(浙江专版)2019版高考数学一轮复习 第九章 复数、计数原理与概率、随机变量及其分布 第六节 随机

合集下载

2020届高考数学一轮复习:第九章 复数、计数原理与概率、随机变量及其分布一

2020届高考数学一轮复习:第九章  复数、计数原理与概率、随机变量及其分布一

第九章⎪⎪⎪复数、计数原理与概率、随机变量及其分布第一节数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ ―→.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ;④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).[小题体验]1.(2019·杭州高三质检)设复数z=52-i(其中i为虚数单位),则复数z的实部为________,虚部为________.解析:因为z=52-i=5(2+i)(2-i)(2+i)=2+i,所以复数z的实部为2,虚部为1.答案:2 12.(2019·浙江名校联考)设(a+i)(1-b i)=3-i(a,b∈R,i是虚数单位),则a+b=______;若z=a+b i,则|z|=______.解析:因为(a+i)(1-b i)=(a+b)+(1-ab)i=3-i,所以a+b=3,1-ab=-1,则ab=2,所以|z|=a2+b2=(a+b)2-2ab=9-4= 5.答案:3 53.(教材习题改编)四边形ABCD是复平面内的平行四边形,A,B,C三点对应的复数分别是1+3i,-i,2+i,则点D对应的复数为________.答案:3+5i1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比较大小.3.注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来.例如,若z1,z2∈C,z21+z22=0,就不能推出z1=z2=0;z2<0在复数范围内有可能成立.[小题纠偏]1.设复数z1=2-i,z2=a+2i(i是虚数单位,a∈R),若z1·z2∈R,则a=________.解析:依题意,复数z1z2=(2-i)(a+2i)=(2a+2)+(4-a)i是实数,因此4-a=0,a=4.答案:42.设i是虚数单位,若复数(2+a i)i的实部与虚部互为相反数,则实数a的值为________.解析:因为(2+a i)i=-a+2i,又其实部与虚部互为相反数,所以-a+2=0,即a=2.答案:2考点一复数的有关概念(基础送分型考点——自主练透)[题组练透]1.(2018·台州二模)复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A .2 B .1 C .-2D .1或2解析:选A 由a 2-3a +2=0,得a =1或2.因为复数是纯虚数,所以a ≠1,所以可知a =2.2.已知i 为虚数单位,a ∈R ,若2-i a +i 为纯虚数,则复数z =2a +2i 的模等于( )A. 2B.11C. 3D. 6解析:选C 由题意得,2-ia +i =t i(t ≠0),∴2-i =-t +ta i ,∴⎩⎪⎨⎪⎧-t =2,ta =-1,解得⎩⎪⎨⎪⎧t =-2,a =12,∴z =2a +2i =1+2i ,|z |=3,故选C.3.(2019·镇海中学模拟)已知i 是虚数单位,复数z =2-i ,则z ·(1+2i)的共轭复数为( ) A .2+i B .4+3i C .4-3iD .-4-3i解析:选C 因为z =2-i ,所以z ·(1+2i)=(2-i)(1+2i)=4+3i ,所以其共轭复数为4-3i.4.已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,则z 2=________.解析:(z 1-2)(1+i)=1-i ⇒z 1=2-i. 设z 2=a +2i ,a ∈R ,则z 1·z 2=(2-i)(a +2i)=(2a +2)+(4-a )i. ∵z 1·z 2∈R ,∴a =4. ∴z 2=4+2i. 答案:4+2i[谨记通法]求解与复数概念相关问题的技巧复数的分类、复数的相等、复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即a +b i(a ,b ∈R )的形式,再根据题意求解.考点二 复数的几何意义(基础送分型考点——自主练透)[题组练透]1.(2019·杭二模拟)在复平面内,复数z =i1+i对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选A z =i 1+i =i (1-i )(1+i )(1-i )=12+12i ,其在复平面内对应的点为⎝⎛⎭⎫12,12,位于第一象限.2.(2019·河北“五校联盟”质检)在复平面内与复数z =2i 1+i 所对应的点关于实轴对称的点为A ,则A 对应的复数为( )A .1+iB .1-iC .-1-iD .-1+i解析:选B 因为z =2i1+i =2i (1-i )(1+i )(1-i )=i(1-i)=1+i ,所以A 点坐标为(1,-1),其对应的复数为1-i.3.(2019·浙江十校联盟适考)复数z =2i1+i(i 为虚数单位)的虚部为________,其共轭复数在复平面内对应的点位于第________象限.解析:因为z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,所以z 的虚部为1,z =1-i ,故复数z 的共轭复数在复平面内对应的点为(1,-1),位于第四象限.答案:1 四[谨记通法]对复数几何意义的理解及应用(1)复数z 、复平面上的点Z 及向量OZ ―→相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ ―→. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.考点三 复数的代数运算(基础送分型考点——自主练透)[题组练透]1.(2019·浙江名校协作体联考)⎪⎪⎪⎪⎪⎪3-i 1+i =( )A.52B.10C.102D. 5解析:选D 法一:3-i 1+i =(3-i )(1-i )(1+i )(1-i )=2-4i 2=1-2i ,|1-2i|=5,即⎪⎪⎪⎪⎪⎪3-i 1+i =5,故选D.法二:⎪⎪⎪⎪⎪⎪3-i 1+i =|3-i||1+i|=102=5,故选D. 2.(2019·嘉兴模拟)设复数z =1-i(i 是虚数单位),则2z +z 等于( ) A .2 B .-2 C .2iD .-2i解析:选A 2z +z =21-i +1-i =2(1+i )(1-i )(1+i )+1-i =1+i +1-i =2.3.(2019·浙江期初联考)已知i 是虚数单位,若复数z 满足41+z =1-i ,则z ·z =( )A .4B .5C .6D .8解析:选B 由41+z =1-i ,得z =41-i-1=1+2i ,所以z =1-2i ,则z ·z =(1+2i)(1-2i)=5,故选B.4.(2018·全国卷Ⅱ)1+2i1-2i =( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i解析:选D 1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=-3+4i 5=-35+45i.[谨记通法]复数代数形式运算问题的解题策略(1)复数的乘法:复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.[提醒] 在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i1+i=-i ; (2)-b +a i =i(a +b i);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *.一抓基础,多练小题做到眼疾手快1.(2019·浙江9+1期中)已知i 为虚数单位,z 表示复数的共轭复数,若z =1+i ,则z ·zi =( )A .2iB .-2iC .2D .-2解析:选Bz ·zi =(1+i )(1-i )i =2i=-2i. 2.(2019·湖州模拟)已知复数a +2i1+i(i 是虚数单位)是纯虚数,则实数a =( ) A .-2 B .-1 C .0 D .2解析:选A a +2i 1+i =(a +2i )(1-i )(1+i )(1-i )=(a +2)+(2-a )i2是纯虚数,所以a +2=0,解得a =-2.3.(2018·杭州名校协作体二模)在复平面内,复数z 和i1-i 表示的点关于虚轴对称,则复数z 为( )A.12+12iB.12-12iC .-12+12iD .-12-12i解析:选A 因为i 1-i =i (1+i )(1-i )(1+i )=-12+12i ,其在复平面内对应的点为⎝⎛⎭⎫-12,12,所以由条件可知z =12+12i.故选A.4.(2019·金丽衢十二校联考)设a ∈R ,若复数z =a +i1+i(i 为虚数单位)的实部和虚部相等,则a =________,|z |=________.解析:a +i 1+i =(a +i )(1-i )(1+i )(1-i )=(a +1)+(1-a )i2,所以a +1=1-a ,解得a =0.所以z =12+12i ,所以|z |=⎪⎪⎪⎪12-12i =22. 答案:0225.设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 解析:∵|a +b i|=a 2+b 2=3, ∴(a +b i)(a -b i)=a 2+b 2=3. 答案:3二保高考,全练题型做到高考达标 1.(2019·杭州质检)设z =i 1-i(i 为虚数单位),则1|z |=( )A.22B. 2C.12D .2解析:选B 因为z =i 1-i =i (1+i )(1-i )(1+i )=-12+12i ,所以|z |=⎝⎛⎭⎫-122+⎝⎛⎭⎫122=22, 所以1|z |= 2.2.(2019·宁波模拟)已知复数z 满足z (1+i)=2-i ,则z 的虚部为( ) A .-32iB.32iC .-32D.32解析:选C 因为z (1+i)=2-i ,所以z =2-i 1+i =(2-i )(1-i )(1+i )(1-i )=12-32i ,所以其虚部为-32.3.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪z 1+i -i 2i =0的复数z 的共轭复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由题意得,2z i -[-i(1+i)]=0,则z =-i (1+i )2i =-12-12i ,∴z =-12+12i ,其在复平面内对应的点在第二象限,故选B.4.已知复数z =1+2i1-i,则1+z +z 2+…+z 2 018=( )A .1+iB .1-iC .iD .0解析:选C ∵z =1+2i1-i =1+2i (1+i )2=i ,∴1+z +z 2+…+z 2 018=1×(1-z 2 019)1-z =1-i 2 0191-i =1-i 4×504·i 31-i=i. 5.(2019·杭州七校联考)已知复数z =2+a i(a ∈R ),|(-1+i)z |=32,则a 的值是( ) A .±5 B. 5 C .±3D. 3解析:选A 法一:|(-1+i)z |=|(-2-a )+(2-a )i|= (-2-a )2+(2-a )2=2a 2+8=32,则a =±5,故选A.法二:|(-1+i)z |=|-1+i|·|z |=2·22+a 2=32,则a =±5,故选A.6.(2018·嘉兴4月)若复数z 满足(3+i)z =2-i(i 为虚数单位),则z =________,|z |=________.解析:因为(3+i)z =2-i ,所以z =2-i 3+i =(2-i )(3-i )(3+i )(3-i )=1-i 2,所以|z |=22.答案:1-i 2 227.已知复数z 满足z +2z -2=i(其中i 是虚数单位),则|z |=________. 解析:由z +2z -2=i 知,z +2=z i -2i ,即z =-2-2i 1-i ,所以|z |=|-2-2i||1-i|=222=2.答案:28.已知a ∈R ,若1+a i 2-i 为实数,则a =________,⎪⎪⎪⎪⎪⎪1+a i 2-i =________.解析:1+a i 2-i =(1+a i )(2+i )(2-i )(2+i )=2+i +2a i -a 5=2-a 5+1+2a5i ,∵1+a i 2-i为实数,∴1+2a 5=0,∴a =-12.所以⎪⎪⎪⎪⎪⎪1+a i 2-i =12.答案:-12 129.已知复数z =x +y i ,且|z -2|=3,则yx 的最大值为________.解析:∵|z -2|=(x -2)2+y 2=3,∴(x -2)2+y 2=3. 由图可知⎝⎛⎭⎫y x max=31= 3. 答案: 310.计算:(1)(-1+i )(2+i )i 3;(2)(1+2i )2+3(1-i )2+i ;(3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解:(1)(-1+i )(2+i )i 3=-3+i-i =-1-3i.(2)(1+2i )2+3(1-i )2+i=-3+4i +3-3i 2+i=i2+i =i (2-i )5=15+25i. (3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1.(4)1-3i (3+i )2=(3+i )(-i )(3+i )2 =-i 3+i=(-i )(3-i )4=-14-34i.三上台阶,自主选做志在冲刺名校1.(2018·杭州二模)已知i 是虚数单位,则(1+2i )(1-i )1+i =( )A .2+iB .2-iC .-2+iD .-2-i解析:选B (1+2i )(1-i )1+i =(1+2i )(1-i )2(1+i )(1-i )=-i(1+2i)=2-i.故选B.2.(2018·湖丽衢三地期末联考)已知a ,b ∈R ,i 是虚数单位,z 1=a +i ,z 2=b -i ,若z 1·z 2是纯虚数,则ab =________,|z 1·z 2|的最小值为________.解析:因为z 1=a +i ,z 2=b -i ,所以z 1·z 2=(a +i)(b -i)=ab +1+(b -a )i.因为z 1·z 2是纯虚数,所以ab =-1.|z 1·z 2|=(b -a )2=a 2+b 2-2ab =a 2+b 2+2≥-2ab +2=2,当且仅当a =-b 时,等号成立.答案:-1 23.复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值.解:z 1+z 2=3a +5+(a 2-10)i +21-a+(2a -5)i =⎝⎛⎭⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i. ∵z 1+z 2是实数, ∴a 2+2a -15=0, 解得a =-5或a =3. ∵a +5≠0, ∴a ≠-5,故a =3.第二节分类加法计数原理与分步乘法计数原理两个计数原理[小题体验]1.设x,y∈N,且x+y≤3,则满足条件的有序实数对(x,y)的数量有()A.3B.4C.5 D.10解析:选D由题可得,当x=0时,y=0,1,2,3;当x=1时,y=0,1,2;当x=2时,y =0,1;当x=3时,y=0.所以由分类加法计数原理可得,满足条件的有序实数对有N=4+3+2+1=10对.故选D.2.某考生进行高考志愿填报,根据自己的兴趣及就业意向,打算从某高校的5个专业中选择3个,分别作为第一、第二、第三志愿,则不同的志愿填报方式有________种.解析:由分步乘法计数原理可得,不同的志愿填报方式有N=5×4×3=60种.答案:601.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步与步之间是相关联的.[小题纠偏]1.用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).2.如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.解析:不同路线共有3×4+4×5=32(条).答案:32考点一分类加法计数原理(基础送分型考点——自主练透)[题组练透]1.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A .4种B .10种C .18种D .20种解析:选B 分两种情况:①4位朋友中有2个人得到画册,有C 24=6(种)赠送方法;②4位朋友中只有1个人得到画册,有C 14=4(种)赠送方法,所以不同的赠送方法共有6+4=10(种),故选B.2.椭圆x 2m +y 2n =1的焦点在x 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:因为焦点在x 轴上,所以m >n .以m 的值为标准分类,由分类加法计数原理,可分为四类:第一类:m =5时,使m >n ,n 有4种选择;第二类:m =4时,使m >n ,n 有3种选择;第三类:m =3时,使m >n ,n 有2种选择;第四类:m =2时,使m >n ,n 有1种选择.故符合条件的椭圆共有10个.答案:103.(2019·诸暨模拟)小王同学在书店发现三本有价值的书,若决定买一本,则购买的方式有________种;决定至少买一本,则购买的方式有________种.解析:根据题意,若只买一本,则有3种选择;若只买2本,则有3种选择;若买3本,则有1种选择.由分类加法计数原理可知:N =3+3+1=7种.答案:3 7[谨记通法]利用分类加法计数原理解题时2个注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复.考点二 分步乘法计数原理(基础送分型考点——自主练透)[题组练透]1.双十一亚马逊网站图书类优惠大促.小明同学拟在5本不同的数学教辅图书、3本不同的物理教辅图书以及6本不同的英语教辅图书中各选1本进行学习,则不同的选法种数是( )A .14B .90C .48D .45解析:选B 先选数学书,有5种不同的选法;再选物理书,有3种不同的选法;最后选英语书,有6种不同的选法,由分步乘法计数原理可得,不同的选法种数是N =5×3×6=90种.2.(2019·台州模拟)有4个不同书写形式的“迎”字和3个不同书写形式的“新”字,如果一个“迎”字和一个“新”字能配成一套,则不同的配套方式共有() A.7种B.12种C.64种D.81种解析:选B分两步进行,第一步,选“迎”字,有4种不同的选法;第二步,选“新”字,有3种不同的选法,所以由分步乘法计数原理可知:N=4×3=12种.3.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:18 6[谨记通法]利用分步乘法计数原理解题时3个注意点(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.考点三两个原理的应用(重点保分型考点——师生共研)[典例引领]1.如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72 D.96解析:选C分两种情况:(1)A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有4×3×2=24(种)涂法.(2)A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48(种)涂法.故共有24+48=72种涂色方法.2.袋中有8个不同的红球,7个不同的白球,6个不同的黄球,现从中任取两个不同颜色的球,则不同的取法有______种.解析:若取红球、白球各一个,则不同的取法有8×7=56种;若取红球、黄球各一个,则不同的取法有8×6=48种;若取白球、黄球各一个,则不同的取法有7×6=42种.由分类加法计数原理可得,不同的取法有N=56+48+42=146种.答案:146[由题悟法]两个原理应用的关键(1)应用两个计数原理的难点在于明确分类还是分步.(2)分类要做到“不重不漏”,正确把握分类标准是关键.(3)分步要做到“步骤完整”,步步相连才能将事件完成.(4)较复杂的问题可借助图表完成.[即时应用]1.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48 B.18 C.24 D.36解析:选D分类讨论:第一类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第二类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).2.如图,用6种不同的颜色把图中A,B,C,D4块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有________种(用数字作答).解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D 有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480(种)涂色方法.答案:480一抓基础,多练小题做到眼疾手快1.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20B.16C.10 D.6解析:选B当a当组长时,则共有1×4=4(种)选法;当a不当组长时,因为a不能当副组长,则共有4×3=12(种)选法.因此共有4+12=16种选法.2.(2019·江山模拟)某班班干部有5名男生,4名女生,从中各选一名干部参加学生党校培训,则不同的选法种数有()A.9 B.20C.16 D.24解析:选B先选男生,有5种不同的选法,再选女生,有4种不同的选法.由分步乘法计数原理可知:N=5×4=20.3.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:选D按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).4.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________;3的倍数的个数有________.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故所求奇数的个数为3×3×2=18.若有0,则另两个数分别为1,2或2,4,则不同的三位数有2×2×2=8种,若有3,则另两个数分别为1,2或2,4,则不同的三位数有3×2×2=12种,所以满足条件的3的倍数的个数为8+12=20个.答案:18205.(2018·温州八校)将三个分别标有A,B,C的球随机放入编号为1,2,3,4的四个盒子中,则1号盒子中无球的不同放法种数有________种;1号盒子中有球的不同放法种数有________种.解析:1号盒子无球的不同放法有33=27种,1号盒子有球的不同放法有43-33=64-27=37种.答案:2737二保高考,全练题型做到高考达标1.设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2×5=10(个).2.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:选D在8个数中任取2个不同的数共有8×7=56(个)对数值,但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52(个).3.(2019·嘉兴四高适应性考试)将3封信投入6个不同的信箱内,则不同的投法种数有()A.9 B.18C.216 D.729解析:选C将3封信投入6个不同的信箱内,每封信都有6种不同的投法,所以满足条件的不同投法种数有63=216种.4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有() A.144个B.120个C.96个D.72个解析:选B当万位数字为4时,个位数字从0,2中任选一个,共有2A34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C13A34个偶数.故符合条件的偶数共有2A34+C13A34=120(个).5.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→C―→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48(种)不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36(种)不同的涂法.故共有48+36=84(种)不同的涂色方法.故选C.6.集合N={a,b,c}⊆{-5,-4,-2,1,4},若关于x的不等式ax2+bx+c<0恒有实数解,则满足条件的集合N的个数是________.解析:依题意知,集合N最多有C35=10(个),其中对于不等式ax2+bx+c<0没有实数解的情况可转化为需要满足a>0,且Δ=b2-4ac≤0,因此只有当a,c同号时才有可能,共有2种情况,因此满足条件的集合N的个数是10-2=8.答案:87.在一个三位数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”,比如“102”,“546”为“驼峰数”.由数字1,2,3,4可构成无重复数字的“驼峰数”有________个.其中偶数有________个.解析:十位上的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有6+2=8(个).偶数为214,312,314,412,324,共5个.答案:8 58.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.解析:按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选.由分步乘法计数原理,共有5×4×3×3=180(种)不同的涂色方法.答案:1809.已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=25,则符合条件的三角形共有________个.解析:根据三边构成三角形的条件可知,c<25+a.第一类:当a=1,b=25时,c可取25,共1个值;第二类,当a=2,b=25时,c可取25,26,共2个值;……当a=25,b=25时,c可取25,26,…,49,共25个值;所以三角形的个数为1+2+…+25=325.答案:325-3,-2,-1,0,1,2,若a,b,c∈M,则:10.已知集合M={}(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180(个)不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的二次函数.三上台阶,自主选做志在冲刺名校1.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为() A.77 B.49C.45 D.30解析:选C A={(x,y)|x2+y2≤1,x,y∈Z}={(x,y)|x=±1,y=0;或x=0,y=±1;或x=0,y=0},B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(x,y)|x=-2,-1,0,1,2;y=-2,-1,0,1,2},A⊕B表示点集.由x1=-1,0,1,x2=-2,-1,0,1,2,得x1+x2=-3,-2,-1,0,1,2,3,共7种取值可能.同理,由y1=-1,0,1,y2=-2,-1,0,1,2,得y1+y2=-3,-2,-1,0,1,2,3,共7种取值可能.当x1+x2=-3或3时,y1+y2可以为-2,-1,0,1,2中的一个值,分别构成5个不同的点,当x1+x2=-2,-1,0,1,2时,y1+y2可以为-3,-2,-1,0,1,2,3中的一个值,分别构成7个不同的点,故A⊕B共有2×5+5×7=45(个)元素.2.(2019·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300.答案:3003.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求共有多少不同的染色方法.解:可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S -ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S,A,B染好时,不妨设其颜色分别为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S,A,B已染好时,C,D还有7种染法,故不同的染色方法有60×7=420(种).。

(新课标)高考数学一轮总复习 第九章 计数原理、概率、随机变量及其分布列 9-7 二项分布、正态分布

(新课标)高考数学一轮总复习 第九章 计数原理、概率、随机变量及其分布列 9-7 二项分布、正态分布

9-7 二项分布、正态分布及其应用课时规X 练(授课提示:对应学生用书第331页)A 组 基础对点练1.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ等于( C ) A .1 B .2 C .4D .不能确定解析:当函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A ) A .0.8 B .0.75 C .0.6D .0.453.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( B )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%) A .4.56% B .13.59% C .27.18%D .31.74%4.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 38.解析:依题意,元件的使用寿命超过1 000小时的概率为12,则该部件的使用寿命超过1 000小时的概率为12×⎣⎢⎡⎦⎥⎤12×12+12×⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫1-12×12=38.5.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解析:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C ,P (B )=0.6,P (C )=0,4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C ) =P (A 1BC )+P (A 2B )+P (A 2B -C ) =P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C )=0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4)=0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,P (X =3)=P (D )-P (X =4)=0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06. X 的分布列为P 0.06 0.25 0.38 0.25 0.06数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4) =0.25+2×0.38+3×0.25+4×0.06=2.6.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2. ①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX . 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. 解析:(1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以EX =100×0.682 6=68.26.B 组 能力提升练1.某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩近似服从正态分布,即X ~N (100,a 2)(a >0),试卷满分为150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分(包含100分和110分)之间的人数约为( A ) A .400 B .500 C .600D .8002.已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( B ) A .6 B .7 C .8D .93.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( B )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .464.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( D ) A.23 B .512 C.79D .595.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( B )(附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4) A .1 193 B .1 359 C .2 718D .3 4136.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④.(写出所有正确结论的序号) ①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关. 解析:由题意知A 1,A 2,A 3是两两互斥的事件,P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3) =12×511+15×411+310×411=922. 7.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为 34.解析:记事件A 为“第一次摸到黑球”,事件B 为“第二次摸到白球”,则事件AB 为“第一次摸到黑球、第二次摸到白球”,依题意知P (A )=25,P (AB )=25×34=310,∴在第一次摸到黑球的条件下,第二次摸到白球的概率是P (B |A )=P AB P A =34.8.某学校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度,现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后一位数字为叶).(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.解析:(1)众数:8.6;中位数:8.75.(2)设A i (i =0,1,2,3)表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(3)ξ的所有可能取值为0,1,2,3.则ξ~B ⎝ ⎛⎭⎪⎫3,14, P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3. ξ的分布列为:所以E (ξ)=3×14=0.75.9.挑选空军飞行员可以说是“万里挑一”,需要通过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析知甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响. (1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解析:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B -C -)+P (A -B C -)+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X的可能取值为0,1,2,3,其中P(X=k)=C k3(0.3)k·(1-0.3)3-k. 故P(X=0)=C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027,故X的分布列为。

高考一轮复习第9章计数原理概率随机变量及其分布第4讲随机事件的概率

高考一轮复习第9章计数原理概率随机变量及其分布第4讲随机事件的概率

第四讲 随机事件的概率知识梳理·双基自测 知识梳理知识点一 随机事件和确定事件(1)在条件S 下,__必然要发生__的事件,叫做相对于条件S 的必然事件,简称必然事件. (2)在条件S 下,__不可能发生__的事件,叫做相对于条件S 的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件.(4)在条件S 下,__可能发生也可能不发生__的事件,叫做相对于条件S 的随机事件,简称随机事件. 知识点二 概率与频率(1)概率与频率的概念:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的__频数__,称事件A 出现的比例f n (A)=n An为事件A 出现的__频率__.(2)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率f n (A)随着试验次数的增加稳定于概率P(A),因此可以用__频率f n (A)__来估计概率P(A).知识点三 互斥事件与对立事件 事件的关系与运算 定义符号表示 包含 关系 若事件A__发生__,则事件B__一定发生__,这时称事件B 包含事件A(或称事件A 包含于事件B) __B ⊇A__ __(或A ⊆B)__ 相等 关系 若B ⊇A ,且__A ⊇B__,则称事件A 与事件B 相等 __A =B__ 并事件 (和事件) 若某事件发生__当且仅当事件A 发生或事件B 发生__,则称此事件为事件A 与事件B 的并事件(或和事件) __A ∪B__ __(或A +B)__ 交事件 (积事件) 若某事件发生__当且仅当事件A 发生且事件B 发生__,则称此事件为事件A 与事件B 的交事件(或积事件) __A∩B __ __(或AB)__ 互斥 事件 若A∩B 为__不可能__事件,则称事件A 与事件B 互斥 __A∩B=∅__ 对立 事件 若A∩B 为__不可能__事件,A ∪B 为__必然事件__,则称事件A 与事件B 互为对立事件__A∩B=∅,__ __且A ∪B =Ω__重要结论概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)必然事件的概率:P(A)=__1__. (3)不可能事件的概率:P(A)=__0__.(4)概率的加法公式:若事件A 与事件B 互斥,则P(A ∪B)=__P(A)+P(B)__.(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P(A ∪B)=__1__,P(A)=__1-P(B)__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( √ ) 题组二 走进教材2.(P 121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( D ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶D .两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D . 3.(P 133T4)同时掷两个骰子,向上点数不相同的概率为__56__.[解析] 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A .0.3B .0.4C .0.6D .0.7[解析] 设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B .5.(2020·新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( A )A .15B .25C .12D .45[解析] O ,A ,B ,C ,D 中任取3点,共有 C 35=10种,即OAB ,OAC ,OAD ,OBC ,OBD ,OCD ,ABC ,ABD ,ACD ,BCD 十种, 其中共线为A ,O ,C 和B ,O ,D 两种, 故取到的3点共线的概率为P =210=15,故选A .考点突破·互动探究考点一 随机事件的关系——自主练透例1 (1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( C ) A .① B .②④ C .③D .①③(3)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)对于选项A ,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B ,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C ,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D ,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C .(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C .(3)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A ,B 不是对立事件,故甲是乙的充分不必要条件.名师点拨(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( B ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品[解析] ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A“至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.考点二 随机事件的概率——多维探究 角度1 频率与概率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解析] (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. 角度2 统计与概率例3 (2021·云南名校适应性月考)下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( A )甲 乙 9 8 8 3 3 7 2 1 09● 9A .45B .25C .910D .710[解析] 记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=442+x 5, 令90>442+x 5,解得x <8,即x 的取值可以是0~7,因此甲的平均成绩超过乙的平均成绩的概率是810=45.故选A .名师点拨概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.〔变式训练2〕(1)(2021·黑龙江大庆质检)某公司欲派甲、乙、丙3人到A ,B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( B )A .15B .16C .13D .14(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解析] (1)总的派法有:(甲、乙A),(丙B);(甲、乙B),(丙A);(甲、丙A),(乙B);(甲、丙B),(乙A);(乙、丙A),(甲B);(乙、丙B),(甲A),共6种(或C 23A 22=6(种)),A 城市恰好只有甲去有一种,故所求概率P =16.(2)①从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.②从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.③与①同理.可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件、对立事件的概率——师生共研例4 (1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C .求:①P(A),P(B),P(C); ②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.(2)(2021·河南新乡模拟)从5个同类产品(其中3个正品,2个次品)中,任意抽取2个,下列事件发生概率为910的是( C )A .2个都是正品B .恰有1个是正品C .至少有1个正品D .至多有1个正品[解析] (1)①P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.②因为事件A ,B ,C 两两互斥,所以P(A ∪B ∪C)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000.③P(A ∪B )=1-P(A +B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.(2)从5个产品中任取2个的取法有C 25=10种,其中2个都是正品的取法有C 23=3种,故2个都是正品的概率P 1=310;其对立事件是“至多有1个正品”,概率为P 2=1-P 1=1-310=710.恰有1个正品的取法有C 13·C 12=6种,故恰有1个正品的概率P 3=610=35.至少有1个正品的概率P 4=P 1+P 3=310+610=910.名师点拨求复杂的互斥事件的概率的两种方法(1)直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).特别是“至多”“至少”型题目,用间接求法就显得较简便.〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B( A )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为__0.8__;该地1位车主甲、乙两种保险都不购买的概率为__0.2__.[解析](1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.名师讲坛·素养提升用正难则反的思想求对立事件的概率例5 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是__45__.(2)(2021·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解析](1)“相同颜色的球不都相邻”的对立事件为“相同颜色的球都相邻”,记为事件A.因5个不同编号的小球排列有A55=120种排法,“相同颜色的球都相邻”的排法有A22A22A33=24种排法,∴所求概率P=|-P(A)|=1-24120=45.(2)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.①记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.②解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.名师点拨“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.〔变式训练4〕某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人) x 30 25 y 10结算时间(分钟/人)1 1.52 2.5 3(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)[解析](1)由已知得25+y+10=55,x+30=45,所以x=15,y= 20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=1 5,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。

2019版高考数学一轮复习第九章复数、计数原理与概率、随机变量及其分布第四

2019版高考数学一轮复习第九章复数、计数原理与概率、随机变量及其分布第四

考点一 二项展开式中特定项或系数问题
[锁定考向]
二项式定理是高中数学中的一个重要知识点,也是高考命 题的热点,多以选择题、填空题的形式呈现,试题难度不大, 多为容易题或中档题. 常见的命题角度有: (1)求展开式中的某一项; (2)求展开式中的项的系数或二项式系数; (3)由已知条件求 n 的值或参数的值.
x)
15- r

5 由题意知 5- r 为非负整数,得 r=0 或 6, 6 ∴符合要求的项的个数为 2.
答案:2
角度二:求展开式中的项的系数或二项式系数 3.(2018· 湖州调研)在(1-x)5+(1-x)6+(1-x)7+(1-x)8 的 展开式中,含 x3 的项的系数是 A.121 C.74 B.-74 D.-121 ( )
解析:法一: (1- x)5+(1- x)6+(1- x)7+(1- x)8 1- x5[1-1- x 4] 1- x5- 1- x9 = = , x 1- 1- x
4 4 (1- x)5 中 x4 的系数为 C5 = 5, - (1- x)9 中 x4 的系数为- C9 =
1 r 9-2r r = C9- x ,令



2
9- 2r= 3,得 r=3, 13 21 3 C9- =- ,故选

所以 x 项的系数为
3
2
2
C.
答案:C
2. 若(1+3x)n(其中 n∈N 且 n≥6)的展开式中 x5 与 x6 的系数相等, 则 n=________.
x- 4 8 的展开式中的有理项共有 ________项. 2 x
1
解析: ∵Tr+ 1= Cr 8( x) ∴ r 为 4 的倍数,

届高考数学大一轮总复习 第九章 计数原理、概率、随机变量及其分布 9.7 离散型随机变量及其分布列课

届高考数学大一轮总复习 第九章 计数原理、概率、随机变量及其分布 9.7 离散型随机变量及其分布列课

变式训练1 (1)随机变量X的分布列如下:
X
-1
0
1
P
a
b
c
2 其中a,b,c成等差数列,则P(|X|=1)=____3____。
解析 由题意知2a+b=b+a+c=c,1,
则 2b=1-b,则 b=31,a+c=23,
所以 P(|X|=1)=P(X=-1)+P(X=1)=a+c=32。
(2)在例1(2)中条件不变的情况下,求Y=2X+1的分布列。 解 列表
X
0
1
2342Fra bibliotek+11
3
5
7
9
∴P(Y=1)=P(X=0)=0.2,
P(Y=3)=P(X=1)=0.1,
P(Y=5)=P(X=2)=0.1,
P(Y=7)=P(X=3)=0.3,
P(Y=9)=P(X=4)=0.3。
因此,Y=2X+1的分布列为
Y
1
3
5
7
9
P
0.2
0.1
0.1
0.3
0.3
考点二 离散型随机变量的分布列
X
1
2
3
4
P
1 6
1
1
3
6
p
则 p=( )
1 A.3
解析
1
1
1
B.2
C.4
D.6
由概率分布列的性质可知16+13+16+p=1,解得 p=13。
答案 A
3.袋中装有10个红球、5个黑球。每次随机抽取1个球后,若取得黑球
则另换1个红球放回袋中,直到取到红球为止。若取球的次数为X,则表示
“放回5个红球”事件的是( )
基础自测

2019年高考数学计数原理、概率、随机变量及其分布复习指导(最适用、最全面)

2019年高考数学计数原理、概率、随机变量及其分布复习指导(最适用、最全面)

2019年高考数学计数原理、概率、随机变量及其分布复习指导第一节计数原理与排列、组合教材细梳理1.两个计数原理1.分类加法计数原理中各类办法之间是相互独立的,并列的,互斥的.分步乘法计数原理中各步之间是相互依存的.2.“排列”与“排列数”是两个不同的概念,一个排列是指“从n 个不同元素中取出m 个元素,按一定顺序排成一列”,而排列数是指这种排列的个数.知识微思考1.判断下列结论的正误(正确的打“√”错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.( )(4)如果完成一件事情有n 个不同步骤,在每一步中都有若干种不同的方法m i (i =1,2,3,…,n ),那么完成这件事共有m 1m 2m 3…m n 种方法.( )(5)在分步乘法计算原理中,每个步骤中完成这个步骤的方法是各不相同的.( ) (6)所有元素完全相同的两个排列为相同排列.( ) (7)一个组合中取出的元素讲究元素的先后顺序.( ) (8)两个组合相同的充要条件是其中的元素完全相同.( ) (9)(n +1)!-n !=n ·n !.( )(10)A m n =n A m -1n -1.( )答案:(1)× (2)√ (3)√ (4)√ (5)√ (6)× (7)× (8)√ (9)√ (10)√ 2.如何区分某一问题是排列问题还是组合问题?提示:可交换某两个元素的位置,判断对结果是否产生影响,产生影响的是排列问题,否则是组合问题.四基精演练1.(选修2-3·习题1.2A 组改编)已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为( )A .16B .13C .12D .10答案:C2.(选修2-3·习题1.2A 组改编)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a ,b ,共可得到ab的不同值的个数为( )A .6B .8C .12D .16答案:C3.(选修2-3·习题A组改编)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种答案:C4.(选修2-3·习题1.2B组改编)如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.答案:325.(2017·高考全国卷Ⅱ改编)安排3名志愿者完成3项工作,每人完成一项,则不同的安排方式共有________.答案:6考点一计数原理及应用[简单型]——运用数据分析、提升数学运算1.使用分类加法原理时首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.2.(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.3.使用两个基本原理进行计数的基本思想是“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.1.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:选B.法一:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).法二:班级按a,b,c,d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.2.(2016·高考全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18C.12 D.9解析:选B.分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.3.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.400种B.460种C.480种D.496种解析:选C.完成此事可能使用4种颜色,也可能使用3种颜色.当使用4种颜色时:从A开始,有6种方法,B有5种,C有4种,D有3种,完成此事共有6×5×4×3=360(种)方法;当使用3种颜色时:A,D使用同一种颜色,从A,D开始,有6种方法,B有5种,C有4种,完成此事共有6×5×4=120(种)方法.由分类加法计数原理可知:不同涂法有360+120=480(种).考点二排列的应用[高频型]——发展数学建模、提升数学运算[例1](1)若A,B,C,D,E,F六个不同元素排成一列,要求A不排在两端,且B,C相邻,则不同的排法有________种(用数字作答).解析:由于B,C相邻,把B,C看作一个整体,有2种排法.这样,6个元素变成了5个.先排A,由于A不排在两端,则A排在中间的3个位置中,有A13=3种排法,其余的4个元素任意排,有A44种不同排法,故不同的排法有2×3×A44=144(种).答案:144(2)在数字1,2,3与符号“+”“-”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有________种.解析:本题主要考查某些元素不相邻的问题,先排符号“+”“-”,有A22种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A33种排列方法,因此满足题目要求的排列方法共有A22A33=12(种).答案:12[母题变式]1.若本例(2)中条件“任意两个数字都不相邻”改为“1,2,3这三个数字必须相邻”,则这样的全排列方法有________种.解析:用捆绑法,有A33A33=36(种).答案:362.若本例(2)中条件变为:符号“+”与“-”都不相邻,则这样的全排列有________种.解析:A 33A 24=72(种).答案:721.求解有限制条件排列问题的主要方法(1)根据特殊元素(位置)优先安排进行分步,即先安排特殊元素或特殊位置. (2)根据特殊元素当选数量或特殊位置由谁来占进行分类. [易错提醒] (1)分类要全,以免遗漏.(2)插空时要数清插空的个数,捆绑时要注意捆绑后元素的个数及要注意相邻元素的排列数.(3)用间接法求解时,事件的反面数情况要准确.1.某市内公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为( )A .48B .54C .72D .84解析:选C.先把3名乘客进行全排列,有A33=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A24=12种排法,则共有6×12=72(种)候车方式.2.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168解析:选B.歌舞类节目设为a1,a2,a3,小品类节目设为b1,b2,相声类节目设为c,先排a1,a2,a3不相邻,顺序如○b1○b2○c○,共A33A34种方法,b1b2相邻前提下○b1b2○c○插空法共A22A33A22种方法,所以同类节目不相邻的排法种数为A33A34-A22A33A22=A33·(A34-4)=6×20=120.考点三组合问题[简单型]——发展数学建模、提升数学运算1.组合问题的常见题型及解题思路(1)常见题型:一般有选派问题、抽样问题、图形问题、集合问题、分组问题等.(2)解题思路:①分清问题是否为组合问题;②对较复杂的组合问题,要搞清是“分类”还是“分步”,一般是先整体分类,然后局部分步,将复杂问题通过两个原理化归为简单问题.2.两类含有附加条件的组合问题的解法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,用间接法求解.1.2107年天津全运会之际,某单位要从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有________种.解析:分两类:第1类是有1名女生,共有C12·C26=2×15=30(种);第2类是有2名女生,共有C22·C16=1×6=6(种).由分类加法计数原理得,共有30+6=36(种).答案:362.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:选D.分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输一局,第4局赢),共有2C23=6种情形;恰好打5局(一个前4局中赢2局,输2局,第5局赢),共有2C24=12种情形.所有可能出现的情形共有2+6+12=20(种).考点四排列、组合的综合应用[探究型]——发展数学建模、提升数学运算4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解析:将4项工作分成3部分,每部分至少有1项工作,共有C24=6(种)方法,再分别分给3人,由分步乘法计数原理知,共有C24×A33=36(种)不同方法.答案:D(2)(2017·高考天津卷)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个(用数字作答).解析:由题意可得,第1类取出的4个数都是奇数,有A45个,第2类取出的4个数中有1个偶数,有C14C35A44个,由分类加法计数原理,得共有A45+C14C35A44=120+960=1 080(个).答案:1 080(1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法?解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理得,共有C 14C 24C 13×A 22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C 24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;第二类有序均匀分组有C 24C 22A 22·A 22种方法.故共有C 24(C 34C 11A 22+C 24C 22A 22·A 22)=84(种).1.解决简单的排列与组合的综合问题的思路(1)根据附加条件将要完成事件先分类.(2)对每一类型取出符合要求的元素组合,再对取出的元素排列. (3)由分类加法计数原理计算总数.2.分组、分配问题的求解策略(1)对不同元素的分配问题.①对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.②对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.③对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.(2)对于相同元素的“分配”问题,常用方法是采用“隔板法”.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.解析:①有1名女生的选派方法有C12C34=8(种).②有2名女生的选派方法有C22C24=6(种).∴不同的选派方案共有8+6=14(种).答案:144.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴全运会的四个不同场馆服务,不同的分配方案有________种(用数字作答).解析:先分组再分配,共有C16C15C242A22·A44=1 080(种)分配方案.答案:1 080发展数学建模、数学运算(应用型)模型1计数原理、排列、组合与实际应用问题相结合对于排列、组合都是以生活实际问题为背景,加以限制条件,并结合计数原理进行考查.[例4]小陈家来了六位同学(四女两男),包括他共7人,小陈从果园里摘了7个大小不同的百香果,每人一个.小陈把最小的一个留给自己,4位女同学中的一人拿最大的一个,则百香果的不同分法共有()A.96种B.120种C.480种D.720种解析:可分两步:第一步,4位女同学中的一人拿最大的一个的分法种数为C14;第二步,余下5人的分法种数为A55,根据分步乘法计数原理,百香果的不同分法共有C14A55=480(种),故选C.答案:C模型2排列、组合与新定义相结合排列、组合常与数学中的新定义结合考查,利用其它知识进行求解.[例5](2016·高考全国卷Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…,a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.答案:C课时规范训练(限时练·夯基练·提能练)A级基础夯实练(25分钟,50分)1.(2018·邵阳模拟)用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24B.48C.60 D.72解析:选B.先排个位,再排十位,百位,千位,万位,依次有2,4,3,2,1种排法,由分步乘法计数原理知:2×4×3×2×1=48.2.a,b,c,d,e共5个人,从中选1名组长、1名副组长,但a不能当副组长,不同选法的种数是()A.20 B.16C.10 D.6解析:选B.当选a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.3.(2018·自贡一模)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系上点的坐标,则确定的不同的点的个数为()A.36 B.32C.33 D.34解析:选C.不考虑限定条件的情况下,确定的不同的点的个数为C12C13A33=36,但集合B,C中有相同元素1,由5,1,1三个数确定的不同的点只有3个,故最终确定的不同的点的个数为36-(A33-3)=33.4.(2018·诸暨一模)在第二届乌镇互联网大会中,为了提高安保的级别,同时为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国的人员要在a,b,c三家酒店各选择一家,且每家酒店至少有一个参会国的人员入住,则这样的安排方法共有() A.96种B.124种C.130种D.150种解析:选D.可以把五个参会国的人员分成三组,一种是按照1,1,3分;另一种是按照1,2,2分.当按照1,1,3分时,共有C35A33=60种方法;当按照1,2,2分时,共有C25C23A33A22=90种方法.根据分类加法计数原理可得安排方法共有60+90=150种.5.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B.依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).6.(2018·石家庄模拟)一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在4场比赛中,甲队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种解析:选D.设S i表示第i场胜、P i表示第i场平,F i表示第i场负,积4分可分2胜2负,1胜2平1负或4平三类,其中2胜2负有S1S2F3F4,S1F2S3F4,S1F2F3S4,F1S2S3F4,F1S2F3S4,F1F2S3S4,共6种.1胜2平1负有S1P2P3F4,S1P2F3P4,S1F2P3P4,P1S2P3F4,P1S2F3P4,F1S2P3P4,P1P2S3F4,P1F2S3P4,F1P2S3P4,P1P2F3S4,P1F2P3S4,F1P2P3S4,共12种.4平有P1P2P3P4共1种,由分类加法计数原理有6+12+1=19种.7.某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56C.49 D.28解析:选C.由于丙不入选,相当于从9人中选派3人.甲、乙两人均入选,有C22C17种选法,甲、乙两人只有1人入选,有C12C27种选法.所以由分类加法计数原理,共有C22C17+C12C27=49种不同选法.8.(2018·武邑一模)将6名留学归国人员分配到甲、乙两地工作,若甲地至少安排2人,乙地至少安排3人,则不同的安排方法数为________.解析:可以分为以下两类:(1)甲地安排3人,乙地安排3人,有C36=20种方法;(2)甲地安排2人,乙地安排4人,有C46=15种方法.根据分类加法计数原理可得,不同的安排方法种数为20+15=35.答案:359.(2018·平罗一模)从5名学生中选出4名参加A,B,C,D四科的竞赛(假设每名学生仅能参加一科的竞赛),其中甲不能参加A,B两科的竞赛,则不同的参赛方案种数为________.解析:可分为以下两步:(1)先从5名学生中选出4名,分为甲参加和甲不参加两种情况,甲参加时,选法有C34=4种,甲不参加时,选法有C44=1种;(2)安排科目——甲参加时,先排甲,再排其他人,排法有C12A33=12种,甲不参加时,排法有A44=24种.故不同的参赛方案种数为4×12+1×24=72.答案:7210.已知集合N={a,b,c}⊆{-5,-4,-2,1,4},若关于x的不等式ax2+bx+c<0恒有实数解,则满足条件的集合N的个数是________.解析:依题意知,集合N最多有10个,其中对于不等式ax2+bx+c<0没有实数解的情况可转化为需要满足a>0,且Δ=b2-4ac≤0,因此只有当a,c同号时才有可能,共有{1,-4,4},{1,-2,4},2种情况,因此满足条件的集合N的个数是10-2=8.答案:8B级能力升级练(20分钟,30分)1.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B.25C.32 D.60解析:选C.依据题意知,最后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.2.某班组织文艺晚会,准备从A,B等8个节目中选出4个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为()A.1 860 B.1 320C.1 140 D.1 020解析:选C.当A,B节目中只选其中一个时,共有C12C36A44=960种演出顺序;当A,B节目都被选中时,由插空法得共有C26A22A23=180种演出顺序,所以一共有1 140种演出顺序.3.已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有元素的和大于B中所有元素的和,则集合A,B共有()A.12对B.15对C.18对D.20对解析:选D.依题意,当A,B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有C23+C23+2=8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A,B均有两个元素时,有3对.所以共有3+8+3+3+3=20对,选D.4.在三位正整数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”,比如“102”、“546”为“驼峰数”.由数字1,2,3,4,5这五个数字构成的无重复数字的“驼峰数”的十位上的数字之和为()A.25 B.28C.30 D.32解析:选C.由数字1,2,3,4,5这五个数字构成的无重复数字的三位“驼峰数”中,1在十位的有A24=12个,2在十位的有A23=6个,3在十位上的有A22=2个,所以所有三位“驼峰数”的十位上的数字之和为12×1+6×2+2×3=30.5.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对任意x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.解析:A={1}时,B有23-1=7种情况;A={2}时,B有22-1=3种情况;A={3}时,B有1种情况;A={1,2}时,B有22-1=3种情况;A={1,3},{2,3},{1,2,3}时,B均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17个.答案:176.数字“2 016”中,各位数字相加和为9,称该数为“至尊四位数”.用数字0,1,2,3,4,5组成的无重复数字且大于2 016的“至尊四位数”共有________个.解析:依题意知:符合条件的四个数字可分为以下两组:0,1,3,5与0,2,3,4.由0,1,3,5组成的大于2 016的“至尊四位数”有2A33=12个;由0,2,3,4组成的“至尊四位数”有3A33=18个.由分类加法计数原理可得:共有12+18=30个“至尊四位数”.答案:30第二节二项式定理教材细梳理1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *),其中右端为(a +b )n 的二项展开式.2.二项展开式的通项公式第k +1项为:T k +1=C k n an -k b k . 3.二项式系数(1)定义:二项式系数为:C k n (k ∈{0,1,2,…,n }). (2)二项式系数的性质1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r是二项展开式的第r 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( )(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( ) (6)在(x +1)n 的展开式中,每一项的二项式系数就是这项的系数.( ) (7)(a +b )n 与(b +a )n 的展开式中通项公式是一样的.( )(8)(x -y )n 的展开式中,第m 项的系数为(-1)m C m -1n.( ) (9)(1+2x )5的展开式中含x 的项的系数为5.( )(10)⎝⎛⎭⎪⎫x 2-13x n的展开式中不可能有常数项.( )答案:(1)× (2)× (3)√ (4)× (5)× (6)√ (7)× (8)× (9)× (10)× 2.二项展开式第k +1项的二项式系数与第k +1项的系数有什么区别?提示:二项展开式第k +1项的二项式系数为C k n ,而它的第k +1项的系数等于它的二项式系数C k n 与其他常数以及符号的乘积.四基精演练1.(选修2-3·1.3例2改编)(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10答案:B2.(选修2-3·习题1.3A 组改编)⎝⎛⎭⎫x +12x 8的展开式中常数项为( ) A .3516B .358C .354D .105答案:B3.(2017·高考全国卷Ⅰ改编)⎝⎛⎭⎫1+1x 2(1+x )2展开式中常数项为( ) A .1 B .2 C .3 D .4答案:B4.(选修2-3·习题1.3A 组改编)若(1+ax )7(a ≠0)的展开式中x 5与x 6的系数相等,则a =________.答案:35.(探究题)(教材探究题)如图杨辉三角中的第二行,第三行,第四行,第五行中的1,2,3,4之和等于第六行的“10”,所体现的性质为1+2+3+…+C 1n -1=________.答案:C 2n考点一 展开式中的特定项或系数[高频型]——提升数学运算x 3的系数是________.(用数字填写答案)解析:设展开式的第k +1项为T k +1,k ∈{0,1,2,3,4,5},所以T k +1=C k 5(2x )5-k (x )k =C k 525-kx 5-k 2, 令5-k 2=3得,k =4,即T 5=C 4525-4x 5-42=10x 3. ∴x 3的系数为10. 答案:10(2)(2016·高考四川卷)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4D .20i x 4解析:∵T r +1=C r 6x r (i)6-r ,∴含x 4的项为T 5=C 46x 4i 2=-15x 4. 答案:A [母题变式]1.在本例(1)中,条件不变,展开式中系数最大的项是第几项. 解:设第r +1项的系数最大,T r +1=25-r C r 5·x 5-r 2, 第r 项的系数为26-r C r -15 第r +2项的系数为24-r C r +15 ∴⎩⎪⎨⎪⎧25-r C r 5≥26-r C r -1525-r C r 5≥24-r C r +15,1≤r ≤2.当r =1时,T 2=24C 15x 92, 当r =2时,T 3=23C 25x 4,故系数最大的项为T 2或T 3.2.在本例(2)中,已知条件不变,求展开式中的常数项.解:由T r +1=C r 6x6-r ·i r 可知,当r =6时. 常数项为T 7=C 66·i 6=-1.[例2] (1)(2017·高考全国卷Ⅰ)⎝⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35解析:(1+x )6展开式的通项T r +1=C r 6x r,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C .答案:C(2)(2018·河北唐山一模)⎝⎛⎭⎫x 2+1x 2-23展开式中的常数项为( ) A .-8 B .-12 C .-20D .20解析:∵⎝⎛⎭⎫x 2+1x 2-23=⎝⎛⎭⎫x -1x 6,∴T r +1=C r 6x 6-r ⎝⎛⎭⎫-1x r =C r 6(-1)r x 6-2r,令6-2r =0,得r =3,∴常数项为C 36(-1)3=-20.答案:C(3)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C .答案:C [母题变式]1.在本例(1)中,求此展开式的常数项.解:⎝⎛⎭⎫1+1x 2(1+x )6的展开式中常数项为1+C 26=16. 2.在本例(3)中,求展开式中含x 3y 3的系数.解析:(x 2+x +y )5为5个x 2+x +y 之积,其中有三个取y ,一个取x 2,一个取x 即可,所以x 3y 3的系数为C 35C 12C 11=10×2×1=20.1.求二项展开式中的特定项或项的系数问题的思路(1)利用通项公式将T k +1项写出并化简.(2)令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出k .(3)代回通项得所求.2.求多项式展开式中的特定项或项的系数问题的方法(1)对于三项式问题,一般先变形化为二项式,再用通项公式求解,或用组合知识求解.(2)对于几个多项式积的展开式中的特定项问题,一般对某个因式用通项公式,再结合与其他因式相乘情况求解特定项,或根据因式连乘的规律,结合组合知识求解,但要注意适当地运用分类思想,以免重复或遗漏.(3)对于几个多项式和的展开式中的特定项问题,只需依据各个二项展开式中分别得到符合要求的项,再求和即可.1.(2017·高考全国卷Ⅲ)(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40 D.80解析:选C.由二项式定理可得,原式展开式中含x3y3的项为x·C25(2x)2(-y)3+y·C35(2x)3(-y)2=40x3y3,则x3y3的系数为40,故选C.2.(2017·高考浙江卷)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.解析:由题意知a4为含x项的系数,根据二项式定理得a4=C23×12×C22×22+C33×13×C12×2=16,a5是常数项,所以a5=C33×13×C22×22=4.答案:16 4考点二二项展开式的系数和问题[高频型]——提升数学运算[例3](1)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.解析:法一:直接将(a+x)(1+x)4展开得x5+(a+4)x4+(6+4a)x3+(4+6a)x2+(1+4a)x +a,由题意得1+(6+4a)+(1+4a)=32,解得a=3.法二:(1+x)4展开式的通项为T r+1=C r4x r,由题意可知,a(C14+C34)+C04+C24+C44=32,解得a=3.[母题变式]若本例中条件“x的奇数次幂项”变为“奇数项”,则a=________.解析:奇数项分别为:a,(6a+4)x2,(a+4)x4,∴a+(6a+4)+(a+4)=32,∴a=3.答案:3(2)⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( ) A .-40 B .-20 C .20D .40解析:选D .令x =1得(1+a )(2-1)5=1+a =2, 所以a =1.因此⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中的常数项即为⎝⎛⎭⎫2x -1x 5展开式中1x 的系数与x 的系数的和.⎝⎛⎭⎫2x -1x 5展开式的通项为T k +1=C k 5(2x )5-k ·(-1)k ·x -k =C k 525-k x 5-2k ·(-1)k.令5-2k =1,得2k =4,即k =2,因此⎝⎛⎭⎫2x -1x 5展开式中x 的系数为C 2525-2(-1)2=80.令5-2k =-1,得2k =6,即k =3,因此⎝⎛⎭⎫2x -1x 5展开式中1x的系数为C 3525-3·(-1)3=-40. 所以⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中的常数项为80-40=40.1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中(1)各项系数之和为f (1). (2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.3.(1-x +x 2)3(1-2x 2)4=a 0+a 1x +a 2x 2+…+a 14x 14,则a 1+a 3+a 5+…+a 13的值为。

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第六节随机变量及其分布课件

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第六节随机变量及其分布课件

2X+1 1 3 5 7 9
P 0.2 0.1 0.1 0.3 0.3
[谨记通法]
应用离散型随机变量分布列性质的 1 个注意点 利用分布列中各概率之和为 1 可求参数的值,此时 要注意检验,以保证每个概率值均为非负数.如“题组 练透”第 1 题.
考点二 离散型随机变量分布列的求法
[典例引领] 一个盒子里装有 7 张卡片,其中有红色卡片 4 张,编号分别为 1,2,3,4;白色卡片 3 张,编号分别为 2,3,4.从盒子中任取 4 张卡 片(假设取到任何一张卡片的可能性相同). (1)求取出的 4 张卡片中,含有编号为 3 的卡片的概率; (2)在取出的 4 张卡片中,红色卡片编号的最大值设为 X,求随 机变量 X 的分布列.
X
0
1
2
P
a
1 2
1 4
则变量 X 的数学期望 E(X)=________,方差 D(X)=
________.
答案:1
1 2
3.有一批产品,其中有 12 件正品和 4 件次品,从中有放回 地任取 3 件,若 X 表示取到次品的次数,则 D(X)=______.
解析:∵X~B3,14,∴D(X)=3×14×34=196.
下重复做的 n 事件 A 发生的次数,设每次试验中
定义 次试验称为 n 事件 A 发生的概率为 p,此时称随机
次独立重复 变量 X 服从二项分布,记作
试验
__X_~__B_(_n_,__p_)_,并称 p 为成功概率
Ai(i=1,2,…,
计算 公式
n)表示第 i 次 试验结果,则
P(A1A2A3… An)=P(A1)
X
-1
0
1
P
1 2

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图1­1­1)表示的集合是( )图1­1­1A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图2­1­1所示,所给图像是函数图像的有( )图2­1­1A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-9

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-9
7 8 9 1 1 1 1 1 P 5 5 5 5 5 1 E(ξ)=5×(5+6+7+8+9)=7(元). η 的分布列为 η 2 4 6 8 2 3 1 1 P 5 10 5 10 2 3 1 1 E(η)=2×5+4×10+6×5+8×10=4(元), ∴E(ξ)-E(η)=7-4=3(元).故答案为 3. 答案:3
[变式练]——(着眼于举一反三) 1.(2018· 湖北黄冈调研)已知 6 只小白鼠中有 1 只感染了病毒,需 要对 6 只小白鼠进行病毒 DNA 化验来确定哪一只受到了感染. 下面是 两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为 止.方案乙:将 6 只小白鼠分为两组,每组三只,将其中一组的三只 小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒 DNA,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到 确定感染病毒的小白鼠为止;若化验结果显示不含病毒 DNA,则在另 外一组中逐个进行化验. (1)求执行方案乙化验次数恰好为 2 次的概率; (2)若首次化验的化验费为 10 元,第二次化验的化验费为 8 元, 第三次及以后每次化验的化验费都是 6 元,求方案甲所需化验费的分 布列和期望.
6.两个常用结论 (1)均值与方差的关系 2 2 D(X)=E(X )-E (X). (2)超几何分布的均值 nM 若 X 服从参数为 N,M,n 的超几何分布,则 E(X)= N .
二、必明 2●个易误点 1.两点分布,二项分布,超几何分布的均值与方差的计算 公式容易记混淆,准确记忆公式是解题的必要条件. 2.在实际问题中注意深刻理解题意,准确判断实际问题是 何种类型的分布是解题的关键.
np=6 解析:由题意知 np1-p=3,
4.(2018· 湖北调研)已知随机变量 η 满足 E(1-η)=5,D(1 -η)=5,则下列说法正确的是( ) A.E(η)=-5,D(η)=5 B.E(η)=-4,D(η)=-4 C.E(η)=-5,D(η)=-5 D.E(η)=-4,D(η)=5

高考数学大一轮总复习 第九章 计数原理、概率、随机变

高考数学大一轮总复习 第九章 计数原理、概率、随机变

解析 从 6 名男医生中选出 2 名有 C26种选法,从 5 名女医生中选出 1 名有 C15种选法,故共有 C26·C15=62× ×51×5=75 种选法,选 C。
答案 C
4.若 C22x0-7=Cx20,则 x=____7_或__9_____。
解析 由2x-7=x或2x-7+x=20, 得x=7或x=9。 5.将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法共 有___2_0____种。 解析 将7个相同的球放入4个不同的盒子,即把7个球分成4组,因为 要求每个盒子都有球,所以每个盒子至少放1个球,不妨将7个球摆成一 排,中间形成6个空,只需在这6个空中插入3个隔板将它们隔开,即分成4 组 , 不 同 的 插 入 方 法 共 有 C = 20 种 , 所 以 每 个 盒 子 都 有 球 的 放 法 共 有 20 种。
4.组合数的性质 (1)Cmn =Cnn-m (2)Cmn+1=Cnm+Cmn -1
基础自测
[判一判] (1)所有元素完全相同的两个排列为相同排列。( × ) 解析 错误。由排列与组合的定义可知,所有元素完全相同的两个组 合是相同组合,而排列则不一定是相同的排列,与它们的顺序还有关系。 (2)两个组合相同的充要条件是其中的元素完全相同。( √ ) 解析 正确。由组合的概念可知, 该命题是正确的。 (3)若组合式 Cxn=Cmn ,则 x=m 成立。( × ) 解析 错误。由组合数的性质可知当 Cxn=Cmn 时,x=m 或 x=n-m。
[练一练]
1.A、B、C、D、E五人并排站成一排,如果B必须在A的右边(A、B可
以不相邻),那么不同的排法共有( )
A.24种
B.60种
C.90种
D.120种
解析 可先排 C、D、E 三人,共有 A35种,剩余 A、B 两人只有一种 排法,故满足条件的排法共有 A35×1=60 种。

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第五节随机事件的概率古典概型课件

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第五节随机事件的概率古典概型课件

[由题悟法]
求复杂互斥事件概率的 2 种方法 (1)直接法:将所求事件分解为一些彼此互斥的事件的和, 运用互斥事件概率的加法公式计算. (2)间接法:先求此事件的对立事件,再用公式 P(A)=1- P( A )求得,即运用逆向思维(正难则反),特别是“至多”“至 少”型题目,用间接求法就会较简便. [提醒] 应用互斥事件概率的加法公式,一定要注意首先 确定各个事件是否彼此互斥,然后求出各事件发生的概率,再 求和(或差).
2.袋中有形状、大小都相同的 4 只球,其中 1 只白球,1 只红球, 2 只黄球.从中一次随机摸出 2 只球,则这 2 只球颜色不同的 概率为________.
解析:设 4 只球分别为白、红、黄 1、黄 2,从中一次随机 摸出 2 只球,所有基本事件为(白,红)、(白,黄 1)、(白, 黄 2)、(红,黄 1)、(红,黄 2)、(黄 1,黄 2),共 6 个,颜 色不同的有 5 个,所以 2 只球颜色不同的概率为56. 答案:56
3.事件的关系与运算
名称 条件
结论
A 发生⇒ 事件 B 包含 事件 A(事 包含关系
B 发生 件 A 包含于 事件 B)
相等关系 若_B_⊇__A__ 事件 A 与事件 B 相等 _且__A__⊇__B_
并(和) A 发生或 事件 A 与事件 B 的并
事件 B 发生
事件(或和事件)
符号表示 B⊇A
P(A)=
A包含的基本事件的个数 基本事件的总数
.
[小题体验] 1.(教材习题改编)某人进行打靶练习,共射击 10 次,其中有 2
次中 10 环,有 3 次中 9 环,有 4 次中 8 环,有 1 次未中靶.假 设此人射击 1 次,则其中靶的概率约为____________;中 10 环的概率约为________. 解析:中靶的频数为 9,试验次数为 10,所以中靶的频率 为190=0.9,所以此人射击 1 次,中靶的概率约为 0.9.同理得 中 10 环的概率约为 0.2.

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第二节分类加法计数原理与分步乘法计数

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第二节分类加法计数原理与分步乘法计数

一套,则不同的配套方式共有
()
A.7 种
B.12 种
C.64 种
D.81 种
解析:分两步进行,第一步,选“迎”字,有 4 种不同 的选法;第二步,选“新”字,有 3 种不同的选法,所 以由分步乘法计数原理可知:N=4×3=12 种. 答案:B
3.从-1,0,1,2 这四个数中选三个不同的数作为函数 f(x)=ax2 +bx+c 的系数,则可组成________个不同的二次函数,其 中偶函数有________个(用数字作答). 解析:一个二次函数对应着 a,b,c(a≠0)的一组取值,a 的取法有 3 种,b 的取法有 3 种,c 的取法有 2 种,由分 步乘法计数原理知共有 3×3×2=18(个)二次函数.若二 次函数为偶函数,则 b=0,同上可知共有 3×2=6(个) 偶函数.
解析:因为焦点在 x 轴上,所以 m>n.以 m 的值为标准分 类,由分类加法计数原理,可分为四类: 第一类:m=5 时,使 m>n,n 有 4 种选择; 第二类:m=4 时,使 m>n,n 有 3 种选择; 第三类:m=3 时,使 m>n,n 有 2 种选择; 第四类:m=2 时,使 m>n,n 有 1 种选择. 故符合条件的椭圆共有 10 个. 答案:10
解析:不同路线共有 3×4+4×5=32(条).
答案:32
课 堂 考点突破
自主研、合作探、多面观、全扫命题题点
考点一 分类加法计数原理
[题组练透]
1.某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4
本赠送给 4 位朋友,每位朋友 1 本,则不同的赠送方法共有
A.4 种
B.10 种
()
3.(2018·诸暨模拟)小王同学在书店发现三本有价值的书,若决 定买一本,则购买的方式有________种;决定至少买一本, 则购买的方式有________种. 解析:根据题意,若只买一本,则有 3 种选择;若只买 2 本,则有 3 种选择;若买 3 本,则有 1 种选择.由分类加法 计数原理可知:N=3+3+1=7 种. 答案:3 7

(浙江专版)高考数学一轮复习 第9章 计数原理、概率、随机变量及其分布 第4节 随机事件的概率教师用

(浙江专版)高考数学一轮复习 第9章 计数原理、概率、随机变量及其分布 第4节 随机事件的概率教师用

第四节 随机事件的概率1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.(2)对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).2.事件的关系与运算定义符号表示包含关系 若事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A(或A ⊆B )相等关系 若B ⊇A ,且A ⊇B ,那么称事件A 与事件B 相等 A =B 并事件 (和事件) 若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件) A ∪B(或A +B )交事件 (积事件) 若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件) A ∩B(或AB )互斥事件 若A ∩B 为不可能事件,那么称事件A 与事件B 互斥 A ∩B =∅ 对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅且A ∪B =Ω3.概率的几个基本性质(1)概率的取值X 围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式.①如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ); ②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)事件发生的频率与概率是相同的.( )(2)在大量的重复实验中,概率是频率的稳定值.( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)6X 奖券中只有一X 有奖,甲、乙先后各抽取一X ,则甲中奖的概率小于乙中奖的概率.( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( ) A .① B .②C .③D .④B [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.]3.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25 C.16D.13A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.] 4.(2017·某某调研)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是________. 【导学号:51062340】13[从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况, 其中和为4的有两种情况(2,2),(3,1), 故所求事件的概率P =26=13.]5.(2017·某某模拟)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是________.1735 [由题意知,所求概率P =17+1235=1735.]随机事件间的关系从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( ) A.①B.②④C.③D.①③C[从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.][规律方法] 1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.2.准确把握互斥事件与对立事件的概念.(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.[变式训练1] 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.【导学号:51062341】①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).①④[当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E 为必然事件,④正确.由于B≠C,故P(B)≠P(C),所以⑤不正确.]随机事件的频率与概率某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a 2a(1) (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.[解] (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为分(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为分 (3)由所给数据得分调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a .15分[规律方法] 1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.[变式训练2] 随机抽取一个年份,对某某市该年4月份的天气情况进行统计,结果如下:...(2)某某市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨的概率.[解] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26,2分以频率估计概率,在4月份任选一天,某某市不下雨的概率为2630=1315.6分(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f =1416=78.13分以频率估计概率,运动会期间不下雨的概率为78.15分互斥事件与对立事件的概率某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量 1至 4件5至 8件 9至 12件 13至 16件17件及 以上 顾客数(人) x30 25 y10 结算时间 (分钟/人)11.522.53(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).[解] (1)由题意,得⎩⎪⎨⎪⎧25+y +10=100×55%,x +30=45,解得⎩⎪⎨⎪⎧x =15,y =20.2分该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.又x =1×15+1.5×30+2×25+20×2.5+10×3100=1.9,∴估计顾客一次购物的结算时间的平均值为1.9分钟.6分(2)设B ,C 分别表示事件“一位顾客一次购物的结算时间分别为2.5分钟、3分钟”.设A 表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.”8分将频率视为概率,得P (B )=20100=15, P (C )=10100=110.∵B ,C 互斥,且A =B +C ,∴P (A )=P (B +C )=P (B )+P (C )=15+110=310,13分因此P (A )=1-P (A )=1-310=710,∴一位顾客一次购物结算时间不超过2分钟的概率为分[规律方法] 1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误. 2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题,多考虑间接法.[变式训练3] 某商场有奖销售中,购满100元商品得1X 奖券,多购多得.1 000X 奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1X 奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1X 奖券的中奖概率;(3)1X 奖券不中特等奖且不中一等奖的概率. [解] (1)P (A )=11 000,P (B )=101 000=1100,2分 P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120.5分 (2)1X 奖券中奖包含中特等奖、一等奖、二等奖.设“1X 奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000,8分故1X 奖券的中奖概率约为611 000.9分(3)设“1X 奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1X 奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎪⎫11 000+1100=9891 000,故1X 奖券不中特等奖且不中一等奖的概率为9891 000.15分[思想与方法]1.对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生. 3.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A ),即运用逆向思维(正难则反).[易错与防X]1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数. 2.正确认识互斥事件与对立事件的关系:对立事件是特殊的互斥事件,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.课时分层训练(五十五) 随机事件的概率A 组 基础达标 (建议用时:30分钟)一、选择题1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( )A .互斥但非对立事件B .对立事件C .相互独立事件D .以上都不对A [由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.]2.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3C [∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率为P =1-P (A )=1-0.65=0.35.]3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( )【导学号:51062342】A.17B.1235C.1735D .1C [设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥,故P (C )=P (A )+P (B )=17+1235=1735.]4.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是( )A.15B.16C.56D.3536C [设a ,b 分别为甲、乙摸出球的编号.由题意,摸球试验共有n =6×6=36种不同结果,满足a =b 的基本事件共有6种,所以摸出编号不同的概率P =1-636=56.]5.(2017·某某二中月考)同时掷两个骰子,则向上的点数之差的绝对值为4的概率是( )A.118B.112C.19D.16C [同时抛掷两个骰子,向上的点数共有36个结果,其中点数之差的绝对值为4的结果有(1,5),(5,1),(2,6),(6,2),共4个,所求概率为436=19,故选C.]二、填空题6.给出下列三个命题,其中正确命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.0 [①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.]7.(2017·某某调研)已知盒中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色不同的概率等于________.1115[从袋中任取两球的所有结果共有15种,而取出两球颜色不同的结果有11种,故所求概率为1115.]8.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过2”,则P (A +B )=________. 【导学号:51062343】23 [将事件A +B 分为:事件C “朝上一面的数为1,2”与事件D “朝上一面的数为3,5”.则C ,D 互斥, 且P (C )=13,P (D )=13,∴P (A +B )=P (C +D )=P (C )+P (D )=23.]三、解答题9.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率.[解] (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的频率为2001 000=分(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=分10.某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:(1)(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y ,z 的值. [解] 记事件“在竞赛中,有k 人获奖”为A k (k ∈N ,k ≤5),则事件A k 彼此互斥.1分 (1)∵获奖人数不超过2人的概率为0.56,∴P (A 0)+P (A 1)+P (A 2)=0.1+0.16+x =0.56, 解得x =分(2)由获奖人数最多4人的概率为0.96,得P (A 5)=1-0.96=0.04,即z =分由获奖人数最少3人的概率为0.44,得P (A 3)+P (A 4)+P (A 5)=0.44, 即y +0.2+0.04=0.44, 解得y =分B 组 能力提升 (建议用时:15分钟)1.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”,若B 表示B 的对立事件,则一次试验中,事件A +B 发生的概率为( )A.13B.12C.23D.56C [掷一个骰子的试验有6种可能结果. 依题意P (A )=26=13,P (B )=46=23,∴P (B )=1-P (B )=1-23=13.∵B 表示“出现5点或6点”的事件, 因此事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.]2.某城市2017年的空气质量状况如表所示:100<T ≤150时,空气质量为轻微污染,则该城市2017年空气质量达到良或优的概率为________. 【导学号:51062344】35 [由题意可知2017年空气质量达到良或优的概率为P =110+16+13=35.] 3.(2017·某某质检)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率. 【导学号:51062345】[解](1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=分由表格知,赔付金额大于投保金额即事件A+B发生,且A,B互斥,所以P(A+B)=P(A)+P(B)=0.15+0.12=0.27,故赔付金额大于投保金额的概率为分(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为 4 000元的车辆中,车主为新司机的有0.2×120=24(辆),12分所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,因此,由频率估计概率得P(C)=分。

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第三节排列与组合课件

浙江专版高考数学一轮复习第九章复数计数原理与概率随机变量及其分布第三节排列与组合课件

篮球分给三位小朋友,每位小朋友至少分到一个篮球,且
标号 1,2 的两个篮球不能分给同一个小朋友,则不同的分法
种数为
()
A.15
B.20
C.30
D.42
解析:四个篮球中两个分到一组有 C24种分法,三个篮球进
行全排列有 A33种分法,标号 1,2 的两个篮球分给同一个小朋
友有 A33种分法,所以有 C24A33-A33=36-6=30 种分法.
第三 节 排列与组合
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点
课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双基落实
想一想、辨一辨、试一试、全面打牢基础
必过 教材 关
1.排列与排列数 (1)排列: 从 n 个不同元素中取出 m(m≤n)个元素,_按__照__一__定__的__顺__序__排__ __成__一__列__,叫做从 n 个不同元素中取出 m 个元素的一个排列. (2)排列数: 从 n 个不同元素中取出 m(m≤n)个元素的_所__有__不__同__排__列__的__个_ 数__叫做从 n 个不同元素中取出 m 个元素的排列数,记作_A_mn__.
答案:14
课 堂 考点突破
自主研、合作探、多面观、全扫命题题点
考点一 排列问题
[典例引领]
有 3 名男生、4 名女生,在下列不同条件下,求不同的排 列方法总数.
(1)选 5 人排成一排; (2)排成前后两排,前排 3 人,后排 4 人; (3)全体排成一排,甲不站排头也不站排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻.

2020届高考数学一轮复习:第九章 复数、计数原理与概率、随机变量及其分布二

2020届高考数学一轮复习:第九章  复数、计数原理与概率、随机变量及其分布二

第九章⎪⎪⎪复数、计数原理与概率、随机变量及其分布第三节排列与组合1.排列与排列数 (1)排列:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数:从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,记作A mn .2.组合与组合数 (1)组合:从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数:从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作C m n .3.排列数、组合数的公式及性质[小题体验]1.将8种不同的菜种任选4种种植在不同土质的4块地里,不同的种植方法有( ) A .24 B .1 680 C .70D .840解析:选B 由题可得,不同的种植方法有A 48=8×7×6×5=1 680种.2.(教材习题改编)甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中恰有1门相同的选法有________种.解析:依题意得知,满足题意的选法共有C 14·C 13·C 12=24种. 答案:243.(2019·舟山模拟)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________.解析:依题意得,满足题意的组成方法有C 12A 34=48个.答案:481.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.2.计算A m n 时易错算为n (n -1)(n -2)…(n -m ).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[小题纠偏]1.方程3A 3x =2A 2x +1+6A 2x 的解为________.解析:由排列数公式可知3x (x -1)(x -2)=2(x +1)x +6x (x -1), ∵x ≥3且x ∈N *,∴3(x -1)(x -2)=2(x +1)+6(x -1), 即3x 2-17x +10=0, 解得x =5或x =23(舍去),∴x =5. 答案:52.已知圆上有9个点,则任取三点构成一个三角形,这样的三角形的个数为________. 解析:由题可得,三角形的个数为C 39=9×8×73×2×1=84. 答案:84考点一排列问题(重点保分型考点——师生共研)[典例引领]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).[由题悟法]求解排列应用问题的6种主要方法[即时应用]1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.648C.328 D.360解析:选C首先应考虑“0”,当0排在个位时,有A29=9×8=72(个),当0排在十位时,有A14A18=4×8=32(个).当不含0时,有A14·A28=4×8×7=224(个),由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).2.(2019·湖州调研)A,B,C,D,E等5名同学坐成一排照相,要求学生A,B不能同时坐在两旁,也不能相邻而坐,则这5名同学坐成一排的不同坐法共有______种.(用数字作答)解析:先排C,D,E学生,有A33种坐法,A,B不能同时坐在两旁,也不能相邻而坐,有A24-A22种坐法,则共有A33(A24-A22)=60种坐法.答案:603.(2019·诸暨模拟)将9个相同的小球放入3个不同的盒子中,要求每个盒子至少放一个小球,且每个盒子中的小球个数都不同,则不同的放法有________种.解析:根据要求,小球的分类有1+2+6;1+3+5;2+3+4三类.所以满足要求的不同的放法有3A33=18种.答案:18考点二组合问题(重点保分型考点——师生共研)[典例引领]某运动队有男运动员6名,女运动员4名,若选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员.解:(1)任选3名男运动员,方法数为C36,再选2名女运动员,方法数为C24,共有C36·C24=120(种)方法.(2)法一:(直接法)至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男,由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246(种).法二:(间接法)“至少有1名女运动员”的反面是“全是男运动员”,因此用间接法求解,不同选法有C510-C56=246(种).[由题悟法]1.解决组合应用题的2个步骤(1)整体分类要注意分类时,不重复不遗漏,用到分类加法计数原理;(2)局部分步用到分步乘法计数原理.2.解决含有附加条件的组合问题的2种方法通常用直接法或间接法,应注意对“至少”“最多”“恰好”等词的含义的理解,对于涉及“至少”“至多”等词的组合问题,既可考虑反面情形即间接求解,也可以分类研究进行直接求解.[即时应用]1.(2019·嘉善模拟)跨越台阶,可以一步跨越一级,也可以一步跨越两级,现有11级台阶,准备8步跨完,则不同的跨越方式有()A.165种B.120种C.56种D.28种解析:选C11级台阶,8步跨完,则其中有3步是跨越两级的,则不同的跨越方式有C38=56种.故选C.2.(2019·南昌模拟)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A.30种B.36种C.60种D.72种解析:选A甲、乙两人从4门课程中各选修2门有C24C24=36(种)选法,甲、乙所选的课程中完全相同的选法有6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30(种).3.平面内有10个点,其中有4个点共线,此外再无任何3点共线,则从中任取2点,可以构成的不同的直线的条数为________;从中任取3点,能够构成的不同的三角形的个数为________.解析:构成直线的情况是,第一类,从不共线的6点中任取2点,可以构成C26=15条不同的直线;第二类,从共线的4点中任取一点,不共线的6点中任取一点,可以构成C16C14=24条不同的直线;第三类,从共线的4点中任取2点,构成1条直线,所以满足条件的不同的直线有15+24+1=40条.构成三角形的情况是,第一类,从不共线的6点中任取3点,可以构成C36=20个不同的三角形;第二类,从不共线的6点中任取2点,共线的4点中任取1点,可以构成C26C14=60个不同的三角形;第三类,从不共线的6点中任取1点,共线的4点中任取2点,可以构成C16C24=36个不同的三角形.所以满足条件的三角形的个数为20+60+36=116.答案:40116考点三排列、组合的综合应用(题点多变型考点——多角探明)[锁定考向]排列与组合是高考命题的一个热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题.常见的命题角度有:(1)简单的排列与组合的综合问题;(2)分组、分配问题.[题点全练]角度一:简单的排列与组合的综合问题1.(2018·镇海适应性考试)甲、乙、丙、丁四个人到A,B,C三个景点旅游,每个人只去一个景点,每个景点至少有一个人去,则甲不到A景点的方案有() A.18种B.12种C.36种D.24种解析:选D若A景点只有一个人,则不同的方案有C13C23A22=18种;若A景点有2个人,则不同的方案有C23A22=6种.所以不同的方案有18+6=24种.故选D.角度二:分组、分配问题2.(2019·广州五校联考)将5位同学分别保送到北京大学、上海交通大学、中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有()A.150种B.180种C.240种D.540种解析:选A先将5人分成三组,3,1,1或2,2,1,共有C35+C15×C24·C222!=25(种),再将每组学生分到3所学校有A33=6种分法,共有25×6=150(种)不同的保送方法.[通法在握]1.解决简单的排列与组合的综合问题的思路(1)根据附加条件将要完成事件先分类.(2)对每一类型取出符合要求的元素组合,再对取出的元素排列.(3)由分类加法计数原理计算总数.2.分组、分配问题的求解策略(1)对不同元素的分配问题.①对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.②对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.③对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.(2)对于相同元素的“分配”问题,常采用的方法是“隔板法”.[演练冲关]1.某校为了提倡素质教育,丰富学生们的课外生活,分别成立绘画、象棋和篮球兴趣小组,现有甲、乙、丙、丁四名学生报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A.12种B.24种C.36种D.72种解析:选C由题意可知,从4人中任选2人作为一个整体,共有C24=6(种),再把这个整体与其他2人进行全排列,对应3个活动小组,有A33=6(种)情况,所以共有6×6=36(种)不同的报名方法.2.(2019·浙江六校联考)在某商场的促销活动中,A,B,C,D,E五名顾客随机抽取四个礼品,每人最多抽取一个,礼品中有两个相同的手机和两个相同的平板电脑,则A,B两人都抽到礼品的情况有()A.12种B.18种C.24种D.48种解析:选B若A,B抽到的礼品不同,则有A22A23种情况,若A,B抽到的礼品相同,则有C12C23种情况,又A22A23+C12C23=18,所以根据分类计数原理可得,A,B两人都抽到礼品共有18种情况.3.(2019·杭州高三质检)有红,黄,蓝三种颜色的小球(除颜色外均相同)各4个,都分别标有字母A,B,C,D.任意取出4个,字母各不相同且三种颜色齐备的取法有________种.解析:首先根据所取的颜色按1,1,2分为三组,分法有C24C12C11A22种,然后将所得三组分配到三类球中,不同的分配方法有A33种,根据分步乘法计数原理,知满足条件的取法共有C24C12C11 A22×A33=36(种).答案:36一抓基础,多练小题做到眼疾手快1.(2019·金华十校联考)将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为()A.50B.80C.120 D.140解析:选B根据题意,分2种情况讨论:①甲组有2人,首先选2个放到甲组,有C25=10种,再把剩下的3个人放到乙和丙两个位置,每组至少一人,有C23A22=6种,∴共有10×6=60种分配方案,②当甲中有三个人时,有C35A22=20种分配方案,∴共有60+20=80种分配方案.2.(2019·金丽衢十二校联考)用0,1,2,3,4可以组成无重复数字的能被3整除的三位数的个数是()A.20 B.24C.36 D.48解析:选A若没有0,则满足条件的三位数有2A33=12个;若有0,则满足条件的三位数有2C12A22=8个.所以满足条件的三位数有20个.故选A.3.(2019·绍兴质检)将颜色分别为红色、黄色、蓝色的3个小球,放入编号为1,2,…,7的七个盒子中,每一个盒子至多放2个球,则不同的放法有()A.98种B.196种C.252种D.336种解析:选D若有一个盒子放2个球,则不同的放法有C23A27=3×42=126种;若一个盒子只放1个球,则不同的放法有A37=210种.所以不同的放法有126+210=336种.4.(2018·温州期末)某篮球队有12名球员,按位置区分,为3名中锋,4名后卫,5名前锋.某一场比赛进行中,教练员拟派出1名中锋,2名后卫和2名前锋的标准阵容.现已知中锋甲与后卫乙不能同上,则不同的选派方法种数有()A.180 B.150C.120 D.108解析:选B若不考虑限制情况,则不同的选派方法有C13C24C25=180种,其中中锋甲与后卫乙同上的选派方法有C13C25=30种,所以满足条件的不同选派方法有180-30=150种.故选B.5.(2018·北京西城区模拟)大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有________种.(用数字作答) 解析:元素相邻利用“捆绑法”,先从3人中选择2人坐同一电梯有C23=3种,在将“2”个元素安排坐四部电梯有A24=12种,则不同的乘坐方式有3×12=36种.答案:36二保高考,全练题型做到高考达标1.(2019·舟山模拟)将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是()A.40 B.60C .80D .100解析:选A 三个小球放入盒子是不对号入座的方法有2种,由排列组合的知识可得,不同的放法总数是2C 36=40种.2.(2018·绿色联盟适应性考试)若有5本不同的书,分给三位同学,每人至少一本,则不同的分法数是( )A .120B .150C .240D .300解析:选B 第一类,书的数量为1+1+3,则不同的分法有C 35A 33=60种;第二类,书的数量为1+2+2,则不同的分法有C 25C 23A 22·A 33=90种.所以不同的分法有60+90=150种. 3.(2019·衢州期末)小明有3双颜色相近的袜子(不分左右脚).某天早晨,由于贪睡造成晚起.为了防止上学迟到,小明随手从这3双颜色相近的袜子中抓起两只袜子套在脚上,拔腿就走.则小明穿的不是同一双袜子的可能性有几种( )A .22B .24C .28D .30解析:选B 根据条件,先从三双袜子中任选一双,选一只,有C 13C 12=6种不同的选法;再从剩余的2双袜子中任选一只,有C 14=4种不同的选法.由分步乘法计数原理可知,N =6×4=24种.故选B.4.(2018·杭高3月模拟)某学校高三年级共有两个实验班,四个普通班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且实验班学生不检查实验班,则不同安排方法的种数是( )A .360B .288C .168D .144解析:选B 由题可得,第一步,实验班的同学检查普通班,有A 24=12种;第二步,普通班的同学检查剩余的班,有A 44=24种,所以不同的安排方法的种数是12×24=288种. 5.(2019·三明调研)将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种解析:选C (排序一定用除法)五个元素没有限制全排列数为A 55,由于要求A ,B ,C的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40(种). 6.现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有________种不同的方法.(用数字作答).解析:第一步,从9个位置中选出2个位置,分给相同的红球,有C29种选法;第二步,从剩余的7个位置中选出3个位置,分给相同的黄球,有C37种选法;第三步,剩下的4个位置全部分给4个白球,有1种选法.根据分步乘法计数原理可得,排列方法共有C29C37=1 260(种).答案:1 2607.(2019·浙江高三模拟)7名同学准备报名两门选修课,每名同学只能报一门,若每门选修课至少要有2名同学报名,则不同的报名方式的种数为________.解析:7名同学准备报名两门选修课,每名同学只能报一门,每门选修课至少要有2名同学报名,其方式有2,5和3,4两种组合,①一门选修课2人报名,另一门5人报名,有C27A22种方式;②一门选修课3人报名,另一门4人报名,有C37A22种方式.因此,共有C27A22+C37A22=112种报名方式.答案:1128.(2019·黄冈质检)在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.解析:不相邻问题插空法.2位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.答案:609.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4(种)情况,再对应到4个人,有A44=24(种)情况,则共有4×24=96(种)情况.答案:9610.(1)已知C n-1n+1=A2n-1+1,求n;(2)若C m-18>3C m8,求m.解:(1)由C n-1n+1=A2n-1+1得(n+1)n2=(n-1)(n-2)+1.即n2-7n+6=0.解得n=1,或n=6.由A2n-1知,n≥3,故n=6.(2)原不等式可化为8!(m-1)!(9-m)!>3×8!m!(8-m)!,解得m >274.∵0≤m -1≤8,且0≤m ≤8,∴1≤m ≤8. 又m 是整数,∴m =7或m =8. 三上台阶,自主选做志在冲刺名校1.甲、乙等5人在天安门广场排成一排拍照留念,甲和乙必须相邻且都不站在两端的排法有( )A .12种B .24种C .48种D .120种解析:选B 甲、乙相邻,将甲、乙捆绑在一起看作一个元素,共有A 44A 22种排法,甲、乙相邻且在两端有C 12A 33A 22种排法,故甲、乙相邻且都不站在两端的排法有A 44A 22-C 12A 33A 22=24(种).2.(2019·浙江名校协作体联考)安排甲、乙、丙、丁、戊5名大学生去杭州、宁波、金华三个城市进行暑期社会实践活动,每个城市至少安排一人,则不同的安排方式共有________种,学生甲被单独安排去金华的概率是________.解析:先将甲、乙、丙、丁、戊5名大学生分为三组,每组至少有1名大学生,有两种情况:第一种情况是,各组人数分别是3,1,1,共有C 35=10种分法;第二种情况是,各组人数分别是1,2,2,共有C 15C 24A 22=15种分法.由以上两种情况得甲、乙、丙、丁、戊5名大学生分为三组且每组至少有1名大学生共有25种分法,再将这三组大学生分到三个城市,每个城市一组,共有25A 33=150种安排方式;其中学生甲被单独安排去金华有⎝⎛⎭⎫C 14+C 24A 22A 22=14种,所以学生甲被单独安排去金华的概率是14150=775.答案:1507753.从1到9的9个数字中取3个偶数4个奇数,试问: (1)能组成多少个没有重复数字的七位数? (2)上述七位数中,3个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?解:(1)分三步完成:第一步,在4个偶数中取3个,有C 34种情况;第二步,在5个奇数中取4个,有C 45种情况;第三步,3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34C 45A 77=100 800(个).(2)上述七位数中,3个偶数排在一起的有C 34C 45A 33A 55=14 400(个).(3)在(1)中的七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34C 45A 33A 44A 22=5760(个).第四节二项式定理1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n an -k b k +…+C n n b n(n ∈N *); (2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n .2.二项式系数的性质[小题体验]1.二项式⎝⎛⎭⎫x +2x 38的展开式中常数项为( ) A .70 B .28 C .1 120D .112解析:选D ∵⎝⎛⎭⎫x +2x 38展开式的通项为T r +1=C r 8x 8-r ·⎝⎛⎭⎫2x 3r =C r 82r x 8-4r,令8-4r =0,得r =2,∴二项式⎝⎛⎭⎫x +2x 38的展开式中的常数项为C 2822=112. 2.(1-2x )7的展开式中x 3的系数为________.解析:T r +1=C r 717-r (-2x )r =C r 7(-2)r x r,令r =3.则x 3的系数为C 37(-2)3=35×(-8)=-280.答案:-2803.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项.解析:∵T r +1=C r 8(x )8-r⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r4,∴r 为4的倍数,故r =0,4,8,共3项. 答案:31.二项式的通项易误认为是第k 项,实质上是第k +1项.2.(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.3.易混淆二项式中的“项”,“项的系数”、“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C k n (k =0,1,…,n ).[小题纠偏]1.(2018·宁波质检)二项式⎝⎛⎭⎫x -12x 9展开式中,x 3项的系数为( ) A .-52B.52C .-212D.212解析:选C 二项式⎝⎛⎭⎫x -12x 9展开式的通项为T r +1=C r 9x 9-r ⎝⎛⎭⎫-12x r =C r 9⎝⎛⎭⎫-12r x 9-2r , 令9-2r =3,得r =3,所以x 3项的系数为C 39⎝⎛⎭⎫-123=-212,故选C. 2.(2019·嘉兴高三测试)(x +2)(x +1)6的展开式中,x 3项的系数为________;所有项系数的和为________.解析:(x +1)6的展开式的通项T r +1=C r 6x 6-r ,从而含x 3的项为x ·C 46x 2+2C 36x 3=55x 3,故x 3项的系数为55;所有项的系数之和为3×(1+1)6=192.答案:55 192考点一 二项展开式中特定项或系数问题(题点多变型考点——多角探明) [锁定考向]二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择题、填空题的形式呈现,试题难度不大,多为容易题或中档题.常见的命题角度有: (1)求展开式中的某一项;(2)求展开式中的项的系数或二项式系数; (3)由已知条件求n 的值或参数的值.[题点全练]角度一:求展开式中的某一项1.二项式⎝⎛⎭⎫4x 2-1x 6展开式中的第4项为( ) A .-1 280x 3 B .-1 280 C .240D .-240解析:选A ⎝⎛⎭⎫4x 2-1x 6展开式中的第4项为T 3+1=C 36(4x 2)3⎝⎛⎭⎫-1x 3=-1 280x 3,选A. 2.(2019·浙江名校联考)(1+x -2)(x -2)5的展开式中的常数项是( )A .5B .-10C .-32D .-42解析:选D (x -2)5的展开式的通项T r +1=C r 5(x 12)5-r ·(-2)r,令5-r 2=0,得r =5;令5-r 2+(-2)=0,得r =1,所以常数项是C 15(-2)1+C 55(-2)5=-42.角度二:求展开式中的项的系数或二项式系数3.(2019·湖州调研)在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )A .121B .-74C .74D .-121解析:选D 法一:(1-x )5+(1-x )6+(1-x )7+(1-x )8 =(1-x )5[1-(1-x )4]1-(1-x )=(1-x )5-(1-x )9x ,(1-x )5中x 4的系数为C 45=5,-(1-x )9中x 4的系数为-C 49=-126,得-126+5=-121. 法二:由题意得含x 3的项的系数是-C 35-C 36-C 37-C 38=-10-20-35-56=-121.4.(2018·天津高考)在⎝⎛⎭⎫x -12x 5的展开式中,x 2的系数为________. 解析:⎝⎛⎭⎫x -12x 5的展开式的通项为 T r +1=C r 5x 5-r ·⎝⎛⎭⎫-12r ·x -r 2=⎝⎛⎭⎫-12r C r 5x 5-3r 2. 令5-3r2=2,解得r =2.故展开式中x 2的系数为⎝⎛⎭⎫-122C 25=52.答案:52角度三:由已知条件求n 的值或参数的值5.(2019·浙江考前冲刺)若二项式(2x +a x )n 的展开式中所有项的二项式系数和为32,x 3的系数是160,则n =________,a =________.解析:∵2n =32,∴n =5,二项展开式的通项T r +1=C r 5(2x )5-r a r x r 2=C r 525-r a r x 5-r 2,当5-r 2=3时,r =4,∴C 45×2×a 4=160,解得a =±2. 答案:5 ±2[通法在握]求二项展开式中的特定项的方法求二项展开式的特定项问题,实质是考查通项T k +1=C k n a n -k b k 的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程. 特定项的系数问题及相关参数值的求解等都可依据上述方法求解.[演练冲关]1.(2019·丽水、衢州、湖州三市质检)若⎝⎛⎭⎫x -ax 26的展开式中x 3的系数为-12,则a =________;常数项是________.解析:由于二项展开式的通项T r +1=C r 6x 6-r ⎝⎛⎭⎫-a x 2r =(-a )r C r 6x 6-3r ,令6-3r =3,则r =1,所以(-a )C 16=-6a =-12,a =2;令6-3r =0,则r =2,所以常数项是(-2)2C 26=4×15=60.答案:2 602.(2019·温州十校联考)已知(1+x +x 2)⎝⎛⎭⎫x +1x 3n (n ∈N *)的展开式中没有常数项,且2≤n ≤8,则n =________.解析:(1+x +x 2)⎝⎛⎭⎫x +1x 3n 的展开式中没有常数项即⎝⎛⎭⎫x +1x 3n 中没有常数项,不含x -1,x -2项,因为⎝⎛⎭⎫x +1x 3n 的通项公式为T r +1=C r n x n -4r,所以⎩⎪⎨⎪⎧n -4r ≠0,n -4r ≠-1,n -4r ≠-2经验证得n =5.答案:5考点二 二项式系数的性质或各项系数和(重点保分型考点——师生共研)[典例引领]1.在二项式(1-2x )n 的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为( )A .-960B .960C .1 120D .1 680解析:选C 根据题意,奇数项的二项式系数之和也应为128,所以在(1-2x )n 的展开式中,二项式系数之和为256,即2n =256,n =8,则(1-2x )8的展开式的中间项为第5项,且T 5=C 48(-2)4x 4=1 120x 4,即展开式的中间项的系数为1 120,故选C.2.若x 9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,则a 1+a 3+a 5+a 7+a 9a 7的值为________.解析:令x =2,得29=a 0+a 1+a 2+…+a 8+a 9, 令x =0,得0=a 0-a 1+a 2-…+a 8-a 9, 所以a 1+a 3+a 5+a 7+a 9=a 0+a 2+a 4+a 6+a 8=28.又x 9=[1+(x -1)]9,其中T 8=C 79(x -1)7, 所以a 7=C 79=36,故a 1+a 3+a 5+a 7+a 9a 7=25636=649.答案:649[由题悟法]1.赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第n +12+1项的二项式系数相等并最大.[即时应用]1.已知⎝⎛⎭⎫x -1x n 的展开式中第3项与第6项的二项式系数相等,则展开式中系数最大的项为( )A .第5项B .第4项C .第4项或第5项D .第5项或第6项解析:选A ∵⎝⎛⎭⎫x -1x n 的展开式中第3项与第6项的二项式系数相等,∴C 2n =C 5n ,得n-1r,当r=4时,C r9(-1)r最大,∴展开式中系数最=7.又展开式中第r+1项的系数为C r9()大的项为第5项.5x-x n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,2.设()则展开式中二项式系数最大的项为__________.解析:依题意得,M=4n=(2n)2,N=2n,于是有(2n)2-2n=240,(2n+15)(2n-16)=0,∴2n=16=24,解得n=4.要使二项式系数C k4最大,只有k=2,故展开式中二项式系数最大的项为T3=C24(5x)2·(-x)2=150x3.答案:150x3考点三二项展开式的应用(重点保分型考点——师生共研)[典例引领]设a∈Z,且0≤a<13,若512 016+a能被13整除,则a=()A.0B.1C.11 D.12解析:选D由于51=52-1,521+1,(52-1)2 016=C02 016522 016-C12 016522 015+…-C2 0152 016又由于13整除52,所以只需13整除1+a,0≤a<13,a∈Z,所以a=12.[由题悟法]利用二项式定理解决整除问题的思路(1)观察除式与被除式间的关系.(2)将被除式拆成二项式.(3)结合二项式定理得出结论.[即时应用]求1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数.解:∵1-90C110+902C210+…+(-1)k90k C k10+…+9010C1010=(1-90)10=8910,∴8910=(88+1)10=8810+C110889+…+C91088+1,∵前10项均能被88整除,∴余数是1.一抓基础,多练小题做到眼疾手快 1.(2018·温州模拟)在⎝⎛⎭⎫1x -2x 9的展开式中,常数项是( )A .C 39B .-C 39 C .8C 39D .-8C 39解析:选D ⎝⎛⎭⎫1x -2x 9展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r (-2x )r =C r 9(-2)r x 3r -92,令3r -92=0,解得r =3.所以常数项是-8C 39. 2.(2019·杭州名校协作体联考)⎝⎛⎭⎫1x +2(1-x )4展开式中x 2的系数为( ) A .16 B .12 C .8D .4解析:选C (1-x )4展开式的通项公式为T r +1=C r 4(-1)r x r .所以⎝⎛⎭⎫1x +2(1-x )4展开式中x 2的系数为C 34(-1)3+2C 24(-1)2=8.3.(2019·丽水模拟)若⎝⎛⎭⎫x -1ax 7展开式中含x 的项的系数为280,则a =( ) A .-2 B .2 C .-12D.12解析:选C 该二项式展开式的通项公式为T r +1=C r 7x 7-r ·⎝⎛⎭⎫-1ax r =C r 7(-1)r a -r x 7-2r .令7-2r =1,解得r =3.所以-C 37a -3=280,解得a -3=-8,所以a =-12. 4.(2019·绿色联盟适应性考试)若(x +1)⎝⎛⎭⎫x 2-a x 6的展开式中常数项为60,则实数a 的值是________.解析:⎝⎛⎭⎫x 2-a x 6展开式的通项公式为T r +1=C r 6⎝⎛⎭⎫x 26-r ⎝⎛⎭⎫-a x r =C r 6⎝⎛⎭⎫126-r (-a )r x 6-3r 2, 令6-3r2=0,得r =4;令6-3r 2=-1,得r =143(舍去).所以(x +1)⎝⎛⎭⎫x 2-a x 6的展开式中常数项为C 46⎝⎛⎭⎫122(-a )4=154a 4=60, 解得a =±2. 答案:±25.(2019·绍兴质检)若(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 2+a 4=________.解析:令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=35; 令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5=-1, 所以a 0+a 2+a 4=35-12=121.答案:121二保高考,全练题型做到高考达标 1.(2019·武汉调研)⎝ ⎛⎭⎪⎫3x -3x n的展开式中所有项系数的绝对值之和为1 024,则该展开式中的常数项是( )A .-270B .270C .-90D .90解析:选C 在⎝⎛⎭⎪⎫3x -3x n 的展开式中,令x =1,可得⎝ ⎛⎭⎪⎫3x -3x n展开式的各项系数绝对值之和为4n =22n =1 024=210,解得n =5,故⎝⎛⎭⎪⎫3x -3x 5展开式的通项公式为T r +1=C r 5·35-r·(-1)r ·x 5r -156. 令5r -156=0,得r =3,故展开式中的常数项为-32C 35=-90. 2.(2019·金华十校联考)在(1-x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n -5=0,则自然数n 的值是( )A .7B .8C .9D .10解析:选B 由题意得,该二项展开式的通项T r +1=C r n ·(-1)r x r , ∴该项的系数a r =(-1)r ·C r n , ∵2a 2+a n -5=0,∴2(-1)2C 2n +(-1)n -5C n -5n =0, 即2C 2n +(-1)n -5·C n -5n =0,∴n -5为奇数,∴2C 2n =C n -5n =C 5n ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X1
2
34
P
1 35
4 35
2 7
4 7
[由题悟法] 离散型随机变量分布列求法的 3 个步骤 (1)找出随机变量 X 的所有可能取值 xi(i=1,2,3,…,n); (2)求出各取值的概率 P(X=xi)=pi; (3)列成表格并用分布列的性质检验所求的分布列或某事 件的概率是否正确. [提醒] 求离散型随机变量的分布列的关键是求随机变量 所有取值对应的概率,在求解时,要注意应用计数原理、古典 概型等知识.
5.有一批种子的发芽率为 0.9,出芽后的幼苗成活率为 0.8, 在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗 的概率为________. 解析:由题意可得所求概率为 0.8×0.9=0.72,即这粒种 子能成长为幼苗的概率为 0.72. 答案:0.72
课 堂 考点突破
自主研、合作探、多面观、全扫命题题点
[即时应用] 已知 2 件次品和 3 件正品混放在一起,现需要通过检测将其区 分,每次随机检测一件产品,检测后不放回,直到检测出 2 件 次品或者检测出 3 件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率. (2)已知每检测一件产品需要费用 100 元,设 X 表示直到检测出 2 件次品或者检测出 3 件正品时所需要的检测费用(单位:元), 求 X 的分布列. 解:(1)第一次检测出的是次品且第二次检测出的是正品的概率 为 P=25×34=130.
2)=________.
解析:由分布列的性质知21a+22a+23a=1,∴a=3, ∴P(X=2)=22a=13.
答案:13
2.在含有 3 件次品的 10 件产品中,任取 4 件,则取到次品数 X 的分布列为________.
解析:由题意,X 服从超几何分布,其中 N=10,M=3,
n=4,所以分布列为
得 c=13.
答案:C
2.设离散型随机变量 X 的分布列为 X0 1 2 3 4 P 0.2 0.1 0.1 0.3 m
求 2X+1 的分布列.
解:由分布列的性质,知 0.2+0.1+0.1+0.3+m=1, 解得 m=0.3. 列表
X
01234
2X+1 1 3 5 7 9
所以 2X+1 的分布列为
min{M,n},且 n≤N,M≤N,n,M,N∈N*.
X
0
1

m
P
C0MCnN--0M CnN
C1MCnN--1M CnN

CmMCnN--mM CNn
如果随机变量 X 的分布列具有上表的形式,则称随机变量 X 服
从超几何分布.
4.事件的相互独立性 (1)定义:设 A,B 为两个事件,若 P(AB)=P(A)P(B) ,则称事
[小题体验] 1.有一批产品共 12 件,其中次品 3 件,每次从中任取一件,在
取到合格品之前取出的次品数 X 的所有可能取值是________.
解析:可能第一次就取到合格品,也可能取完次品后才取 得合格品,所以 X 的所有可能取值为 0,1,2,3.
答案:0,1,2,3
2.(2018·台州高三年级调考试题)已知离散型随机变量 X 的分 布列为
第六 节 随机变量及其分布
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点
课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双基落实
想一想、辨一辨、试一试、全面打牢基础
必过 教材 关
1.随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母 X,
1 10
3 10
3 5
考点三 超几何分布
[典例引领]
为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动 员组队参加.现有来自甲协会的运动员 3 名,其中种子选手 2 名;乙协会的运动员 5 名,其中种子选手 3 名.从这 8 名运动 员中随机选择 4 人参加比赛. (1)设 A 为事件“选出的 4 人中恰有 2 名种子选手,且这 2 名 种子选手来自同一个协会”,求事件 A 发生的概率; (2)设 X 为选出的 4 人中种子选手的人数,求随机变量 X 的分 布列.
下重复做的 n 事件 A 发生的次数,设每次试验中
定义 次试验称为 n 事件 A 发生的概率为 p,此时称随机
次独立重复 变量 X 服从二项分布,记作
试验
__X_~__B_(_n_,__p_)_,并称 p 为成功概率
Ai(i=1,2,…,
计算 公式
n)表示第 i 次 试验结果,则
P(A1A2A3… An)=P(A1)
(2)若 Y=aX+b,其中 a,b 为常数,则 Y 也是随机变量,且 E(aX +b)= aE(X)+b .
(3)①若 X 服从两点分布,则 E(X)= p ; ②若 X~B(n,p),则 E(X)= np .
7.方差 (1)设离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn 则 (xi-E(X))2 描述了 xi(i=1,2,…,n)相对于均值 E(X)的偏
Y,ξ,η,…表示. (2)离散型随机变量:所有取值可以 一一列出 的随机变量.
2.离散型随机变量分布列的概念及性质
(1)概念:若离散型随机变量 X 可能取的不同值为 x1,
x2,…,xi,…,xn,X 取每一个值 xi(i=1,2,…,n)的概 率 P(X=xi)=pi,以表格的形式表示如下:
X
x1
x2

xi … xn
P
p1
p2

pi … pn
此表称为离散型随机变量 X 的概率分布列,简称为 X 的
分布列.有时也用等式 P(X=xi)=pi,i=1,2,…,n 表
示 X 的分布列.
(2)分布列的性质 ①pi ≥ 0,i=1,2,3,…,n;
n
② pi= 1 .
i=1
3.常见的离散型随机变量的分布列
X1 2 3 4
P
1 4
1 4
1 4
1 4
∴E(X)=1×14+2×14+3×14+4×14=52.
答案:52
4.已知 X 的分布列为
X
-1
0
1
P
1 2
1
1
3
6
设 Y=2X+3,则 E(Y)的值为________. 解析:∵E(X)=-12+16=-13, ∴E(Y)=E(2X+3)=2E(X)+3=-23+3=73. 答案:73
5.易混“相互独立”和“事件互斥” 两事件互斥是指两事件不可能同时发生,两事件相互独立 是指一个事件的发生与否对另一个事件发生的概率没有影 响,两个事件相互独立不一定互斥.
6.易混淆二项分布与两点分布 由二项分布的定义可以发现,两点分布是一种特殊的二项 分布,即 n=1 时的二项分布.
[小题纠偏] 1.已知随机变量 X 的分布列为 P(X=i)=2ia(i=1,2,3),则 P(X=
(2)由题意可知 X 的可能取值为 200,300,400, 则 P(X=200)=25××14=110; P(X=300)=35××24××13+25××34××23=130;
P(X=400)=1-P(X=200)-P(X=300)=35, 所以 X 的分布列如下表所示:
X 200
300
400
P
X
0
1
2
P
a
1 2
1 4
则变量 X 的数学期望 E(X)=________,方差 D(X)=
________.
答案:1
1 2
3.有一批产品,其中有 12 件正品和 4 件次品,从中有放回 地任取 3 件,若 X 表示取到次品的次数,则 D(X)=______.
解析:∵X~B3,14,∴D(X)=3×14×34=196.
在 n 次独立重复试验中,事件 A 恰 好发生 k 次的概率为 P(X=k)= Cknpk(1-p)n-k(k=0,1,2,…,n)
P(A2)…P(An)
6.均值
(1)一般地,若离散型随机变量 X 的分布列为: X x1 x2 … xi … xn P p1 p2 … pi … pn
则称 E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X 的 均值或数学期望.它反映了离散型随机变量取值的 平均水平 .
2X+1 1 3 5 7 9
P 0.2 0.1 0.1 0.3 0.3
[谨记通法]
应用离散型随机变量分布列性质的 1 个注意点 利用分布列中各概率之和为 1 可求参数的值,此时 要注意检验,以保证每个概率值均为非负数.如“题组 练透”第 1 题.
考点二 离散型随机变量分布列的求法
[典例引领] 一个盒子里装有 7 张卡片,其中有红色卡片 4 张,编号分别为 1,2,3,4;白色卡片 3 张,编号分别为 2,3,4.从盒子中任取 4 张卡 片(假设取到任何一张卡片的可能性相同). (1)求取出的 4 张卡片中,含有编号为 3 的卡片的概率; (2)在取出的 4 张卡片中,红色卡片编号的最大值设为 X,求随 机变量 X 的分布列.
(1)两点分布列
X
0
1
P __1_-__p__ p
若随机变量 X 的分布列具有上表的形式,则称 X 服从两
点分布,并称 p= P(X=1) 为成功概率.
(2)超几何分布列
在含有 M 件次品的 N 件产品中,任取 n 件,其中恰有 X 件次品,

P(X = k) =
CkMCnN--kM CnN
, k = 0,1,2 , … , m, 其 中 m=
答案: 9 16
4.抛掷两枚质地均匀的硬币,A={第一枚为正面向上},B={第 二枚为正面向上},则事件 C={两枚向上的面为一正一反} 的概率为________. 解析:P(A)=P(B)=12,P( A )=P( B )=12. 则 P(C)=P(A B + A B)=P(A)P( B )+P( A )P(B) =12×12+12×12=0.5.
相关文档
最新文档