2017-2018学年高一下学期期末考试数学(理)试卷

合集下载

人教版数学高一下册期末测试精选(含答案)1

人教版数学高一下册期末测试精选(含答案)1

人教版高一下册期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.设,m n 为两条不同的直线,,,αβγ为三个不重合平面,则下列结论正确的是( ) A .若m αP ,n αP ,则m n P B .若m α⊥,m n P ,则n α⊥ C .若αγ⊥,βγ⊥,则αβ∥D .若m α⊥,αβ⊥,则m βP【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B2.在四棱锥P ABCD -中,PA ⊥平面ABC ,ABC ∆中,32BA BC AC ===,2PA =,则三棱锥P ABC -的外接球的表面积为( )A .B .22πC .12πD .20π【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B3.直线10x -+=的倾斜角为( ) A .3π B .6π C .23π D .56π 【来源】山西省康杰中学2017-2018学年高二上学期期中考试数学(文)试题 【答案】B4.鲁班锁是中国古代传统土木建筑中常用的固定结合器,也是广泛流传于中国民间的智力玩具,它起源于古代中国建筑首创的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看上去是严丝合缝的十字几何体,其上下、左右、前后完全对称,十分巧妙.鲁班锁的种类各式各样,其中以最常见的六根和九根的鲁班锁最为著名.九根的鲁班锁由如图所示的九根木榫拼成,每根木榫都是由一根正四棱柱状的木条挖一些凹槽而成.若九根正四棱柱底面边长均为1,其中六根最短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁放进一个球形容器内,使鲁班锁最高的三个正四棱柱形木榫的上、下底面顶点分别在球面上,则该球形容器的表面积(容器壁的厚度忽略不计)的最小值为( )A .24πB .25πC .26πD .27π【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】D 5.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .【来源】湖南省邵阳市邵东县创新实验学校2019-2020学年高一上学期期中数学试题 【答案】C6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【来源】北京市西城区2018年1月高三期末考试文科数学试题 【答案】B7.已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( )A .B .2C .D 【来源】西藏自治区拉萨中学2018届高三第七次月考数学(文)试题 【答案】D8.如果直线l 上的一点A 沿x 轴在正方向平移1个单位,再沿y 轴负方向平移3个单位后,又回到直线l 上,则l 的斜率是( ) A .3 B .13C .-3D .−13【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】C9.一个平面四边形的斜二测画法的直观图是一个边长为1的正方形,则原平面四边形的面积等于( ) A .√2 B .2√2 C .8√23D .8√2【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B10.直线y =kx +3与圆(x −2)2+(y −3)2=4相交于M,N 两点,若|MN|≥2,则k 的取值范围是( )A .[−√3,√3]B .(−∞,−√3]∪[√3,+∞)C .[−√33,√33] D .[−23,0]【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】A11.已知点P(2,1)在圆C:x 2+y 2+ax −2y +b =0上,点P 关于直线x +y −1=0的对称点也在圆C 上,则实数a,b 的值为( )A .a =−3,b =3B .a =0,b =−3C .a =−1,b =−1D .a =−2,b =1 【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B12.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A .27πB .36πC .54πD .81π【来源】山西省2019-2020学年高二上学期10月联合考试数学(理)试题 【答案】B13.在三棱锥A BCD -中,AD CD ⊥,2AB BC ==,AD =CD =,则该三棱锥的外接球的表面积为( ) A .8πB .9πC .10πD .12π【来源】辽宁省辽阳市2019-2020学年高三上学期期末考试数学(文)试题 【答案】A14.直线()2140x m y +++=与直线 320mx y +-=平行,则m =( ) A .2B .2或3-C .3-D .2-或3-【来源】江苏省南京市六校联合体2018-2019学年高一下学期期末数学试题 【答案】B15.如图,在正方体1111ABCD A B C D -中,M ,N 分别是为1BC ,1CD 的中点,则下列判断错误的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行【来源】2015届福建省三明市一中高三上学期半期考试理科数学试卷(带解析) 【答案】D16. (2017·黄冈质检)如图,在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是( )A .BE ∥平面PAD ,且BE 到平面PADB .BE ∥平面PAD ,且BE 到平面PAD 的距离为3C .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30° D .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30°【来源】2014-2015学年湖北省安陆市一中高一下学期期末复习数学试卷(带解析)【答案】D17.如图,在直角梯形ABCD 中,0190,//,12A AD BC AD AB BC ∠====,将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD .在四面体A BCD -中,下列说法正确的是( )A .平面ABD ⊥平面ABCB .平面ACD ⊥平面ABC C .平面ABC ⊥平面BCDD .平面ACD ⊥平面BCD【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题 【答案】B18.已知直线l :()y t k x t -=-()2t >与圆O :224x y +=有交点,若k 的最大值和最小值分别是,M m ,则log log t t M m +的值为( ) A .1B .0C .1-D .222log 4t t t ⎛⎫⎪-⎝⎭【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】B19.若x 2+y 2–x +y –m =0表示一个圆的方程,则m 的取值范围是 A .m >−12 B .m ≥−12 C .m <−12D .m >–2【来源】2018年12月9日——《每日一题》高一 人教必修2-每周一测 【答案】A20.如图所示,直线PA 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面PAC 的距离等于线段BC 的长.其中正确的是( )A .①②B .①②③C .①D .②③【来源】二轮复习 专题12 空间的平行与垂直 押题专练 【答案】B二、多选题21.如图,在长方体1111ABCD A B C D -中,5AB =,4=AD ,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为()4,5,3B .点1C 关于点B 对称的点为()5,8,3- C .点A 关于直线1BD 对称的点为()0,5,3 D .点C 关于平面11ABB A 对称的点为()8,5,0【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】ACD三、填空题22.若直线:l y x m =+上存在满足以下条件的点P :过点P 作圆22:1O x y +=的两条切线(切点分别为,A B ),四边形PAOB 的面积等于3,则实数m 的取值范围是_______ 【来源】福建省厦门市2018-2019学年度第二学期高一年级期末数学试题【答案】-⎡⎣23.点E 、F 、G 分别是正方体1111ABCD A B C D -的棱AB ,BC ,11B C 的中点,则下列命题中的真命题是__________(写出所有真命题的序号).①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形; ②点P 在直线FG 上运动时,总有AP DE ⊥;③点Q 在直线11B C 上运动时,三棱锥1A D QC -的体积是定值;④若M 是正方体的面1111D C B A ,(含边界)内一动点,且点M 到点D 和1C 的距离相等,则点M 的轨迹是一条线段.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题 【答案】①②④24.如图,M 、N 分别是边长为1的正方形ABCD 的边BC 、CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,有以下结论:①异面直线AC 与BD 所成的角为定值. ②存在某个位置,使得直线AD 与直线BC 垂直.③存在某个位置,使得直线MN 与平面ABC 所成的角为45°.④三棱锥M -ACN 体积的最大值为48. 以上所有正确结论的序号是__________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】①③④25.已知两点(2,0)M -,(2,0)N ,若以线段MN 为直径的圆与直线430x y a -+=有公共点,则实数a 的取值范围是___________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】[]10,10-26.已知正方体1111ABCD A B C D -的棱长为点M 是棱BC 的中点,点P在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为_____.【来源】北京市海淀区2018届高三第一学期期末理科数学试题27.某几何体的三视图如下图所示,则这个几何体的体积为__________.【来源】黄金30题系列 高一年级数学(必修一 必修二) 小题好拿分 【答案】20328.设直线3450x y +-=与圆221:9C x y +=交于A , B 两点,若2C 的圆心在线段AB 上,且圆2C 与圆1C 相切,切点在圆1C 的劣弧AB 上,则圆2C 半径的最大值是__________.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】229.已知直线240x my ++=与圆22(1)(2)9x y ++-=的两个交点关于直线0nx y n +-=对称,则m n -=_______.【来源】辽宁省辽阳市2019-2020学年高二上学期期末数学试题 【答案】3- 30.给出下列命题: ①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行; ④一个平面中的两条直线与另一个平面都平行,则这两个平面平行; 其中说法正确的有_____(填序号).【来源】河南省三门峡市2019-2020学年高一上学期期末数学试题 【答案】②③31.设直线2y x a =+与圆22220x y ay +--=相交于A ,B 两点,若||AB =,则a =________【来源】吉林省吉林市吉化第一高级中学2019-2020学年高一上学期期末数学试题【答案】四、解答题32.已知圆C 的一般方程为22240x y x y m +--+=. (1)求m 的取值范围;(2)若圆C 与直线240x y +-=相交于,M N 两点,且OM ON ⊥(O 为坐标原点),求以MN 为直径的圆的方程.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)5m <;(2)224816555x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ 33.如图4,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB .(1)证明:EB FD ⊥; (2)求点B 到平面FED 的距离.【来源】2010年普通高等学校招生全国统一考试(广东卷)文科数学全解全析 【答案】(1)证明见解析(2)d =34.已知圆的方程为228x y +=,圆内有一点0(1,2)P -,AB 为过点0P 且倾斜角为α的弦.(1)当135α=︒时,求AB 的长;(2)当弦AB 被点0P 平分时,写出直线AB 的方程. 【来源】2019年12月14日《每日一题》必修2-周末培优【答案】(1(2)250x y -+=.35.如图,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =,M 是AC 与BD 的交点.求证:(1)1//D M 平面11A C B (2)求1BC 与1D M 的所成角的正弦值.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)见解析;(2)1036.如图所示,直角梯形ABCD 中,AD BC ∥,AD AB ⊥,22AE AB BC AD ====,四边形EDCF 为矩形,CF =(1)求证:平面ECF ⊥平面ABCD ;(2)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为10,若存在,求出线段BP 的长,若不存在,请说明理由.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题【答案】(1)见解析;(237.已知圆C 的圆心在直线390x y --=上,且圆C 与x 轴交于两点(50)A ,,0(1)B ,. (1)求圆C 的方程;(2)已知圆M :221(1)12x y ⎛⎫-++= ⎪⎝⎭,设(,)P m n 为坐标平面上一点,且满足:存在过点(,)P m n 且互相垂直的直线1l 和2l 有无数对,它们分别与圆C 和圆M 相交,且圆心C 到直线1l 的距离是圆心M 到直线2l 的距离的2倍,试求所有满足条件的点(,)P m n 的坐标【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)22(3)4x y -+=(2)79,55⎛⎫- ⎪⎝⎭或31,55⎛⎫ ⎪⎝⎭ 38.如图,四棱锥S -ABCD 的底面是边长为2的正方形,每条侧棱的长都是底面边长P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)30°39.如图,在正三棱柱111ABC A B C -中,2AB =,侧棱1AA =E ,F 分别是BC ,1CC 的中点.(1)求证:1//BC 平面AEF ;(2)求异面直线AE 与1A B 所成角的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)45°40.已知直线1:2l y x =-+,直线2l 经过点(40),,且12l l ⊥.(1)求直线2l 的方程;(2)记1l 与y 轴相交于点A ,2l 与y 轴相交于点B ,1l 与2l 相交于点C ,求ABC V 的面积.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)40x y --=(2)941.已知曲线x 2+y 2+2x −6y +1=0上有两点P(x 1,y 1),Q(x 2,y 2)关于直线x +my +4=0对称,且满足x 1x 2+y 1y 2=0.(1)求m 的值;(2)求直线PQ 的方程.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析)【答案】(1)m =−1;(2)y =−x +1.42.如图,边长为4的正方形ABCD 与矩形ABEF 所在平面互相垂直,,M N 分别为,AE BC 的中点,3AF =.(1)求证:DA ⊥平面ABEF ;(2)求证://MN 平面CDEF ;(3)在线段FE 上是否存在一点P ,使得AP MN ⊥?若存在,求出FP 的长;若不存在,请说明理由.【来源】2014届北京市东城区高三上学期期末统一检测文科数学试卷(带解析)【答案】(1)详见解析;(2)详见解析;(3)存在,94FP = 43.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,且60BAD ︒∠=,PD ⊥平面ABCD ,,E F 分别为棱,AB PD 的中点.(1)证明://EF 平面PBC .(2)若四棱锥P ABCD -的体积为A 到平面PBC 的距离.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)证明见详解;(2.44.已知圆22:6200C x y y +--+=.(1)过点的直线l 被圆C 截得的弦长为4,求直线l 的方程;(2)已知圆M 的圆心在直线y x =-上,且与圆C 外切于点,求圆M 的方程.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)x =0x +-=;(2)224x y +=.45.已知ABC V 的顶点坐标分别为()1,2A ,()2,1B --,()2,3C -.(1)求BC 边上的中线所在的直线的方程;(2)若直线l 过点B ,且与直线AC 平行,求直线l 的方程.【来源】四川省凉山彝族自治州西昌市2019-2020学年高二上学期期中数学(理)试题【答案】(1)420x y --=;(2)5110x y ++=46.如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,090BAP CDP ∠=∠=,E 为PC 中点,(1)求证://AP 平面EBD ;(2)若PAD ∆是正三角形,且PA AB =.(Ⅰ)当点M 在线段PA 上什么位置时,有DM ⊥平面PAB ?(Ⅱ)在(Ⅰ)的条件下,点N 在线段PB 上什么位置时,有平面DMN ⊥平面PBC ?【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)详见解析;(2)(Ⅰ) 点M 在线段PA 中点时;(Ⅱ) 当14PN PB =时. 47.已知点P 是圆22:(3)4C x y -+=上的动点,点(3,0)A - ,M 是线段AP 的中点(1)求点M 的轨迹方程;(2)若点M 的轨迹与直线:20l x y n -+=交于,E F 两点,且OE OF ⊥,求n 的值.【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)221x y +=;(2)n =. 48.已知四棱锥P ABCD -的底面ABCD 是等腰梯形,//AB CD ,AC BD O =I ,22AO OC ==,PA PB AB ===AC PB ⊥.(1)证明:平面PBD ⊥平面ABCD ;(2)求二面角A PD B --的余弦值.【来源】福建省三明市2019-2020学年高二上学期期末数学试题【答案】(1)证明见解析;49.若圆C 经过点3(2,)A -和(2,5)B --,且圆心C 在直线230x y --=上,求圆C 的方程.【来源】2010年南安一中高二下学期期末考试(理科)数学卷【答案】22(1)(2)10x y +++=50.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰在CD 上,即1A O ⊥平面DBC .(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ;(3)求点C 到平面1A BD 的距离.【来源】吉林省吉林市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析;(2)证明见解析;(3)245。

高一下学期数学期末考试试题(共2套,含答案)

高一下学期数学期末考试试题(共2套,含答案)

高一下学期数学期末考试试题(共2套,含答案)广东省惠州市高一(下)期末考试数学试卷一.选择题(每题5分)1.一元二次不等式 $-x^2+x+2>0$ 的解集是()A。

$\{x|x2\}$ B。

$\{x|x1\}$C。

$\{-1<x<2\}$ D。

$\{-2<x<1\}$2.已知$\alpha$,$\beta$ 为平面,$a$,$b$,$c$ 为直线,下列说法正确的是()A。

若 $b\parallel a$,$a\subset\alpha$,则$b\parallel\alpha$B。

若$\alpha\perp\beta$,$\alpha\cap\beta=c$,$b\perp c$,则 $b\perp\beta$C。

若 $a\perp c$,$b\perp c$,则 $a\parallel b$D。

若 $a\cap b=A$,$a\subset\alpha$,$b\subset\alpha$,$a\parallel\beta$,$b\parallel\beta$,则 $\alpha\parallel\beta$3.在 $\triangle ABC$ 中,$AB=3$,$AC=1$,$\angleA=30^\circ$,则 $\triangle ABC$ 面积为()A。

$\frac{\sqrt{3}}{4}$ B。

$\frac{\sqrt{3}}{2}$ C。

$\frac{\sqrt{3}}{8}$ D。

$\frac{\sqrt{3}}{16}$4.设直线 $ $l_1\parallel l_2$,则 $k=$()A。

$-1$ B。

$1$ C。

$\pm1$ D。

无法确定5.已知 $a>0$,$b>0$,$a+b=1$,则$\sqrt{a}+\sqrt{b}$ 的最小值是()A。

$4$ B。

$5$ C。

$8$ D。

$9$6.若 $\{a_n\}$ 为等差数列,且 $a_2+a_5+a_8=39$,则$a_1+a_2+\cdots+a_9$ 的值为()A。

重庆市重庆一中2017-2018学年高一下学期期末考试试题 数学 Word版含答案

重庆市重庆一中2017-2018学年高一下学期期末考试试题 数学 Word版含答案

重庆一中2017-2018学年高一下期期末考试数 学 试 题 卷数学试题共4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|(2)(3)0}A x x x =+-<,{1,0,1,2,3}B =-错误!未找到引用源。

,则错误!未找到引用源。

(A ){0,1} (B ){0,1,2}(C ){1,0,1}- (D ){1,0,1,2}-(2)设a =(2,)k k +,b =(3,1),若a ⊥b ,则实数k 的值等于(A )-32 (B )-53 (C )53 (D )32(3)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18等于(A )20 (B )60 (C )90 (D )100(4)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A )内切 (B )相交 (C )外切 (D )相离(5)已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则z =3x +y 的最大值为(A )12 (B )11 (C )3 (D )-1(6)已知等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为(A )1-14n (B )1-12n (C )23(1-14n )(D )23(1-12n )(7)“m =1”是“直线20mx y +-=与直线10x my m ++-=平行”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(8)阅读右面的程序框图,运行相应的程序,输出S 的值为 (A )15(B )105 (C )245(D )945(9)现有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机 抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上 的数字,差为负数的概率为(A )13 (B )49 (C )59 (D )23(10)在平行四边形ABCD 中,AD =2,∠BAD =60°,E 为CD 的中点,若AD →BE →=1,则AB 的长为(A ) 6 (B )4 (C )5 (D )6(11)(原创)已知函数21()221,1x f x x mx m x ≤=-+-+>⎪⎩,且对于任意实数(0,1)a ∈关于x 的方程()0f x a -=都有四个不相等的实根1234x x x x ,,,,则1234+x x x x ++的取值范围是 (A )(2,4](B )(,0][4,)-∞+∞ (C )[4+∞,)(D )(2+)∞,(12)(原创)已知集合{(,)|240}M x y x y =+-=,22{(,)|220}N x y x y mx ny =+++=,若MN φ≠,则22m n +的最小值(A )45 (B )34 (C )(6-25) (D )54第II 卷二、填空题:本大题共4小题,每小题5分(13)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取 名学生.(14)(原创)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若3,,c o s64a B A π===, 则b =___________.(15)已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ |<6,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为__________ .(16)(原创)点C 是线段..AB 上任意一点,O 是直线AB 外一点,OC xOA yOB =+, 不等式22(1)(2)(2)(1)x y y x k x y +++>++对满足条件的x ,y 恒成立, 则实数k 的取值范围_______.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)已知ABC ∆的面积是3,角,,A B C 所对边长分别为,,a b c ,4cos 5A =. (Ⅰ)求AB AC ; (Ⅱ)若2b =,求a 的值.(18)(本小题满分12分)已知圆C :4)4()3(22=-+-y x ,直线l 过定点(1,0)A . (Ⅰ)若l 与圆C 相切,求直线l 的方程;(Ⅱ)若l 与圆C 相交于P 、Q 两点,且PQ =l 的方程.(19)(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(Ⅰ)若该校高一年级共有学生640名,试估计 该校高一年级期中考试数学成绩不低于60分的人数;(Ⅱ)若从数学成绩在[40,50)与[90,100]两个分数 段内的学生中随机选取2名学生,求这2名学生的数学 成绩之差的绝对值不大于10的概率.(20)(本小题满分12分)已知数列{a n }满足111,n n a a a n -=-=(其中2n n N ≥∈且).(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设24nn na b n =⨯,其前n 项和是T n ,求证:T n<79 .(21)(原创)(本小题满分12分) 已知动点(,)P x y 满足方程1(0)xy x =>.(Ⅰ)求动点P到直线:20l x y +=距离的最小值;(Ⅱ)设定点(,)A a a ,若点P A ,之间的最短距离为22,求满足条件的实数a 的取值.(22)(本小题满分12分)已知函数2()ax bf x x +=为奇函数,且(1)1f =.(Ⅰ)求实数a 与b 的值;(Ⅱ)若函数1()()f x g x x-=,设{}n a 为正项数列,且当2n ≥时,2112211[()()]n n n n n n n a a g a g a a q a a ---+-⋅+⋅=⋅,(其中2016q ≥),{}n a 的前n 项和为n S , 11ni n i iSb S +==∑,若2017n b n ≥恒成立,求q 的最小值.人:付 彦审题人:邹发明2016年重庆一中高2018级高一下期期末考试数 学 答 案 2016.7一、 选择题:1—5 DACBB 6—10 CCBDD 11—12 CA二、 填空题:15,2,925,1()4-∞,三、 解答题:(17)解:由4cos 5A =,得3sin 5A =.又1sin 302bc A =,1sin 32bc A =∴10bc = (Ⅰ)cos 8AB AC bc A ==(Ⅱ)2,5b c =∴=,2222cos a b c bc A =+-=13∴a =.(18) 解:(Ⅰ)当斜率不存在时,方程x=1满足条件; 当L 1斜率存在时,设其方程是y=k(x-1),则214k 32=+--k k ,解得43=k , 所以所求方程是x =1和3x -4y -3=0;(Ⅱ)由题意,直线斜率存在且不为0,设其方程是y =k (x -1),则圆心到直线的距离d=14k 22+-k ,224d d -=∴=k =1或k =7, 所以所求直线方程是10x y --=或770x y --=.(19)解:(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(Ⅱ)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,则记在[40,50)分数段的两名同学为A 1,A 2,在[90,100]分数段内的同学为B 1,B 2,B 3,B 4.若从这6名学生中随机抽取2人,则总的取法共有15种.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A 1,A 2),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4)共7种取法,所以所求概率为P =715.(20)解:(Ⅰ)解:121321()()()n n n a a a a a a a a -=+-+-++-(1)1232n n n +=++++=(Ⅱ)证明:(1)144n nn n n n b n ++==⨯, 其前n 项和T n =24+342+…+n +14n ,14T n =242+343+…+n 4n +n +14n +1, ∴T n -14T n =24+142+143+…+14n -n +14n +1=14+14(1-14n )1-14-n +14n +1=712-3n +73×4n +1, ∴T n =79-3n +79×4n <79.(21)解:(Ⅰ)2|x d +==≥当且仅当x =(Ⅱ)设点)1,(xx P (0>x ),则222222)1(2)1()1()(a x x a x x a x a x d ++-+=-+-=设t x x =+1(2≥t ),则21222-=+t xx 2)(22-+-=a a t d ,设2)()(22-+-=a a t t f (2≥t )对称轴为a t = 分两种情况:(1)2≤a 时,)(t f 在区间[)+∞,2上是单调增函数,故2=t 时,)(t f 取最小值 ∴222)2(22min =-+-=a a d ,∴0322=--a a ,∴1-=a (3=a 舍) (2)a >2时,∵)(t f 在区间[]a ,2上是单调减,在区间[)+∞,a 上是单调增, ∴a t =时,)(t f 取最小值∴222)(22min =-+-=a a a d ,∴10=a (10-=a 舍) 综上所述,1-=a 或10(22)解:(Ⅰ)因为()f x 为奇函数,22ax b ax bx x -++=-, 得0b =,又(1)1f =,得1a =(Ⅱ)由1()f x x =,得21()x g x x -=,且2112211[()()]n n n n n n n a a g a g a a q a a ---+-⋅+⋅=⋅,∴1(2)nn a q n a -=≥1(1)1n n a q S q -∴=-,∴1111n n n n S q S q ++-=- 。

高一数学下学期期末考试试题(18)

高一数学下学期期末考试试题(18)

长安一中2017~2018学年度第二学期期末考试高一数学试题时间:100分钟总分:150分一、选择题(本题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.己知a b R ∈、且a b >,则下列不等关系正确的是( )A .22a b >B .a b <C .a b>1 D .33a b > 2.已知10<<x ,则(33)x x -取最大值时的值为()A .13B .12C .34D .233.在ABC ∆中,角A B C 、、所对的边分别为,,,若=1,3=b ,30A = ,则角等于( ) A .60°或120° B .30°或150° C .60° D .120°4.直线过点()1,2-且与直线2340x y -+=垂直,则的方程是()A .3210x y +-=B .3270x y ++=C .2350x y -+=D .2380x y -+=5.中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还。

”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A .192里B .96里C .48里D .24里6.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为,则=()A .43-B .34-C .D .2 7.已知圆:()()22111x y ++-=,圆与圆关于直线10x y --=对称,则圆的方程为()A .()()22221x y ++-=B .()()22221x y -++=C .()()22221x y +++=D .()()22221x y -+-=8.设,m n 是两条不同的直线,,αβ是两个不同的平面。

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷北京市西城区2017-2018学年度第二学期期末试卷高一数学2018.7 A卷 [立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.已知点 M(-1,2),N(3,0),则点 M 到点 N 的距离为()。

A) 2 (B) 4 (C) 5 (D) 2√52.直线 x-y-3=0 的倾斜角为()。

A) 45 (B) 60 (C) 120 (D) 1353.直线 y=2x-2 与直线 l 关于 y 轴对称,则直线 l 的方程为()。

A) y=-2x+2 (B) y=-2x-2 (C) y=2x+2 (D) y=1/x-14.已知圆 M: x^2+y^2=1 与圆 N: (x-2)^2+y^2=9,则两圆的位置关系是()。

A) 相交 (B) 相离 (C) 内切 (D) 外切5.设m,n 为两条不重合的直线,α,β 为两个不重合的平面,m,n 既不在α 内,也不在β 内。

则下列结论正确的是()。

A) 若m//α,n//α,则 m//n。

B) 若 m//n,n//α,则m//α。

C) 若 m⊥α,n⊥α,则 m⊥n。

D) 若 m⊥α,m⊥β,则α⊥β。

6.若方程 x^2+y^2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是()。

A) (-∞,1) (B) (-∞,1] (C) [1,+∞) (D) R7.圆柱的侧面展开图是一个边长为 2 的正方形,那么这个圆柱的体积是()。

A) π (B) π/2 (C) 2π (D) π/28.方程 x=1-y^2 表示的图形是()。

A) 两个半圆 (B) 两个圆 (C) 圆 (D) 半圆9.如图,四棱锥 P-ABCD 的底面 ABCD 是梯形,XXX。

若平面 PAD 平面 PBC∥l,则()。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

2017-2018学年高一下学期期末考试试卷 物理 (含答案)

2017-2018学年高一下学期期末考试试卷 物理 (含答案)

2017-2018学年高一下学期期末考试试卷物理 (含答案)XXX2018-201年度下学期期末考试高一(18届)物理试题说明:1.测试时间:90分钟,总分:100分。

2.客观题需涂在答题纸上,主观题需写在答题纸的相应位置上。

第Ⅰ卷(48分)一、选择题(本题共12小题,每小题4分,共48分。

在每个小题所给出的四个选项中,第9、10、11、12题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不答的得分。

其余题目为单选题)1.下列说法正确的是()A.XXX的“XXX说”阐述了宇宙以太阳为中心,其它星体围绕太阳旋转。

B.XXX因为发表了行星运动的三个定律而获得了诺贝尔物理学奖。

C.XXX得出了万有引力定律并测出了引力常量G。

D.库仑定律是库仑经过实验得出的,适用于真空中两个点电荷间。

2.质量为2 kg的质点在xy平面上做曲线运动,在x方向的速度图像和y方向的位移图像如图所示,下列说法正确的是()A.质点的初速度为3 m/s。

B.质点所受的合外力为3 N。

C.质点初速度的方向与合外力方向垂直。

D.2 s末质点速度大小为6 m/s。

3.如图所示,将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直墙上,不计空气阻力,则下列说法中正确的是()A.从抛出到撞墙,第二次球在空中运动的时间较短。

B.篮球两次撞墙的速度可能相等。

C.篮球两次抛出时速度的竖直分量可能相等。

D.抛出时的动能,第一次一定比第二次大。

4.地球半径为R,在距球心r处(r>R)有一同步卫星。

另有一半径为2R的星球A,在距球心3r处也有一同步卫星,它的周期是48 h。

那么A星球平均密度与地球平均密度的比值为()A.9∶32B.3∶8C.27∶32D.27∶165.如图,小球从高处下落到竖直放置的轻弹簧上,刚接触轻弹簧的瞬间速度是5 m/s,接触弹簧后小球速度v和弹簧缩短的长度△x之间关系如图所示,其中A为曲线的最高点。

已知该小球重为2 N,弹簧在受到撞击至压缩到最短的过程中始终发生弹性形变。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。

2017-2018学年高一下学期期末考试数学试题(A卷)

2017-2018学年高一下学期期末考试数学试题(A卷)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 以下程序中,输出时的值是输入时的值的()A. 1倍B. 2倍C. 3倍D. 4倍【答案】D【解析】令初始值A=a,则A=2(a+a)=4a.故选D.2. 已知数列是等比数列,,且,,成等差数列,则()A. 7B. 12C. 14D. 64【答案】C【解析】分析:先根据条件解出公比,再根据等比数列通项公式求结果.详解:因为,,成等差数列,所以所以,选C.点睛:本题考查等比数列与等差数列基本量,考查基本求解能力.3. 将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A. 0795B. 0780C. 0810D. 0815【答案】A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.4. 已知动点满足,则的最大值是()A. 50B. 60C. 70D. 90【答案】D【解析】分析:先作可行域,根据图像确定目标函数所代表直线取最大值时得最优解.详解:作可行域,根据图像知直线过点A(10,20)时取最大值90,选D,点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5. 若干个人站成一排,其中为互斥事件的是()A. “甲站排头”与“乙站排头”B. “甲站排头”与“乙不站排头”C. “甲站排头”与“乙站排尾”D. “甲不站排头”与“乙不站排尾”【答案】A【解析】试题分析:事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。

2013-2014学年下学期期末考试高一数学(理)试卷(含答案)

2013-2014学年下学期期末考试高一数学(理)试卷(含答案)

2013-2014学年下学期期末考试高一数学(理)试卷(含答案) 考试时间:120分钟一、选择题(每题5分,共60分)1错误!未指定书签。

.若 cos 0α>,且tan 0α<,则α是A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.已知正方形ABCD 的边长为1,AB =a ,BC =b ,AC =c , 则++a b c等于A .0B .3C..错误!未指定书签。

3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 A .7 B .15 C .25 D .35错误!未指定书签。

4.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm 的高三男生的体重为A .70.09B .70.12C .70.55D .71.055错误!未指定书签。

.如图表示甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的 和是( ) ( ) A .56分 B .57分C .58分D .59分6.△ABC 的外接圆的圆心为O ,半径为1,若0OA AB OC ++=,且||||OA AB =,则CA CB ⋅等于A .32 BC .3 D.7 .如右图是一个算法的程序框图,当输入x 的值为3时,输出y 的结果恰好为13,则“?”处的关系式是A .3y x = B .3xy -= C .3xy = D .13y x=8.如图,三行三列的方阵中有9个数(123123)ij a i j ==,,;,,,从中任取三 个数,则任意两个数0.08x不同行也不同列的概率是 ( )⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a aA .37B .47C .114D .13149 .已知定义在区间⎥⎦⎤⎢⎣⎡23,0π上的函数)(x f y =的图像关于直线43π=x 对称,当43π≥x 时,x x f cos )(=,如果关于x 的方程a x f =)(有解,记所有解的和为S, 则S 不可能为A .π45B .π23C .π49D .π310.设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) 21世纪教育网 ( )A .3B .4C .5D .611.已知n 次多项式0111)(a x a x a x a x f n n n n ++++=-- ,用秦九韶算法求当0x x =时)(0x f 的值,需要进行的乘法运算、加法运算的次数依次是( )A .,n n B .2,n nC .(1),2n n n + D .1,1n n ++21世纪教育网12.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是 ( ) A .[]4,2-- B .[]2,0-C .[]0,2D .[]2,4二、填空题(每题5分,共20分) 13.已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°,则α的取值范围是__________________14.在区间[]9,0上随机取一实数x ,则该实数x 满足不等式21log 2x ≤≤的概率为__________________ .15.样本容量为1000的频率分布直方图如图所示.根据开始 输入t输出y 结束YN样本的频率分布直方图,计算x 的值为__________,样本21世纪教育网 数据落在[)6,14内的频数为____________.16.若定义在区间D 上的函数f (x )对于D 上任意n 个值x1、x2、…、xn 总满足:1n [f (x1)+f (x2)+…+f (xn )]≤f (12n x x x n ++⋅⋅⋅+),则f (x )称为D 上的凸函数.现已知f (x )=cosx 在(0,2π)上凸函数,则锐角△ABC 中cosA+cosB+cosC 的最大 值为__________________.21世纪教育网 三、解答题17.某市公用电话(市话)的收费标准为:3分钟之内 (包括3分钟)收取0.30元;超过3分钟部分按每分钟0.10元另外收费(为简便起见,假设此时通话时间为整数)。 (1)设通话时间为t 分钟,通话费为y 元,试求y 关于 t 的函数关系式;(2)将下边的程序框图补充完整。21世纪教育网18.有编号为12,A A ,,10A 的10个零件,测量其直径(单位:cm),得到下面数据:]其中直径在区间[1.48,1.52]内的零件为一等品。(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率: (Ⅱ)从一等品零件中,随机抽取2个。(i)用零件的编号列出所有可能的抽取结果; (ii)求这2个零件直径相等的概率。 已知tan 2θ=.求:(Ⅰ)⎪⎭⎫ ⎝⎛π-θ4tan 的值; (Ⅱ)θ-θθ+θ22cos 2cos sin sin 的值. 20.已知函数()()22,f x x bx a a b R =-+∈21世纪教育网(1)若{}{}0,1,2,3,0,1,2,3a b ∈∈,求方程()0f x =有实数根的概率;(2)若a 从区间[]0,3内任取一个数,b 从区间[]0,2内任取一个数,求方程()0f x =有实数根的概率。21.在△ABC 中,角A,B,C 所对边分别为a,b,c,且B CB A sin sin 2tan tan 1=+(Ⅰ)求角A;(Ⅱ)若m (0,1)=-,n ()2cos ,2cos 2CB =,试求|m +n|的最小值. 22.一个函数()f x ,如果对任意一个三角形,只要它的三边长,,a b c 都在()f x的定义域内,就有()()(),,f a f b f c 也是某个三角形的三边长,则称()f x 为 “保三角形函数”.(I )判断()1f x =,()2f x x=,()23f x x =中,哪些是“保三角形函数”,哪些不是,并说明理由; (II )如果()g x 是定义在R 上的周期函数,且值域为()0,+∞,证明:()g x 不是“保三角形函数”;(III )若函数()sin F x x=,x ∈()0,A 是“保三角形函数”,求:A的最大值.(可以利用公式sin sin2sin cos22x y x y x y+-+=)高一年级数学(理科)参考答案 一、选择题(每题5分,共40分)错误!未找到引用源。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

吉林省长汽车经济开发区第六中学高一下学期期末考试数学(理)试卷Word版含答案

吉林省长汽车经济开发区第六中学高一下学期期末考试数学(理)试卷Word版含答案

汽车区六中高一年级2017〜2018学年度下学期期末考试数学(理)学科命题人:李迪审题人:王文光考试说明:1.考试时间为120分钟,满分150分,选择题涂卡。

2.考试完毕交答题卡。

第I卷一、选择题(本题包括12个小题,每小题只有一个正确选项,每小题5分,共60 分)1 •已知a,b,c,d为实数,a b且c d,则下列不等式一定成立的是().a, b, c,若a=1 , b「3 , A = 30,则角B 等).A. 60 或120B. 30 或150C. 60D.1205.某同学为了计算图所示的程序框图, 1 1 1 1的值,设计了如3 6 9 300则①处的判断框内应填入(A. \ <98B. i 岂99 C. i 辽100\ 乞101 ).A. ac bdB. a - c b - dD.12.在空间直角坐标系中, 已知P 1,0,0 ,Q 3, -2,2 ,则P、Q两点间的距离PQ =(A. 2 3B. 4C. 2 .5D. 2 , 63.在等比数列{a n}中, ).A. 4B. 16C. 8D. 324.在ABC中,角A,B,C所对的边分别为-2ay =0(a . 0)截直线x • y 二0所得线段的长度是 2 2,则圆M 与圆9•已知等差数列{a n }的公差d = 0,前n 项和为S n ,若对所有的n(n ・N ),都有S n_S 。

,则A. a n - 0B. a 9 a 10 ::: 0C. S 2 ::: Si7C. x 3y -10 = 0D. x -3y 8=0x 2 a x • 1 - 0恒成立,则实数a 的取值范围是(N:(x —1)2 (y —1) 二1的位置关系是 A.内切 B.外切 C.相离 D •相7•如图,在正方体 ABCD-ABQD ,中,E , F , A 1D 1, G D1 ,BC , GC 的中点,则异面直线 EF 与GH 所成的角大小等于( )• 6G , H 分别为 AC GA.45B.60C. 90D.120 &如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为( )• A. 20 二 B. 24 :C. 28D. 32- 14侧(左)视图)•俯视團10 • 直线I 通过点(1 , 3)且与两坐标轴的正半轴所围成的三角形面积为 6, 则直线l 的方程是)•A. 3x y - 6 = 0B. 3x - y = 0A.一2B. 1-2,-::C. 1-2,21D. 1.0,::26.已知圆M:x yD.11 .对一切实数x ,不等式.. 2 212.已知P为直线x y -2 =0上的点,过点P作圆O: x y =1的切线,切点为M N,若EMPN =90,则这样的点P有( )A. 0个B. 1个C. 2个D.无数个第U卷二、填空题(本题包括4个小题,共20分)x13. ------------------- 不等式 _____________ <0的解为.X-214•已知直线l过点P(2,1),且与直线3x + y+5 = 0垂直,则直线l的方程为___________________ .x 3y 三315•设x, y满足约束条件^-^1 ,则z = 乂的最大值为____________________ .x*016. ______________________________________________________________ 已知PBD所在平面与矩形ABCD所在平面互相垂直,PD = BD =2, 一BDP =120 , 若点P、A、B、C、D都在同一球面上,则此球的表面积等于_________________________________________ .三、简答题(本题包括6个小题,共70分)17.(满分10分)在等差数列{a n}中,a2 =4 , a4 a7 =15 .(1)求数列{a n}的通项公式.(2)设b n =2an— 2n,求b2 b^ -b9的值.18.(满分12分)已知直线h经过点A(-1,5)和点B(-3,7),直线I?过点C(2,4)且与h平行•(1)求直线l2的方程;(2)求点C关于直线h的对称点D的坐标.19.(满分12分)在UBC中,a,b,c 分别是角代B,C的对边,且2cosAcosC tanAtanC -1 =12(1)求B 的大小;(2)若 a • c =、.15,b = .3,求 ABC 的面积。

安徽省天一大联考2017_2018学年高一数学下学期期末考试试题(含解析)

安徽省天一大联考2017_2018学年高一数学下学期期末考试试题(含解析)

安徽省天一大联考2017-2018学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2. 下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3. 某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4. 将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()。

2017-2018学年度第二学期高一物理期末试卷含答案

2017-2018学年度第二学期高一物理期末试卷含答案

2017-2018学年度第二学期期末检测试题高 一 物 理本试卷选择题10题,非选择题6题,共16题,满分为100分,考试时间90分钟.注意事项:1.答卷前,考生务必将本人的学校、班级、姓名、考试号填在答题卡上.2.将每题的答案或解答写在答题卡上,在试卷上答题无效.3.考试结束,只交答题卡.一、单项选择题:本题共6小题,每小题3分,共18分,每小题只有一个选项符合题意.1.如图所示,质量相等的A 、B 两物块置于绕竖直轴匀速转动的水平圆盘上,两物块始终 相对于圆盘静止,则两物块A .线速度大小相同B .角速度大小相同C .向心加速度大小相同D .向心力大小相同2.如图所示,点电荷+Q 固定,点电荷-q 沿直线从A 运动到B .此过程中,两电荷间的库仑力是A .吸引力,先变小后变大B .吸引力,先变大后变小C .排斥力,先变小后变大D .排斥力,先变大后变小3.质量为m 的汽车停放在平直的公路上,现以恒定功率P 启动,最终以某一速度做匀速直线运动.此过程中,车所受阻力大小恒为f ,重力加速度为g ,则A .汽车的速度最大值为f PB .汽车的速度最大值为mgP C .汽车的牵引力大小不变 D .汽车在做匀加速直线运动4.在下面各实例中,不计空气阻力,机械能不守恒的是A .做平抛运动的铅球B .被匀速吊起的集装箱C .做自由落体运动的小球D .沿光滑曲面下滑的物体5.2016年8月16日1时40分,我国在酒泉卫星发射中心用“长征二号”丁运载火箭,成功将世界首颗量子科学实验卫星“墨子”发射升空,首次实现卫星和地面之间的量子通信.“墨子”由火箭发射至高度为500千米的预定圆形轨道.同年6月在西昌卫星发射中心成功发射了第二十三颗北斗导航卫星G7,G7属地球静止轨道卫星(高度约为36 000千米),它使北斗系统的可靠性进一步提高.关于卫星,以下说法中正确的是A .这两颗卫星的运行速度可能大于第一宇宙速度B .通过地面控制可以将北斗G7定点于扬州正上方C .“墨子”的向心加速度比北斗G7小D .“墨子”的周期比北斗G7小6.给平行板电容器充电,断开电源后A 极板带正电,B 极板带负电.板间有一带电小球C 用绝缘细线悬挂,如图所示.小球静止时与竖直方向的夹角为θ,则A .若将B 极板向下平移少许,A 、B 两板间电势差将减小B .若将B 极板向右平移少许,电容器的电容将增大C .若将B 极板向右平移少许,夹角θ将不变D .若将B 极板向上平移少许,夹角θ将变小二、多项选择题:本题共4小题,每小题4分,共16分,每小题有不少于两个选项符合题意.全部选对得4分,漏选得2分,错选和不答的得0分7.物体做匀速圆周运动时,下列说法中正确的是A .向心力一定指向圆心B .向心力一定是物体受到的合外力+QC .向心力的大小一定不变D .向心力的方向一定不变8.已知引力常量G 和下列某组数据,就能计算出地球的质量,这组数据是A .地球绕太阳运行的周期及地球与太阳之间的距离B .月球绕地球运行的周期及月球与地球之间的距离C .人造地球卫星绕地球运动的速度和地球半径D .若不考虑地球自转,已知地球的半径及地表重力加速度9.水平线上的O 点放置一点电荷,图中画出了电荷周围对称分布的几条电场线,如图所示.以水平线上的某点O'为圆心画一个圆,与电场线分别相交于a 、b 、c 、d 、e .则下列说法中正确的是A .b 、e 两点的电场强度相同B .b 、c 两点间电势差等于e 、d 两点间电势差C .电子在c 点的电势能小于在b 点的电势能D .正点电荷从a 点沿圆周逆时针移动到d 点过程中,电场力对它做正功10.如图所示,在竖直平面内有一个半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量均为m 的相同小球a 、b (可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则A .下滑过程中a 球和b 球组成的系统机械能守恒B .下滑过程中a 球机械能守恒C .小球a 滑过C 点后,a 球速度为gR 2D .从释放至a 球滑过C 点的过程中,轻杆对b 球做功为21第Ⅱ卷(非选择题共66分)三、简答题:本题共2小题,共 18分.把答案填在答题卡相应的横线上或按题目要求作答.11.(10分)某同学利用如图所示装置做“验证机械能守恒定律”实验.(1)关于这一实验,下列说法中正确的是A .打点计时器应接直流电源B .应先释放纸带,后接通电源打点C .需使用秒表测出重物下落的时间D .测出纸带上两点迹间的距离,可知重物相应的下落高度(2)该同学通过打点后得到一条纸带如图所示,O 点为重物自由下落时纸带打点的起点,另选取连续的三个打印点为计数点A 、B 、C ,各计数点与O 点距离分别为S 1、S 2、S 3,相邻计数点时间间隔为T .当地重力加速度为g ,重物质量为m ,从开始下落到打下B 点的过程中,重物动能的增量表达式ΔE k = ,重物重力势能减少量表达式ΔE p= .(用题中字母表示) (3)经计算发现重物动能增加量略小于重力势能减少量,其主要原因是A .重物的质量过大B .重物的体积过小C .重物及纸带在下落时受到阻力D .电源的电压偏低(4)为了减小实验误差请提出一条合理性建议:12.(8分)某同学把附有滑轮的长木板平放在实验桌上,A D将细绳一端拴在小车上,另一端绕过定滑轮,挂上适当的钩码,使小车在钩码的牵引下运动,以此探究绳拉力做功与小车动能变化的关系.此外还准备了打点计时器及配套的电源、导线、复写纸、纸带、天平、小木块等.组装的实验装置如图所示.(1)若要完成该实验,必需的实验器材还有________.(2)实验开始时,他先调节木板上定滑轮的高度,使牵引小车的细绳与木板平行.他这样做的目的是________A .避免小车在运动过程中发生抖动B .可使打点计时器在纸带上打出的点迹清晰C .可以保证小车最终能够实现匀速直线运动D .可在平衡摩擦力后使细绳拉力等于小车受到的合力(3)平衡摩擦力后,为了保证小车受到的合力与钩码总重力大小基本相等,尽量减少实验误差,现有质量为10g 、30g 、50g 的三种钩码,你选择 g 的钩码.(4)已知小车的质量为M ,所挂的钩码质量为m ,重力加速度用g 表示,B 、E 两点间的距离为L ,经计算打下B 、E 点时小车的速度分别为v B 、v E ,若选取纸带BE 段研究,那么本实验最终要验证的数学表达式为四、计算论述题:本题共4小题,共48分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位. 13.(10分)如图所示,倾角θ=37°斜面固定在水平面上,一质量m =2kg 的物块在大小为20N 、方向沿斜面向上的拉力F 作用下,由静止沿斜面向上运动.运动x =10m 时,速度达到v =6m/s .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求此过程中: (1)F 对物块做的功W ;(2)物块重力势能的增量ΔE p ;(3)物块克服重力做功的最大瞬时功率P .14.(12分)如图所示,在两条平行的虚线内存在着宽度L =4cm 、场强E =2-101691 N/C 方向竖直向下的匀强电场,在与右侧虚线相距L=4cm 处有一与电场平行的足够大的屏.现有一质量m =9.1×10-31kg 、电荷量e =1.6×10-19C 的电子(重力不计)以垂直电场方向的初速度v 0=2×104m/s 射入电场中,最终打在屏上的P 点(图中未画出),v 0方向的延长线与屏的交点为O .求:(1)电子从射入电场至打到屏上所用的时间t ;(2)电子刚射出电场时速度v 的大小和方向;(3)P 点到O 点的距离d .16.(14分)如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现;(2)当转台角速度ω2为多大时,转台对物块支持力为零;(3)转台从静止开始加速到角速度Lg =3ω的过程中, 转台对物块做的功.2017-2018学年度第二学期期末检测高一物理参考答案及评分标准 18.06一、单项选择题:本题共6小题,每小题3分,共18分.1、B2、B3、A4、B5、D6、C二、多项选择题:本题共4小题,每小题4分,共16分,每小题有不少于两个选项符合题意.全部选对得4分,漏选得2分,错选和不答的得0分.7、 ABC 8、BD 9、BC 10、AD三、简答题:本题共2小题,共 18分.11.(10分)(1)D (2)()22138T S S m - mgS 2 (3)C (4)选用密度大的材料做重物 或 使打点计时器的两个限位孔的连线竖直(其他说法合理同样给分) (每空2分)12.(8分)(1) 刻度尺 (2)D (3)10g(4)22E B 1122mgL Mv Mv =- (每空2分)四、计算论述题:本题共4小题,共48分.13.(10分)(1)力F 所做的功:2001020=⨯==Fx W J (3分)(2)物块重力势能增量: p sin 3720100.6120J E mgx ∆=︒=⨯⨯= (3分)(3)物块克服重力做功的最大瞬时功率:cos(18053)72W P mgv =︒-︒= (4分)14.(12分)(1)电子从进电场至打到屏上所用时间64010410204.022-⨯=⨯⨯==v L t s (3分) (2)电子在电场中加速度:19210231911.6101016110m/s 9.110eE a m ---⨯⨯⨯===⨯⨯ (1分) 电子在电场中水平方向匀速直线运动的时间:61400.04210s 210L t v -===⨯⨯(1分) 电子在竖直方向的分速度:10641110210210m/s y v at -==⨯⨯⨯=⨯ (1分)电子射出电场时速度大小:410m/s v == (1分) 速度方向与初速度夹角为α且斜向上:1tan 0==v v y α 即α=45° (1分) (3)电子打到屏上P 点到O 的距离:αtan )2(L L d += (3分) 代入数据得:d =0.06m (1分)15.(12分)(1)对小滑块从A 到C 的过程应用动能定理2c 1sin (1cos )cos 02mgS mgR mgS mv θθμθ+--=- (3分)代入数据得:c v = (1分)(2)C 点时对滑块应用向心力公式:2C N v F mg m R-= (2分) 代入数据得:F N =58N (1分)根据牛顿第三定律得:F 压=F N =58N (1分)(3)小滑块恰能通过最高点D 时,只有重力提供向心力:2D v mg m R=(1分) 代入数据得:v D =5m/s (1分)对小滑块从静止释放到D 点全过程应用动能定理:''2D 1sin (1cos )cos 02mgS mgR mgS mv θθμθ-+-=-(1分) 代入数据得:S ’=2.1m (1分)16.(14分)(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力: 212sin mg m L μωθ=⋅ (3分) 代数据得:L gμω=1 (1分)(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供:θωθsin 2tan 22L m mg ⋅= (3分) 代数据得:Lg 332=ω (1分) (3)∵ω3>ω2,∴物块已经离开转台在空中做圆周运动。

2017-2018学年高二年级数学期末试卷(理数)含答案

2017-2018学年高二年级数学期末试卷(理数)含答案

2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2

a
1f
x
a

0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知


解得 的横坐标分别是 则 有 又
,又 于是
, ,

,即 l 与直线 平行, 一定相交,分别联立方

是平面
的法向量,则
,即

对任意
,要使

的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,

人教版数学高一下册期末测试精选(含答案)2

人教版数学高一下册期末测试精选(含答案)2

B.若 , ,则
C.若 // , m ,则 m / /
D.若 m , ,n / / ,则 m n
【来源】广西梧州市 2019-2020 学年高一上学期期末数学试题 【答案】C
16.已知圆 x a2 y2 1 与圆 x2 y b2 1外切,则( ).
A. a2 b2 4
32.已知点 A(2, a) ,圆 C : (x 1)2 y2 5
(1)若过点 A 只能作一条圆 C 的切线,求实数 a 的值及切线方程; (2)设直线 l 过点 A 但不过原点,且在两坐标轴上的截距相等,若直线 l 被圆 C 截得
的弦长为 2 3 ,求实数 a 的值.
【来源】江西省宜春市上高县上高二中 2019-2020 学年高二上学期第三次月考数学(理) 试题
【答案】B
7.如图,四边形 ABCD 和 ADEF 均为正方形,它们所在的平面互相垂直,动点 M 在 线段 AE 上,设直线 CM 与 BF 所成的角为 ,则 的取值范围为( )
A.
0,
3
B.
0,
π 3
C.
0,
2
D.
0,
2
【来源】四川省乐山市 2019-2020 学年高二上学期期末数学(文)试题
6
a
1 3
,则
cos
2 3
2a
()
A. 7 9
B. 1 3
1
C.
3
7
D.
9
【来源】河北省石家庄市第二中学 2018-2019 学年高二第二学期期末考试数学(理)试

【答案】A
13.已知圆 C 被两直线 x y 1 0 , x y 3 0 分成面积相等的四部分,且截 x 轴

XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)

XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)

XXX闻道2017-2018学年度第三次高中联合质量测评理科数学试卷(含答案)XXX闻道2017-2018学年度第三次高中联合质量测评理科数学本试卷共4页,满分150分,考试用时120分钟。

注意事项:1.答题前,考生务必用5毫米黑色签字笔将自己的姓名和准考证号填写在答题卡上。

2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置。

如需改动,先划掉原来的答案,然后再写上新的答案。

不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I卷一、选择题1.设复数$z=3+i$(其中$i$为虚数单位),则复数$z-\frac{1}{z}$的虚部为($\quad$)A。

$z$。

B。

$-1919$。

C。

$-10$。

D。

$xxxxxxxx$2.若集合$M=\{x|x-2x^20\}$,则$M\cap N$($\quad$)A。

$\varnothing$。

B。

$\left\{\frac{1}{4}\right\}$。

C。

$\left\{\frac{1}{2},\frac{1}{1}\right\}$。

D。

$\left\{\frac{1}{4},+\infty\right\}$3.下图是XXX发布的2017年1月至7月的本市楼市价格同比增长与环比增长涨跌幅数据绘制的雷达图(注:2017年2月与2016年2月相比较,叫同比;2017年2月与2017年1月相比较,叫环比)。

根据该雷达图,则下列结论错误的是($\quad$)A。

2017年1月至7月该市楼市价格有涨有跌。

B。

2017年1月至7月分别与2016年1月至7月相比较,该市楼市价格有涨有跌。

C。

2017年2月至7月该市市价格涨跌波动不大,变化比较平稳。

D。

2017年1月至7月分别与2016年1月至7月相比较,1月该市楼市价格涨幅最大。

安徽省淮北市濉溪二中2017-2018学年度高一下学期期末考试数学试题(解析版)

安徽省淮北市濉溪二中2017-2018学年度高一下学期期末考试数学试题(解析版)

濉溪二中2017-2018学年度期末测试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则()A. B. C. D.【答案】B【解析】分析:先化简集合B,再求.详解:由题得B={x|0<x<3},所以= ,故答案为:B.点睛:本题主要考查集合的化简和交集运算,意在考查学生对这些知识的掌握水平,属于基础题.2. 已知是等比数列,,,则()A. 1B. 2C. 4D. 8【答案】C【解析】∵是等比数列,,,∴,∴,故选C.3. 在中,角的对边分别为.已知,,,则()A. B. C. D.【答案】A故选A4. 若程序框图如图所示,则该程序运行后输出的值是()A. 5B. 6C. 7D. 8【答案】A【解析】试题分析:当输入的值为时,第一次循环,;第二次循环,;第三次循环,;第四次循环,;第五次循环,;退出循环输出结果为,故选A.考点:1、程序框图;2、条件结果及循环结构.5. 若,则()A. B. C. D.【答案】C2,即B不正确;∵a<b<0,∴,正确;,即D不正确,故选C.6. 高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是()A. 8B. 13C. 15D. 18【答案】D【解析】分析:由于系统抽样的编号是一个以13为公差的等差数列,所以还有一个学生的编号是18.详解:因为,所以系统抽样的编号是一个以13为公差的等差数列,所以还有一个学生的编号是5+13=18.故答案为:D.点睛:(1)本题主要考查系统抽样,意在考查学生对该知识的掌握水平.(2)系统抽样抽出来的编号是一个等差数列.7. 数列的通项公式,则其前项和()A. B. C. D.【答案】A【解析】分析:先化简,再利用裂项相消求和.详解:由题得,所以,故答案为:A.点睛:(1)本题主要考查裂项相消求和,意在考查学生对该知识的掌握水平.(2)类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和.8. 与下列哪个值相等()A. B. C. D.【答案】A【解析】分析:按照二进制转化为十进制的法则,二进制一次乘以2的n次方,(n从0到最高位)最后求和即可.然后计算选项A、B、C、D的值.详解:1001101(2)=1×26+0×25+0×24+1×23+1×22+0×21+1×20=77.113(8)=1×82+1×81+3×80=75.114(8)=1×82+1×81+4×80=76.115(8)=1×82+1×81+5×80=77.116(8)=1×82+1×81+6×80=78.故答案为:A.点睛:(1)本题主要考查非十进制转化为十进制,意在考查学生对该知识的掌握水平.(2)非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:.9. 在“淘淘”微信群的某次抢红包活动中,所发红包被随机的分配为2.63元,1.95元,3.21元,1.77元,0.39元共五份,每人只能抢一次,若红包抢完时,则其中小淘、小乐两人抢到红包金额之和不少于5元的概率是()A. B. C. D.【答案】C【解析】由题意得所发红包的总金额为元,被随机分配为元,元,元,元,元共五份,供小淘、小乐等五人抢,每人只能抢一次,基本事件总数,其中小淘、小乐二人抢到的金额之和不少于元的概率的情况有:,,,共有种.∴小淘、小乐二人抢到的金额之和不少于元的概率是故选B.10. 设,若是与的等比中项,则的最小值为()A. B. 8 C. 9 D. 10【答案】C【解析】分析:先根据是与的等比中项得到a,b的关系,再利用常量代换求的最小值详解:因为是与的等比中项,所以,所以=当且仅当时取等.故答案为:C.点睛:(1)本题主要考查等比中项的性质和基本不等式,意在考查学生对这些知识的掌握水平和基本的计算能力.(2) 本题的解题关键是常量代换,即把化成,再利用基本不等式求函数的最小值. 利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.11. 若变量满足约束条件,则的最大值是()A. 1B. 0C. 2D.【答案】A【解析】作出束条件表示的可行域,如图,表示点与可行域内的动点连线的斜率,由可得,由图可知最大值就是,故选A.12. 已知数列满足,,,则数列的前10项和为()A. B. C. D.【答案】A【解析】试题分析:根据题意可知,数列为等差数列,所以,,所以,所以其前10项和,故选A.考点:等差数列,等比数列.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知样本数据3,2,1,的平均数为2,则样本的标准差是__________.【答案】【解析】分析:根据已知求出a的值,再利用标准差公式求标准差.详解:由题得所以标准差为.故答案为:.点睛:(1)本题主要考查平均数和标准差,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)标准差.14. 在区间上随机选取两个数和,则满足的概率为__________.【答案】【解析】概率为几何概型,如图,满足的概率为15. 已知关于的不等式的解集为,则关于的不等式的解集为__________.【答案】【解析】分析:由于关于x的一元二次不等式ax2+bx+c>0的解集为{x|﹣2<x<3},可知a<0,且﹣2,3是一元二次方程ax2+bx+c=0的两个实数根,利用根与系数的关系可得=﹣1,=﹣6,a<0.代入不等式cx2+bx+a <0化为﹣6x2﹣x+1>0,即可得出.详解:∵关于x的一元二次不等式ax2+bx+c>0的解集为{x|﹣2<x<3},∴a<0,且﹣2,3是一元二次方程ax2+bx+c=0的两个实数根,∴=﹣(﹣2+3)=﹣1,=﹣6,a<0.∴不等式cx2+bx+a<0化为﹣6x2﹣x+1>0,化为6x2+x﹣1<0,解得﹣<x<.因此不等式的解集为{x|﹣<x<}.故答案为:.点睛:(1)本题主要考查一元二次不等式的解法和一元二次方程根与系数的关系,意在考查学生对这些知识的掌握水平和计算能力.(2)本题一个易错点就是忽略了a的符号,根据已知应该得到a<0.16. 中,边上的高,角所对的边分别是,则的取值范围是__________.【答案】【解析】分析:利用基本不等式即可得出最小值2.又,可得=sinA.由余弦定理可得.可得===2cosA+sinA=,再利用三角函数的单调性即可得出.详解:∵b>0,c>0,∴≥2=2,当且仅当b=c时取等号.即的最小值为2.又,∴=sinA.又余弦定理可得.∴===2cosA+sinA=.综上可得:的取值范围是.故答案为:.点睛:(1)本题综合考查了基本不等式、余弦定理、三角形的面积计算公式、两角和差的正弦公式、三角函数的单调性有界性等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.(2)解答本题的关键是求的最大值,这里用到了解三角形的知识.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知为等差数列,且,.(1)求的通项公式;(2)若等比数列满足,,求的前项和公式.【答案】(1)(2)【解析】本试题主要是考查了等差数列的通项公式的求解和数列的前n项和的综合运用。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本题共12道小题,每小题5分,共60分)1. 若直线l 过点()1,2-且与直线2340x y -+=垂直,则l 的方程为( ) A. 3210x y +-= B. 2310x y +-= C. 3210x y ++=D. 2310x y --=2. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()222tan a c b B +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3π或23π3. 若0a b >>,则下列不等式不成立的是( ) A.11a b<B.a b >C.a b +<D.1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭4. 等差数列{}n a 的前11项和1188S =,则369a a a ++=( ) A. 18 B. 24C. 30D. 325. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知60,1A b ==,该三角形的面积则sin sin sin a b cA B C++++的值为( )D.36. 设0,0a b >>.3a与3b的等比中项,则11a b+的最小值为( ) A. 3 B. 4C. 1D.147. 在ABC ∆中,已知sin 2sin()cos C B C B =+,那么ABC ∆一定是( ) A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形8. 已知,m n 表示两条不同的直线, α表示平面,下列说法正确的是( ) A. 若//m α, //n α,则//m nB. 若//m α, m n ⊥,则n α⊥C. 若m α⊥, m n ⊥,则//n αD. 若m α⊥, //m n ,则n α⊥9. 等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A. -24B. -3C.3D.810. 若直线l :()10y kx k =+<与圆C :()()22212x y ++-=相切,则直线l 与圆D :()2223x y -+=的位置关系是( )A.相交B.相切C.相离D.不确定11. 某几何体的三视图如图所示,则该几何体的体积为( ) A. 123π+B.136πC. 73πD. 52π12. 在圆22:5C x y x +=内,过点53,22A ⎛⎫⎪⎝⎭有n 条弦的长度成等差数列,最短的弦长为数列的首项1a ,最长的弦长为n a ,若公差11,63d ⎛⎤∈ ⎥⎝⎦,那么n 的取值集合为( )A. {}4,5,6B. {}6,7,8,9C. {}3,4,5D. {}3,4,5,6二、填空题(本题共4道小题,每小题5分,共20分)13. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .14. 若直线1l :28ax y +=与直线2l :(1)40x a y +++=平行,则a =__________.15. 已知实数,x y 满足11y xx y y ⎧≤+≤≥-⎪⎨⎪⎩,则函数42x y z =的最大值为__________。

16. 如下图所示,梯形1111A B C D 是水平放置的平面图形ABCD 的直观图(斜二测画法),若11'1//A D O y ,1111//A B C D ,1111223A B C D ==,111A D =,则四边形ABCD 的面积是__________.三、解答题(本题共6道小题,共70分)17.(本题10分)设{}n a 是公比为正数的等比数列, 12a =,324a a =+. (1)求{}n a 的通项公式;(2)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S .18.(本题12分)如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 为AB 的中点。

(1)求证: 1AC BC ⊥; (2)求证: 1//AC 平面1CDB ;(3)求异面直线1AC 与1B C 所成角的余弦值。

19.(本题12分)已知圆C :22(1)(2)2x y -+-=,P 点的坐标为(2,-1),过点P 作圆C 的切线,切点为A ,B .(1)求直线PA ,PB 的方程; (2)求过P 点的圆的切线长; (3)求直线AB 的方程.20.(本题12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-. (1)求数列{}n a 的通项公式; (2)若数列1n n a ⎧⎫+⎨⎬⎩⎭的前n 项和为n T ,求n T21.(本题12分)在ABC ∆中, ,,a b c 分别是角,,A B C 的对边,且cos A =,tan 3B =. (1)求角C 的值;(2)若4,a =求ABC ∆的面积。

22.(本题12分)如图,已知 1111ABCD A B C D -是棱长为1cm 正方体. (1)证明: 1AC BD ⊥(2)求二面角11A BD C --的平面角的余弦值的大小 (3)求点C 到平面1BDC 的距离一、选择题 1.答案:A 2.答案:D解析:222tan 2a c b B ac +-⋅=,即cos tan B B =,所以sin B =,所以3B π=或23B π=. 3.答案:C解析:∵0a b >>∴11a b <且a b >,又22a b>,∴1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭易知a b +>故选C. 4. 答案:B 5.答案:A解析:由三角形面积公式,11sin 4222bc A c c ==⋅⋅⇒=.由余弦定理,得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=.∴a由正弦定理,得2sin sin 603a R A ===.∴2sin 2sin 2sin sin sin sin sin sin sin a b c R A R B R CA B C A B C ++++=++++23R ==.6. 答案:B解析:因为333a b ⋅=,所以1a b +=,1111()224b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当b a a b =,即12a b ==时“=”成立,故选择B. 7.答案:C 8.答案:D 9.答案:A 10.答案:A解析:依题意,直线l与圆C相切,=解得1k=±.∵0k<,所以1k=-,于是直线l的方程为10x y+-=.圆心()2,0到直线l的距离d==<所以直线l与圆D相交,故选A.11.答案:B解析:由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1;构成的一个组合体,故其体积为22113121166πππ⨯⨯+⨯⨯⨯=;故选B.12.答案:A二、填空题13.答案:92π错误!未找到引用源。

14.答案:1解析:若1a=-,则两直线不平行,所以1a≠-,要使两直线平行,则有28114aa-=≠+,由211aa=+,解得1a=或2a=-,当2a=-时, 21a=-,不满足条件,所以1a=.15.答案:32解析:作出不等式组表示的平面区域,得到如图所示的阴影部分(包括边界),其中(1,1),(2,1),(0.5,0.5)A B C---.设2m x y=-,将直线:20l y x-=进行平移,当l经过点B时,m取得最大值,∴max5m=,显然,当m取得最大值时,函数z取得最大值,∴函数2422xx yyz-==的最大值为32.16.答案:5三、解答题17.答案:(1).设q为等比数列{}n a的公比,则由12a =,324a a =+,得2224q q =+,即220q q --=,解得2q =或1q =- (舍去),因此2q =.所以{}n a 的通项公式为1222n n n a -=⋅=.(2).由题意得()()1212n n n S a a a b b b =+++++++()()212112122n n n n --=+⨯+⨯- 1222n n +=+-.18.答案:(1). 证明:在直三棱柱111ABC A B C -,底面三边长3AC =,4BC =,5AB =,∴AC BC ⊥,又∵1C C AC ⊥,∴AC ⊥平面11BCC B . ∵1BC ⊂平面11BCC B ,∴1AC BC ⊥; (2). 证明:设1CB 与1C B 的交点为E ,连接DE ,又∵11BCC B 为正方形,∴E 是1BC 的中点, 又∵D 为AB 的中点,∴1//DE AC , ∵DE ⊂平面1CDB ,1AC ⊂平面1CDB , ∴1//AC 平面1CDB ;(3). ∵1//DE AC ,∴CED ∠为1AC 与1B C 所成的角, 在CED ∆中, 11522ED AC ==,1522CD AB ==,112CE CB ==∴cos 5CED ∠=. ∴异面直线1AC 与1B C所成角的余弦值为5.19.答案:(1).由已知得过点P 的圆的切线斜率的存在,设切线方程为1(2)y k x +=-,即210kx y k ---=. 则圆心(1,2)C即=∴2670k k -+=,∴7k =或1k =-.∴所求直线的切线方程为17(2)y x +=-或1(2)y x +=--, 即7150x y --=或10x y +-=. (2).在Rt △PCA 中, ∵PC ==CA =∴222||||8PA PC CA =-=,∴PA =,∴过点P 的圆C 的切线长为(3).直线AB 的方程为330x y -+=.20.答案:(1).当1n =时, 12a =.当2n ≥时, 1122n n S a --=-,所以1n n n a S S -=-()11222222n n n n a a a a --=--=-,即()122,nn a n n N a *-=≥∈, 所以数列{}n a 是以首项为2,公比为2的等比数列,故()2n n a n N *=∈.(2).令112n n n n n b a ++==,则12323412222n nn T +=++++①,①12⨯,得234112*********n n n n n T ++=+++++②, ①-②,得23111111122222n n n n T ++=++++-13322n n ++=-,整理得332n n n T +=-21.答案:(1).由cos A =,得sin tan 2.A A =∴= ∵tan tan tan tan() 1.1tan tan A BA B C C A B A Bπ+++=∴=-+=-=-又∵0,.4C C ππ<<∴=(2).由正弦定理sin sin a c A C =,得sin sin a Cc A==由tan 3,B =得sin 10B =, ∴ABC ∆的面积1sin 62S ac B == 22.答案:(1)证:连接BD ,BD AC 交于点O ,连接11AC ∵1111ABCD A B C D -是正方体∴1,BD AC AA ⊥⊥面ABCD 又∵BD ⊂面ABCD ∴1BD AA ⊥∵1,AC AA A AC ⋂=⊂面111,ACC A AA ⊂面11ACC A ∴BD ⊥面11ACC A ∵1AC ⊂面1ACC A ∴1BD AC ⊥(2)连接AC 交BD 于点O ,连接110,A C O ∵1111ABCD A B C D -是正方体 ∴BD AC ⊥∵1AA ⊥面,ABCD BD ⊂面ABCD ∴1BD AA ⊥∵AC ⊂面111,AAC C AA ⊂面111,AAC C AC AA A ⋂= ∴BD ⊥面11AAC C∵1AO ⊂面111,AAC C C O ⊂面11AAC C ∴11,BD AO BD C O ⊥⊥即11AOC ∠为二面角11A BD C --的平面角∵1111AC AO C O ====∴222111cos 3AOC +-∠== (3)解:连接11,C D C B ,设点C 到平面1BDC 的距离为h ,由题意可得1112C D C B BD C O =====∴111111222BDC BDC S S ∆∆===⨯⨯= ∵ 1111113232C BDC C BDCV V h --=⨯⨯=⨯⨯∴3h =。

相关文档
最新文档