河南省上蔡县第一初级中学2016届九年级数学上学期期中试题(无答案)新人教版

合集下载

河南省驻马店市上蔡一中九年级数学上学期第一次月考试卷(含解析) 新人教版

河南省驻马店市上蔡一中九年级数学上学期第一次月考试卷(含解析) 新人教版

2016-2017学年河南省驻马店市上蔡一中九年级(上)第一次月考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.与是同类二次根式的是()A.B.C. D.2.二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥3 C.x≥﹣3 D.x≤33.下列各组线段能成比例的是()A.0.2cm 0.3m 0.4cm 0.2cmB.1cm 2cm 3cm 4cmC.4cm 6cm 8cm 3cmD. cm cm cm cm4.关于x的方程(a﹣3)x2+x+2a﹣1=0是一元二次方程的条件是()A.a≠0 B.a≠3 C.a≠D.a≠﹣35.方程x(x+2)=2(x+2)的解是()A.2和﹣2 B.2 C.﹣2 D.无解6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=67.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣18.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196二、填空题(共7小题,每小题3分,满分21分)9.函数y=中自变量x的取值范围是.10.方程x2+5x﹣m=0的一个根是2,则m= ;另一个根是.11.若a,b是方程x2﹣x﹣2=0的两个根,则a+b= .12.若,则= .13.已知a,b,c在数轴上的位置如下图:化简代数式﹣|a+b|++|b+c|的值为14.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是.15.以﹣3和7为根且二次项系数为1的一元二次方程是.三、解答题(共6小题,满分75分)16.计算(1)(3+)÷;(2)﹣﹣;(3)(1+2)+(﹣2)2﹣(1﹣)0﹣;(4)﹣﹣+(﹣1)0.17.解下列方程:(1)x2﹣5x+1=0(用配方法)(2)3(x﹣2)2=x(x﹣2)(3)(4)(y+2)2=(3y﹣1)2.18.已知关于x的方程kx2+2(k+1)x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)请选取一个你喜欢的k值,代入方程并求出方程的根.19.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?20.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?21.如图,用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角截去四个相同的小正方形,设小正方形的边长为xcm.(1)底面的长AB= cm,宽BC= cm(用含x的代数式表示)(2)当做成盒子的底面积为300cm2时,求该盒子的容积.(3)该盒子的侧面积S是否存在最大的情况?若存在,求出x的值及最大值是多少?若不存在,说明理由.2016-2017学年河南省驻马店市上蔡一中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.与是同类二次根式的是()A.B.C. D.【考点】同类二次根式.【分析】根据同类二次根式的定义进行选择即可.【解答】解:A、与不是同类二次根式,故错误;B、=3与不是同类二次根式,故错误;C、=3与不是同类二次根式,故错误;D、=与是同类二次根式,故正确;故选D.2.二次根式有意义,则x的取值范围是()A.x≤﹣3 B.x≥3 C.x≥﹣3 D.x≤3【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意,得3﹣x≥0,解得 x≤3.故选:D.3.下列各组线段能成比例的是()A.0.2cm 0.3m 0.4cm 0.2cmB.1cm 2cm 3cm 4cmC.4cm 6cm 8cm 3cmD. cm cm cm cm【考点】比例线段.【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【解答】解:A、0.2×0.4≠0.2×0.3,故本选项错误;B、1×4≠2×3,故本选项错误;C、3×8=4×6,故本选项正确;D、,故本选项错误.故选C4.关于x的方程(a﹣3)x2+x+2a﹣1=0是一元二次方程的条件是()A.a≠0 B.a≠3 C.a≠D.a≠﹣3【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:由关于x的方程(a﹣3)x2+x+2a﹣1=0是一元二次方程,得a﹣3≠0.解得a≠3,故选:B.5.方程x(x+2)=2(x+2)的解是()A.2和﹣2 B.2 C.﹣2 D.无解【考点】解一元二次方程-因式分解法.【分析】先移项,将一元二次方程整理为一般式,然后再用提取公因式法进行求解.【解答】解:原方程可化为:x(x+2)﹣2(x+2)=0;(x+2)(x﹣2)=0;x+2=0或x﹣2=0;解得:x=2或x=﹣2.故选A.6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.7.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣1【考点】根的判别式.【分析】方程没有实数根,则△<0,建立关于m的不等式,求出m的取值范围.【解答】解:由题意知,△=4﹣4m<0,∴m>1故选:C.8.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.二、填空题(共7小题,每小题3分,满分21分)9.函数y=中自变量x的取值范围是x≤5且x≠﹣1 .【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】二次根式有意义,被开方数为非负数;分式有意义,分母不为0;根据这个条件就可以求解.【解答】解:根据题意得:解得:x≤5且x≠﹣1.10.方程x2+5x﹣m=0的一个根是2,则m= 14 ;另一个根是﹣7 .【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,先求出另一根,然后利用两根之积,求出m的值.【解答】解:设方程的另一根为n,则2+n=﹣5,得n=﹣7,2×(﹣7)=﹣m,得m=14.故应填14和﹣7.11.若a,b是方程x2﹣x﹣2=0的两个根,则a+b= 1 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出a+b的值.【解答】解:根据题意得a+b=﹣=1.12.若,则= .【考点】比例的性质.【分析】根据分比定理【分比定理:如果a:b=c:d,那么(a﹣b):b=(c﹣d):d (b、d ≠0)】解答.【解答】解:∵,∴==.故答案为:.13.已知a,b,c在数轴上的位置如下图:化简代数式﹣|a+b|++|b+c|的值为﹣a【考点】二次根式的性质与化简;实数与数轴.【分析】首先根据数轴确定a、b、c的符号,再由二次根式的性质及有理数的加减法法则确定各个绝对值里面的式子的符号,然后去掉绝对值符号,从而对所求代数式进行化简.【解答】解:根据数轴可以得到:b<a<0<c,且|b|>|c|,∴a+b<0,c﹣a>0,b+c<0,∴﹣|a+b|++|b+c|,=|a|﹣|a+b|+|c﹣a|+|b+c|,=﹣a+(a+b)+(c﹣a)﹣(b+c),=﹣a+a+b+c﹣a﹣b﹣c,=﹣a.故答案为:﹣a.14.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是(﹣2,﹣2).【考点】待定系数法求反比例函数解析式;根与系数的关系.【分析】先根据点P(a,b)是反比例函数的图象上的点,把点P的坐标代入解析式,得到关于a、b、k的等式ab=k;又因为a、b是一元二次方程x2+kx+4=0的两根,得到a+b=﹣k,ab=4,根据以上关系式求出a、b的值即可.【解答】解:把点P(a,b)代入y=得,ab=k,因为a、b是一元二次方程x2+kx+4=0的两根,根据根与系数的关系得:a+b=﹣k,ab=4,于是有:,解得,点P的坐标是(﹣2,﹣2).15.以﹣3和7为根且二次项系数为1的一元二次方程是x2﹣4x﹣21=0 .【考点】根与系数的关系.【分析】先计算出﹣3+7=4,﹣3×7=﹣21,然后根据根与系数的关系写出满足条件的方程.【解答】解:∵﹣3+7=4,﹣3×7=﹣21,∴﹣3和7为根且二次项系数为1的一元二次方程为x2﹣4x﹣21=0.故答案为x2﹣4x﹣21=0.三、解答题(共6小题,满分75分)16.计算(1)(3+)÷;(2)﹣﹣;(3)(1+2)+(﹣2)2﹣(1﹣)0﹣;(4)﹣﹣+(﹣1)0.【考点】二次根式的混合运算;零指数幂.【分析】(1)可以把二次根式化简,合并括号里同类二次根式,再做除法;(2)化简,合并同类二次根式;(3)用分配律计算,然后化简,合并同类二次根式;(4)化简,合并同类二次根式即可.【解答】解:(1)(3+)÷=(3+)÷=÷=;(2)﹣﹣=2﹣﹣=;(3)(1+2)+(﹣2)2﹣(1﹣)0﹣=+2+4﹣1﹣2=(4)﹣﹣+(﹣1)0=3﹣﹣+1=+1.17.解下列方程:(1)x2﹣5x+1=0(用配方法)(2)3(x﹣2)2=x(x﹣2)(3)(4)(y+2)2=(3y﹣1)2.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)运用配方法求解即可;(2)先移项,再提取公因式即可;(3)运用公式法求解即可;(4)运用直接开平方法求解即可.【解答】解:(1)x2﹣5x+1=0,移项得:x2﹣5x=﹣1,配方得:x2﹣5x+=﹣1+,即(x﹣)2=,∴x﹣=±,∴x1=,x2=;(2)3(x﹣2)2=x(x﹣2),移项,得 3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,x1=2,x2=3;(3),∵a=2,b=﹣2,c=﹣5,∴△=8﹣4×2×(﹣5)=48,∴x==,∴x1=,x2=;(4)(y+2)2=(3y﹣1)2.y+2=±(3y﹣1),y+2=3y﹣1,或y+2=﹣(3y﹣1),y1=,y2=﹣.18.已知关于x的方程kx2+2(k+1)x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)请选取一个你喜欢的k值,代入方程并求出方程的根.【考点】根的判别式.【分析】(1)根据方程有两个不相等实数根,则根的判别式△>0,建立关于k的不等式,求得k的取值范围,且二次项系数不为零.(2)答案不唯一,只要在k的取值范围内取值即可,注意是用配方法解方程.【解答】解:(1)∵a=k,b=2(k+1),c=k﹣1,△=b2﹣4ac=12k+4>0,即k>﹣方程有两个不相等的实数根,则二次项系数不为零,即k≠0.∴k的取值范围是:k>﹣且k≠0.(2)答案不唯一,如当k=1时,原方程为:x2+4x=0.∵x2+4x=0,∴x(x+4)=0,即x=0或x+4=0,解得x1=0,x2=﹣4.19.有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.20.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?【考点】一元二次方程的应用.【分析】设售价为x元,则有(x﹣进价)(每天售出的数量﹣×10)=每天利润,解方程求解即可.【解答】解:设售价为x元,根据题意列方程得(x﹣8)=640,整理得:(x﹣8)=640,即x2﹣28x+192=0,解得x1=12,x2=16.故将每件售价定为12或16元时,才能使每天利润为640元.原价为10元,则定价为12元和16元都符合题意(加价减销),故应将商品的售价定为12元或16元.21.如图,用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角截去四个相同的小正方形,设小正方形的边长为xcm.(1)底面的长AB= 50﹣2x cm,宽BC= 30﹣2x cm(用含x的代数式表示)(2)当做成盒子的底面积为300cm2时,求该盒子的容积.(3)该盒子的侧面积S是否存在最大的情况?若存在,求出x的值及最大值是多少?若不存在,说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)利用长方形的长与宽以及在铁片的四个角截去四个相同的小正方形,得出AB 与BC的长即可;(2)利用(1)中长与宽以及盒子的底面积为300cm2时得出x的值,即可的求出盒子的容积;(3)利用盒子侧面积为:S=2x(50﹣2x)+2x(30﹣2x)进而利用配方法求出最值即可.【解答】解:(1)∵用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,在铁片的四个角截去四个相同的小正方形,设小正方形的边长为xcm,∴底面的长AB=(50﹣2x)cm,宽BC=(30﹣2x)cm,故答案为:50﹣2x,30﹣2x;(2)依题意,得:(50﹣2x)(30﹣2x)=300整理,得:x2﹣40x+300=0解得:x1=10,x2=30(不符合题意,舍去)当x1=10时,盒子容积=(50﹣20)(30﹣20)×10=3000(cm3);(3)盒子的侧面积为:S=2x(50﹣2x)+2x(30﹣2x)=100x﹣4x2+60x﹣4x2=﹣8x2+160x=﹣8(x2﹣20x)=﹣8[(x﹣10)2﹣100]=﹣8(x﹣10)2+800∵﹣8(x﹣10)2≤0,∴﹣8(x﹣10)2+800≤800,∴当x=10时,S有最大值,最大值为800.。

【人教版】2016届九年级上册期中数学试卷及答案解析

【人教版】2016届九年级上册期中数学试卷及答案解析

九年级(上)期中数学试卷一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣22.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=193.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=05.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<16.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.167.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=28.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.29.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.810.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为.13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC=.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是.(只填写正确结论的序号)三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.九年级(上)期中数学试卷参考答案与试题解析一、选择题(每一道小题都给出代号为A、B、C、D的四个选项,其中有且只有一个选项符合题目要求,把符合题目要求的选项的代号直接填在答题框内相应题号下的方框中,不填、填错成一个方框内填写的代号超过一个,一律得0分;共10小题,每小题3分,共30分)1.已知关于x的一元二次方程x2+x+m2﹣4=0的一个根是0,则m的值是()A.0 B.1 C.2 D.2或﹣2【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程程x2+x+m2﹣4=0得到m2﹣4=0,解得:m=±2,故选D.【点评】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念.2.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A.(x+4)2=13 B.(x﹣4)2=19 C.(x﹣4)2=13 D.(x+4)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不一定成立的是()A.CM=DM B.OM=MB C.BC=BD D.∠ACD=∠ADC【考点】垂径定理.【分析】先根据垂径定理得CM=DM,,,得出BC=BD,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,,,∴BC=BD,∠ACD=∠ADC.故选:B.【点评】本题考查了垂径定理,圆心角、弧、弦之间的关系定理,圆周角定理;熟练掌握垂径定理,由垂径定理得出相等的弧是解决问题的关键.4.下列一元二次方程有实数根的是()A.x2﹣2x﹣2=0 B.x2+2x+2=0 C.x2﹣2x+2=0 D.x2+2=0【考点】根的判别式.【分析】根据一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根判断即可.【解答】解:A、∵△=(﹣2)2﹣4×1×(﹣2)>0,∴原方程有两个不相等实数根;B、∵△=22﹣4×1×2<0,∴原方程无实数根;C、∵△=(﹣2)2﹣4×1×2<0,∴原方程无实数根;D、∵△=﹣4×1×2<0,∴原方程无实数根;故选A.【点评】此题考查了根的判别式与方程解的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.5.已知关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围为()A.k>1 B.k>﹣1且k≠0 C.k>1且k≠2 D.k<1【考点】根的判别式;一元二次方程的定义.【分析】根据关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,∴△=4+4(k﹣2)>0,解得k>﹣1,∵k﹣2≠0,∴k≠2,∴k的取值范围k>﹣1且k≠2,故选C.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.观察如下图形,它们是按一定规律排列的,依照次规律,第n的图形中共有210个小棋子,则n等于()A.20 B.21 C.15 D.16【考点】规律型:图形的变化类.【分析】由题意可知:排列组成的图形都是三角形,第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…由此得出第n个图形共有1+2+3+4+…+n=n(n+1),由此联立方程求得n的数值即可.【解答】解:∵第一个图形中有1个小棋子,第二个图形中有1+2=3个小棋子,第三个图形中有1+2+3=6个小棋子,…∴第n个图形共有1+2+3+4+…+n=n(n+1),∴n(n+1)=210,解得:n=20.故选:A.【点评】此题考查图形的变化规律,找出图形之间的联系,得出点的排列规律,利用规律解决问题.7.若点(﹣1,4),(3,4)是抛物线y=ax2+bx+c上的两点,则此抛物线的对称轴是()A.直线x=﹣B.直线x=1 C.直线x=3 D.直线x=2【考点】二次函数图象上点的坐标特征.【分析】因为两点的纵坐标都为4,所以可判此两点是一对对称点,利用公式x=求解即可.【解答】解:∵两点的纵坐标都为4,∴此两点是一对对称点,∴对称轴x===1.故选B.【点评】本题考查了如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式或用公式x=求解.8.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内上一点,∠BMO=120°,则⊙O的半径为()A.4 B.5 C.6 D.2【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【分析】连接OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO 的度数,证明△AOC是等边三角形,即可得出结果.【解答】解:连接OC,如图所示:∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BCO=120°,∠BAO=60°,∵AC=OC,∠BAO=60°,∴△AOC是等边三角形,∴⊙C的半径=OA=4.故选:A.【点评】本题考查了圆周角定理、圆内接四边形的性质、等边三角形的判定与性质;熟练掌握圆内接四边形的性质,证明三角形是等边三角形是解决问题的关键.9.如图,AB为⊙O直径,C为⊙O上一点,∠ACB的平方线交⊙O于点D,若AB=10,AC=6,则CD的长为()A.7 B.7C.8 D.8【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD 平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD.【解答】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD,∴DF=DG,弧AD=弧BD,∴DA=DB.在Rt△AFD和Rt△BGD中,,∴△AFD≌△BGD(HL),∴AF=BG.在△CDF和△CDG中,,∴△CDF≌△CDG(AAS),∴CF=CG.∵AC=6,AB=10,∴BC==8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7.故选B.【点评】本题主要考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.关键是正确作出辅助线.10.已知二次函数y=ax2+bx+c的图象如图所示,则a的取值范围为()A.﹣1<a<0 B.﹣1<a<C.0<a<D.<a<【考点】二次函数图象与系数的关系.【分析】根据开口判断a的符号,根据y轴的交点判断c的符号,根据对称轴b用a表示出的代数式,进而根据当x=2时,得出4a+2b+c=0,用a表示c>﹣1得出答案即可.【解答】解:抛物线开口向上,a>0图象过点(2,4),4a+2b+c=4则c=4﹣4a﹣2b,对称轴x=﹣=﹣1,b=2a,图象与y轴的交点﹣1<c<0,因此﹣1<4﹣4a﹣4a<0,实数a的取值范围是<a<.故选:D.【点评】此题考查二次函数图象与系数的关系,对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.抛物线y=﹣(x+3)2+1的顶点坐标是(﹣3,1).【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线y=﹣(x+3)2+1,∴顶点坐标是(﹣3,1).故答案为:(﹣3,1).【点评】此题考查二次函数的性质,掌握顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h,是解决问题的关键.12.已知ab≠0,且a2﹣3ab﹣4b2=0,则的值为﹣1或4.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把a2﹣3ab﹣4b2=0看作关于a的一元二次方程,利用因式分解法解得a=4b或a=﹣b,然后利用分式的性质计算的值.【解答】解:(a﹣4b)(a+b)=0,a﹣4b=0或a+b=0,所以a=4b或a=﹣b,当a=4b时,=4;当a=﹣b时,=﹣1,所以的值为﹣1或4.故答案为﹣1或4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.已知关于x的方程a(x+m)2+c=0(a,m,c均为常数,a≠0)的根是x1=﹣3,x2=2,则方程a(x+m﹣1)2+c=0的根是x1=﹣2,x2=3.【考点】解一元二次方程-直接开平方法.【分析】把后面一个方程中的x﹣1看作整体,相当于前面一个方程中的x,从而可得x﹣1=﹣3或x﹣1=2,再求解即可.【解答】解:∵关于x的方程a(x+m)2+c=0的解是x1=﹣3,x2=2(a,m,c均为常数,a≠0),∴方程a(x+m﹣1)2+c=0变形为a[(x﹣1)+m]2+c=0,即此方程中x﹣1=﹣3或x﹣1=2,解得x=﹣2或x=3.故方程a(x+m﹣1)2+c=0的解为x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.【点评】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.14.如图,AB,AC是⊙O,D是CA延长线上的一点,AD=AB,∠BDC=25°,则∠BOC= 100°.【考点】圆周角定理.【分析】由AD=AB,∠BDC=25°,可求得∠ABD的度数,然后由三角形外角的性质,求得∠BAC的度数,又由圆周角定理,求得答案.【解答】解:∵AD=AB,∠BDC=25°,∴∠ABD=∠BDC=25°,∴∠BAC=∠ABD+∠BDC=50°,∴∠BOC=2∠BAC=100°.故答案为:100°.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.已知△ABC的三个顶点都在⊙O上,AB=AC,⊙O的半径等于10cm,圆心O到BC的距离为6cm,则AB的长等于8或4.【考点】垂径定理;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】此题分情况考虑:当三角形的外心在三角形的内部时,根据勾股定理求得BD的长,再根据勾股定理求得AB的长;当三角形的外心在三角形的外部时,根据勾股定理求得BD 的长,再根据勾股定理求得AB的长.【解答】解:如图1,当△ABC是锐角三角形时,连接AO并延长到BC于点D,∵AB=AC,O为外心,∴AD⊥BC,在Rt△BOD中,∵OB=10,OD=6,∴BD===8.在Rt△ABD中,根据勾股定理,得AB===8(cm);如图2,当△ABC是钝角或直角三角形时,连接AO交BC于点D,在Rt△BOD中,∵OB=10,OD=6,∴BD===8,∴AD=10﹣6=4,在Rt△ABD中,根据勾股定理,得AB===4(cm).故答案为:8或4.【点评】本题考查的是垂径定理,在解答此题时要注意进行分类讨论,不要漏解.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,图象与x轴交于A(x1,0)B(x2,0)两点,点M(x0,y0)是图象上另一点,且x0>1.现有以下结论:①abc>0;②b<2a;③a+b+c>0;④a(x0﹣x1)(x0﹣x2)<0.其中正确的结论是①、④.(只填写正确结论的序号)【考点】二次函数图象与系数的关系.【专题】推理填空题;数形结合.【分析】由抛物线的开口方向可确定a的符号,由抛物线的对称轴相对于y轴的位置可得a 与b之间的符号关系,由抛物线与y轴的交点位置可确定c的符号;根据抛物线的对称轴与x=﹣1的大小关系可推出2a﹣b的符号;由于x=1时y=a+b+c,因而结合图象,可根据x=1时y的符号来确定a+b+c的符号,根据a、x0﹣x1、x0﹣x2的符号可确定a(x0﹣x1)(x0﹣x2)的符号.【解答】解:由抛物线的开口向下可得a<0,由抛物线的对称轴在y轴的左边可得x=﹣<0,则a与b同号,因而b<0,由抛物线与y轴的交点在y轴的正半轴上可得c>0,∴abc>0,故①正确;由抛物线的对称轴x=﹣>﹣1(a<0),可得﹣b<﹣2a,即b>2a,故②错误;由图可知当x=1时y<0,即a+b+c<0,故③错误;∵a<0,x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0,故④正确.综上所述:①、④正确.故答案为①、④.【点评】本题主要考查二次函数图象与系数的关系,其中a决定于抛物线的开口方向,b决定于抛物线的开口方向及抛物线的对称轴相对于y轴的位置,c决定于抛物线与y轴的交点位置,2a与b的大小决定于a的符号及﹣与﹣1的大小关系,运用数形结合的思想准确获取相关信息是解决本题的关键.三、解答题(本大题共9小题,共72分)17.解方程:(1)x2+2x﹣15=0(2)3x(x﹣2)=(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先把方程变形得到3x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.【解答】解:(1)(x+5)(x﹣3)=0,x+5=0或x﹣3=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)3x(x﹣2)+(x﹣2)=0,(x﹣2)(3x+)=0,x﹣2=0或3x+=0,所以x1=2,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.已知抛物线的顶点是(4,2),且在x轴上截得的线段长为8,求此抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据抛物线的对称性得到抛物线与x轴的两交点坐标为(0,0),(8,0),则可设交点式y=ax(x﹣8),然后把顶点坐标代入求出a即可.【解答】解:根据题意得抛物线的对称轴为直线x=4,而抛物线在x轴上截得的线段长为8,所以抛物线与x轴的两交点坐标为(0,0),(8,0),设抛物线解析式为y=ax(x﹣8),把(4,2)代入得a•4•(﹣4)=2,解得a=﹣,所以抛物线解析式为y=﹣x(x﹣8),即y=﹣x2+x.【点评】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.本题的关键是利用对称性确定抛物线与x轴的交点坐标.19.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,求m2+n2的值.【考点】根的判别式;一元二次方程的解.【专题】新定义.【分析】根据x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,列出方程组,求出m,n 的值,再代入计算即可.【解答】解:根据题意得:解得:,则m2+n2=(﹣2)2+12=5.【点评】本题考查了一元二次方程的解,根的判别式,关键是根据已知条件列出方程组,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.为响应党中央提出的“足球进校园”号召,我市在今年秋季确定了3所学校为我市秋季确定3所学校诶我市足球基地实验学校,并在全市开展了中小学足球比赛,比赛采用单循环制,即组内每两队之间进行一场比赛,若初中组共进行45场比赛,问初中共有多少个队参加比赛?【考点】一元二次方程的应用.【分析】赛制为单循环形式(每两队之间都赛一场),每个小组x个球队比赛总场数=x(x﹣1),由此可得出方程.【解答】解:设初中组共有x个队参加比赛,依题意列方程x(x﹣1)=45,解得:x1=10,x2=﹣19(不合题意,舍去),答:初中组共有10个队参加比赛.【点评】此题考查一元二次方程的实际运用,解决本题的关键是读懂题意,得到总场数与球队之间的关系.21.如图,在⊙O中,=,∠ACB=60°.(1)求证:∠AOB=∠BOC=∠AOC;(2)若D是的中点,求证:四边形OADB是菱形.【考点】圆心角、弧、弦的关系;菱形的判定;圆周角定理.【专题】证明题.【分析】(1)根据圆心角、弧、弦的关系,由=得AB=AC,加上∠ACB=60°,则可判断△ABC是等边三角形,所以AB=BC=CA,于是根据圆心角、弧、弦的关系即可得到∠AOB=∠BOC=∠AOC;(2)连接OD,如图,由D是的中点得=,则根据圆周角定理得∠AOD=∠BOD=∠ACB=60°,易得△OAD和△OBD都是等边三角形,则OA=AD=OD,OB=BD=OD,所以OA=AD=DB=BO,于是可判断四边形OADB是菱形.【解答】证明:(1)∵=,∴AB=AC,∵∠ACB=60°,∴△ABC是等边三角形,∴AB=BC=CA,∴∠AOB=∠BOC=∠AOC;(2)连接OD,如图,∵D是的中点,∴=,∴∠AOD=∠BOD=∠ACB=60°,又∵OD=OA,OD=OB,∴△OAD和△OBD都是等边三角形,∴OA=AD=OD,OB=BD=OD,∴OA=AD=DB=BO,∴四边形OADB是菱形.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了菱形的判定、等边三角形的判定与性质和圆周角定理.22.已知关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,且BC=8,当△ABC为等腰三角形时,求m的值.【考点】根的判别式;根与系数的关系;等腰三角形的性质.【分析】(1)先根据题意求出△的值,再根据一元二次方程根的情况与判别式△的关系即可得出答案;(2)根据△ABC的两边AB、AC的长是这个方程的两个实数根,设AB=x1=8,得出82﹣8(2m+1)+m(m+1)=0,求出m的值即可.【解答】解:(1)∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,∴不论m为何值,方程总有两个不相等的实数根.(2)由于无论m为何值,方程恒有两个不等实根,故若要△ABC为等腰三角形,那么必有一个解为8;设AB=x1=8,则有:82﹣8(2m+1)+m(m+1)=0,即:m2﹣15m+56=0,解得:m1=7,m2=8.则当△ABC为等腰三角形时,m的值为7或8.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.如图,O为正方形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E.(1)求证:CD是⊙O的切线;(2)若正方形ABCD的边长为10,求⊙O的半径.【考点】切线的判定;正方形的性质.【分析】(1)首先连接OE,并过点O作OF⊥CD,由OA长为半径的⊙O与BC相切于点E,可得OE=OA,OE⊥BC,然后由AC为正方形ABCD的对角线,根据角平分线的性质,可证得OF=OE=OA,即可判定CD是⊙O的切线;(2)由正方形ABCD的边长为10,可求得其对角线的长,然后由设OA=r,可得OE=EC=r,由勾股定理求得OC=r,则可得方程r+r=10,继而求得答案.【解答】(1)证明:连接OE,并过点O作OF⊥CD.∵BC切⊙O于点E,∴OE⊥BC,OE=OA,又∵AC为正方形ABCD的对角线,∴∠ACB=∠ACD,∴OF=OE=OA,即:CD是⊙O的切线.(2)解:∵正方形ABCD的边长为10,∴AB=BC=10,∠B=90°,∠ACB=45°,∴AC==10,∵OE⊥BC,∴OE=EC,设OA=r,则OE=EC=r,∴OC==r,∵OA+OC=AC,∴r+r=10,解得:r=20﹣10.∴⊙O的半径为:20﹣10.【点评】此题考查了切线的判定、正方形的性质、角平分线的性质以及勾股定理.注意准确作出辅助线是解此题的关键.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【考点】二次函数的应用.【专题】综合题.【分析】(1)根据题意可知y与x的函数关系式.(2)根据题意可知y=﹣10﹣(x﹣5.5)2+2402.5,当x=5.5时y有最大值.(3)设y=2200,解得x的值.然后分情况讨论解.【解答】解:(1)由题意得:y=(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);(2)由(1)中的y与x的解析式配方得:y=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,是一道综合题.25.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题.。

河南省上蔡县第一初级中学九年级上学期期中考试数学试

河南省上蔡县第一初级中学九年级上学期期中考试数学试

一、选择题(8×3=24)1、下列式子中,属于最简二次根式的是( )A 、B 、C 、D 、2有意义,则X 取值范围是( ) A 、 B 、 D 、3、如图示点E 是平行四边形ABCD 的边BC 延长线上一点,AE 与CD 相交于点G 则图中相似三角形共有( )对A 、2对B 、3对C 、4对D 、5对4、不解方程判断下列方程①x 2-2x -1=0②x 2-3x=-7③2x 2+4x-11=0 ④ 有两个不相等实数的是( )A 、①②B 、①③C 、①②③D 、①②④5、如图示AC 是电杆AB 的一根拉线测得BC=6米,∠ACB=520,则拉线AC 的长( )A 、B 、C 、6 cos520米D 、6、两个相似多边形面积比为9:16,其中较小多边形周长为36cm ,则较大多边形周长为( )A 、48cmB 、54cmC 、56cmD 、64cm7、在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3)若以原点0为位似中心画△ABC 相似图形△A ′B ′C ′使△ABC 与△A ′B ′C 相似比为 ,则A ′的坐标( )A 、(﹣4、﹣6)B 、(4、6)C 、(6、4)或(﹣2﹑-6)D 、(﹣4、﹣6)或(4、6)8、如图在Rt △ABC 中,∠ACB=900、∠ABC=600、BC=2、D 为BC2102x +=A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6)连接DE 、若△BDE 直角三角形时t 的值为( )A 、2B 、2.5或3.5C 、3.5或4.5D 、2或3.5或4.5二、填空题(7×3=21分)9、已知x=﹣1于x 的方程2x 2+ax-a 2=0一个根则a=10、已知11、计算12、若m 、n 的方程x 2+2006x-1=0两个实数根,则代数式m 2n+mn 2-mn 的值为13、如右图所示DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,且MN=8则BC=14、某旅游景点三月份共接待游客25万人次,五月份共接待游客634万人次,每月的平均增长率为x ;则x=15、如图在正方形ABCD 中,E 为BC 中点,F 是CD 上一点且下列结论①∠BAE=300②ABE ∽△AEF ③AE ⊥EF④△ADF ∽△ECF 其中正确个数为( )A 、1B 、2C 、3D 、4三、解答题(共75分)16、课堂上,李老师出了一道这样的题已知求代数式22213(1)11x x x x x -+-÷+-+的值,小明觉得直接代入计算太繁,请你帮他解决,并写出具体过程(8分)17、①2x 2-6x+1=0(用配方法解方程)(5分)01012)()4cos30|3-++-=18、现定义一种运算,对于任意实数a、b都有a*b=a2-3a+b,如3*5=32-3×3+5若(x-1)*2=6,求x的值(6分)20、已知△ABC中,AB=AC(1)设△ABC周长为7、BC=y、AB=x(2≤X≤3)写出y与x的函数关系式,并在坐标系中画出该函数图象。

【人教版】2016届九年级上期中数学试卷及答案解析

【人教版】2016届九年级上期中数学试卷及答案解析

九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。

人教版 2016届九年级上册初三数学期中试卷(含答案解析)

人教版 2016届九年级上册初三数学期中试卷(含答案解析)

2016-2017学年九年级(上)期中数学试卷一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将一元二次方程x2+3=x化为一般形式后,二次项系数和一次项系数分别为()A.0、3 B.0、1 C.1、3 D.1、﹣13.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1) B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.关于x的一元二次方程9x2﹣6x+k=0有两个实根,则k的范围是()A.k≤1 B.k≥1 C.k<1 D.k>15.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x﹣1)2﹣3 C.y=2(x+1)2﹣3 D.y=2(x﹣1)2+36.若x1,x2是一元二次方程x2﹣3x﹣2=0的两个根,则x1x2的值是()A.3 B.﹣2 C.﹣3 D.27.下列命题中:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直于弦,并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④长度相等的弧是等弧.真命题有()个.A.1 B.2 C.3 D.48.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1﹣x)2=980 B.1500(1+x)2=980 C.980(1﹣x)2=1500 D.980(1+x)2=15009.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A .29°B .31°C .59°D .62°10.已知二次函数y=x 2﹣4x+m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2﹣4x+m=0的两个实数根是( )A .x 1=1,x 2=﹣1B .x 1=﹣1,x 2=2C .x 1=﹣1,x 2=0D .x 1=1,x 2=311.如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为P .若PA=2,PB=8,则CD 的长为( )A .2B .4C .8D .12.已知点(﹣3,y 3),(﹣2,y 1),(﹣1,y 2)在函数y=x 2+1的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 3>y 2>y 1D .y 2>y 1>y 313.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则的长为( )A .πB .6πC .3πD .1.5π14.如图,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( )A .B .C .D .15.已知一次函数y=﹣kx+k 的图象如图所示,则二次函数y=﹣kx 2﹣2x+k 的图象大致是( )A .B .C .D .二、解答题:(本大题满分75分,共9小题)16.解方程:x (2x ﹣5)=4x ﹣10.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (﹣1,1),C (﹣1,3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标;19.已知关于x 的一元二次方程x 2﹣6x+k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2为该方程的两个实数根且满足x 12x 22﹣x 1﹣x 2=115,求k 的值.20.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,垂足为E .(1)求证:BC=BD ;(2)若BC=15,AD=20,求AB和CD的长.21.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?22.某工厂从1月份起,每月生产收入是22万元,但在生产过程中会引起环境污染;若再按现状生产,将会受到环保部门的处罚,每月罚款2万元;如果投资111万元治理污染,治污系统可在1月份启用,这样,该厂不但不受处罚,还可降低生产成本,使1至3月的生产收入以相同的百分率递增,经测算,投资治污后,1月份生产收入为25万元,1至3月份的生产累计可达91万元;3月份以后,每月生产收入稳定在3月份的水平.(1)求出投资治污后2、3月份生产收入增长的百分率(参考数据:3.62=1.912,11.56=3.402)(2)如果把利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款,试问:治理污染多少个月后,所投资金开始见效?(即治污后所获利润不小于不治污情况下所获利润).23.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,则△AEF是三角形,MD、MN的数量关系是.(2)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.(3)将图1中正方形ABCD及直角三角板ECF同时绕点C顺时针旋转90°,如图3,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.24.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)点M是抛物线上一动点,且在第三象限;①当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;②在抛物线的对称轴上是否存在一点P,使△AMP是以AM为底的等腰直角三角形,若存在,请求出点P和点M的坐标;若不存在,请说明理由.九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.将一元二次方程x2+3=x化为一般形式后,二次项系数和一次项系数分别为()A.0、3 B.0、1 C.1、3 D.1、﹣1【考点】一元二次方程的一般形式.【分析】首先移项进而得出二次项系数和一次项系数即可.【解答】解:∵x2+3=x,∴x2﹣x+3=0,∴二次项系数和一次项系数分别为:1,﹣1.故选:D.【点评】此题主要考查了一元二次方程的一般形式,正确移项得出是解题关键.3.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1) B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)【考点】二次函数的性质.【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.【点评】考查顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.要掌握顶点式的性质.4.关于x的一元二次方程9x2﹣6x+k=0有两个实根,则k的范围是()A.k≤1 B.k≥1 C.k<1 D.k>1【考点】根的判别式.【分析】根据方程有实数根,得到根的判别式的值大于等于0,列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=36﹣36k≥0,解得:k≤1.故选A.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x﹣1)2﹣3 C.y=2(x+1)2﹣3 D.y=2(x﹣1)2+3【考点】二次函数图象与几何变换.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x ﹣h )2+k ,代入得:y=2(x+1)2+3. 故选A .【点评】解决本题的关键是得到新抛物线的顶点坐标.6.若x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两个根,则x 1x 2的值是( )A .3B .﹣2C .﹣3D .2【考点】根与系数的关系.【专题】计算题.【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x 1x 2=﹣2.故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=,x 1x 2=.7.下列命题中:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直于弦,并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④长度相等的弧是等弧.真命题有( )个.A .1B .2C .3D .4 【考点】命题与定理.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:∵圆既是轴对称图形又是中心对称图形,∴选项①正确;∵所平分的弦是直径时不满足,∴选项②不正确;∵在同圆或等圆中,相等的圆心角所对的弧相等,∴选项③不正确;∵能完全重合的弧是等弧,∴选项④不正确.综上,可得正确的命题有1个:①.故选:A.【点评】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1﹣x)2=980 B.1500(1+x)2=980 C.980(1﹣x)2=1500 D.980(1+x)2=1500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设平均每次降价的百分率为x,根据题意可得,原价×(1﹣降价百分率)2=现价,据此列方程即可.【解答】解:设平均每次降价的百分率为x,由题意得,1500(1﹣x)2=980.故选A.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29° B.31° C.59° D.62°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,求得∠ADB=90°,继而求得∠A的度数,然后由圆周角定理,求得∠C的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选B.【点评】此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.此题难度不大,注意掌握数形结合思想的应用.10.已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=3【考点】抛物线与x轴的交点.【分析】根据抛物线与x轴交点的性质和根与系数的关系进行解答.【解答】解:∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得 t=3.即方程的另一根为3.故选:D.【点评】本题考查了抛物线与x轴的交点.注意二次函数解析式与一元二次方程间的转化关系.11.如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为()A .2B .4C .8D .【考点】垂径定理;勾股定理.【分析】连接OC ,根据PA=2,PB=8可得CO=5,OP=5﹣2=3,再根据垂径定理可得CD=2CP=8.【解答】解:连接OC ,∵PA=2,PB=8,∴AB=10,∴CO=5,OP=5﹣2=3,在Rt △POC 中:CP==4,∵直径AB 垂直于弦CD ,∴CD=2CP=8,故选:C .【点评】此题主要考查了勾股定理和垂径定理,关键是掌握平分弦的直径平分这条弦,并且平分弦所对的两条弧.12.已知点(﹣3,y 3),(﹣2,y 1),(﹣1,y 2)在函数y=x 2+1的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 3>y 2>y 1D .y 2>y 1>y 3【考点】二次函数图象上点的坐标特征.【分析】将三个点的坐标分别代入函数关系式,求出y 1,y 2,y 3的值,从而得解.【解答】解:y 1=(﹣3)2+1=9+1=10,y 2=(﹣2)2+1=4+1=5,y3=(﹣1)2+1=1+1=2,所以,y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点坐标特征,此类题目,可以利用二次函数的对称性以及增减性求解,也可以求出具体的相关的函数值.13.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π【考点】旋转的性质;弧长的计算.【专题】计算题.【分析】根据弧长公式列式计算即可得解.【解答】解:的长==1.5π.故选:D.【点评】本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.14.如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A.B.C.D.【考点】垂径定理的应用;正方形的性质.【专题】计算题.【分析】如图,正方形ABCD为直径为a的⊙O的内接正方形,作OE⊥BC于E,交⊙O于F,连接OB,则OB=a,则可判断△OBE为等腰直角三角形,所以OE=OB=a,然后计算OF﹣OE即可.【解答】解:如图,正方形ABCD为直径为a的⊙O的内接正方形,作OE⊥BC于E,交⊙O于F,连接OB,则OB=a,∴△OBE为等腰直角三角形,∴OE=OB=a,∴EF=OF﹣OE=a﹣a=a.即桌布下垂的最大长度x为a.故选A.【点评】本题考查了垂径定理的应用:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.也考查了正方形的性质.15.已知一次函数y=﹣kx+k的图象如图所示,则二次函数y=﹣kx2﹣2x+k的图象大致是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数的图象和性质判断k的取值范围,确定抛物线的开口方向、对称轴和顶点坐标,得到答案.【解答】解:从一次函数图象可知,k >1,﹣k <0,抛物线开口向下,﹣>﹣1,对称轴在x=﹣1的右侧,与y 轴的交点在(0,1)的上方.故选:B .【点评】本题考查的是一次函数的图象和性质、二次函数的图象和性质,掌握性质、读懂图象从中获取正确的信息是解题的关键,解答二次函数图象问题时,要从开口方向、对称轴和顶点坐标三个方面入手.二、解答题:(本大题满分75分,共9小题)16.解方程:x (2x ﹣5)=4x ﹣10.【考点】解一元二次方程-因式分解法.【分析】由于方程左右两边都含有(2x ﹣5),可将(2x ﹣5)看作一个整体,然后移项,再分解因式求解.【解答】解:原方程可变形为:x (2x ﹣5)﹣2(2x ﹣5)=0,(2x ﹣5)(x ﹣2)=0,2x ﹣5=0或x ﹣2=0;解得x 1=,x 2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据顶点坐标设出顶点形式,把B 坐标代入求出a 的值,即可确定出解析式.【解答】解:设抛物线的解析式为y=a (x ﹣1)2﹣4,∵抛物线经过点B (3,0),∴a (3﹣1)2﹣4=0,解得:a=1,∴y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.18.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可.【解答】解:(1)点C1的坐标(﹣1,﹣3).(2)所作图形如下:.根据图形结合坐标系可得:C 2(3,1).【点评】本题考查轴对称及旋转作图的知识,属于基础题,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.19.已知关于x 的一元二次方程x 2﹣6x+k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2为该方程的两个实数根且满足x 12x 22﹣x 1﹣x 2=115,求k 的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程有两个不相等的实数根可得△=36﹣4k >0,解不等式求出k 的取值范围;(2)由根与系数的关系可得x 1+x 2=6,x 1•x 2=k ,代入x 12x 22﹣x 1﹣x 2=115得到关于k 的方程,结合k 的取值范围解方程即可.【解答】解:(1)由题意可得△=36﹣4k >0,解得k <9;(2)∵x 1,x 2为该方程的两个实数根,∴x 1+x 2=6,x 1•x 2=k ,∵x 12x 22﹣x 1﹣x 2=115,∴k 2﹣6=115,解得k=±11.∵k <9,∴k=﹣11.【点评】此题考查了一元二次方程ax 2+bx+c=0根的判别式和根与系数的关系的应用,(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根;(4)x 1+x 2=﹣;(5)x 1•x 2=.20.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,垂足为E .(1)求证:BC=BD ;(2)若BC=15,AD=20,求AB 和CD 的长.【考点】垂径定理;勾股定理.【专题】探究型.【分析】(1)直接根据垂径定理即可得出结论;(2)先根据垂径定理判断出△ABD 是直角三角形,再根据勾股定理求出AB 的长,由AB •DE=AD •BD 即可求出DE 的长,再由CD=2DE 即可得出结论.【解答】(1)证明:∵AB为⊙O的直径,AB⊥CD,∴,∴BC=BD;(2)解:∵AB为⊙O的直径,∴∠ADB=90°,∴AB===25,∵AB•DE=AD•BD,∴×25×DE=×20×15.∴DE=12.∵AB为⊙O的直径,AB⊥CD,∴CD=2DE=2×12=24.【点评】本题考查的是垂径定理及勾股定理,熟知垂直于弦的直径平分弦,并且平分弦所对的弧是解答此题的关键.21.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?【考点】二次函数的应用.【专题】函数思想.【分析】先设抛物线的解析式,再找出几个点的坐标,代入解析式后可求解.【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得.∴y=;(2)∵b=﹣1,∴拱桥顶O到CD的距离为1m,∴=5(小时).所以再持续5小时到达拱桥顶.【点评】命题立意:此题是把一个实际问题通过数学建模,转化为二次函数问题,用二次函数的性质加以解决.22.(2011•枝江市模拟)某工厂从1月份起,每月生产收入是22万元,但在生产过程中会引起环境污染;若再按现状生产,将会受到环保部门的处罚,每月罚款2万元;如果投资111万元治理污染,治污系统可在1月份启用,这样,该厂不但不受处罚,还可降低生产成本,使1至3月的生产收入以相同的百分率递增,经测算,投资治污后,1月份生产收入为25万元,1至3月份的生产累计可达91万元;3月份以后,每月生产收入稳定在3月份的水平.(1)求出投资治污后2、3月份生产收入增长的百分率(参考数据:3.62=1.912,11.56=3.402)(2)如果把利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款,试问:治理污染多少个月后,所投资金开始见效?(即治污后所获利润不小于不治污情况下所获利润).【考点】一元二次方程的应用;一元一次不等式组的应用.【专题】增长率问题.【分析】(1)设每月的增长率为x,那么2月份的生产收入为25(1+x),三月份的生产收入为25(1+x)2,根据1至3月份的生产累计可达91万元,可列方程求解.(2)设y月后开始见成效,根据利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款且治污后所获利润不小于不治污情况下所获利润可列不等式求解.【解答】解:(1)设每月的增长率为x,由题意得:25+25(1+x)+25(1+x)2=91解得,x=0.2,或x=﹣3.2(不合题意舍去)答:每月的增长率是20%.(2)三月份的收入是:25(1+20%)2=36(万元)设y月后开始见成效,由题意得:91+36(y﹣3)﹣111≥22y﹣2y解得,y≥8答:治理污染8个月后开始见成效.【点评】本题考查理解题意能力,关键是找到1至3月份的生产累计可达91万元和治污后所获利润不小于不治污情况下所获利润这个等量关系和不等量关系可列方程和不等式求解.23.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,则△AEF是等腰三角形,MD、MN的数量关系是MD=MN .(2)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.(3)将图1中正方形ABCD及直角三角板ECF同时绕点C顺时针旋转90°,如图3,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】四边形综合题;全等三角形的判定与性质;直角三角形斜边上的中线;等腰直角三角形;三角形中位线定理;正方形的性质.【分析】(1)根据正方形的性质以及等腰直角三角形的性质得出CE=CF,继而证出△ABE≌△ADF,得到AE=AF,即△AEF是等腰三角形;依据直角三角形斜边上中线的性质以及三角形的中位线的性质,可得到MN与MD的数量关系;(2)连接AE,根据正方形的性质以及等腰直角三角形的性质,得出BE=DF,继而证出△ABE≌△ADF,得到AE=AF,再依据直角三角形斜边上中线的性质,可得DM=AF,根据三角形的中位线的性质,可得MN=AE,最后得出MN与MD的数量关系;(3)先连接AE,A′F,根据等腰直角三角形的性质得出CE=CF,继而证出△ADE≌△A′D′F,得到AE=AF,再依据三角形的中位线的性质,可得DM=A′F,MN=AE,最后得出MN与MD的数量关系.【解答】解:(1)∵FC=EC,DC=BC,∴DF=BE,又∵AB=AD,∠B=∠ADF=90°,∴△ABE≌△ADF(SAS),∴AE=AF,即△AEF是等腰三角形,又∵M、N分别是AF与EF的中点,∴Rt△ADF中,DM=AF,△AEF中,MN=AE,∴DM=MN,故答案为:等腰,DM=MN;(2)MD=MN仍成立,证明:连接AE,∵四边形ABCD为正方形,∴AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∵在Rt△ADF中,点M为AF的中点,∴DM=AF,∵点M为AF的中点,点N为EF的中点,∴MN=AE,∴DM=MN;(3)MD=MN仍成立,理由如下:连接AE,A′F,∵CD=CD′,CE=CF,∴CD﹣CE=CD′﹣CF,即DE=D′F,又∵AD=A′D′,∠ADE=∠D′,∴△ADE≌△A′D′F(SAS),∴AE=A′F,又∵点D是AA′的中点,点M为AF的中点,点N为EF的中点,∴MN,MD分别为△AEF和△AA′F的中位线,∴MN=AE,DM=A′F,∴MN=DM.【点评】本题主要考查的是四边形的综合应用,解答本题需要掌握正方形的性质、等腰直角三角形的性质以及全等三角形的性质和判定,综合性较强,难度较大.解题时注意:直角三角形斜边上的中线等于斜边的一半,三角形的中位线等于第三边的一半,是得出线段相等数量关系的主要依据.24.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)点M是抛物线上一动点,且在第三象限;①当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;②在抛物线的对称轴上是否存在一点P,使△AMP是以AM为底的等腰直角三角形,若存在,请求出点P和点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将C(0,﹣3)代入抛物线的解析式求得k的值,从而得到抛物线的解析式;(2)连结AC,过点M作MD⊥AC,交AD于点D.先求得点A、B的坐标,然后再求得直线AC的解析式,设M(x,x2+2x﹣3),则D(x,﹣x﹣3),则MD=﹣x2﹣3x,然后依据四边形AMCB的面积=△ABC面积+△AMC面积列出S与x的函数关系式,然后依据配方法求得二次函数的最大值,从而可求得点M的坐标;(3)先求得抛物线的对称轴方程为x=﹣1,然后过点M 作MD ⊥直线x=﹣1,垂足为D ,设直线x=﹣1与x 轴交于点E ,先证明△APE ≌△PMD ,从而得到EP=MD ,AE=PD .设点P (﹣1,a ),点M (a ﹣1,a ﹣2).将点M 的坐标代入抛物线的解析式可求得a 的值,从而得到点M 与点P 的坐标.【解答】解:(1)∵y=(x+1)2+k 与y 轴交于点C (0,﹣3)﹣3=1+k ,得,k=﹣4∴抛物线解析式为y=(x+1)2﹣4,即y=x 2+2x ﹣3.(2)如图1所示:连结AC ,过点M 作MD ⊥AC ,交AD 于点D .令y=0得:x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1,∴A (﹣3,0)、B (1,0).设直线AC 的解析式为y=kx+b .∵将A (﹣3,0)、C (0,﹣3)代入得:,解得k=﹣1,b=﹣3. ∴直线AC 解析式为y=﹣x ﹣3.设M (x ,x 2+2x ﹣3),则D (x ,﹣x ﹣3),则MD=﹣x 2﹣3x .∵四边形AMCB 的面积=△ABC 面积+△AMC 面积,∴四边形AMCB 的面积=MD •AO+AB •OC=×(﹣x 2﹣3x )×3+×4×3=﹣x 2﹣x+6=﹣(x+)2+.∴当x=﹣时,S 最大值为,点M 的坐标为(﹣,﹣). (3)存在,理由如下.∵x=﹣=﹣1,∴抛物线的对称轴为x=﹣1.如图2所示:过点M作MD⊥直线x=﹣1,垂足为D,设直线x=﹣1与x轴交于点E∵△APM为等腰直角三角形,∴AP=PM,∠APE+∠MPD=90°.∵∠MPD+∠PMD=90°,∴∠PMD=∠APE.在△APE和△PMD中,∴△APE≌△PMD.∴EP=MD,AE=PD.设点P(﹣1,a),点M(a﹣1,a﹣2).将M点代入y=x2+2x﹣3中,得(a﹣1)2+2(a﹣1)﹣3=a﹣2,整理得:a2﹣a﹣2=0,解得a=2或a=﹣1,∵点P在x轴的下方,∴a=﹣1.∴P(﹣1,﹣1)、M(﹣2,﹣3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、全等三角形的性质和判断、求二次函数的最大值,列出S与x的函数关系式是解答问题(2)的关键,用含a的式子表示点M的坐标是解答问题(3)的关键.。

河南省2016届九年级上期中数学试卷含答案解析

河南省2016届九年级上期中数学试卷含答案解析
河南省 2016 届九年级上学期期中数学试卷
一、选择题(每小题 3 分,共 24 分) 1.下列计算正确的是( )
A.
=0 B.
C.
=﹣ 2 D.4+ =2
2.关于 x 的一元二次方程(m﹣ 1)x2+5x+m2﹣ 3m+2=0 的常数项为 0,则 m 等于( ) A.1 B.2 C.1 或 2 D.0
A. B. C. D. 5.下列四个三角形中,与图中的三角形相似的是( )
A.
B.
C.
D.
6.如图,在正△ABC 中,D、E 分别在 AC、AB 上,且 ,AE=BE,则有( )
A.△AED∽△ABC B.ADB∽△BEDC.△BCD∽△ABCD.△AED∽△CBD
3.某养殖户的养殖成本逐年增长,已知第 1 年的养殖成本为 13 万元,第 3 年的养殖成本为 20 万 元.设每年平均增长的百分率为 x,则下面所列方程中正确的是( ) A.13(1﹣ x)2=20 B.20(1﹣ x)2=13 C.20(1+x)2=13 D.13(1+x)2=20
4.如图,一个正六边形转盘被分成 6 个全等三角形,任意转动这个转盘 1 次,当转盘停止时,指 针指向阴影区域的概率是( )

【人教版】2016届九年级上期中数学试卷及解析

【人教版】2016届九年级上期中数学试卷及解析

九年级(上)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C. D.2.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+2的值等于()A.4 B.1 C.0 D.﹣13.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(﹣3,﹣2)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位5.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a ﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的是()A.①②B.②③C.③④D.①④二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x2﹣3x=0的根是.8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是.10.二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是.11.方程x2﹣2x﹣k=0的一个实数根为3,则另一个根为.12.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.13.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是.14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.三、(本大题共4小题,每小题6分,共24分)15.解方程:x(2x+3)=4x+6.16.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.17.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.18.已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.20.已知等腰△ABC的一边长a=3,另两边长b、c恰好是关于x的方程x2﹣(k+2)x+2k=0的两个根,求△ABC的周长.21.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB 上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.22.在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.五、(本大题共10分)23.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?六、(本大题共12分)24.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C (3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.【点评】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+2的值等于()A.4 B.1 C.0 D.﹣1【考点】一元二次方程的解.【分析】把x=m代入方程x2﹣x﹣2=0求出m2﹣m=2,代入求出即可.【解答】解:把x=m代入方程x2﹣x﹣2=0得:m2﹣m﹣2=0,m2﹣m=2,所以m2﹣m+2=2+2=4.故选A.【点评】本题考查了一元二次方程的解,求代数式的值的应用,能求出m2﹣m=2是解此题的关键.3.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(﹣3,﹣2)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,﹣3).∴点P关于原点的对称点P2的坐标是(﹣2,3).故选D.【点评】考查了平面内两个点关于坐标轴对称和原点对称的坐标关系.4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题;压轴题.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键.6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a ﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的是()A.①②B.②③C.③④D.①④【考点】二次函数图象与系数的关系.【专题】计算题.【分析】由二次函数图象与x轴有两个交点,得到根的判别式大于0,可得出选项①正确;由二次函数的对称轴为直线x=1,利用对称轴公式列出关系式,化简后得到2a+b=0(i),选项②错误;由﹣2对应的函数值为负数,故将x=﹣2代入抛物线解析式,得到4a﹣2b+c小于0,选项③错误;由﹣1对应的函数值等于0,将x=﹣1代入抛物线解析式,得到a﹣b+c=0(ii),联立(i)(ii),用a表示出b及c,可得出a:b:c的比值为﹣1:2:3,选项④正确,即可得到正确的选项.【解答】解:由二次函数图象与x轴有两个交点,∴b2﹣4ac>0,选项①正确;又对称轴为直线x=1,即﹣=1,可得2a+b=0(i),选项②错误;∵﹣2对应的函数值为负数,∴当x=﹣2时,y=4a﹣2b+c<0,选项③错误;∵﹣1对应的函数值为0,∴当x=﹣1时,y=a﹣b+c=0(ii),联立(i)(ii)可得:b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,选项④正确,则正确的选项有:①④.故选D【点评】此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符合由抛物线的开口方向决定;c的符合由抛物线与y轴交点的位置确定;b的符合由对称轴的位置与a的符合决定;抛物线与x轴的交点个数决定了根的判别式的符合,此外还有注意二次函数图象上的一些特殊点,比如1,﹣1或2对应函数值的正负.二、填空题(本大题共8小题,每小题3分,共24分)7.一元二次方程x2﹣3x=0的根是x1=0,x2=3.【考点】解一元二次方程-因式分解法.【专题】方程思想;因式分解.【分析】首先利用提取公因式法分解因式,由此即可求出方程的解.【解答】解:x2﹣3x=0,x(x﹣3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.【点评】此题主要考查了因式分解法解一元二次方程,解题的关键会进行因式分解.8.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.9.我们在教材中已经学习了:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.在以上五种几何图形中,既是轴对称图形,又是中心对称图形的是②⑤.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【解答】解:①等边三角形,是轴对称图形,不是中心对称图形,故选项错误;②矩形,既是轴对称图形,又是中心对称图形,故选项正确;③平行四边形,不是轴对称图形,是中心对称图形,故选项错误;④等腰三角形,是轴对称图形,不是中心对称图形,故选项错误;⑤菱形,既是轴对称图形,又是中心对称图形,故选项正确;故答案为:②⑤.【点评】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.10.二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是﹣2≤x≤1.【考点】二次函数与不等式(组).【分析】求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置,可求范围.【解答】解:依题意得求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置可以得到此时x的取值范围是﹣2≤x≤1.故填空答案:﹣2≤x≤1.【点评】解答此题的关键是把解不等式的问题转化为比较函数值大小的问题,然后结合两个函数图象的交点坐标解答,本题锻炼了学生数形结合的思想方法.11.方程x2﹣2x﹣k=0的一个实数根为3,则另一个根为﹣1.【考点】一元二次方程的解.【分析】根据题意把3代入原方程求得k的值,然后把k的值代入原方程,从而解得原方程的两个根,即可求解.【解答】解:∵方程x2﹣2x﹣k=0的一个实数根为3,∴把3代入方程得:9﹣6﹣k=0,∴k=3,∴把k=3代入原方程得:x2﹣2x﹣3=0,∴解得方程的两根分别为3和﹣1,故答案为:﹣1.【点评】本题主要考查了一元二次方程的解(根)的意义.解答本题的关键就是把3代入原方程求得k的值,然后再解得原方程的两个根.本题属于基础题比较简单.12.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是x≤1.【考点】二次函数的性质.【分析】根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.【解答】解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y随x的增大而减小;即:当x≤1时,y随x的增大而减小,故答案为:x≤1.【点评】本题考查了二次函数图象的性质.解答该题时,须熟知二次函数的系数与图象的关系、二次函数的顶点式方程y=(k﹣h)x2﹣b中的h,b的意义.13.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是3或﹣5.【考点】二次函数的性质.【分析】抛物线y=ax2+bx+c的顶点纵坐标为,当抛物线的顶点在x轴上时,顶点纵坐标为0,解方程求k的值.【解答】解:根据顶点纵坐标公式,抛物线y=x2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x轴上时,∴顶点纵坐标为0,即=0,解得k=3或﹣5.故本题答案为3或﹣5.【点评】本题考查了二次函数的顶点坐标的运用.抛物线y=ax2+bx+c的顶点坐标为(﹣,).14.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为(,2).【考点】二次函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC∥x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.【解答】解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=4a,解得a=1,∴抛物线为y=x2,∵点A(﹣2,4),∴B(﹣2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=±,∴P(,2).故答案为(,2).【点评】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,根据题意求得P的纵坐标是解题的关键.三、(本大题共4小题,每小题6分,共24分)15.解方程:x(2x+3)=4x+6.【考点】解一元二次方程-因式分解法.【分析】先移项;然后提取公因式(2x+3)分解因式,利用因式分解法解方程.【解答】解:x(2x+3)﹣2(2x+3)=0,∴(2x+3)(x﹣2)=0,∴2x+3=0或x﹣2=0,∴x1=﹣,x2=2.【点评】本题考查了解一元二次方程﹣﹣因式分解法.因式分解法解一元二次方程的思想就是把未知方程化成2个因式相乘等于0的形式,如(x﹣a)(x﹣b)=0的形式,这样就可直接得出方程的解为x﹣a=0或x﹣b=0,即x=a或x=b.注意“或”的数学含义,这里x1和x2就是“或”的关系,它表两个解中任意一个成立时方程成立,同时成立时,方程也成立.16.如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC 逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是90°.【考点】作图-旋转变换.【专题】作图题.【分析】分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.【解答】解:如图所示:旋转角度是90°.故答案为:90°.【点评】此题主要考查了旋转变换,得出旋转中心的位置是解题关键.17.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.【考点】作图-旋转变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C以O为旋转中心顺时针旋转90°后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点O成中心对称的点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出B2和C2的坐标.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,B2(4,﹣1),C2(1,﹣2).【点评】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.【考点】根与系数的关系;解一元二次方程-直接开平方法;根的判别式.【专题】压轴题.【分析】(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围,再利用根与系数的关系,x12x22﹣x1﹣x2=115.即x12x22﹣(x1+x2)=115,即可得到关于k的方程,求出k的值.(2)根据(1)即可求得x1+x2与x1x2的值,而x12+x22+8=(x1+x2)2﹣2x1x2+8即可求得式子的值.【解答】解:(1)∵x1,x2是方程x2﹣6x+k=0的两个根,∴x1+x2=6,x1x2=k,∵x12x22﹣x1﹣x2=115,∴k2﹣6=115,解得k1=11,k2=﹣11,当k1=11时,△=36﹣4k=36﹣44<0,∴k1=11不合题意当k2=﹣11时,△=36﹣4k=36+44>0,∴k2=﹣11符合题意,∴k的值为﹣11;(2)∵x1+x2=6,x1x2=﹣11∴x12+x22+8=(x1+x2)2﹣2x1x2+8=36+2×11+8=66.【点评】总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)根与系数的关系是:x1+x2=,x1x2=.根据根与系数的关系把x12x22﹣x1﹣x2=115转化为关于k的方程,解得k的值是解决本题的关键.四、(本大题共4小题,每小题8分,共32分)19.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.【考点】待定系数法求二次函数解析式;三角形的面积.【分析】(1)直接把原点坐标代入y=x2+(2k﹣1)x+k+1求出k的值即可得到二次函数解析式;(2)先确定A(3,0)和抛物线的对称轴,设B(x,x2﹣3x),再根据三角形面积公式得到•3•|x2﹣3x|=6,则x2﹣3x=4或x2﹣3x=﹣4,然后分别解方程求出x即可确定满足条件的B点坐标.【解答】解:(1)把(0,0)代入得k+1=0,解得k=﹣1,所以二次函数解析式为y=x2﹣3x;(2)当y=0时,x2﹣3x=0,解得x1=0,x2=3,则A(3,0),抛物线的对称轴为直线x=,设B(x,x2﹣3x),因为△AOB的面积等于6,所以•3•|x2﹣3x|=6,当x2﹣3x=4时,解得x1=﹣1,x2=4,则B点坐标为(4,4);当x2﹣3x=﹣4时,方程无实数解.所以点B的坐标为(4,4).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.已知等腰△ABC的一边长a=3,另两边长b、c恰好是关于x的方程x2﹣(k+2)x+2k=0的两个根,求△ABC的周长.【考点】等腰三角形的性质;解一元二次方程-因式分解法.【分析】先利用因式分解法求出两根:x1=2,x2=k.先分类讨论:若a=3为底边;若a=3为腰,分别确定b,c的值,求出三角形的周长.【解答】解:x2﹣(k+2)x+2k=0(x﹣2)(x﹣k)=0,则x1=2,x2=k,当b=c,k=2,则△ABC的周长=2+2+3=7,当b=2,c=3或c=2,b=3则k=3,则△ABC的周长=2+3+3=8.故△ABC的周长是7或8.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了解等腰三角形的性质.21.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB 上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【考点】矩形的性质;二次函数的最值.【专题】动点型.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.【点评】本题考查了矩形的性质,二次函数的最值问题,根据题意表示出PB、BQ的长度是解题的关键.22.在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.【考点】旋转的性质;平行四边形的判定;菱形的判定.【专题】几何综合题.【分析】(1)根旋转的性质得AB=DF,BD=FA,由于AB=BD,所以AB=BD=DF=FA,则可根据菱形的判定方法得到四边形ABDF是菱形;(2)由于四边形ABDF是菱形,则AB∥DF,且AB=DF,再根据旋转的性质易得四边形ABCE为平行四边形,根据平行四边形的性质得AB∥CE,且AB=CE,所以CE∥FD,CE=FD,所以可判断四边形CDEF是平行四边形.【解答】(1)解:四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DFA,∴AB=DF,BD=FA,∵AB=BD,∴AB=BD=DF=FA,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF,∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA,∴四边形ABCE为平行四边形,∴AB∥CE,且AB=CE,∴CE∥FD,CE=FD,∴四边形CDEF是平行四边形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行四边形的判定和菱形的判定.五、(本大题共10分)23.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?【考点】二次函数的应用.【分析】(1)抛物线的解析式为y=ax2+c,根据E点及D点的坐标由待定系数法就可以求出结论;(2)当y=2.4时代入(1)的解析式求出x的值就求出结论;(3)将(2)求出的宽度﹣0.4m后除以2的值与2.4比较就可以求出结论.【解答】解:(1)∵OE为线段BC的中垂线,∴OC=BC.∵四边形ABCD是矩形,∴AD=BC=8m,AB=CD=2m,∴OC=4.∴D(4,2,).E(0,6).设抛物线的解析式为y=ax2+c,由题意,得,解得:,∴y=﹣x2+6;(2)由题意,得当y=4.4时,4.4=﹣x2+6,解得:x=±,∴宽度为:>2.4,∴它能通过该隧道;(3)由题意,得(﹣0.4)=﹣0.2>2.4,∴该辆货运卡车还能通过隧道.【点评】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.六、(本大题共12分)24.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C (3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质.【分析】(1)对于直线y=3x+3,分别令x与y为0求出对应y与x的值,确定出A与B坐标即可;(2)根据A,C坐标,设出抛物线解析式,将C坐标代入即可确定出解析式;(3)连接BC,与抛物线对称轴交于点P,连接AP,此时△PAB的周长最小,并求出最小值即可;(4)在抛物线的对称轴上存在点Q,使△ABQ是等腰三角形,分四种情况考虑,求出满足题意Q 坐标即可.【解答】解:(1)对于直线y=3x+3,令x=0,得到y=3;令y=0,得到x=﹣1,则A(﹣1,0),B(0,3);(2)由A(﹣1,0),C(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把B(0,3)代入得:3=﹣3a,即a=﹣1,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(3)连接BC,与抛物线对称轴交于点P,连接AP,由对称性得AP=CP,如图1所示,此时△ABP 周长最小,由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得到对称轴为直线x=1,设直线BC解析式为y=mx+n,将B(0,3),C(3,0)代入得:,解得:m=﹣1,n=3,即直线BC解析式为y=﹣x+3,联立得:,解得:,即P(1,2),根据两点间的距离公式得:AB==,BC==3,则P(1,2),周长为AB+BP+AP=AB+BP+PC=AB+BC=3+;(4)在抛物线的对称轴上存在点Q,使△ABQ是等腰三角形,如图2所示,分四种情况考虑:当AB=AQ1==时,在Rt△AQ1Q3中,AQ3=2,AQ1=,根据勾股定理得:Q1Q3==,此时Q1(1,);由对称性可得Q2(1,);当AB=BQ3时,可得OQ3=OA=1,此时Q3(1,0);当AQ4=BQ4时,Q4为线段AB垂直平分线与对称轴的交点,∵A(﹣1,0),B(0,3),∴直线AB斜率为=3,中点坐标为(﹣,),∴线段AB垂直平分线方程为y﹣=﹣(x+),令x=1,得到y=1,此时Q4(1,1),综上,Q的坐标为(1,)或(1,﹣)或(1,0)或(1,1).【点评】此题属于二次函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定二次函数解析式,待定系数法确定一次函数解析式,一次函数与坐标轴的交点,等腰三角形的性质,线段垂直平分线定理,勾股定理,以及对称的性质,熟练掌握性质及定理是解本题的关键.。

【人教版】2016届九年级上期中数学试卷及答案

【人教版】2016届九年级上期中数学试卷及答案

九年级(上)期中数学试卷一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣22.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣14.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=25.下列标志中,可以看作是轴对称图形的是()A.B.C.D.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.39.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.18.解方程:2x2﹣7x+6=0.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、()2+﹣2=0是分式方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、2x2+3x=2x2﹣2是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣1【考点】根的判别式.【专题】计算题.【分析】根据根的判别式,令△>0即可求出根的判别式.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m>0,∴4﹣4m>0,解得m<1.故选A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【考点】垂径定理;勾股定理.【分析】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.【点评】本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.9.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【专题】几何图形问题.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m<0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=﹣或1.【考点】换元法解一元二次方程.【分析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2.【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为(4,2).【考点】坐标与图形变化-旋转.【专题】几何变换.【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.16.观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【专题】规律型.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣(2015+π)0=2+3﹣2﹣3﹣1=﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:2x2﹣7x+6=0.【考点】解一元二次方程-因式分解法.【分析】利用十字相乘法因式分解得到(2x﹣3)(x﹣2)=0,推出2x﹣3=0,x﹣2=0,求出方程的解即可.【解答】解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x1=,x2=2,【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).【考点】根与系数的关系.【分析】(1)根据根与系数的关系得出α+β和αβ,再把α2+β2变形(α+β)2﹣2αβ,代入计算即可;(2)把化为,再代入计算即可.【解答】解:(1)∵方程x2+3x﹣1=0的两个实数根为α、β,∴α+β=﹣3,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=9+2=11;(2)∵α+β=﹣3,αβ=﹣1,∴===﹣11.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】根据A点坐标得到OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB 绕原点O顺时针旋转90°得到RtOA′C,根据旋转的性质得到A′C=AB=3,OC=OB=4,再写出A′点的坐标.【解答】解:AB⊥y轴于B,A′C⊥x轴于C,如图,OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB绕原点O顺时针旋转90°得到RtOA′C,则A′C=AB=3,OC=OB=4,所以点A′的坐标为(4,﹣3).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.【考点】圆心角、弧、弦的关系;圆周角定理.【分析】(1)根据∠AOD=∠BOE可知=,再由=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【解答】(1)证明:∵∠AOD=∠BOE,∴=.∵=,∴=,∴BE=CE;(2)解:∵∠B=50°,OB=OE,∴∠BOE=180°﹣50°﹣50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°﹣80°﹣80°=20°.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ 的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练掌握列一元一次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴A B2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==2【点评】本题考查了抛物线与x轴的交点,利用了根的判别式,根据根与系数的关系,利用完全平方公式得出二次函数是解题关键,又利用了二次函数的性质.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.【考点】二次函数综合题.【分析】(1)根据题意联立抛物线和直线的解析式,化为一元二次方程,运用△>0即可求出a的取值范围和交点的坐标;(2)根据轴对称性质表示出点P的坐标并代入抛物线,求出a的值,用△ACP的面积减去△ADC 的面积即可求出△PCD的面积.【解答】解:(1)由题意联立,整理得:2x2+5x﹣4a=0,由△=25+32a>0,解得:,∵a≠0,∴且a≠0,当x=0时,y=a,∴A(0,a),∵y=﹣x2﹣2x+a=﹣(x+1)2+a+1,∴M(﹣1,a+1).(2)设直线MA为:y=kx+b,代入A(0,a),M(﹣1,a+1)得,,解得:,所以直线MA为y=﹣x+a,联立,解得,所以:N(,),∵点P是N关于y轴的对称点,∴P(﹣,),代入y=﹣x2﹣2x+a,得,解得:a=,或a=0(舍去),∴抛物线为y=﹣x2﹣2x+,直线BC为y=﹣,当x=0时,y=﹣,∴C(0,﹣),A(0,),M(﹣1,),∴|AC|=,∴S△PCD=S△PAC﹣S△DAC=|AC|×|x p|﹣|AC|×|x D|=××3﹣××1=.【点评】此题主要考查二次函数的综合问题,会运用待定系数法求函数解析式,会求函数图象的交点和三角形的面积是解题的关键.。

人教版2016届九年级上期中联考数学试卷及答案

人教版2016届九年级上期中联考数学试卷及答案

2015-2016学年度第一学期期中考试九年级数学试卷及答案一、选择题(每小题3分,共30分)1.将方程化为一元二次方程10832=-x x 的一般形式,其中二次项系数,一次项系数,常数项分别是A .3,-8,-10B .3,-8, 10C . 3, 8,-10D . -3 ,-8,-10 2.用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x += B .2(2)9x += C .2(1)6x -= D .2(2)9x -= 3.在下列四个图案中,不是中心对称图形的是 AB .C .D .4.将二次函数2)1(2--=x y 的图象先向右平移1个单位,再向上平移1个单位后顶点为A .(1,3)B .(2,-1)C .(0,-1)D .(0,1) 5.如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为A.35°B.40°C.50°D.65°6.如图,已知长方形的长为10cm ,宽为4cm ,则图中阴影部分的面积为A .20cm 2B .15cm 2C .10cm 2D .25cm 27.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。

已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A. 1011)1(2=+x B. 910)1(2=+x C. 101121=+x D. 91021=+x8.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加A .1 mB .2 mC .3 mD .6 m第5题图 第6题图9.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是10.一元二次方程:M :20ax bx c ++=; N :20cx bx a ++=,其中a c ≠0,a ≠c ,以下四个结论:①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; ②如果方程M 有两根符号相同,那么方程N 的两根符号也相同;③如果m 是方程M 的一个根,那么m1是方程N 的一个根; ④如果方程M 和方程N 有一个相同的根,那么这个根必是1x =正确的个数是 A .1 B .2 C .3 D .4二、填空题(每题3分,共18分)11.若点)1,2(A 与点B 是关于原点O 的对称点,则点B 的坐标为 12.一元二次方程x 2﹣2x =0的解是13.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,则原正方形空地的边长是14.二次函数k x x y +--=322的图象在x 轴下方,则k 的取值范围是15.在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),点2015A 的坐标为 .16.如图,在△ABC 中,∠ACB=90,D 为边AB 的中点,E,F 分别为边AC ,BC 上的点,且AE=AD ,BF=BD ,若DE=22,DF=4,则AB 的长为 三、解答题( 共8道小题,共72分)17. (本题满分8分)已知关于x 的方程x 2+2x +a ﹣2=0 (1)若方程有一根为1,求a 的值;FEDC BA第16题图第13题图P Q OOO OO yy y y yx x x x xA .B .C .D .第9题图(2)若a=1,求方程的两根.18. (本题满分8分)四边形ABCD 是正方形,E 、F 分别是DC和CB 的延长线上的点,且DE=BF ,连接AE 、AF 、EF . (1)求证:△ADE≌△ABF;(2)填空:△ABF 可以由△ADE 绕旋转中心 点,按顺时针方向旋转 度得到; 19. (本题满分8分)已知关于x 的方程x 2-2(k -1)x+k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若21211x x x x -=+,求k 的值.20. (本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-4,3)、B (-3,1)、C (-1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2. (2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.21. (本题满分8分)如图,已知ABC ∆是等边三角形.(1)如图(1),点E 在线段AB 上,点D 在射线CB 上,且ED=EC.将BCE ∆绕点C 顺时针旋转60°至ACF ∆,连接EF.猜想线段AB,DB,AF 之间的数量关系;(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF 之间的数量关系; (3)请选择(1)或(2)中的一个猜想进行证明.第18题图第20题图 A A E22.(本题满分10分)已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x 元(x 为整数),每星期的销售利润为w 元.(1)求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元? (3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果. 23. (本题满分10分)如图(1),在Rt △ABC 中,∠A =90°,AC =AB =4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,如图(2),设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)求证:BD 1= CE 1 ;(2)当∠=1CPD 2∠1CAD 时,求1CE 的长;(3)连接PA,PAB ∆面积的最大值为 .(直接填写结果)24.(本题满分12分)如图,已知抛物线错误!未找到引用源。

河南省上蔡县第一初级中学九年级数学上学期第一次月考

河南省上蔡县第一初级中学九年级数学上学期第一次月考

2015—2016学年度九年级数学上期月考试卷(一) 一.精心选一选(本大题共有8个小题,每小题3分,共24分) 1.式子211x x +-有意义的x 的取值范围是( ) A.112x x ≥-≠且 B.1x ≠ C.12x ≥- D.112x x -≠f 且 2.下列计算正确的是( )A .822-= B.2(52)3-=C .(25)(25)1-+= D.62322-= 3.估计132202⨯+的运算结果应在( ). A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间4.已知一元二次方程x 2-7x-5=0的两个根为α、β,那么α+β的值是( )A.–5B.5C.–7D.7 5.用配方法解方程2x 2 + 3 = 7x 时,方程可变形为( ).A .(x –74 )2 =2516 B.(x – 74)2 = 7316C.(x –34 )2 = 6516D.(x – 72)2 =25166. 一元二次方程(x+6)=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=-4B.x-6=4C.x+6=4D.x+6=-47. 已知a <0,那么22a a -可化简为( )A .-aB .aC .﹣3aD .3a 8.某机械厂七月份生产零件50万个,第三季度生产零件196万个,设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是( )A.50(1+x )2=196B.50+50(1+x )2=196C.50+50(1+x )+50(1+x )2=196D.50+50(1+x )+50(1+2x )=196 二、认真填一填(本大题共7个小题,每小题3分,共21分) 9.方程x2+(k-1)x-3=0的一个根是1,则另一个根是 。

10.计算:(56)(56)+-= ;11.一元二次方程(x+2)(5x-3)=12的一般形式是 .12.若2440x y y y -+-+=,且点(x ,y )在反比例函数k y x=图象上,则 该反比例函数图像过第 象限.13.已知x 2-3x+1=0,则2212x x+-= . 14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m 2,求道路宽为多少?设宽为xm ,从图(2)的思考方式出发列出的方程是 .15.现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是 .三、用心做一做(本题满分75分)16.计算(每小题5分,共15分)(1)35(315)+÷5 (2)0818(51)2--+-(3)23123273(0)93b a ab a ab a b -+f17.解下列一元二次方程(每小题5分,共20分) (1)(x +6)2=9 (2)2x(x -3)= (x -3)(3)4x 2-3x +2=0 (4) (x -1) (x+3)=1218.(7分)先化简,再求值。

2016九年级(上)数学期中试卷

2016九年级(上)数学期中试卷

2016-2017学年度第一学期第一阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.下列方程中,是一元二次方程的是 A .2x +3y +1=0 B .x 2-1=0C .y =(x -2)2D .1x+x =12.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:这10人完成引体向上个数的众数与中位数分别是 A .9和10B .9.5和10C .10和9D .10和9.53.设x 1、x 2是一元二次方程x 2-4x -1=0的两个根,则x 1+x 2的值为A .1B .4C .-1D .-44.如图,点A 、B 、C 、D 在⊙O 上,C 是AB ︵的中点,∠CDB =25°,∠AOB 的度数是 A .50°B .100°C .125°D .150°5.如图,正八边形ABCDEFGH 的两条对角线AC 、BE 相交于点P ,∠EPC 的度数为(第5题)AB C DEFPGH (第4题)A .67.5°B .69°C .72°D .112.5°6.如果四边形内存在一个点到四个顶点的距离相等,那么这个四边形一定..有 A .一组邻角相等B .一组对角相等C .两组对角分别相等D .两组对角的和相等二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.将方程x 2+4x -1=0化为(x +a )2=b 的形式为 ▲ .8.圆锥的母线长为5,底面半径为3,圆锥的侧面积为 ▲ .(结果保留π) 9.小亮本学期数学的平时作业、期中考试、期末考试及数学综合实践活动的成绩分别是88分、82分、90分和90分,各项占学期成绩的百分比分别为30%、30%、35%、5%,则小亮的数学学期成绩是 ▲ 分.10.已知关于x 的一元二次方程3(x -1)(x -m )=0的两个根是1和2,则m 的值是 ▲ . 11.甲、乙两地5月下旬10天的日平均气温统计如下表(单位:°C ):则甲、乙两地这10天日平均气温的方差的大小关系为:S 2甲 ▲ S 2乙.(填“>”、“<”或“=”)12.某电视机厂今年3月的产量为50万台,5月上升到72万台,求该厂平均每月产量增长的百分率.若设该厂平均每月产量增长的百分率为x ,则列出的方程是 ▲ . 13.在直径为650 mm 的圆柱形油罐内装进一些油后,其横截面如图.若油面宽AB =600 mm ,则油的最大深度为 ▲ mm .14.如图,四边形ABCD 中,AB 、CD 分别与以AD 为直径的半圆O 切于点A 、D ,BC切半圆O 于点E ,若AB =4 cm ,CD =9 cm ,则AD = ▲ cm .15.如图,四边形OABC 为菱形,点B 在以点O 为圆心、以OC 为半径的EF ︵上,若OA =3,∠COF =∠AOE ,则EF ︵的长度为 ▲ .(结果保留π)OABCEF(第15题)(第14题)(第13题)16.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 ▲ .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解方程x 2-3x -1=0.18.(6分)解方程x (x +2)=6+3x .19.(8分)已知关于x 的一元二次方程x 2+(2m -1)x +m 2+3=0有两个不相等的实数根,求m 的取值范围.20.(8分)证明定理“垂直于弦的直径平分弦以及弦所对的两条弧”. 如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD ,垂足为P .求证CP =DP ,BC ︵=BD ︵,AC ︵=AD ︵.21.(8分)如图,我区准备用一块长为60 m ,宽为54 m 的矩形荒地建造一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的两个完全一样的矩形区域将铺设塑胶作为运动场地.若塑胶运动场地总面积为2700 m 2,求通道的宽度.B(第20题)(第21题)22.(8分)如图,⊙O 是正方形ABCD 与正六边形AEFCGH 的外接圆.(1)正方形ABCD 与正六边形AEFCGH 的边长之比为 ▲ ; (2)连接BE .BE 是否为⊙O 的内接正n 边形的一边?如果是,求出n 的值;如果不是,请说明理由.23.(8分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.(1)请你根据图中的数据填写下表:(2)根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.24.(8分)如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =120°.E 是AB ︵上一点(点E 不与点A 、B 重合). (1)求∠E 的度数;(2)若⊙O 的半径为2,则图中阴影部分的面积是 ▲ . (结果保留根号和π)25.(8分)如图,过△ABC 的顶点A 作射线AM ,使∠1=∠B .(第24题)(第22题) 甲射靶成绩的条形统计图 乙射靶成绩的折线统计图(第23题)(1)用直尺和圆规作出△ABC 的外接圆O (保留作图痕迹,不写作法); (2)判断直线AM 与⊙O 的位置关系,并说明理由.26.(10分)实际问题某批发商以40元/kg 的成本价购入了某产品700 kg ,据市场预测,该产品的销售价y (元/kg )与保存时间x (天)的函数关系为y =50+2x ,但保存这批产品平均每天将损耗15 kg .另外,批发商每天保存该批产品的费用为50元.已知该产品每天的销量不超过600 kg ,若批发商希望通过这批产品卖出获利7000元,则批发商应在保存该产品多少天时一次性...卖出? 小明的思路及解答当x =0时,700-15x =700>600(不合题意,舍去), 当x =40时,700-15x =100<600.答:批发商应在保存该产品40天时一次性卖出可获利7000元. 数学老师的批改数学老师在小明的解答中画了一条横线,并打了一个“×”. 你的观点及做法AM C (第25题)B1(1)请指出小明错误的原因;(2)重新给出正确的解答过程.27.(10分)如图①,已知AB 是⊙O 的直径,C 是AmB ︵上的一个动点(点C 与点A 、B 不重合),连接AC .D 是ABC ︵的中点,作弦DE ⊥AB ,垂足为F .(1)若点C 和点E 不重合,连接BC 、CE 和EB .当△BCE 是等腰三角形时,求∠CAB的度数;(2)若点C 和点E 重合,如图②.探索AB 与AC 的数量关系并说明理由.(第27题)②①。

2016-2017学年河南省驻马店市上蔡一中九年级(上)期中数学试卷

2016-2017学年河南省驻马店市上蔡一中九年级(上)期中数学试卷

2016-2017学年河南省驻马店市上蔡一中九年级(上)期中数学试卷一、选择题:(每小题3分,共27分)1.(3分)在函数y=中,自变量x的取值范围是()A.x>3 B.x≥3 C.x>4 D.x≥3且x≠42.(3分)估计×+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和93.(3分)一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定4.(3分)用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=1095.(3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.6.(3分)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c7.(3分)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O 为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)8.(3分)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()A.144cm B.180cm C.240cm D.360cm9.(3分)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣4 C.﹣D.﹣2二、填空题:(每小题3分,共21分)10.(3分)在Rt△ABC中,∠C=90°,,则tanB=.11.(3分)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.12.(3分)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=.13.(3分)已知关于x的一元二次方程2x2﹣3mx﹣5=0的一个根是﹣1,则m=.14.(3分)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.15.(3分)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD的长为.16.(3分)如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为米.三、解答题:17.(10分)计算:(1)(+)÷(2)(﹣2)﹣(﹣)18.(10分)解方程(1)x2+4x=1(2)(x﹣2)(x﹣4)=3.19.(10分)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.20.(10分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.21.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.22.(10分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?23.(12分)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.2016-2017学年河南省驻马店市上蔡一中九年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共27分)1.(3分)(2016•内江)在函数y=中,自变量x的取值范围是()A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4【解答】解:由题意,得x﹣3≥0且x﹣4≠0,解得x≥3且x≠4,故选:D.2.(3分)(2015•朝阳)估计×+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和9【解答】解:×+=2×+3=2+3,∵6<2+3<7,∴×+的运算结果在6和7两个连续自然数之间,故选:B.3.(3分)(2015•宁德)一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.4.(3分)(2015•钦州)用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=109【解答】解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故选:A.5.(3分)(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC的正切值是()A.2 B.C.D.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.6.(3分)(2009•株洲)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A7.(3分)(2015•十堰)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)【解答】解:∵点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(﹣2,1)或(2,﹣1).故选:D.8.(3分)(2015•衢州)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()A.144cm B.180cm C.240cm D.360cm【解答】解:如图:根据题意可知:△AFO∽△ACD,OF=EF=30cm∴,∴∴CD=72cm,∵tanα=∴∴AD==180cm.故选:B.9.(3分)(2013•乐山)如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为()A.﹣3 B.﹣4 C.﹣D.﹣2【解答】解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO ∽△OEA ,在Rt △AOB 中,cos ∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB :OA=:1, ∴S △BFO :S △OEA =2:1,∵A 在反比例函数y=上,∴S △OEA =1,∴S △BFO =2,则k=﹣4.故选:B .二、填空题:(每小题3分,共21分)10.(3分)(2014•琼海模拟)在Rt △ABC 中,∠C=90°,,则tanB= .【解答】解:如图,在Rt △ABC 中,∠C=90°,∵sinA== 不妨设BC=3x ,则AB=5x ,根据勾股定理可得:AC==4x ,∴tanB==. 故答案为:.11.(3分)(2015•酒泉)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.12.(3分)(2015•赤峰)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=4.【解答】解:∵关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别是2、b,∴由韦达定理,得,解得,.∴ab=1×4=4.故答案是:4.13.(3分)(2015•青海)已知关于x的一元二次方程2x2﹣3mx﹣5=0的一个根是﹣1,则m=1.【解答】解:∵设一元二次方程2x2﹣3mx﹣5=0的另一个根a,∴a×(﹣1)=﹣,解得a=,∴+(﹣1)=,解得m=1.故答案为:1.14.(3分)(2015•酒泉)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.【解答】解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.15.(3分)(2015•齐齐哈尔)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD的长为2或2﹣或.【解答】解:分三种情况:①如图1,∠A为钝角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD=,∴AD=,AB=2,∴AC=2,∴CD=2+,②如图2,∠A为锐角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD=,∴AD=,AB=2,∴AC=2,∴CD=2﹣,③如图3,∠A为底角,∵tan∠ABD=,∴∠ABD=60°,∴∠A=30°,∴∠C=120°,∴∠BCD=60°∵BD=1,∴CD=;④∠C为锐角且为顶角时,如图4,∵BD⊥AC,∴∠ADB=90°,∵tan∠ABD=,∴∠ABD=60°,∴∠A=30°,∵∠CBA=∠A=30°,∴∠C=120°>90°,∴这种情况不存在;综上所述;CD的长为:2或2﹣或,故答案为:2或2﹣或.16.(3分)(2015•江西校级模拟)如图,小明在A时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为6米.【解答】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△FDC,有=,即DC2=ED•FD,代入数据可得DC2=36,DC=6,故答案为6.三、解答题:17.(10分)(2016秋•上蔡县校级期中)计算:(1)(+)÷(2)(﹣2)﹣(﹣)【解答】解:(1)原式=(4+)÷3=+=(2)原式=4﹣﹣+5=+18.(10分)(2016秋•上蔡县校级期中)解方程(1)x2+4x=1(2)(x﹣2)(x﹣4)=3.【解答】解:(1)∵x2+4x+4=1+4,即(x+2)2=5,则x+2=±,∴x=﹣2;(2)原方程整理可得:x2﹣6x+5=0,∴(x﹣1)(x﹣5)=0,则x﹣1=0或x﹣5=0,解得:x=1或x=5.19.(10分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.【解答】解:原式=﹣÷=﹣•=﹣==,方程m2+(5tan30°)m﹣12cos60°=0,化简得:m2+5m﹣6=0,解得:m=1(舍去)或m=﹣6,当m=﹣6时,原式=﹣.20.(10分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.【解答】解:过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.21.(10分)(2015•泰安)如图,在△ABC中,AB=AC,点P、D分别是BC、AC 边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.22.(10分)(2013•淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【解答】解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.23.(12分)(2011•聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2)(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.【解答】解:(1)如图1,当t=1秒时,AE=2,EB=10,BF=4,FC=4,CG=2,由S=S梯形GCBE ﹣S△EBF﹣S△FCG,=×﹣=×(10+2)×8﹣×10×4﹣=24(cm2);(2)①如图1,当0≤t≤2时,点E、F、G分别在边AB、BC、CD上移动,此时AE=2t,EB=12﹣2t,BF=4t,FC=8﹣4t,CG=2t,S=S梯形GCBE﹣S△EBF﹣S△FCG=×(EB+CG)•BC﹣EB•BF﹣FC•CG=×8×(12﹣2t+2t)﹣×4t(12﹣2t)﹣×2t(8﹣4t)=8t2﹣32t+48(0≤t≤2).②如图2,当点F追上点G时,4t=2t+8,解得t=4,当2<t<4时,点E在边AB上移动,点F、G都在边CD上移动,此时CF=4t﹣8,CG=2t,FG=CG﹣CF=2t﹣(4t﹣8)=8﹣2t,S=FG•BC=(8﹣2t)•8=﹣8t+32.即S=﹣8t+32(2<t<4).(3)如图1,当点F在矩形的边BC上的边移动时,在△EBF和△FCG中,∠B=∠C=90°,①若=,即=,解得t=.所以当t=时,△EBF∽△FCG,②若=即=,解得t=.所以当t=时,△EBF∽△GCF.综上所述,当t=或t=时,以点E、B、F为顶点的三角形与以F、C、G为顶点的三角形相似.参与本试卷答题和审题的老师有:2300680618;王学峰;fangcao;sks;Liuzhx;wdxwwzy;gbl210;梁宝华;caicl;733599;dbz1018;wkd;冯延鹏;神龙杉;三界无我;知足长乐;1160374;lk(排名不分先后)。

人教版九年级数学上册~学年期中考试.docx

人教版九年级数学上册~学年期中考试.docx

初中数学试卷桑水出品2015~2016学年上学期九年级期中考试数学试题题号一二三总分1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)1.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B. 20 C. 16 D.以上答案均不对2.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短3.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC 于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.94. 已知x=2是一元二次方程x2-mx+2=0的一个解,则m的值是()A.-3 B. 3 C. 0 D. 65.用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x﹣1)2=4 B.(x+1)2=4C.(x﹣1)2=16 D.(x+1)2=166.在反比例函数的图象上有两点(-1,y1),,则y1-y2的值是( )A.负数 B.非正数 C.正数D.不能确定7.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A. 45°B. 75°C. 60°D. 45°或75°8.如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④234ABDS AB=△.其中正确的结论有()A.1个 B.2个C.3个 D.4个二、填空题(每小题3分,共21分)9.方程x2-9=0的根是.10.若一元二次方程022=++mxx有实数解,则m的取值范围是.11.平行四边形ABCD中,∠A+∠C=100°,则∠B= 度.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= .13.如图,正方形ABOC的边长为2,反比例函数kyx=的图象过点A,则k的值是 .14.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是.15.如图,边长12cm的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3cm,则小正方形的边长等于 .三、解答题(共75分)16. (8分)解方程:(1) 2(x-3)=3x(x-3)(2)1222+=-xxx17.(9分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.18.(9分)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.19.(9分)如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段(用线段MG表示);(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.20.(9分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?ABCDO22.(10分)一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为 ,周长为 .(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 ,周长为 .(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.23.(11分)如图,已知反比例函数xky=的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数xky=的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.C数学参考答案一、选择题(每小题3分,共24分)1. B .2.C .3. D .4.B .5.A .6.A7. D8.C 二、填空题(每小题3分,共21分)9. x 1=3,x 2= -3 10. 1≤m 11.130 12.40° 13.- 4 14. 52415.cm三、解答题(共75分)16. (8分) (给出因式分解法,其它方法亦按步给分) (1)解答:2(x-3)=3x (x-3) 移项,得2(x-3)-3x (x-3)=0 整理,得(x-3)(2-3x )=0∴x-3=0或2-3x=0解得:x 1=3,x 2=32 (2)解答:(给出配方法,公式法等其它方法亦按步给分)原方程化为:x 2-4x=1配方,得x 2-4x+4=1+4 整理,得(x -2)2=5∴x -2=5±, 即521+=x ,522-=x .17. (9分) 解答:(1)如图(非尺规不保留痕迹者不给分) (3分)(2)∵在△ABC 中,AB=AC ,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°, ∵AD 是∠ABC 的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC 是△ABD 的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°. (9分) 18. (9分)解答:证明:(1)∵AC ⊥BC ,BD ⊥AD∴ ∠D =∠C =90︒ 在Rt △ACB 和 Rt △BDA 中,AB = BA ,AC =BD , ∴ Rt △ACB ≌ Rt △BDA (HL ) ∴BC =AD (6分)(2)由△ACB ≌ △BDA 得 ∠C AB =∠D BA ∴OA =OB∴△OAB 是等腰三角形. (9分) 19.(9分) 解:(1)点P 是灯泡的位置; (3分)(2)线段MG 是大树的高. (6分)(3)视点D 看不到大树,MN 处于视点的盲区. (叙述不清,只要抓住要点,酌情给分) (9分)20. (9分)解答:(其它正确的证明方法,亦按步给分)(1)证明:∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠MDO=∠NBO∵MN 是BD 的中垂线,∴DO=BO ,BD ⊥MN,MD=MB在△MOD 和△NOB 中,∠MDO=∠NBO ,DO=BO, ∠MOD=∠NOB∴△MOD ≌△NOB(ASA) ∴MD=NB 又∵MD ∥NB∴四边形BMDN 是平行四边形, ∵MD=MB∴平行四边形BMDN 是菱形. (5分) (2)解:根据(1)可知:设MD 长为x ,则MB=DM=x ,AM=8-x 在Rt △AMB 中,BM 2=AM 2+AB 2 即x 2=(8﹣x )2+42, 解得:x=5,答:MD 长为5. (9分)21. (10分) 解答:(1)解:设每千克核桃应降价x 元. 根据题意,得 (60﹣x ﹣40)(100+×20)=2240. 化简,得 x 2﹣10x+24=0 解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元. (6分)(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元. 此时,售价为:60﹣6=54(元),.答:该店应按原售价的九折出售. (10分)22.(10分)解答:(1)241a , (1+2)a. (2分)(2)241a ,2a . (4分) (3)猜想:重叠部分的面积为241a (5分)理由如下:过点M 分别作AC 、BC 的垂线MH 、MG ,垂足为H 、G 设MN 与AC 的交点为E ,MK 与BC 的交点为F ∵M 是△ABC 斜边AB 的中点,AC=BC=a∴MH=MG=a 21又∵∠HME+∠HMF=∠GMF+∠HMF=90°,∴∠HME=∠GMF ,∴Rt △MHE ≌Rt △MGF (HL ) ∴阴影部分的面积等于正方形CGMH 的面积 ∵正方形CGMH 的面积是MG•MH=a 21·a 21=241a ∴阴影部分的面积是241a . (10分) 23.(11分)解答:(1)∵点A (-1,m )在第二象限内,∴AB = m ,OB = 1,∴221=⋅=∆BO AB S ABO 即:2121=⨯m ,解得4=m , ∴A (-1,4), ∵点A (-1,4),在反比例函数x k y =的图像上,∴4 =1-k ,解4-=k , ∵反比例函数为x y 4-=,又∵反比例函数xy 4-=的图像经过C (n,2-) ∴n42-=-,解得2=n ,∴C (2,-2), ∵直线b ax y +=过点A (-1,4),C (2,-2)∴⎩⎨⎧+=-+-=b a b a 224解方程组得 ⎩⎨⎧=-=22b a ∴直线b ax y +=的解析式为22+-=x y ;(6分)(2)当y = 0时,即022=+-x 解得1=x ,即点M (1,0)在ABM Rt ∆中,∵AB = 4,BM = BO +OM = 1+1 = 2,由勾股定理得AM =52. (11分)。

人教版九年级数学上册期中考试 (2).docx

人教版九年级数学上册期中考试 (2).docx

桑水初中数学试卷桑水出品富顺一中2016届九上期中考试数 学 试 题重新制版:郑宗平注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在机读卡上.考试结束后,将机读卡和答题卷交回.2.每道题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选其他答案标号,不能答在试题卷上.3.在每个小题给出的四个选项中,只有一项符合题目要求.第Ⅰ卷 选择题 (共40分)一、选择题(每小题4分,共40分)1.方程2x 40-=的解是 ( ) A.4 B.±2 C.2 D.-22.) 3.平面直角坐标系内一点(),P 2m -与点(),1P n 3关于原点对称,则 ( ) A.,m 3n 2==- B.,m 3n 2== C.,m 3n 2=-=- D.,m 3n 2=-= 4.用配方法解下列方程,其中应在左右两边同时加上4的是( ) A.-2x 2x 5= B.22x 4x 5-= C.+2x 4x5= D.2x 2x 5+=5.已知二次函数()2y ax bx c a 0=++<的图象如图所示,当5x 0-≤≤时,下 列说法正确的是 ( )A.有最小值-5,最大值0 B.有最小值-3,最大值C.有最小值0,最大值6D.有最小值2,最大值66.如图,⊙O 是△ABC 的外接圆;已知ABO 30∠=o ,则ACB∠的大小为( )A.60°B.30°C.45°D.50°7.为了改善居民住房条件,某市计划用未来两年的时间,210m 提高到.2121m ,若每年增长率相同,则年增长率为( ) A.9% B.10% C.11% D.12.1% 8.下列命题正确的有 ( )①.直径是弦;②.长度相等的两条弧是等弧;③.直径是圆的对称轴;④.平分弦的直径垂直于这条弦;⑤.顶点在圆上的角是圆周角;⑥.同圆或等圆中,相等的圆周角所对的弧相等;⑦.同圆或等圆中,相等的弦所对的圆周角相等.A.3个B.4个C.5个D.6个9.如图,已知正方形ABCD 的边长为1,E F G H 、、、分别为各边上的点,且AE BF CG ==DH =;设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致为( )10. 如图,抛物线()21y a x 23=+-与()221y x 312=-+交于点(),A 13,过点A 作x 轴的平行线,分别交两条抛物线于B C 、两点,则以下结论:①.无论x 取何值,2y 的值总是正数;②.a 1=;③.当x 0=时,21y y 4-=④.2AB 3AC =. 其中正确的结论是 ( )A.①②B.②③C.③④D.①④第Ⅱ卷 选择题 (共110分)二、填空题(每小题4分,共20分) 11.已知关于x 的方程2x 2x m 0++=.⑴.当m 3=时,方程的根的情况是 ;⑵.当m 3=-时,方程的根的情况是 .12.如上图,在Rt △OAB 中,AOB 30∠=o,将△OAB 绕点O 逆时针旋转 100°得到△11OA B ,则1A OB ∠= . 13.已知:如图,P 是AOB ∠的角平分线OC 上的一点,⊙P 与OA 相交于E F 、点,与OB 相交于G H 、点,则线段EF 与GH 的大小 关系是 .A BC O桑水 14. 如图,抛物线21y x 2=-+向右平移1个单位得到抛物线2y ,则抛 物线2y 的顶点坐标为 ;阴影部分的面积S15. 如图,一段抛物线()()y x x 30x 3=--≤≤,记为与x 轴交于点1O A 、;将1C 绕点1A 旋转180°得到2C ,轴于点2A ;将2C 绕点2A 旋转180°得到3C ,交x3A ;… 如此进行下去,直至得13C ;若(),P 37m 在第段抛物线13C 上,则m = .三、解答题(一)(本部分共4个小题,每题8分,共32分) 16.用公式法解方程:22x5x 1-=;17.用适当方法解方程:()()23x 2x x 2-=-.18.已知开口向上的抛物线2y ax 2x a 4=-+-经过点(),03-.⑴.确定此抛物线的解析式;⑵.当x 取何值时,y 有最小值,并求出这个最小值.19.如图所示,AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上. ⑴.若AOD 52∠=o ,求DEB ∠的度数; ⑵.若OC 3OA 5==,,求AB 的长.四、解答题(二)(本部分共20分,每小题10分,共2小题)20.在如图所示的直角坐标系中,解答下列问题:⑴.将△ABC 向左平移4个单位,画出平移后的△11AB C ;⑵.将△ABC 绕点A 顺时针旋转90°,画出旋转后的△22AB C ⑶.求△22AB C 的面积.21.现有一块长20cm ,宽10cm 的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为256cm 的无盖长方体盒子,则剪去的小正方形的边长为多少?分,每小题12分,共2小题)22. 张师傅要将一张残缺的圆形轮片恢复原貌(如图),已知轮片的一条弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D ,测得AB 24cm CD 8cm ==,.⑴.请你帮张师傅找出此残片所在圆的圆心(尺规作图,不写作法,保留作图痕迹); ⑵.求⑴中所作圆的半径.23.已知函数()2y x 2mx 2m 3=--+(m 为常数).⑴.证明:无论m 取何值,该函数图象与x 轴总有两个交点;⑵.设函数图象与x 轴的交点分别为A B 、(点A 在点B 左侧),它们的横坐标分别为1x 和2x ,且12111x x 4+=-,此时,此时点M 在直线y x 10=-,当MA MB +最小,求直线AM 的函数解析式.六、解答题(四)(本部分共14分,共1小题) 24.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A B 、两点, A 点在原点的左侧,B 点的坐标为(),30,与y 轴交于点()C 03-,,点P 是直线BC 下方的抛物线上的一个动点.⑴.求这个二次函数的表达式;⑵.连结PO PC 、,并把△POC 绕线段CO 的中点作中心对称变换,得到四边形'POP C ,那么是否存在点P ,使得四边形'POP C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由;⑶.当点P 运动到什么位置时,四边形ABPC 的面积最大?并求出此时P 点的坐标和四边形ABPC 的最大面积.24题备用图富顺一中2015 - 2016学年九年级上期期中考试 数 学 答 题 卡 设计:郑宗平 准考证号姓 名1.答题前,考生务必认准条形码上的姓名、考生号、科目、考场号和座位号.注桑水请在各题目桑水。

河南省届九级上期中数学试卷含答案解析

河南省届九级上期中数学试卷含答案解析

河南省2016届九年级上学期期中数学试卷一、选择题(每小题3分,共24分)1.下列计算正确的是()A.=0 B.C.=﹣2 D.4+=22.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.03.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为13万元,第3年的养殖成本为20万元.设每年平均增长的百分率为x,则下面所列方程中正确的是()A.13(1﹣x)2=20 B.20(1﹣x)2=13 C.20(1+x)2=13 D.13(1+x)2=204.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()A.B.C.D.5.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.6.如图,在正△ABC中,D、E分别在AC、AB上,且,AE=BE,则有()A.△AED∽△ABC B.△ADB∽△BED C.△BCD∽△ABC D.△AED∽△CBD7.如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()A.B.C.D.8.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③ B.①③④ C.①②④ D.①②③④二、填空题(每小题3分,共21分)9.计算(+1)(2﹣)=.10.关于x的方程x2﹣mx﹣2=0有一个根是﹣2,则m=.11.从﹣2,﹣1,0,1,2这五个数中任取一个数,作为关于x的一元二次方程x2﹣x+k=0中的k值,则所得的方程中有两个不相等的实数根的概率是.12.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为米.13.如图,在△ABC中,AB=AC,D、E分别是AB、AC的中点,M、N为BC上的点,连接DN、EM.若AB=10cm,BC=12cm,MN=6cm,则图中阴影部分的面积为cm2.14.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为.15.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则∠BCD=°,cos∠MCN=.三、解答题16.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.17.计算:(1)用适当的方法解方程(x﹣2)2=2x﹣4.(2)﹣3tan30°+(π﹣4).18.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.19.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?20.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比,即:=(不写解答过程,直接写出结果).21.为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?22.在“全民阅读”活动中,某中学社团“海伦读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2013年全校有1000名学生,2014年全校学生人数比2013年增加10%,2015年全校学生人数比2014年增加100人.(1)求2015年全校学生人数;(2)2014年全校学生人均阅读量比2013年多1本,阅读总量比2013年增加1700本(注:阅读总量=人均阅读量×人数)①求2013年全校学生人均阅读量;②2013年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2014年、2015年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2015年全校学生人均阅读量比2013年增加的百分数也是a,那么2015年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.23.如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.问题引入:(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC=;当点D是BC边上任意一点时,S△ABD:S△ABC=(用图中已有线段表示).探索研究:(2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想S△BOC与S△ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想++的值,并说明理由.河南省2016届九年级上学期期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列计算正确的是()A.=0 B.C.=﹣2 D.4+=2【考点】二次根式的加减法;二次根式的性质与化简.【分析】根据二次根式的加减法则对各选项进行逐一分析即可.【解答】解:A、﹣=0,故本选项正确;B、与不是同类项,不能合并,故本选项错误;C、=2≠﹣2,故本选项错误;D、4与不是同类项,不能合并,故本选项错误.故选A.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.2.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.【解答】解:根据题意,知,,解方程得:m=2.故选:B.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为13万元,第3年的养殖成本为20万元.设每年平均增长的百分率为x,则下面所列方程中正确的是()A.13(1﹣x)2=20 B.20(1﹣x)2=13 C.20(1+x)2=13 D.13(1+x)2=20【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可.【解答】解:设增长率为x,根据题意得13(1+x)2=20.故选:D.【点评】本题考查从实际问题中抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).4.如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()A.B.C.D.【考点】几何概率.【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是:=;故选:C.【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.5.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.6.如图,在正△ABC中,D、E分别在AC、AB上,且,AE=BE,则有()A.△AED∽△ABC B.△ADB∽△BED C.△BCD∽△ABC D.△AED∽△CBD【考点】相似三角形的判定.【分析】根据等边三角形的性质得出角相等,再由已知条件求出,即两边对应成比例并且夹角相等,因此两个三角形相似.【解答】解:∵△ABC是等边三角形,=,∴AB=BC=AC,∠A=∠C,设AD=x,AC=3x,则BC=3x,CD=2x,∵AE=BE=x,∴,,∴,∴△AED∽△CBD;故选:D.【点评】本题考查了相似三角形的判定方法、等边三角形的性质;熟练掌握相似三角形的判定方法是解决问题的关键.7.如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()A.B.C.D.【考点】相似三角形的判定与性质;线段垂直平分线的性质;勾股定理.【分析】先根据勾股定理求出AC的长,再根据DE垂直平分AC得出OA的长,根据相似三角形的判定定理得出△AOD∽△CBA,由相似三角形的对应边成比例即可得出结论.【解答】解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC===5,∵DE垂直平分AC,垂足为O,∴OA=AC=,∠AOD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AOD∽△CBA,∴=,即=,解得AD=,故选B.【点评】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③ B.①③④ C.①②④ D.①②③④【考点】相似形综合题.【专题】压轴题.【分析】①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB 的中位线,从而作出判断;③如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断;④根据AA可证△ACE∽△BFC,根据相似三角形的性质可得AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,再根据平行线的性质和等量代换得到MG•MH=AE×BF=AE•BF=AC•BC=,依此即可作出判断.【解答】解:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠BDE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=,∴AE•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MG∥BC,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确.故选:C.【点评】考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.二、填空题(每小题3分,共21分)9.计算(+1)(2﹣)=.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算直接去括号得出,再进行合并同类项即可.【解答】解:(+1)(2﹣),=2﹣×+1×2﹣1×,=2﹣2+2﹣,=.故答案为:.【点评】此题主要考查了二次根式的混合运算,在加减的过程中,有同类二次根式的要合并注意认真计算防止出错.10.关于x的方程x2﹣mx﹣2=0有一个根是﹣2,则m=﹣1.【考点】一元二次方程的解.【分析】把x=﹣2代入关于的x方程x2﹣mx﹣2=0,得到关于m的新方程,通过解新方程来求m的值.【解答】解:把x=﹣2代入,得(﹣2)2﹣(﹣2)m﹣2=0,解得m=﹣1.故答案是:﹣1.【点评】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.11.从﹣2,﹣1,0,1,2这五个数中任取一个数,作为关于x的一元二次方程x2﹣x+k=0中的k值,则所得的方程中有两个不相等的实数根的概率是.【考点】概率公式;根的判别式.【专题】压轴题.【分析】所得的方程中有两个不相等的实数根,根的判别式△=b2﹣4ac的值大于0,然后解不等式求出k的取值范围,从而得到k的值,再计算出概率即可.【解答】解:△=b2﹣4ac=1﹣4k>0,解得k<,所以,满足k的数值有:﹣2,﹣1,0共3个,故概率为.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.用到的知识点为:概率=所求情况数与总情况数之比.12.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为6米.【考点】相似三角形的应用;平行投影.【专题】几何图形问题.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△FDC,有=,即DC2=ED•FD,代入数据可得DC2=36,DC=6,故答案为6.【点评】本题考查了通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用,难度适中.13.如图,在△ABC中,AB=AC,D、E分别是AB、AC的中点,M、N为BC上的点,连接DN、EM.若AB=10cm,BC=12cm,MN=6cm,则图中阴影部分的面积为24cm2.【考点】相似三角形的判定与性质;三角形的面积;等腰三角形的性质;勾股定理;三角形中位线定理.【专题】压轴题.【分析】由勾股定理求出BC上的高AN为8cm,求出AO=ON=4cm,求出MN=DE MN∥DE,求出MN与DE间的距离是4cm,求出△MNO和△DEO的高均为cm2,求出阴影部分面积即可.【解答】解:连接DE,过A作AH⊥BC于H,过O作ZF⊥BC于F,交DE于Z,∵AB=AC=10cm,AH⊥BC,BC=12cm,∴BH=CH=6cm,∵AB=AC=10cm,由勾股定理得:AH=8cm ,∵D 、E 分别是AB 和AC 中点, ∴DE=BC=6cm ,DE ∥BC , ∴DE 和MN 间的距离是4cm , ∵MN=6cm ,BC=12cm , ∴MN=DE ,MN ∥DE , ∴∠DEO=∠NMO , 在△DEO 和△NMO 中, ∵,∴△DEO ≌△NMO (AAS ), ∴DO=NO , ∵DE ∥MN ,∴△DZO ∽△NFO , ∴=,∵DO=ON ,∴ZO=OF=ZF=2cm , ∴阴影部分的面积是:S 梯形DECB ﹣S △DOE ﹣S △OMN=×(DE+BC )×FZ ﹣×DE ×OZ ﹣×MN ×OF =×(6+12)×4﹣×6×2﹣×6×2 =24(cm 2). 故答案为:24.【点评】本题考查了相似三角形的性质和判定,三角形的面积,等腰三角形的性质,勾股定理,三角形的中位线定理等知识点的综合运用.14.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B 的坐标为 (2+2,2) .【考点】菱形的性质;坐标与图形性质;特殊角的三角函数值.【分析】过C 作CE ⊥OA ,根据“∠AOC=45°,OC=2”可以求出CE 、OE 的长,点B 的坐标便不难求出. 【解答】解:过C 作CE ⊥OA 于E ,∵∠AOC=45°,OC=2,∴OE=OCcos45°=,CE=OCsin45°=2,∴点B的坐标为(2+2,2).【点评】作辅助线构造直角三角形,根据三角函数求出C点坐标是解本题的关键.15.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则∠BCD=120°,cos∠MCN=.【考点】全等三角形的判定与性质;勾股定理;解直角三角形.【分析】连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作ME⊥CN于E,则△MNA是等边三角形求得MN=2,设NE=x,表示出CE,根据勾股定理即可求得ME,然后求得cos∠MCN.【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴∠BAD=60°,BC=AC,∴∠BCD=120°,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2,∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴cos∠MCN===,故答案为:120,.【点评】此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题16.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.【解答】解:原式=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.【点评】本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式有意义.17.计算:(1)用适当的方法解方程(x﹣2)2=2x﹣4.(2)﹣3tan30°+(π﹣4).【考点】实数的运算;零指数幂;负整数指数幂;解一元二次方程-因式分解法;特殊角的三角函数值.【专题】计算题.【分析】(1)方程整理后,利用因式分解法求出解即可;(2)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算即可得到结果.【解答】解:(1)方程整理得:(x﹣2)2﹣2(x﹣2)=0,分解因式得:(x﹣2)(x﹣2﹣2)=0,解得:x1=2,x2=4;(2)原式=2﹣3×+1﹣2=﹣1.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.18.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.【考点】游戏公平性;列表法与树状图法.【专题】计算题.【分析】(1)三个等可能的情况中出现1的情况有一种,求出概率即可;(2)列表得出所有等可能的情况数,求出两人获胜的概率,比较即可得到结果.【解答】解:(1)根据题意得:随机转动转盘一次,停止后,指针指向1的概率为;故答案为:;2∴P(小明获胜)=,P(小华获胜)=,∵>,∴该游戏不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.19.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【考点】一元二次方程的应用;分式方程的应用.【专题】行程问题.【分析】(1)利用原工作时间﹣现工作时间=4这一等量关系列出分式方程求解即可;(2)根据矩形的面积和为56平方米列出一元二次方程求解即可.【解答】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为a米,根据题意得,(8﹣2a)=56解得:a=2或a=(不合题意,舍去).答:人行道的宽为2米.【点评】本题考查了分式方程及一元二次方程的应用,解分式方程时一定要检验.20.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比,即:=1:4(不写解答过程,直接写出结果).【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1:2,∴:=1:4.故答案为:1:4.【点评】此题主要考查了位似变换以及轴对称变换,得出对应点位置是解题关键.21.为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB长60米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G,H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?【考点】解直角三角形的应用-坡度坡角问题.【专题】几何图形问题.【分析】(1)由三角函数的定义,即可求得DF与BF的长,又由坡度的定义,即可求得EF的长,继而求得平台DE 的长;(2)首先设GH=x米,用x表示出MH的长,在Rt△DMH中由三角函数的定义,即可求得x的值,进而得到GH 的长.【解答】解:(1)∵FM∥CG,∴∠BDF=∠BAC=45°,∵斜坡AB长60米,D是AB的中点,∴BD=30米,∴DF=BD•cos∠BDF=30×=30(米),BF=DF=30米,∵斜坡BE的坡比为:1,∴=,解得:EF=10(米),∴DE=DF﹣EF=30﹣10(米);答:休闲平台DE的长是(30﹣10)米;(2)设GH=x米,则MH=GH﹣GM=x﹣30(米),DM=AG+AP=33+30=63(米),在Rt△DMH中,tan30°=,即=,解得:x=30+21,答:建筑物GH的高为(30+21)米.【点评】此题考查了坡度坡角问题以及俯角仰角的定义.此题难度较大,注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想与方程思想的应用.22.在“全民阅读”活动中,某中学社团“海伦读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2013年全校有1000名学生,2014年全校学生人数比2013年增加10%,2015年全校学生人数比2014年增加100人.(1)求2015年全校学生人数;(2)2014年全校学生人均阅读量比2013年多1本,阅读总量比2013年增加1700本(注:阅读总量=人均阅读量×人数)①求2013年全校学生人均阅读量;②2013年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2014年、2015年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2015年全校学生人均阅读量比2013年增加的百分数也是a,那么2015年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.【考点】一元二次方程的应用.【分析】(1)根据题意,先求出2013年全校的学生人数就可以求出2014年的学生人数;(2)①设2012人均阅读量为x本,则2013年的人均阅读量为(x+1)本,根据阅读总量之间的数量关系建立方程就可以得出结论;②由①的结论就可以求出2012年读书社的人均读书量,2014年读书社的人均读书量,全校的人均读书量,由2014年读书社的读书量与全校读书量之间的关系建立方程求出其解即可.【解答】解:(1)由题意,得2014年全校学生人数为:1000×(1+10%)=1100人,故2015年全校学生人数为:1100+100=1200人;(2)①设2013人均阅读量为x本,则2014年的人均阅读量为(x+1)本,由题意,得1100(x+1)=1000x+1700,解得:x=6.答:2013年全校学生人均阅读量为6本;②由题意,得2013年读书社的人均读书量为:2.5×6=15本,2015年读书社人均读书量为15(1+a)2本,2015年全校学生的人均读书量为6(1+a)本,80×15(1+a)2=1200×6(1+a)×25%2(1+a)2=3(1+a),∴a1=﹣1(舍去),a2=0.5.答:a的值为0.5.【点评】本题考查了列一元一次方程解实际问题的运用,一元二次方程的解法的运用,增长率问题的数量关系的运用,解答时根据阅读总量之间的关系建立方程是关键.23.如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.问题引入:(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC=1:2;当点D是BC边上任意一点时,S△ABD:S△ABC=BD:BC(用图中已有线段表示).探索研究:(2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想S△BOC与S△ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想++的值,并说明理由.【考点】相似形综合题.【专题】几何综合题;压轴题.【分析】(1)根据三角形的面积公式,两三角形等高时,可得两三角形底与面积的关系,可得答案;(2)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,可得答案;(3)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,再根据分式的加减,可得答案.【解答】解:(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC=1:2;当点D是BC边上任意一点时,S△ABD:S△ABC=BD:BC,故答案为:1:2,BD:BC;(2)S△BOC:S△ABC=OD:AD,如图②作OE⊥BC与E,作AF⊥BC与F,∵OE∥AF,∴△OED∽△AFD,.∵,∴;(3)++=1,理由如下:由(2)得,,.∴++=++===1.【点评】本题考查了相似形综合题,利用了等底的三角形面积与高的关系,相似三角形的判定与性质.。

人教版九年级数学上册度期中考试.docx

人教版九年级数学上册度期中考试.docx

初中数学试卷桑水出品2015-2016学年度九年级上学期期中考试数学试卷一、精心选一选,相信你一定能选对!(每小题3分,共30分) 1.若△ABC ∽△A 'B 'C ',则相似比k 等于( )A .A 'B ':AB B .∠A: ∠A ' C .S △ABC :S △A`B`C` D .△ABC 周长:△A 'B 'C '周长 2.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或﹣23.用配方法解方程2420x x -+=,下列配方正确的是( ) A . 2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=4.下列关于一元二次方程122=-x x 的各项系数说法正确的是( )A. 二次项系数为:0B. 一次项系数为:2C. 常数项为:1D. 以上说法都不对 5.如图5,已知菱形ABCD 的边长为2,∠DAB =60°,则对角线BD 的长是 ( ) A .1 B .3 C .2 D .236.如图6,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF 等于( ) A . 7 B . 7.5 C . 8 D . 8.57.观察下列表格,一元二次方程21.1x x -=的一个近似解是( )x1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92x x - 0.11 0.24 0.39 0.56 0.75 0.96 1.19 1.44 1.71A .0.11B .1.6C .1.7D .1.19 8.在反比例函数xm1y -=的图象的每一条曲线上,y 都随x 的增大而增大,则m 的值可以是 A.2 B.1 C.0 D. -19.下列各组图形中相似的图形是( )A 、对应边成比例的多边形B 、四个角都对应相等的两个梯形C 、有一个角相等的两个菱形D 、各边对应成比例的两个平行四边形10. 如图,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数1y x=的图象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ) A .S 1<S 2<S 3 B .S 3 <S 2< S 1 C .S 2< S 3< S 1 D .S 1=S 2=S 3图5 图6 图10 二、细心填一填,相信你填得又快又准!(每小题4分,共24分) 11.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根, 则实数k 的取值范围是 .12.下列函数中是反比例函数的有 _________ (填序号). ①3x y =-; ②x y 2=-; ③x y 23-=; ④21=xy ; ⑤1-=x y ; ⑥2=x y ; ⑦xky =(k 为常数,0≠k )13.抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是________.14.已知P 是线段AB 的黄金分割点,且AB =10cm ,则AP 长为_____________. 15.如图15, C 为线段AB 上的一点,△ACM 、△CBN 都是等边三角形, 若 AC =3,BC =2,则△MCD 与△BND 的面积比为______.16.在平面坐标系中,正方形ABCD 的位置如图16所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A1,作正方形A1B1C1C ,延长C1B1交x 轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2014个正方形的面积为____.图15 图16数学答题卷题号 一 二 三 四 五 总分 分数一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11._______ ;12. ________ ;13. _______、______ 14.________; 15. _________ ;16. __________ . 三、解答题(一)(每小题6分,共18分)17.解方程:x 2-4x -12=0 18.画出下面实物的三视图:19.如图,ABC △中,DE BC ∥,2AD =,3AE =,4BD =,求AC 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015—2016学年度上期期中考试九年级数学试题
一、选择题(3×10=30分)
1 【 】
A B 2、一元二次方程2x 2+3x=﹣5的根的情况是 【 】
A 、有两个不相等的实数根
B 、有两个相等的实数根
C 、没有实数根
D 、无法判断
3、下列计算正确的是 【 】
A =、=
C 3=±
D 3=
4 【 】 A 、6到7之间 B 、7到8之间 C 、8到9之间 D 、9到11之间
5、在Rt △ABC 中,∠ABC=900
、tanA=43
,则sinA 的值为 【 】 A 、45 B 、35 C 、34 D 、43 6、方程(x -3)2
=(x -3)的根为 【 】
A 、3
B 、4或3
C 、4
D 、﹣4或3
7、下列说法正确的是 【 】
①所有正三角形都相似 ②所有的正方形都相似
③所有的等腰三角形都相似 ④所有的矩形都相似 ⑤所有的菱形都相似
A 、2个
B 、3个
C 、4个
D 、5个
8、如图直线L 1∥L 2∥L 3,直线L 4、L 5分别交L 1、L 2、L 3于A 、B 、C 、E 、F 、D ,
且EF=4、DE=3、AB=1.2、则AC 的长为 【 】
A 、0.9
B 、1.6
C 、2.8
D 、2.1
9、如图给出下列条件:①∠B=∠ACD、②∠ADC=∠ACB、③AC AB
AD BC
=、AC2=AD·AB其中单独能够
判定△ABC∽△ACD的个数是【】
A、1
B、2
C、3
D、4
10、如图在钝角三角形中,AB=6cm、AC=12cm、动点D从A点出发到B点止,动点E从C点出发到A
点止,点D运动速度为1cm/秒,点E运动的速度为2cm/秒,如果两点同时运动那么当以点A、
D、E为顶点三角形与△ABC相似时运动时间是
【】
A、3秒或4.8秒
B.3秒
C.4.5秒
D.5秒或4.8秒
二、填空题(9×3=27分)
11、当x__________
12、若x:y=1:2则x y
x y
-
+
=____________
13、在平面直角坐标系中,将线段AB平移到A′B′,若点A、B的坐标分别为:A(﹣2、0)、B(0、
3)、A′(2、1)则点B′的坐标____________
14、某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过两次降价现在售价每盒
16元,设该商品平均每次降价百分率为x,则所列方程_______________________
15、在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=______________
16、如右图在△ABC中,
M、N分别为AB、
AC的边中点,
若S△AMN=6,
则S的四边
形MBCN=_______________
17、在△ABC 中,若21|cos |(1tan )02A B -+-=,则∠C=__________度。

18、如右图某山坡的路向坡度为若沿此山路向上前进90米则升高
为__________米。

19、从一栋二层楼的顶点A 处看对面的
教学楼,探测器显示:看到教学楼底
部点C 处的俯角为450,看到楼顶部
D 处的仰角为600,已知两栋楼之间
的水平距离为6米,则教学楼高CD 是
__________米(用根号表示)。

三、解答题
20、计算(6×2=12分)
①②2200
sin 68cos6845302+-
21、①解方程x 2-3x -1=0(6分)
②已知关于x的一元二次方程x2-6x+p2-2p+5=0的一个根为2,求该方程另一个根及p的值.(8
分)
22、如图小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,
它们的顶点都在小正方形的顶点上。

(9分)
(1)画出位似中心
(2)△ABC与△A′B′C的位似比为_____________
(3)以点O为位似中心,再画一个△A1B1C1使它与△ABC的位似比为1.5。

23、如图矩形ABCD中,E为BC上一点,DF⊥AE于E(9分)
(1)△ABE与△ADF相似吗?请说明理由。

(2)若AB=5、AD=18、BE=12求FD的长。

24、如图把一张直角三角形卡片△ABC放在每格宽度为12mm的横格纸中三个顶点恰好都落在横格
线上,已知∠BAC=900、∠ =360,求直角三角形ABC面积(精确到1mm)(参考数据:sin360≈0.60、cos360≈0.80、tan360≈0.75)
(9分)
25、如图在R t△ABC中,∠C=900、AB=10、BC=8、动点P以每秒1个单位的速度从点A开始,沿AB
边向点B移动,PD⊥AC于D、PE⊥BC于E、设点P运动时间为t秒(0<t<10)△PAD和△PBE面积分别为S1、S2(10分)
(1)当t=1时求PD
BC
的值。

(2)在点P运动过程中是否存在t值使得3S1+S2=24,若存在求出这个值,若不存在请说明理由?。

相关文档
最新文档