(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”AOD∆和DOC∆;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.【分析】(1)根据“互补三角形”可得结论;(2)作//EH FG ,且EH FG =,可得符合条件的EFH ∆,根据四边形EFGH 是平行四边形可知:这一组“互补三角形”的面积相等. 解:(1)ABCD Y 中,OA OC =, OD OD =Q ,180AOD COD ∠+∠=︒,AOD ∴∆和DOC ∆是“互补三角形”, 故答案为:AOD ∆和DOC ∆;(2)如图所示,//EH FG ,且EH FG =,则EFH ∆即为所求,证明:连接GH ,//EH FG Q ,且EH FG =, ∴四边形EFGH 是平行四边形,//GH EF ∴,EFG EFH S S ∆∆∴=.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【分析】(1)根据生产每提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出第五档的蛋糕的利润;(2)设烘焙店生产的是第x 档次的产品,根据单件利润⨯销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论. 解:(1)102(51)18+⨯-=(元). 答:该档次蛋糕每件利润为 18 元;(2)设烘焙店生产的是第x档次的产品,根据题意得:[102(1)][764(1)]1024x x+-⨯--=,整理得:216480x x-+=,解得:14x=,212x=(不合题意,舍去).答:该烘焙店生产的是四档次的产品.24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sin B的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin sinAEF B∠=,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,ADQ为BAC∠的角平分线,BAD CAD∴∠=∠,OA OD=Q,ODA OAD∴∠=∠,ODA CAD∴∠=∠,//OD AC∴,90C∠=︒Q,90ODC ∴∠=︒,OD BC ∴⊥,BC ∴为圆O 的切线;(2)解:连接DF ,由(1)知BC 为圆O 的切线,FDC DAF ∴∠=∠,CDA CFD ∴∠=∠,AFD ADB ∴∠=∠,BAD DAF ∠=∠Q ,ABD ADF ∴∆∆∽, ∴AB AD AD AF=,即2AD AB AF xy ==g ,则AD =;(3)解:连接EF ,在Rt BOD ∆中,5sin 13OD B OB ==, 设圆的半径为r ,可得5813r r =+, 解得:5r =,10AE ∴=,18AB =, AE Q 是直径,90AFE C ∴∠=∠=︒,//EF BC ∴,AEF B ∴∠=∠,5sin 13AF AEF AE ∴∠==, 550sin 101313AF AE AEF ∴=∠=⨯=g , //AF OD Q , ∴501013513AG AF DG OD ===,即1323DG AD =,AD ∴===,则1323DG ==25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A .(1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由.(2)若1235a <<,求证:54n -<<-. 【分析】(1)①将点A 坐标代入解析式可求2b =,2c a =-,即可求抛物线解析式,可求点C ,点B 坐标,由三角形的面积公式可求解;②由22313132(22)(22)(2)2222y x x m x x m x m =++-+=+-+-,由二次函数的性质可求1m „,即可求解;(3)212(2)y ax x a =++-的对称轴为212x a a =-=-,由1235a <<,可得1532a -<-<-,又(1,0)A -、(,0)B n 两点关于对称轴对称,则11|1()|||n a a---=--,即可求解. 解:(1)①21(0)y ax bx c a =++>Q 过点A ,0a b c ∴-+=,22y x b =+Q 的图象过点A ,2b ∴=,2c a ∴=-;12a =Q , 13222c ∴=-=, 2113222y x x ∴=++,Q 二次函数2113222y x x =++与y 轴交于点C ,与x 轴交于(1,0)A -,(,0)B n 两点, ∴点3(0,)2C ,点(3,0)B -, 2AB ∴=,ABC ∴∆的面积1332222=⨯⨯=; ②23132(22)22y x x m x =++-+ 213(22)(2)22x m x m =+-+-, Q 在0x …时,3y 随x 的增大而增大, ∴对称轴22220122m x m -=-=-⨯„, 1m ∴„,m Q 是正整数,1m ∴=;(2)212(2)y ax x a =++-Q 的对称轴为212x a a =-=-, 又Q 1235a <<, 1532a ∴-<-<-, 又(1,0)A -Q 、(,0)B n 两点关于对称轴对称,11|1()|||n a a∴---=--, 21n a∴=-+或1n =-(舍去), 54n ∴-<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒(1)求抛物线的解析式;(2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法确定函数关系式.(2)13BQ AP =,要考虑P 在OC 上及P 在OC 的延长线上两种情况,有此易得BQ ,AP 关于t 的表示,代入13BQ AP =可求t 值. (3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑MPQ ∆,发现PQ 为一有规律的线段,易得OPQ 为等腰直角三角形,但仅因此无法确定PQ 运动至何种情形时MPQ ∆为等边三角形.若退一步考虑等腰,发现,MO 应为PQ 的垂直平分线,即使MPQ ∆为等边三角形的M 点必属于PQ 的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足MPQ ∆为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t 的方程,考虑t 的存在性.解:(1)Q 抛物线经过(2,0)A -,(0,2)B 两点, ∴24032a c c ⎧++=⎪⎨⎪=⎩. 解得:23a =-,2c =. ∴抛物线的解析式为221233y x x =--+;(2)由题意可知,OQ OP t ==,2AP t =+.①如图1,当2t … 时,点Q 在点B 下方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 1t ∴=.②如图2,当2t > 时,点Q 在点B 上方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 4t ∴=.∴当13BQ AP = 时,1t = 或4t =.(3)存在.作MC x ⊥ 轴于点C ,连接OM .设点M 的横坐标为m ,则点M 的纵坐标为221233m m --+. 当MPQ ∆ 为等边三角形时,MQ MP =, 又OP OQ =Q ,∴点M 点必在PQ 的垂直平分线上, 1452POM POQ ∴∠=∠=︒, MCO ∴∆ 为等腰直角三角形,CM CO =,221233m m m ∴=--+, 解得11m =,23m =-.M ∴ 点可能为(1,1)或(3,3)--. ①如图3,当M 的坐标为(1,1)时,则有1PC t =-,221(1)MP t t =+-= 222t -+, 222PQ t =,MPQ ∆Q 为等边三角形,MP PQ ∴=,t ∴ 22222t t -+=,解得113t =-+213t =--(负值舍去).②如图4,当点M 的坐标为(3,3)--时,则有3PC t =+,3MC =, 22223(3)618MP t t t ∴=++=++,222PQ t =, MPQ ∆Q 为等边三角形, MP PQ ∴=, 解得1333t =+2333t =-(负值舍去).∴当13t =-抛物线上存在点(1,1)M ,或当333t =+时,抛物线上存在点(3,3)M --,使得MPQ ∆ 为等边三角形.。
专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)
一、选择题1.(2014年,湖南省长沙市,3分)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()【考点】1.二次函数的图象;2.反比例函数的图象.2.(2014年湖南省株洲市,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)3.(2016年湖南省娄底市,3分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.考点:锐角三角函数的增减性.4.(2016年湖南省永州市,4分)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:3根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 【答案】B. 【解析】试题分析:根据表格中的规律可得:①因为24=16,此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=21,所以此选项正确;故答案选B . 考点:实数的运算.5. (2016年湖南省岳阳市,3分)对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a ≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A .0B .2C .3D .4【答案】B 【解析】考点:分段函数6.(2016年湖南省长沙市,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx+c+2=0无实数根; ③a ﹣b+c ≥0; ④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】D .考点:二次函数的图象与系数的关系.1.(2014年,湖南省衡阳市,3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为▲ .2.(2015·湖南常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2024年北师大版数学中考仿真模拟试题(五)
2024年北师大版数学中考仿真模拟试题(五)一、单选题1.河湟剪纸被列入青海省第三批省级非物质文化遗产名录,是青海劳动人民结合河湟文化,创造出独具高原特色的剪纸.以下剪纸图案既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列事件中,是必然事件的是( )A .任意画一个三角形,其内角和是180︒B .任意买一张电影票,座位号是单号C .掷一次骰子,向上一面的点数是3D .射击运动员射击一次,命中靶心3.用配方法解一元二次方程2680x x -+=,配方后得到的方程是( ) A .()2628x +=B .()2628x -=C .()231x +=D .()231x -=4.如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( ).A .1B .23C .13D .195.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是( )A .B .C .D .6.如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB ,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC 长为m ,则大树AB 的高为( )A .()cos sin m αα-B .()sin cos m αα-C .()cos tan m αα-D .sin cos m mαα- 7.如图,等圆1O e 和2O e 相交于A ,B 两点,1O e 经过2O e 的圆心2O ,若122O O =,则图中阴影部分的面积为( )A .2πB .43πC .πD .23π8.如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,点D 在AB 上,且14AD AB =,反比例函数()0ky k x=>的图象经过点D 及矩形OABC 的对称中心M ,连接,,OD OM DM .若ODM △的面积为3,则k 的值为( )A .2B .3C .4D .59.如图,在边长为4的正方形ABCD 中,点G 是BC 上的一点,且3BG GC =,DE AG ⊥于点E ,BF DE P ,且交AG 于点F ,则tan EDF ∠的值为( )A .14B .13C .25D .1210.如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),,对称轴为直线2x =.则下列结论正确的有( ) ①0abc <; ②0a b c -+>;③方程20cx bx a ++=的两个根为1211,26x x ==-;④抛物线上有两点()11,P x y 和()22,Q x y ,若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个二、填空题11.将一个三角尺()30A ∠=︒按如图所示的位置摆放,直线a b ∥,若20ABD ∠=︒,则α∠的度数是.12.如图,在ABCD Y 中,60D ∠=︒.以点B 为圆心,以BA 的长为半径作弧交边BC 于点E ,连接AE .分别以点,A E 为圆心,以大于12AE 的长为半径作弧,两弧交于点P ,作射线BP 交AE 于点O ,交边AD 于点F ,则OFOE的值为.13.2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的抛物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A '、B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面米.14.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是. 15.如图,在正方形ABCD 中,8AB =,点E 在边AD 上,且4AD AE =,点P 为边AB 上的动点,连接PE ,过点E 作EF PE ⊥,交射线BC 于点F ,则EFPE=.若点M 是线段EF 的中点,则当点P 从点A 运动到点B 时,点M 运动的路径长为.16.如图,在直角坐标系中,A e 与x 轴相切于点,B CB 为A e 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD V 的面积为6,则k 的值为.三、解答题17.计算:()201π 3.1422cos302-⎛⎫+--︒ ⎪⎝⎭.18.先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数.19.教室里的投影仪投影时,可以把投影光线CA ,CB 及在黑板上的投影图像高度AB 抽象成如图所示的ABC V ,90BAC ∠=︒.黑板上投影图像的高度120cm AB =,CB 与AB 的夹角33.7B ∠=︒,求AC 的长.(结果精确到1cm .参考数据:sin33.70.55︒≈,cos33.70.83︒≈,tan33.70.67︒≈)20.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).(1)作出ΔABC 关于原点O 成中心对称的ΔA 1B 1C 1.(2)作出点A 关于x 轴的对称点A'若把点A'向右平移a 个单位长度后落在ΔA 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.21.随着科技的进步,购物支付方式日益增多,为了解某社区居民支付的常用方式(A 微信,B 支付宝,C 现金,D 其他),某学习小组对红星社区部分居民进行问卷调查,根据查结果,绘制成如图统计图.根据统计图表中的信息,解答下列问题:(1)a =______,b =______,在扇形统计图中C 种支付方式所对应的圆心角为______度; (2)本次调查中用现金支付方式的居民里有2名男性,其余都是女性,现从该种支付方式中随机选2名居民参加线上支付方式培训,求恰好都是女性的概率.22.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=≠在一,三象限分别交于C ,D 两点,12AB BC =,连接CO ,DO .(1)求k 的值; (2)求CDO V 的面积.23.如图,四边形ABCD 内接于O e ,AB 为O e 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O e 的切线. (2)若10BE =,2sin 3BDC ∠=,求O e 的半径. 24.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值;(2)设这批淡水鱼放养t 天后的质量为m (kg ),销售单价为y 元/kg .根据以往经验可知:m与t 的函数关系为()2000005010015000(50100)t m t t ⎧≤≤=⎨+<≤⎩;y 与t 的函数关系如图所示.①分别求出当050t ≤≤和50100t <≤时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)25.在矩形ABCD 中,2AB =,AD =E 在边BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE ,AG 为邻边作矩形AEFG .(1)如图1,连接BD ,求BDC ∠的度数和DGBE的值; (2)如图2,当点F 在射线BD 上时,求线段BE 的长;(3)如图3,当E A E C =时,在平面内有一动点P ,满足PE EF =,连接PA ,PC ,求P A P C +的最小值.26.如图,抛物线21y ax bx c =++的图象经过(6,0)A -,(2,0)B -,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?。
湖南省长沙市2016年中考数学试卷word版含解析
湖南省长沙市2016年中考数学试卷(word版含解析)一、(在以下各题的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项.本大题共12小题,每题3分,总分值36分)1.以下四个数中,最大的数是()A.﹣2 B.C.0 D.6【分析】有理数大小比较的法那么:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判定即可.【解答】解:依照有理数比较大小的方式,可得6>>0>﹣2,故四个数中,最大的数是6.应选:D.【点评】此题要紧考查了有理数大小比较的方式,要熟练把握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.大伙儿翘首以盼的长株潭城际铁路将于2016年年末通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路全长99500米,那么数据99500用科学记数法表示为()A.×105B.×105C.×104D.×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确信n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将99500用科学记数法表示为:×104.应选:C.【点评】此题要紧考查了科学记数法的表示方式.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确信a的值和n的值.3.以下计算正确的选项是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a52a3=6a6【分析】直接利用二次根式乘法运算法那么和结合同底数幂的乘除运算法那么别离化简求出答案.【解答】解:A、×=,正确;B、x8÷x2=x6,故此选项错误;C、(2a)3=8a3,故此选项错误;D、3a52a3=6a8,故此选项错误;应选:A.【点评】此题要紧考查了二次根式乘法运算和结合同底数幂的乘除运算、积的乘方运算等知识,正确把握相关性质是解题关键.4.六边形的内角和是()A.540°B.720°C.900°D.360°【分析】利用多边形的内角和定理计算即可取得结果.【解答】解:依照题意得:(6﹣2)×180°=720°,应选B.【点评】此题考查了多边形内角与外角,熟练把握多边形内角和定理是解此题的关键.5.不等式组的解集在数轴上表示为()A.B.C.D.【分析】别离求出每一个不等式的解集,依照“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原那么即可得答案.【解答】解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,应选:C.【点评】此题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原那么“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.6.如图是由六个相同的小正方体搭成的几何体,那个几何体的主视图是()A.B.C.D.【分析】依照从正面看取得的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左侧一个小正方形,第三层左侧一个小正方形,应选:B.【点评】此题考查了简单组合体的三视图,从正面看取得的图形是主视图.7.假设一个三角形的两边长别离为3和7,那么第三边长可能是()A.6 B.3 C.2 D.11【分析】依照三角形三边关系,两边之和第三边,两边之差小于第三边即可判定.【解答】解:设第三边为x,那么4<x<10,因此符合条件的整数为6,应选A.【点评】此题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.8.假设将点A(1,3)向左平移2个单位,再向下平移4个单位取得点B,那么点B的坐标为()A.C.【分析】依照向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:∵点A(1,3)向左平移2个单位,再向下平移4个单位取得点B,∴点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,∴B的坐标为(﹣1,﹣1).应选C.【点评】此题考查了坐标与图形转变﹣平移,平移中点的转变规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.以下各图中,∠1与∠2互为余角的是()A.B.C.D.【分析】若是两个角的和等于90°(直角),就说这两个角互为余角.依此概念结合图形即可求解.【解答】解:∵三角形的内角和为180°,∴选项B中,∠1+∠2=90°,即∠1与∠2互为余角,应选B.【点评】此题考查了余角的概念,把握概念而且准确识图是解题的关键.10.已知一组数据75,80,80,85,90,那么它的众数和中位数别离为()A.75,80 B.80,85 C.80,90 D.80,80【分析】依照众数和中位数的概念别离进行求解即可.【解答】解:把这组数据依照从小到大的顺序排列为:75,80,80,85,90,最中间的数是80,那么中位数是80;在这组数据中显现次数最多的是80,那么众数是80;应选D.【点评】此题考查了众数和中位数,一组数据中显现次数最多的数据叫做众数;将一组数据依照从小到大(或从大到小)的顺序排列,若是数据的个数是奇数,那么处于中间位置的数确实是这组数据的中位数;若是这组数据的个数是偶数,那么中间两个数据的平均数确实是这组数据的中位数.11.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,那么这栋楼的高度为()A.160m B.120m C.300m D.160m【分析】第一过点A作AD⊥BC于点D,依照题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案.【解答】解:过点A作AD⊥BC于点D,那么∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=ADtan30°=120×=40(m),在Rt△ACD中,CD=ADtan60°=120×=120(m),∴BC=BD+CD=160(m).应选A.【点评】此题考查了仰角俯角问题.注意准确构造直角三角形是解此题的关键.12.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,能够推断抛物线最小值最小为0,对称轴在y轴左侧,并取得b2﹣4ac≤0,从而取得①②为正确;由x=﹣1及x=﹣2时y都大于或等于零能够取得③④正确.【解答】解:∵b>a>0∴﹣<0,因此①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,因此②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;因此③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3因此④正确.应选:D.【点评】此题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.二、填空题(共6小题,每题3分,总分值18分)13.分解因式:x2y﹣4y= y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【点评】此题考查了提公因式法,公式法分解因式,利用平方差公式进行二次分解因式是解此题的难点,也是关键.14.假设关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,那么实数m的取值范围是m>﹣4 .【分析】由方程有两个不相等的实数根可知,b2﹣4ac>0,代入数据可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:△=b2﹣4ac=(﹣4)2﹣4×1×(﹣m)=16+4m>0,解得:m>﹣4.故答案为:m>﹣4.【点评】此题考查了根的判别式,解题的关键是得出关于m的一元一次不等式.此题属于基础题,难度不大,解决该题型题目时,依照根的个数结合根的判别式得出不等式(或不等式组)是关键.15.如图,扇形OAB的圆心角为120°,半径为3,那么该扇形的弧长为2π.(结果保留π)【分析】直接利用弧长公式列式计算即可.【解答】解:∵扇形OAB的圆心角为120°,半径为3,∴该扇形的弧长为:=2π.故答案为:2π.【点评】此题要紧考查了弧长公式的应用,熟练经历弧长公式是解题关键.16.如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,那么⊙O的半径长为.【分析】依照垂径定理求出AC,依照勾股定理求出OA即可.【解答】解:∵弦AB=6,圆心O到AB的距离OC为2,∴AC=BC=3,∠ACO=90°,由勾股定理得:OA===,故答案为:.【点评】此题考查了垂径定理和勾股定理的应用,解此题的关键是求出AC和OA的长,题目比较好,难度适中.17.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,那么△BCE的周长为13 .【分析】依照线段的垂直平分线的性质取得EA=EB,依照三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,那么△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】此题考查的是线段的垂直平分线的性质,把握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.假设同时抛掷两枚质地均匀的骰子,那么事件“两枚骰子朝上的点数互不相同”的概率是.【分析】画出树状图,然后依照概率公式列式计算即可得解.【解答】解:由题意作出树状图如下:一共有36种情形,“两枚骰子朝上的点数互不相同”有30种,因此,P==.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点:概率=所求情形数与总情形数之比.三、解答题(本大题共8个小题,第1九、20题每题6分,第2一、22题每题6分,第23、24题每题6分,第2五、26题每题6分,共66分。
2016年长沙市中考数学模拟试卷(一)含答案解析
2016年湖南省长沙市中考数学模拟试卷(一)、选择题(每题 3分) 为( ) A . 7.5 X 106 B . 0.75 X 107 C . 7.5X 107 D . 75X 1056 •下列说法中,正确的是( ) A •任何一个数都有平方根 B •任何正数都有两个平方根 C •算术平方根一定大于 0 D • 一个数不一定有立方根 7•在以下数据75, 80, 80, 85, 90中,众数、中位数分别是( )A • 75, 80B • 80, 80C • 80, 85D • 80, 90 &已知一个正n 边形的每个内角为120°则这个多边形的对角线有( )A • 5条B • 6条C • 8条D • 9条9•如图,C 是线段AB 的中点,D 是线段CB 的中点,下列说法错误的是()I IIiACDB1 1A • CD=AC - BDB • CD=~AB - BDC • AC + BD=BC +CD D • CD^'ABA •越来越大B •越来越小1. 给出四个数:"■, 1,其中最大的是(4.据统计,2015年长沙市的常住人口约为 7500000人,将数据 7500000用科学记数法表示5.已知关于 x 的不等式 3B •近ax -3x+2> D • a v —2,则a 的取值范围为(10 •如图,已知A 是反比例函数 y 导图象上的一点,过点上|>A 向x 轴作垂线交x 轴于点B , 在点A 从左往右移动的过程中,△ABO 的面积将()A . D . -1 0 B .A •平行四边形B •矩形C .正方形D •圆C •先变大,后变小D •不变11.如图,扇形AOB是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为()12•如图,A点在半径为2的O O上,过线段OA上的一点P作直线m,与O O过A点的切线交于点B ,且/ APB=60 °设OP=x,则厶PAB的面积y关于x的函数图象大致是()二、填空题(每题3d分)13•分解因式:2x2- 8= _______ .14.如图所示,在?ABCD中,/ BAD的角平分线AE交BC于点E, AB=4 , AD=6,则16. 一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是__________ .13117 .如图所示,在O O中,AB为O O的直径,AC=8 , sinD=g■,则BC= ________ .a?b=寺■丄Cb>a ) b a三、解答题19•计算:2cos30° - |2| - . i 1+1.20.先化简,再求值:(2a - b ) 2 - b ( b -2a )- a 2,其中 3a=2b . 21 •长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子分钟仰卧起坐,各校为此加强了对体育训练的重视.弓I 体向上(男)和一分钟仰卧起坐(女)共 16分单位:次数 分值 1615 14 13 12 10 8 6 3 成 男(次) 8 7 6 5 4 3 2 1 0.5绩女(次)4540363228252220V19注:0.5次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次 某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校 800名初三学生中,随机抽取部分 学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求: (1 )某女生说她得了 12分,请问她一分钟做了多少次仰卧起坐; (2 )请问一共抽取了多少名学生?并补全条形统计图; (3)根据抽样结果估计,本校项目由多少学生能够得优秀? 22. 如图,在 Rt △ PAD 中,/ PAD=90 ° / APD 的角平分线 PO 交AD 于O 点,以O 为圆 心,OA 为半径作O O ,交AD 于点B ,过D 作DE 丄PO 交PO 的延长线于点 E . (1) 求证:PD 是O O 的切线;3(2) 若 PA=6, tan /PDA=^,求半径 OA 及 OE 的长.18•规定一种新的运算: ,则 1?2= _____B人数23. 某汽车专卖店销售A、B两种型号的新能源汽车•上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元•则有哪几种购车方案?并写出哪种方案所需的购车费用最低.24•已知,如图,△ ABC是等边三角形,过AC边上的点D作DG // BC,交AB于点G, 在GD的延长线上取点E,使DE=DC,连接AE、BD .(1)求证:△ AGE◎△ DAB ;(2)过点E作EF // DB,交BC于点F,连接AF,求/ AFE的度数.25. 若X" x2是关于x的一元二次方程ax2+bx+c=0 (0)的两个根,则方程的两个根x1>X2和系数a、b、c有如下关系:X1+X2= - —, X1?X2』,我们把它们称为根与系数的关系定a a理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c (a z 0)的图象与X轴的两个交点为A (x〔,0), B (X2, 0).抛物线的顶点为。
教科所:2016年长沙中考模拟试卷数学答案6-8
22.(1)证明:∵∠ADE=∠BAD,∴AB//ED. ∵ BD 垂直平分 AC,垂足为 F,∴BD⊥AC,AF=FC. 又∵AE⊥AC,∴∠EAC=∠DFC=90°. ∴AE//BD.∴四边形 ABDE 是平行四边形.
根据题意得:2000x+2500(120−x)=275000.(2 分)
解得 x=50,则 120−x=70.
即招聘 A 种工人 50 人,招聘 B 种工人 70 人.(4 分)
(2)设每月所支付的工资为 y 元,招聘 A 种工人 a 人,则招聘 B 种工人(120−a)人,
根据题意得:y=2000a+2500(120−a)=−500a+300000.(6 分)
10a 10b 65000 a b 1500
,解得:
a b
4000, 2500
∵租甲乙两车需要的租金为:65000(元);
∴单独租甲车需要的租金为:15×4000=60000(元);
∴单独租乙车需要的租金为:30×2500=75000(元).(9 分)
综上可得,单独租甲车租金最少.
24.(1)证明:∵AB 是直径,∴∠D=90°.∴∠A +∠DBA=90°. 又∵∠DBC=∠A,∴∠CBA=90°.
可得:10( 1 1 ) 1,解得:x=15.经检验,x=15 是原方程的根.15+15= x x 15
30(天). 即甲车单独完成任务需要 15 天,乙车单独完成任务需要 30 天.(4 分)
(2)设甲车每天的租金为 a 元,乙车每天的租金为 b 元,则根据题意可得:
2016年湖南省长沙市中考数学试卷和解析..
A .第1页(共22页)/ 1与/ 2互为余角的是 2016年湖南省长沙市中考数学试卷一、(在下列各题的四个选项中,只有一个是符合题意的,请在答题卡中填涂 符合题意的选项.本大题共12小题,每小题3分,满分36分)1 . ( 3分)(2016?长沙)下列四个数中,最大的数是( )A . - 2B .丄C . 0D . 632 . ( 3分)(2016 ?长沙)大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条 铁路全长99500米,则数据99500用科学记数法表示为()5544A. 0.995 X10 B . 9.95 X10 C . 9.95 X10 D . 9.5 X 10 3 . ( 3分)(2016 ?长沙)下列计算正确的是()82 433536A . . - ,= iB . x =xC . ( 2a ) =6aD . 3a ?2a =6a4 . ( 3分)(2016 ?长沙)六边形的内角和是( )A . 540 °B . 720 °C . 900 °D . 360 ° 5 . ( 3分)(2016 ?长沙)不等式组*“的解集在数轴上表示为( )L8-4X <0几何体的主视图是( ) 8 . ( 3分)(2016 ?长沙)若将点A ( 1 , 3)向左平移2个单位,再向下平移4 个单位得到点B ,则点B 的坐标为()A . ( - 2,- 1 ) B . ( - 1 , 0) C . ( - 1 , - 1) D . ( - 2, 0) 6. ( 3 分)(2016 ?长沙)如图是由六个相同的小正方体搭成的几何体,这个A . 6B . 3C . 2D .1(3分)(2016 ?长沙)下列各图中,• 7:『二二TMESL /TT 二,一二I - 一2二.〔< r /TJE 二 mEFELJL 八丄:/二二TIF.M 气 2 二.'rn--.' El!7=iF石f-llmDQG10 . ( 3分)(2016 ?长沙)已知一组数据75 , 80 , 80 , 85 , 90 ,则它的众数和 中位数分别为()A . 75 , 80B . 80 , 85C . 80 , 90D . 80 , 8011 . ( 3分)(2016 ?长沙)如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30 °看这栋楼底部C 处的俯角为60 °热气球A 处与楼 的水平距离为120m ,则这栋楼的高度为()A . 160 _;mB . 120 ';mC . 300mD . 160212 . ( 3分)(2016 ?长沙)已知抛物线y=ax +bx+c ( b > a > 0)与x 轴最多有 一个交点,现有以下四个结论:① 该抛物线的对称轴在y 轴左侧;2② 关于x 的方程ax +bx+c+2=0 无实数根; ③ a - b+c X ); ④ 二的最小值为3.b —a 其中,正确结论的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题(共6小题,每小题3分,满分18分)213 . ( 3 分)(2016 ?长沙)分解因式:x y - 4y= ____________________ . 14 . ( 3分)(2016 ?长沙)若关于x 的一元二次方程x - 4x - m=0有两个不相 等的实数根,则实数m 的取值范围是 __________________________ .15 . ( 3分)(2016 ?长沙)如图,扇形OAB 的圆心角为120 °半径为3,则该 扇形的弧长为 ___________________ .(结果保留n )16 . ( 3分)(2016 ?长沙)如图,在O O 中,弦AB=6 ,圆心O 到AB 的距离每人限选其中一种树),并将调查结果整请根据所给信息解答以下问题: (1) (2) (3) (4)17 . ( 3分)(2016 ?长沙)如图,△ ABC 中,AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△ BCE 的周长为 ______________________________ . 18 . ( 3分)(2016 ?长沙)若同时抛掷两枚质地均匀的骰子,则事件 两枚骰子 朝上的点数 互不相同”的概率是 _____________________________________ .三、解答题(本大题共8个小题,第佃、20题每小题6分,第21、22题每 小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。
2024年湖南省长沙市雅礼集团中考数学预测题(2)
2024年湖南省长沙市雅礼集团中考数学预测题(2)一、单选题1.《九章算术》记载的余和不足等概念体现了中国是最早采用正负数表示相反意义量的国家,若收入10元记作10+元,则支出136元记作( ) A .136+元B .136-元C .0元D .126-元2.小明同学从正面观察如图所示的几何体,得到的平面图形是( )A .B .C .D .3.计算2312x ⎛⎫⎪⎝⎭的结果正确的是( )A .6xB .614xC .514xD .9x4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是( )A .39︒B .40︒C .41︒D .42︒5.据党中央2024年发布的中国共产党党内统计公报,截至2023年12月底,全国约共有党员9675万.数据9675万用科学记数法表示为( ) A .79.67510⨯B .39.67510⨯C .49.67510⨯D .69.67510⨯6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )A .中位数B .平均数C .众数D .方差7.《孙子算经》中记载了这样一道题:”今有百鹿进城,每家取一鹿,不尽,又三家合取一鹿,恰尽”.问:有多少户人家?大意为:有100头鹿,首先每户分一头鹿,发现还有剩余,将剩下的鹿给每3户共分一头,恰好分完,若设共有x 户,则下列方程正确的是( ) A .11003x +=B .31100x +=C .11003x x +=D .11003x += 8.如图,在四边形ABCD 中,AD BC ∥,添加下列条件后仍不能..判定四边形ABCD 是平行四边形的是( )A .AD BC =B .AB DC ∥ C .A C ∠=∠D .AB DC =9.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为2S 甲和2S 乙,则2S 甲与2S 乙的大小关系是( )A .22S S >甲乙 B .22S S <甲乙C .22S S =甲乙D .无法确定10.已知0m n >>,若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( )A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<二、填空题11.因式分解:24a -=.12.将直角坐标系中的点()4,3绕原点O 沿顺时针方向旋转90°,最终得到的点的坐标为 . 13.如图所示的卡槽中有一块三角形铁片OAB V ,点C ,D 分别是OA ,OB 的中点,若4cm CD =,则该铁片底边AB 的长为 cm .14.已知关于x 的一元二次方程2310kx x -+=有两个相等的实数根,则常数k 的值可能是 . 15.如图,点C 是半圆O 同侧的一点,AB 为直径,若6cm AB AC ==,50BAC ∠=︒,连接线段AC BC 、分别交圆于点D 、点E ,则弧DE 的长为 cm .16.图中分别为反比例函数ky x=与一次函数y ax b =+的图象,已知交点坐标(2,3)A ,(,2)B m -,直接写出不等式kax b x+>的解:.三、解答题17.计算:0(2024)2cos60|5|-︒+-. 18.请从下列2个题中任选1题作答:①已知5x =,求代数式2324416x x ---的值; ②已知13x =,求代数式(21)(12)4(3)x x x x +-++的值.19.2023年12月,21世纪经济研究院发布《国际消费中心城市建设年度报告(2023)》,长沙被列为发展型消费中心城市(Gamma 级).根据市场需求,长沙市某企业为加快生产速度,更新了部分生产设备,更新设备后生产效率比更新前提高了25%,若更新设备前每天生产产品x 件.据此解答下列问题:(1)更新设备后每天生产 件产品(用含x 的式子表示);(2)更新设备后生产6000件产品还比更新设备前的生产5000件产品少用2天,则更新设备后每天生产多少件产品?20.奇山秀水聚宝盆——湖南首届旅游大会在张家界召开.如图①为某景区山地剖面图,为给游客提供更好的游览体验,拟在山上修建观光索道.如图②所示为索道的设计示意图,以山顶D 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山脚A 处,中途观光平台BC 为50m ,且与AF 平行.索道AB 与水平线的夹角为15︒,CD 与水平线夹角为45︒,A 、B 两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈ 1.41≈)(1)求索道AB 的长(结果精确到0.1m ); (2)求水平距离AF 的长(结果精确到0.1m ).21.端午节,又称端阳节、龙舟节、重午节、重五节、天中节等,日期在每年农历五月初五,是集祈福辟邪、拜神祭祖、欢庆饮食和娱乐为一体的民俗大节.某校今年6月开设了以“端午”为主题的活动课程,每位学生可在“折纸龙”、“做香囊、“采艾叶””与“包粽子”四门课程中任意且只选择其中一门,学校统计调查了本校部分学生的选课情况,小明据此绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)补全条形统计图,并求本次被调查的学生人数.(2)该校共有2000名学生,若每间教室最多可安排40名学生,试估计开设“包粽子“课程的教室至少需要几间.22.图1为小明和妹妹小红每天的出行路线,某天兄妹俩从学校出发,到书吧看书后回家,哥哥小明步行先出发,途中速度保持不变:妹妹骑车从学校出发,到书吧前的速度为200米/分,两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数图像在图2中分别表示.(1)求小明步行的速度.(2)已知妹妹小红比哥哥小明迟2分钟到书吧. ①求图中a 的值;②若妹妹仅在书吧停留了11分钟后就准备回家,且速度是哥哥的1.6倍,求追上时兄妹俩离家还有多远.23.如图,已知O e 的内接ABC V 为等边三角形,连接顶点C 与圆心O ,并延长交AB 于点D ,交O e 于点E ,连接EA ,EB .(1)图中与ACD V 全等的三角形是 ,图中度数为30︒的角有 个 ; (2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由. 24.在ABC V 中,BC 为O e 的直径,AC 为过C 点的切线.(1)如图①,以点B 为圆心,BC 为半径作圆弧交AB 于点M ,连结CM ,若66ABC ∠=︒,求ACM ∠的大小;(2)如图②,过点D 作O e 的切线DE 交AC 于点E ,求证:AE EC =; (3)如图③,在(1)(2)的条件下,若3tan 4A =,求:ADE ACM S S △△的值. 25.若函数G 在()m x n m n ≤≤<上的最大值记为max y ,最小值记为min y ,且满足max min 1y y -=,则称函数G 是在m x n ≤≤的“美好函数”.(1)函数①1y x =+;②2y x =;③2y x =.其中函数___________是在12x ≤≤上的“美好函数”;(填序号)(2)已知函数G :()2230y ax ax a a =--≠.①函数G 是在12x ≤≤上的“美好函数”,求a 的值;②当1a =时,函数G 是在1t x t ≤≤+上的“美好函数”,请直接写出t 的值;(3)已知函数G :()2230y ax ax a a =-->,若函数G 是在221m x m +≤≤+(m 为整数)上的“美好函数”,且存在整数k ,使得maxminy k y =,求a 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖南省长沙市中考数学模拟试卷(五)一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
共12小题,每小题3分,满分36分)1.(3分)﹣8的立方根是()A.B.2 C.﹣2 D.2.(3分)“比a的3倍大5的数”用代数式表示为()A.3a+5 B.3(a+5)C.3a﹣5 D.3(a﹣5)3.(3分)已知点P(﹣2,1)关于y轴的对称点为Q(m,n),则m﹣n的值是()A.1 B.﹣1 C.3 D.﹣34.(3分)已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4 B.C. D.55.(3分)如图所示是一个几何体的三视图,则这个几何体的名称是()A.圆柱B.圆锥C.长方体D.棱锥6.(3分)天气预报称,明天长沙市全市的降水率为90%,下列理解正确的是()A.明天长沙市全市有90%的地方会下雨B.明天长沙市全市有90%的时间会下雨C.明天长沙市全市下雨的可能性较大D.明天长沙市一定会下雨7.(3分)若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,58.(3分)已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.49.(3分)如图,在△ABC中,DE∥BC,=,四边形DECB的面积是10,则△ABC的面积为()A.4 B.8 C.18 D.910.(3分)如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°11.(3分)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为()A.1 B.2 C.3 D.412.(3分)如图所示是二次函数y=ax2+bx+c(a≠0)的图象,现有下列说法:①a>0;②c>0;③4a﹣b+c<0;④当﹣1<x<3时,y>0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:y5﹣x2y3=.14.(3分)已知A(﹣1,y1)、B(3,y2)为一次函数y=﹣2x+3图象上的两点,则y1与y2的大小关系是.15.(3分)如图,在▱ABCD中,DB=DC,∠A=67°,CE⊥BD于点E,则∠BCE=.16.(3分)某学生在解一元二次方程x2﹣2x=0时,只得出一个根是2,则被他漏掉的另一个根是x=.17.(3分)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.18.(3分)如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为2,则扇形的半径为.三、解答题(本题共8个小题,第19、20小题每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)计算:()﹣1+tan60°﹣(﹣)0.20.(6分)解不等式组:并在数轴上表示解集.21.(8分)为了提高教师的综合素质,教育部门对全长沙市教师进行某项专业技能培训.为了解培训的效果,培训结束后随机抽取了部分参训老师进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:(1)培训结束后共抽取了名参训教师进行技能测试;(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为;(3)若全市有4000名参加培训的教师,请你估算获得“优秀”的总人数是多少.22.(8分)在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.23.(9分)长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?24.(9分)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.25.(10分)在平面直角坐标系中,如果点P(x,y)的坐标满足x+y=xy,那么称P为和谐点.(1)若点A(a,2)是正比例函数y=kx(k≠0,k为常数)上的一个和谐点,求这个正比例函数的解析式;(2)试判断函数y=﹣2x+1的图象上是否存在和谐点?若存在,求出和谐点的坐标;若不存在,请说明理由;(3)直线l:y=kx+2经过和谐点P,且与反比例函数G:y=﹣交于M、N两点,若点P的纵坐标为3,求出直线l的解析式,并在x轴上找一点Q使得QM+QN 最小.26.(10分)如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,与y轴交于点C,与x轴交于A、B两点,点A在原点的左侧,点B 的坐标为(3,0),OB=OC=3OA.(1)求这个二次函数的解析式;(2)如图,若点G(2,m)是该抛物线上一点,E是直线AG下方抛物线上的一动点,当点E运动到什么位置时,△AEG的面积最大?求此时点E的坐标和△AEG的最大面积;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆的半径.2016年湖南省长沙市中考数学模拟试卷(五)参考答案与试题解析一、(在下列的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项。
共12小题,每小题3分,满分36分)1.(3分)(2016•长沙模拟)﹣8的立方根是()A.B.2 C.﹣2 D.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选C.2.(3分)(2016•长沙模拟)“比a的3倍大5的数”用代数式表示为()A.3a+5 B.3(a+5)C.3a﹣5 D.3(a﹣5)【解答】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.3.(3分)(2016•长沙模拟)已知点P(﹣2,1)关于y轴的对称点为Q(m,n),则m﹣n的值是()A.1 B.﹣1 C.3 D.﹣3【解答】解:∵点P(﹣2,1)关于y轴的对称点为Q(m,n),∴m=2,n=1,∴m﹣n=2﹣1=1.故选:A.4.(3分)(2016•长沙模拟)已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB 的长为()A.4 B.C. D.5【解答】解:在Rt△ABC中,∠C=90°,AC=2,BC=3,由勾股定理得:AB===;故选:C.5.(3分)(2016•长沙模拟)如图所示是一个几何体的三视图,则这个几何体的名称是()A.圆柱B.圆锥C.长方体D.棱锥【解答】解:根据正视图是三角形,圆柱和长方体不符合要求,A、C错误;根据俯视图是圆,棱锥不符合要求,D错误;根据几何体的三视图,圆锥符合要求.故选:B.6.(3分)(2016•长沙模拟)天气预报称,明天长沙市全市的降水率为90%,下列理解正确的是()A.明天长沙市全市有90%的地方会下雨B.明天长沙市全市有90%的时间会下雨C.明天长沙市全市下雨的可能性较大D.明天长沙市一定会下雨【解答】解:长沙市明天下雨概率是90%,表示本市明天下雨的可能性很大,但是不是将有90%的地方下雨,不是90%的时间下雨,也不是明天肯定下雨,故选:C.7.(3分)(2016•长沙模拟)若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,5【解答】解:∵一个三角形的三条边长分别为3,2a﹣1,6,∴,解得:2<a<5,故整数a的值可能是:3,4.故选:B.8.(3分)(2016•长沙模拟)已知正数x满足x2+=62,则x+的值是()A.31 B.16 C.8 D.4【解答】解:∵x是正数,∴x+====8.故选C.9.(3分)(2016•长沙模拟)如图,在△ABC中,DE∥BC,=,四边形DECB 的面积是10,则△ABC的面积为()A.4 B.8 C.18 D.9【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,∵四边形DECB的面积是10,∴△ABC的面积=18.故选C.10.(3分)(2016•长沙模拟)如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选D.11.(3分)(2016•长沙模拟)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,如图,A、B两点在函数y=(x>0)的图象上,则图中阴影部分(不包括边界)所含格点的个数为()A.1 B.2 C.3 D.4【解答】解:把A(1,6)代入y=,得k=1×6=6,∴反比例函数的解析式为y=;设直线AB的解析式为y=kx+b,把A(1,6),B(6,1)代入得,kx+b=6,k+b=1,解得k=﹣1,b=7,∴直线AB的解析式为y=﹣x+7;当x=2,y==3;y=﹣x+7=5;当x=3,y==2;y=﹣x+7=4;当x=4,y==;y=﹣x+7=3;当x=5,y==;y=﹣x+7=2,∴图中阴影部分(不包括边界)所含格点的有:(2,4),(3,3),(4,2).故答案为C.12.(3分)(2016•长沙模拟)如图所示是二次函数y=ax2+bx+c(a≠0)的图象,现有下列说法:①a>0;②c>0;③4a﹣b+c<0;④当﹣1<x<3时,y>0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:①错误.∵抛物线开口向下,∴a<0,故①错误.②正确.∵抛物线与y轴交于正半轴上,∴c>0,故②正确.③正确.由题意解得,∴4a﹣b+c=4a+2a﹣3a=3a<0,故③正确.④正确.由图象可知当﹣1<x<3时,图象在x轴上方,∴y>0,故④正确.∴②③④正确,选C.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2016•长沙模拟)分解因式:y5﹣x2y3=y3(y﹣x)(y+x).【解答】解:y5﹣x2y3=y3(y2﹣x2)=y3(y﹣x)(y+x),故答案为:y3(y﹣x)(y+x).14.(3分)(2016•长沙模拟)已知A(﹣1,y1)、B(3,y2)为一次函数y=﹣2x+3图象上的两点,则y1与y2的大小关系是y1>y2.【解答】解:在一次函数y=﹣2x+3中,∵k=﹣1<0,∴y随x的增大而减小,∵﹣1<3,∴y1>y2,故答案为:y1>y2.15.(3分)(2016•长沙模拟)如图,在▱ABCD中,DB=DC,∠A=67°,CE⊥BD于点E,则∠BCE=23°.【解答】解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=67°,∴∠DBC=∠BCD=67°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=90°﹣67°=23°.故答案为:23°.16.(3分)(2016•长沙模拟)某学生在解一元二次方程x2﹣2x=0时,只得出一个根是2,则被他漏掉的另一个根是x=0.【解答】解:设方程x2﹣2x=0的两根根为x1、x2,∴x1+x2=﹣=2,∵x1=2,∴x2=0.故答案为:0.17.(3分)(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.18.(3分)(2016•长沙模拟)如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为2,则扇形的半径为8.【解答】解:根据扇形的弧长等于圆的周长,∴扇形弧长等于小圆的周长,即:=2π×2,解得R=8,故答案为:8.三、解答题(本题共8个小题,第19、20小题每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)(2016•长沙模拟)计算:()﹣1+tan60°﹣(﹣)0.【解答】解:()﹣1+tan60°﹣(﹣)0=2+×﹣1=2+3﹣1=420.(6分)(2016•长沙模拟)解不等式组:并在数轴上表示解集.【解答】解:,解①得:x>﹣2,解②得:x≤1,不等式组的解集为:﹣2<x≤1,在数轴上表示为:.21.(8分)(2016•长沙模拟)为了提高教师的综合素质,教育部门对全长沙市教师进行某项专业技能培训.为了解培训的效果,培训结束后随机抽取了部分参训老师进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:(1)培训结束后共抽取了40名参训教师进行技能测试;(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为;(3)若全市有4000名参加培训的教师,请你估算获得“优秀”的总人数是多少.【解答】解:(1)2+12+16+10=40名;(2)P(优秀)==;(3)4000×=1000名.故答案为:(1)40;(2).22.(8分)(2016•长沙模拟)在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.【解答】(1)证明:在菱形ABCD中,AD∥BC,OA=OC,OB=OD,∴∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴OE=OF,又∵OB=OD,∴四边形BFDE是平行四边形;(2)解:设OM=2x,∵EF⊥AB,tan∠MBO=,∴BM=3x,又∵AC⊥BD,∴∠AOM=∠OBM,∴△AOM∽△OBM,∴=,∴AM==x,∵AD∥BC,∴△AEM∽△BFM,∴EM:FM=AM:BM=x:3x=4:9.23.(9分)(2016•长沙模拟)长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?【解答】解:设原计划每天铺设管道x米,依题意得:+=27,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.(2)∵﹣27=3,∴3×4000=12000(元),答:现在比原计划少支出12000元钱.24.(9分)(2012•北京)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD ⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.【解答】证明:(1)连接OC,∵OD⊥BC,∴∠COE=∠BOE,在△OCE和△OBE中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,∵OB是⊙O半径,∴BE与⊙O相切.(2)过点D作DH⊥AB,连接AD并延长交BE于点F,∵∠DOH=∠BOD,∠DHO=∠BDO=90°,∴△ODH∽△OBD,∴==又∵sin∠ABC=,OB=9,∴OD=6,易得∠ABC=∠ODH,∴sin∠ODH=,即=,∴OH=4,∴DH==2,又∵△ADH∽△AFB,∴=,=,∴FB=.25.(10分)(2016•长沙模拟)在平面直角坐标系中,如果点P(x,y)的坐标满足x+y=xy,那么称P为和谐点.(1)若点A(a,2)是正比例函数y=kx(k≠0,k为常数)上的一个和谐点,求这个正比例函数的解析式;(2)试判断函数y=﹣2x+1的图象上是否存在和谐点?若存在,求出和谐点的坐标;若不存在,请说明理由;(3)直线l:y=kx+2经过和谐点P,且与反比例函数G:y=﹣交于M、N两点,若点P的纵坐标为3,求出直线l的解析式,并在x轴上找一点Q使得QM+QN 最小.【解答】解:(1)∵点A(a,2)是正比例函数y=kx(k≠0,k为常数)上的一个和谐点,∴a+2=2a,∴a=2,∴A(2,2),∴2=2k,∴k=1,∴正比例函数的解析式为y=x.(2)不存在.理由如下,设M(a,b)是函数y=﹣2x+1的图象上和谐点,则有,消去b得,a﹣2a+1=a(﹣2a+1),整理得2a2﹣2a+1=0,∵△=4﹣8=﹣4<0,∴方程无解,∴函数y=﹣2x+1的图象上不存在和谐点.(3)由题意假设P(x,3),则x+3=3x,∴x=,∴P(,3),代入y=kx+2得3=k+2,∴k=,∴直线l的解析式的解析式为y=x+2,由解得或,不妨设M(﹣1,),N(﹣2,),如图,作点N关于x轴的对称点N′,连接MN′交x轴于Q,此时NQ+QM最小.∵N′(﹣2,﹣),M(﹣1,),∴直线MN′的解析式为y=2x+,令y=0得到,x=﹣,∴点Q的坐标为(﹣,0).26.(10分)(2016•长沙模拟)如图,在平面直角坐标系中,二次函数y=ax2+bx+c (a>0)的图象的顶点为D,与y轴交于点C,与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),OB=OC=3OA.(1)求这个二次函数的解析式;(2)如图,若点G(2,m)是该抛物线上一点,E是直线AG下方抛物线上的一动点,当点E运动到什么位置时,△AEG的面积最大?求此时点E的坐标和△AEG的最大面积;(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆的半径.【解答】解:(1)由已知得:C(0,﹣3),A(﹣1,0)将A、B、C三点的坐标代入得解得:所以这个二次函数的表达式为:y=x2﹣2x﹣3;(2)当x=2时,y=x2﹣2x﹣3=﹣3,即G(2,﹣3),设AG的解析式为y=kx+b,将A、G代入函数解析式,得,解得,直线AG的解析式为y=﹣x﹣1.过E作EF⊥x轴交AG于,F如图1,E在抛物线上,F在直线AG上,设E点坐标为(n,n2﹣2n﹣3),F(n,﹣n﹣1),EF=(﹣n﹣1)﹣(n2﹣2n﹣3)=﹣n2+n+2S=EF•(G﹣x A)=×(﹣n2+n+2)[2﹣(﹣1)]=﹣(n﹣)2+,当n=时,S最大值是,n2﹣2n﹣3=﹣,即E(,﹣);(3)如图2,①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R),代入抛物线的表达式,解得R=;②当直线MN在x轴下方时,设圆的半径为r(r>0),则N(r+1,﹣r),代入抛物线的表达式,解得r=,∴圆的半径为或.参与本试卷答题和审题的老师有:冯延鹏;zgm666;sd2011;家有儿女;sjzx;唐唐来了;弯弯的小河;王学峰;1723524822;sdwdmahongye;Ldt;曹先生;放飞梦想;星期八;caicl;2300680618(排名不分先后)。