九年级数学图形的位似同步练习
6.6 图形的位似同步练习 2022-2023学年苏科版数学九年级下册
HM GFNCBA ED 九年级数学下册同步练习6.6图形的位似一、选择题1.若两个图形位似,则下列叙述不正确的是()A.两个图形的面积比等于位似比的平方B.两个图形上的对应线段必平行C.两个图形上的对应线段之比等于位似比D.每对对应点所在直线交于同一点2.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于相似比.A.②③B.①②C.③④D.②③④3.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F 4.如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的的坐标为()A.(4,3) B.(3,4)C.(5,3)D.(4,4)第3题第4题第5题5.如图,BC∥DE,下列说法不正确的是()A.两个三角形是位似图形B.点A是两个三角形的位似中心C.B与D,C与E是对应位似点D.AE:AD是相似比6.在平面直角坐标系中,点P(1,﹣2)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P对应点的坐标为()A.(2,﹣4)B.(2,﹣4)或(﹣2,4)C.(,﹣1)D.(,﹣1)或(﹣,1)7.已知下列四种变化:①向下平移2个单位长度;②向左平移2个单位长度;③横坐标变为原来的2倍,纵坐标不变;④纵坐标变为原来的2倍,横坐标不变.若将函数y=x2+1图象上的所有点都经过三次变化得到函数y=x2+x的图象,则这三次变化的顺序可以是()A.③→④→①B.③→①→②C.④→②→①D.①→④→②8.如图,△DEF和△ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC的中点,若△ABC的面积是8,△DEF的面积是()A.2B.4C.6D.8二、填空题9.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形的周长为36cm,则较大图形的周长为______.10.如果把直角坐标系内多边形各点的横坐标与纵坐标均乘以2,则所得多边形与原多边形是______,它们的面积之比为______。
人教版九年级数学下册《27.3位似》同步测试题带答案
人教版九年级数学下册《27.3位似》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形中不是位似图形的是()A.B.C.D.2.如图,△ABC与△DEF是位似图形,点O是位似中心,若OA=2AD,S△ABC=4,则S△DEF等于()A.6B.8C.9D.123.如图,△ABC与△DEF是位似三角形,位似比为2:3,已知AB=3,则DE的长等于()A.49B.2C.92D.2744.如图,四边形EFGH与四边形ABCD位似,其位似中心为点O,且相似比为59,若四边形ABCD的周长为9,则四边形EFGH周长为()A.5B.259C.815D.729255.在平面直角坐标系中,已知点E(−4,2),F(−2,−2),以原点O为位似中心,将△EFO放大为原来的2倍,则点E的对应点E1的坐标是()A.(−2,1)B.(−8,4)C.(−8,4)或(8,−4)D.(−2,1)或(2,−1)6.如图,将视力表中的两个“E”放在平面直角坐标系中,两个“E”是位似图形,且相似比为2:1,位似中心为坐标原点O,点M与点N为一组对应点,若点M的坐标为(1,2),则点N的坐标为()A.(2,3)B.(2,4)C.(3,4)D.(1,4)7.如图,在平面直角坐标系中,△ABC与△FDE是位似图形,则它们位似中心的坐标是().A.(3,1)B.(4,2)C.(5,2)D.(6,0)8.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(−1,0)以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.−12a B.−a+12C.−a−12D.−a+32二、填空题9.已知点A(0,3),B(−4,8),以原点O为位似中心,把线段AB缩短为原来的1,点D与点B对应.则点D的坐4标为.10.如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为.11.如图,菱形ABCD与菱形A'BC'D'是位似图形,若AD=6,A'D'=4则菱形A'BC'D'与菱形ABCD的位似比为.12.在△ABC中A(−2,1),B(3,2),C(1,−4),将△ABC以O为位似中心放大为原来的3倍,成为△A′B′C′,则A′点的坐标为.,在位似13.如图,在平面直角坐标系中,已知△AOB中,点B(−9,−3),以原点O为位似中心,相似比为13中心同侧把△ABO缩小,则点B的对应点B′的坐标是.14.在如图所示的正方形网格中,以点O为位似中心,作△ABC的位似图形,若点D是点C的对应点,则点A的对应点是点.15.如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA=AD,则△ABC与△DEF的面积比是.16.如图,在平面直角坐标系中,△OAB顶点O在坐标原点,顶点A,B的坐标分别为(−2,−1),(−1.5,0).△OCD与△OAB位似,位似中心是原点O,若点D的坐标为(4.5,0),则点C的坐标为.三、解答题17.如图,分别按下列要求作出四边形ABCD以O点为位似中心的位似四边形A′B′C′D′.(1)沿OA方向放大为原图的2倍;(2)沿AO的方向放大为原图的2倍.18.在平面直角坐标系中,△OAB的三个顶点坐标分别为A(2,3),B(3,1),O(0,0).以原点O为位似中心,在第三象限画出△OA1B1,使它与△OAB的相似比是2.19.如图,在每个小正方形的边长为1个单位的网格中,给出了以格点(网格线的交点)为端点的线段AB和格点O.(1)在所给网格中,以格点O为位似中心将线段AB放大2倍得到线段A1B1,画出线段A1B1;(2)把线段AB绕端点B顺时针旋转90°得到线段BA2,画出线段BA2.20.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A1B2C2,且△A1B1C1与△A1B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.21.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−2),B(4,−1)(1)画出将△ABC向左平移5个单位,再向上平移3个单位后的△A1B1C1,并写出点B的对应点B1的坐标;(2)以原点O为位似中心,在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的面积比为4:1,并写出点B1的对应点B2的坐标;(3)若△A1B1C1内部任意一点P1的坐标为(a−5,b+3),直接写出经过(2)的变化后点P1的对应点P2的坐标(用含a ,b 的代数式表示).参考答案:题号 1 2 3 4 5 6 7 8 答案DCCAC BCD1.解:A 、是位似图形,故本选项不符合题意; B 、是位似图形,故本选项不符合题意; C 、是位似图形,故本选项不符合题意; D 、不是位似图形,故本选项符合题意; 故选:D .2.解:∵△ABC 与△DEF 是位似图形且OA =2AD . ∵两位似图形的位似比为2:3 ∵两位似图形的面积比为4:9 又∵S △ABC =4 ∵S △DEF =9. 故选:C .3.解:∵△ABC 与△DEF 是位似图形,位似比为2:3 ∵ABDE =23 ∵AB =3 ∵DE =92故选:C .4.解:∵四边形EFGH 与四边形ABCD 位似,且相似比为59∵C 四边形EFGHC四边形ABCD=59∵C 四边形ABCD =9 ∵C 四边形EFGH =5 故选A .5.解:∵原点O 为位似中心,将△EFO 放大为原来的2倍,点E 的坐标为(−4,2) ∵点E 的对应点E 1的坐标为(−4×2,2×2)或(−4×(−2),2×(−2)),即(−8,4)或(8,−4) 故选:C .6.解:∵两个“E”的相似比为2:1,点M的坐标为(1,2)∵点N的坐标为(2,4)故选B.7.解:如图,点G为位似中心,则它们位似中心的坐标是(5,2)故选:C.8.解:以点C为坐标原点建立新的坐标系点C的坐标是(−1,0)点B′的横坐标为:a+1以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′则点B在以C为坐标原点的坐标系中的横坐标为:−a+12点B在原坐标系中的横坐标为:−a+12−1=−a+32故选:D9.解:∵以原点O为位似中心,把线段AB缩短为原来的14,B(−4,8)∴点D的坐标为(−4×14,8×14)或[−4×(−14),8×(−14)]即:(−1,2)或(1,−2)故答案为:(−1,2)或(1,−2).10.解:∵图形甲与图形乙是位似图形,位似比为2:3 AB=6∵AB A′B′=23即6A′B′=23解得,A′B′=9故答案为:9.11.解:∵菱形ABCD与菱形A'BC'D'是位似图形∴菱形A'BC'D'与菱形ABCD 的位似比=A′D′AD=46=23故答案为:2∶3.12.解:∵△ABC 以原点O 为位似中心,将△ABC 以O 为位似中心放大为原来的3倍A (−2,1) ∵A ′的坐标为(−2×3,1×3)或[−2×(−3),1×(−3)] 即A ′的坐标为(−6,3)或(6,−3). 故答案为:(−6,3)或(6,−3).13.解:∵以原点O 为位似中心,相似比为13,在位似中心同侧把△ABO 缩小∵点B (−9,−3)的对应点B ′的坐标是(−3,−1). 故答案为:(−3,−1). 14.解:如图,连接AO 并延长∵以点O 为位似中心,点D 是点C 的对应点 ∴位似比为OC OD=24=12∴则点A 的对应点是H 故答案为:H . 15.解:∵OA =AD∴OA :OD =1:2∵△ABC 和△DEF 是以点O 为位似中心的位似图形∴△ABC ∽△DEF ,AB ∥DE ∴∠ODE =∠OAB,∠OBA =∠OED∴△AOB ∽△DOE ∴AB DE =OA OD =12∴△ABC 与△DEF 的面积比为:(12)2=14故答案为:1:4.16.解:∵顶点A,B的坐标分别为(−2,−1),(−1.5,0).△OCD与△OAB位似,位似中心是原点O,若点D 的坐标为(4.5,0)∴A点的对应点C的坐标为[−2×(−3),−1×(−3)],即(6,3)故答案为:(6,3).17.(1)解:沿OA方向放大为原图的2倍的图如下图所示(2)解:沿AO的方向放大为原图的2倍的图如下图所示18.解:∵△OAB的三个顶点坐标分别为A(2,3),B(3,1),O(0,0),△OA1B1在第三象限,且与△OAB的相似比是2∵A1(−4,−6),B1(−6,−2)如图所示:△OA1B1即为所求;19.(1)解:连接OA并延长至A1,使AA1=OA,连接OB并延长至B1,使BB1=OB,连接A1B1,所作线段A1B1如图所示;(2)解:以B中心,把线段AB顺时针旋转90°得到线段BA2,如图所示,线段BA2为求作的.20.(1)解:如图所示,连接AA1,CC1,线段AA1,CC1交与点M∵点M即为所求位似中心∵点M的坐标为(0,2)故答案为:(0,2).(2)解:位似比为2:1,位似中心为点A1,如图所示,延长C1A1,反向延长C1A1,使得A1C2=12A1C1,A1C2′=1 2A1C1延长B1A1,反向延长B1A1,使得A1B2=12A1B1,A1B2′=12A1B1∵△A1B2C2与△A1B2′C2′均为所求图形.(3)解:由(2)作图可知∵C2(−4,2)或C2′(−4,6)故答案为:(−4,2)或(−4,6).21.(1)解:如图所示,△A1B1C1为所求三角形,B1(−1,2);(2)解:如图所示,△A2B2C2为所求三角形,B2(−2,4);(3)解:∵在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的面积比为4:1∵△A2B2C2和△A1B1C1的相似比为2:1∵P1(a−5,b+3)∵P2(2a−10,2b+6).第11 页共11 页。
九年级数学上册4.7图形的位似同步练习(新版)浙教版【含解析】
12. 如 图 , 在 平 面 直 角 坐 标 系 中 , 矩 形 ������������������������ 的 顶 点 坐 标 分 别 为 ������(0,0) , ������(2,0) , ������(2,1) , ������(0,1) .以坐标原点 ������ 为位似中心,将矩形 ������������������������ 放大为原图形的 2 倍,记所得矩形为 ������������1 ������1 ������1.������ 的对应点为 ������1,且 ������1 在 ������������ 的延长线上,则 ������1 的坐标为 .
A. (−4, −3) C. (−4, −4) 与 △ ������������������ 的面积比为 ( )
B. (−3, −3) D. (−3, −4)
4. 如图,以点 ������ 为位似中心,将 △ ������������������ 缩小后得到 △ ������ʹ������ʹ������ʹ.已知 ������������ = 3������������ʹ,则 △ ������ʹ������ʹ������ʹ
A. (2,1)
B. (2,0)
C. (3,3)
D. (3,1)
1 3
7. 如图,在平面直角坐标系中,已知点 ������(−3,6),������(−9, −3),以原点 ������ 为位似中心,相似比为 , 把 △ ������������������ 缩小,则点 ������ 的对应点 ������ʹ 的坐标是 ( )
第 1 页(共 8 页)
A. (3,2)
B. (3,1)
C. (2,2)
D. (4,2)
1
人教版数学九年级下册数学:27.3 位似 同步练习(附答案)
27.3 位似第1课时 位似图形的概念及画法1.下图中的两个图形不是位似图形的是( )2.图中的两个四边形是位似图形,它们的位似中心是( )A .点MB .点NC .点OD .点P3.两个图形中,对应点到位似中心的线段比为2∶3,则这两个图形的相似比为( )A .2∶3B .4∶9 C.2∶ 3 D .1∶24.如图,两个位似图形△ABO 和△A ′B ′O ,且AB ∥A ′B ′,若OA ∶OA ′=3∶1,则正确的是( )A .AB ∶A ′B ′=3∶1 B .AA ′∶BB ′=AB ∶A ′B ′C .OA ∶OB ′=2∶1D .∠A =∠B ′5.如图,△DEF 与△ABC 是位似图形,点O 是位似中心,点D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1∶6B .1∶5C .1∶4D .1∶26.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且OE EA =43,则FGBC= .7.如图,△ABC 与△A ′B ′C ′是位似图形,且位似比是1∶2,若AB =2 cm ,则A ′B ′= cm ,并在图中画出位似中心O.8.如图,以O点为位似中心,将四边形ABCD缩小为原来的一半.9.如图,边长为1的正方形网格纸中,△ABC为格点三角形(顶点都在格点上).在网格纸中,以点O为位似中心画出△ABC的一个位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为1∶2.(只需画出一个符合条件的△A′B′C′,不要求写画法)10.如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对11.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②③ B.①②C.③④ D.②③④12.如图,四边形ABCD与四边形AEFG是位似图形,且AC∶AF=2∶3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2∶3C.四边形ABCD与四边形AEFG的周长比是2∶3D.四边形ABCD与四边形AEFG的面积比是4∶913.如图,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心O ;(2)求出△ABC 与△A ′B ′C ′的相似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的相似比等于1.5.14.如图,已知B ′C ′∥BC ,C ′D ′∥CD ,D ′E ′∥DE. (1)求证:四边形BCDE 位似于四边形B ′C ′D ′E ′; (2)若AB ′B ′B=3,S 四边形BCDE =20,求S 四边形B ′C ′D ′E ′.第2课时 平面直角坐标系中的位似1.如图,在平面直角坐标系中,以原点为位似中心,将△AOB 扩大到原来的2倍,得到△OA ′B ′.若点A 的坐标是(1,2),则点A ′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)2.如图所示,在平面直角坐标系中,已知点A(2,4),过点A 作AB ⊥x 轴于点B.将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .2 53.如图,在平面直角坐标系中,以点O 为位似中心,将△OCD 放大得到△OAB ,点C ,D 的坐标分别为(2,1),(2,0),且△OCD 与△OAB 的面积之比为1∶4,则点A 的坐标为( )A .(8,4)B .(8,2)C .(4,2)D .(4,8)4.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( )A .(2,0)B .(32,32)C .(2,2)D .(2,2)5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示),则大鱼上的一点(a ,b)对应小鱼上的点的坐标是6.如图,以原点O 为位似中心,把△OAB 放大后得到△OCD ,求△OAB 与△OCD 的相似比.7.如图,在平面直角坐标系中,作出五边形ABCDE 的位似图形,使得新图形A 1B 1C 1D 1E 1与原图形对应线段的比为2∶1,位似中心是坐标原点O.8.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0),现以原点为位似中心,将线段CD 放大得到线段AB.若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为9.在平面直角坐标系中,点P(m ,n)是线段AB 上一点,以原点O 为位似中心,把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( )A .(2m ,2n)B .(2m ,2n)或(-2m ,-2n)C .(12m ,12n)D .(12m ,12n)或(-12m ,-12n)10.如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(-1,2)B .(-9,18)C .(-9,18)或(9,-18)D .(-1,2)或(1,-2)11.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A(1,0)与A ′(-2,0)是对应点,△ABC 的面积是32,则△A ′B ′C ′的面积是 .12.如图,网格中每个小正方形的边长为1,已知△ABC ,画出△ABC 以坐标原点O 为位似中心的位似图形△A ′B ′C ′,使△A ′B ′C ′在第三象限,与△ABC 的位似比为12,写出三角形各顶点的坐标,位似变换后对应顶点的坐标发生了什么变化?13.如图,正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n ,如图位置依次摆放,已知点C 1,C 2,C 3,…,C n 在直线y =x 上,点A 1的坐标为(1,0).(1)写出正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n 的位似中心的坐标; (2)正方形A 4A 5B 4C 4四个顶点的坐标.14.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即S△A1B1C1∶S△A2B2C2=1∶4.(不写解答过程,直接写出结果)参考答案:27.3 位似第1课时 位似图形的概念及画法1.D 2.D 3.A 4.A 5.C 6.=47.7.4.解:如图所示. 8.解:图略. 9.解:如图所示. 10.D 11.A 12.B 13.解:(1)位似中心O 的位置如图所示. (2)∵OA OA ′=12,∴△ABC 与△A ′B ′C ′的相似比为1∶2. (3)如图所示.14.解:(1)证明:∵B ′C ′∥BC ,C ′D ′∥CD ,D ′E ′∥DE , ∴AB ′AB =B ′C ′BC =AC ′AC =C ′D ′CD =AD ′AD =D ′E ′DE =AE ′AE, ∠AB ′C ′=∠ABC ,∠AC ′B ′=∠ACB ,∠AC ′D ′=∠ACD ,∠AD ′C ′=∠ADC ,∠AD ′E ′=∠ADE ,∠AE ′D ′=∠AED.∴∠AC ′B ′+∠AC ′D ′=∠ACB +∠ACD , ∠AD ′C ′+∠AD ′E ′=∠ADC +∠ADE , 即∠B ′C ′D ′=∠BCD ,∠C ′D ′E ′=∠CDE. ∵AB ′AB =AE ′AE ,∠B ′AE ′=∠BAE , ∴△B ′AE ′∽△BAE.∴B ′E ′BE =A ′B ′AB ,∠AE ′B ′=∠AEB ,∠AB ′E ′=∠ABE.∴B ′C ′BC =C ′D ′CD =D ′E ′DE =B ′E ′BE ,∠AB ′C ′-∠AB ′E ′=∠ABC -∠ABE , ∠AE ′D ′-∠AE ′B ′=∠AED -∠AEB , 即∠E ′B ′C ′=∠EBC ,∠B ′E ′D ′=∠BED. ∴四边形BCDE 与四边形B ′C ′D ′E ′是相似图形.又∵四边形BCDE 与四边形B ′C ′D ′E ′对应顶点相交于一点A , ∴四边形BCDE 位似于四边形B ′C ′D ′E ′. (2)∵AB ′B ′B =3,∴AB ′AB =34.∴四边形BCDE 与四边形B ′C ′D ′E ′位似之比为43.∵S 四边形BCDE =20,∴S 四边形B ′C ′D ′E ′=20(43)2=20×916=454.第2课时 平面直角坐标系中的位似1.C 2.A 3.C 4.C5. (-0.5a ,-0.5b ).6.解:∵点B 的坐标是(4,0),点D 的坐标是(6,0),∴OB =4,OD =6.∴OB OD =46=23. ∵△OAB 与△OCD 关于点O 位似,∴△OAB 与△OCD 的相似比为23. 7.解:如图所示.8.(4,6)或(-4,-6).9.B10.D11. 6.12.解:△ABC 三个顶点的坐标分别是A (2,2),B (6,4),C (4,6).△A ′B ′C ′三个顶点的坐标分别是A ′(-1,-1),B ′(-3,-2),C ′(-2,-3).观察图形可知,△A ′B ′C ′各顶点的坐标分别是将△ABC 各对应顶点的坐标乘-12. 13.解:(1)正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n 的位似中心的坐标为(0,0).(2)∵点C 1,C 2,C 3,…,C n 在直线y =x 上,点A 1的坐标为(1,0),∴OA 1=A 1C 1=1,OA 2=A 2C 2=2.∴A 3O =A 3C 3=4.∴OA 4=A 4C 4=8.∴OA 5=16.∴A 4(8,0),A 5(16,0),B 4(16,8),C 4(8,8).14.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.。
人教版九年级数学下册第二十七单元位似同步练习1带答案
人教版九年级数学下册第二十七单元《位似》同步练习1带答案一、选择题(每题4分,共32分)1.以下说法不正确的选项是 ( )A .位似图形必然是相似图形B . 相似图形不必然是位似图形C . 位似图形上任意一对对应点到位似中心的距离之比等于位似比D . 位似图形中每组对应点所在的直线必彼此平行2.以下说法正确的选项是 ( )A . 别离在△ABC 的边AB ,AC 的反向延长线上取点D ,E ,使DE ∥BC ,那么△ADE是△ABC 放大后的图形B . 两位似图形的面积之比等于位似比C . 位似多边形中对应付角线之比等于位似比D . 位似图形的周长之比等于位似比的平方3. 如图,点D E F ,,别离是()ABC AB AC >△各边的中点,以下说法中,错误..的是( )A . AD 平分BAC ∠B . 12EF BC = C . EF 与AD 相互平分 D .△DEF 是△ABC 的位似图形4. 用作位似形的方式,能够将一个图形放大或缩小,位似中心 ( )A . 只能选在原图形的外部B . 只能选在原图形的内部C . 只能选在原图形的边上D .能够选择任意位置5. 将一个菱形放在2倍的放大镜下,那么下列说法中不正确的选项是 ( ) A .菱形的边长扩大到原先的2倍 B .菱形的角的度数不变C .菱形的面积扩大到原先的2倍D .菱形的面积扩大到原先的4倍6. 如图,已知BC ∥DE ,那么以下说法中不正确的选项是 ( )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .AE ︰AD 是位似比 D .点B 与点E 、点C 与点D 是对应位似点7. 已知△ABC ,以点A 为位似中心,作出△ADE ,使△ADE 是△ABC 放大2倍的图形,如此的图形能够作出 个 ( )A .1个B .2个C .4个D .无数个8. 如图,以A 为位似中心,将△ADE 放大2倍后,得位似图形△AB C ,假设 1S 表示△ADE 的面积,2S 表示四边形DBCE 的面积,那么21:S S = ( )A . 1︰2B .1︰3C .1︰4D .2︰3二、填空题(每题4分,共32分)9. 两个相似多边形,若是它们对应极点所在的直线____ ____,那么如此的两个图形叫做位似图形.10.把一个正多边形放大到原先的倍,那么原图与新图的相似比为_______11. 若是两个位似图形的对应线段长别离为3cm 和5cm ,且较小图形周长为30cm ,那么较大图形周长为 .12.如图,点O 是四边形ABCD 与A B C D ''''的位似中心,那么A B AB''=________=________=________;ABC ∠= ________,OC B ''∠= ________.13.如图,DC ∥AB ,OA =2OC ,,那么OCD △与OAB △的位似比是________.14.把一个三角形变成和它位似的另一个三角形,假设边长缩小了2倍,那么面积缩小到原先的 倍.15.如图,在ABCD 中,F 是AD 延长线上一点,连接BF 交DC 于点E ,那么图中的位似三角形共有 对.16.雨后操场,小明从他前面2米远的一小块积水中看到了旗杆顶端的倒影,若是旗杆底端到积水的距离为20米,小明眼睛离地面,那么旗杆的高度为 .三、解答题(共36分)17.在如图的方格纸中(每一个小方格的边长都是1个单位)有一点O 和ABC △.(1)请以点O 为位似中心,把ABC △缩小为原先的一半(不改变方向),取得A B C '''△.(2)请用适当的方式描述A B C '''△的极点A ',B ',C '的位置.18.如图,四边形ABCD 和四边形A′B′C′D′ 位似,位似比12k =,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比21k =.四边形A″B″C″D″和四边形ABCD 是位似图形吗?位似比是多少?19.如图,已知△ABC 中,AB =12,BC =8,AC =6,点D 、E 别离在AB 、AC 上,若是以A 、D 、E 为极点的三角形和以A 、B 、C 为极点的三角形相似,且相似比为13. (1)依照题意确信D 、E 的位置,画出简图;(2)求AD 、AE 和DE 的长.20.如图,方格纸中的每一个小方格都是边长为1的正方形,咱们把以格点间连线为边的三角形称为“格点三角形”,图中的ABC △是格点三角形.在成立平面直角坐标系后,点B 的坐标为(11--,).(1)把ABC △向左平移8格后取得111A B C △,画出111A B C △的图形并写出点1B 的坐标;(2)把ABC △绕点C 按顺时针方向旋转90后取得22A B C △,画出22A B C △的图形并写出点2B 的坐标;(3)把ABC △以点A 为位似中心放大,使放大前后对应边长的比为1:2,画出33AB C △的图形.答案一、填空题1.D 2.C 3.A 4.D 5.C 6.C 7.B 8.B二、选择题9.相交于一点 10.2︰5 11.50cm 12.1︰2 13.B C C D A D BC CD AD ''''''==,∠A B C ''',∠OCB 14.1415.3 16.15米三、解答题17.略18.是位似图形,位似比为12. 19.(1)两种情形,图略;(2)第一种情形:AD =4,AE =2,DE =83;第二种情形:AD =2,AE =4,DE =83. 20.(1)画图略,点1B 的坐标为(9,1--);(2)画图略,点2B 的坐标为(5,5);(3)画图略.。
苏科版九年级数学下册图形的位似同步练习
图形的位似A组题1、利用位似形只能将一个图形放大,这句话_______(填“正确”或“不正确”)。
2、两个构成位似的三角形其相似比为k,则对应点到位似中心的距离之比为__ ___。
3、下列说法中:①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E'位似,则其中△ABC与△A'B'C'也是位似的,且相似比相等。
其中正确的个数有()A、1个B、2个C、3个D、4个4、若两个图形位似,则下列叙述不正确的是()A、每对对应点所在的直线相交于同一点B、两个图形上对应线段之比等于位似比C、两个图形上对应线段必平行D、两个图形的面积比等于位似比的平方5、下列说法正确的是()A、分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则△ADE是△ABC放大后的图形;B、两位似图形的面积比等于位似比;C、位似多边形中对应对角线之比等于位似比;D、位似图形的周长之比等于位似比的平方。
6、某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如上图所示),则小鱼上的点(a,b)对应大鱼上的点()A、(-2a,-2b)B、(-a,-2b)C、(-2b,-2a)D、(-2a,-b)。
任取一点O,连AO,•BO,CO,并取它们的中点D,E,F,得△DEF,7、按如下方法将△ABC的三边缩小来原来的12则下列说法中正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF是周长的比为2:1④△ABC与△DEF面积比为4:1A、1个B、2个C、3个D、4个8、已知,如图,E (-4,2),F (-1,-1),以 点O 为位似中心,按比例尺1:2,把△EFO 缩小,•则点E 的对应点E ′的坐标为( ) A 、(2,-1)或(-2,1) B 、(8,-4)或(-8,4) C 、(2,-1) D 、(8,-4)9、如图△ABC 。
九年级数学上册 23.5《位似图形》同步练习 (新版)华东师大版
23.5 位似图形一、填空题1.如图1,点O 是四边形ABCD 与A B C D ''''的位似中心,则A B AB''=________=________=________;ABC ∠= ________,O CB '∠= ________.2.如图2,2DC AB OA OC =∥,,则OCD △与OAB △的位似比是________.3.把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________.4.两个相似多边形,如果它们对应顶点所在的直线________,那么这样的两个图形叫做位似图形.5.位似图形的相似比也叫做________.6.位似图形上任意一对对应点到________的距离之比等于位似比.二、解答题7.画出下列图形的位似中心.8.将四边形ABCD 放大2倍.要求:(1)对称中心在两个图形的中间,但不在图形的内部.(2)对称中心在两个图形的同侧.(3)对称中心在两个图形的内部.9.如图3,四边形ABCD 和四边形A B C D ''''′位似,位似比12k =,四边形A B C D ''''和四边形A B C D ''''''''位似,位似比21k =.四边形A B C D ''''''''和四边形ABCD 是位似图形吗?位似比是多少?10.请把如图4所示的图形放大2倍.11.请把如图5所示的图形缩小2倍.参考答案1.B CBC'',C DCD'',D ADA'';A B C'''∠,OCB∠2.1 23.2 54.相交于一点5.位似比6.位似中心7.略.8.略.9.是位似图形,1 210.略.11.略.。
苏科版九年级下册数学 6.6图形的位似 同步练习(含解析)
6.6图形的位似同步练习一.选择题1.如图,正方形ABCD和正方形EFOG是位似图形,其中点A与点E对应,点A的坐标为(﹣4,2)点E的坐标为(﹣1,1),则这两个正方形位似中心的坐标为()A.(2,0)B.(1,1)C.(﹣2,0)D.(﹣1,0)2.如图,六边形ABCDEF与六边形A1B1C1D1E1F1是位似图形,O为位似中心,OD=OD1,则A1B1:AB为()A.2:3B.3:2C.1:2D.2:13.如图,四边形ABCD与四边形A'B'C'D'位似,点O为位似中心,若OB:OB'=2:3,则四边形ABCD与四边形A'B'C′D'的面积比为()A.2:3B.2:5C.4:9D.4:254.在平面直角坐标系中,△ABC顶点A(2,3),若以原点O为位似中心,画三角形ABC 的位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为1:2,则A′的坐标为()A.(1,)B.(2,6)C.(1,)或(﹣1,﹣)D.(2,6)或(﹣2,﹣6)5.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B'C′,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.﹣B.C.D.6.下列说法错误的是()A.如果把一个多边形的面积扩大为原来的5倍,那么它的各边也扩大为原来的5倍B.如果把一个三角形的各边扩大为原来的5倍,那么它的周长也扩大为原来的5倍C.相似三角形对应高的比等于对应中线的比D.相似多边形的面积比等于周长比的平方7.如图,△ABC中,三个顶点的坐标分别是A(﹣2,2),B(﹣4,1),C(﹣1,﹣1).以点C为位似中心,在x轴下方作△ABC的位似图形△A'B'C',并把△ABC的边长放大为原来的2倍,那么点A'的坐标为()A.(3,﹣7)B.(1,﹣7)C.(4,﹣4)D.(1,﹣4)8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 9.如图,△ABC与△A1B1C1是以O为位似中心的位似图形,若OA=3AA1,S△ABC=36,则S=()A.64B.68C.81D.9210.如图,等腰Rt△ABC与等腰Rt△CDE是以点O为位似中心的位似图形,位似比为k=1:3,∠ACB=90°,BC=4,则点D的坐标是()A.(18,12)B.(16,12)C.(12,18)D.(12,16)二.填空题11.已知:如图,E(﹣6,2),F(﹣2,﹣2),以原点O为位似中心,相似比1:2,把△EFO在y右侧缩小,则点E的对应点E1的坐标为.12.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是.13.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣8,﹣2),以原点O为位似中心,在y轴的右侧把线段AB缩小为原来的,则点A的对应点A′的坐标是.14.如图,在平面直角坐标系中有两点A(6,0)和B(6,3),以原点O为位似中心,相似比为,把线段AB缩短为CD,其中点C与点A对应,点D与点B对应,且CD在y 轴的右侧,则点D的坐标为.15.如图,在平面直角坐标系中,等边△ABC与等边△BDE是以原点为位似中心的位似图形,且相似比为,点A、B、D在x轴上,若等边△BDE边长为6,则点C的坐标为.三.解答题16.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出将△ABC绕点A逆时针旋转90°的△AB1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.(3)若图中每个小方格的面积为1,请直接写出△A2B2C2的面积.17.如图,△ABC各顶点坐标分别为:A(﹣4,4),B(﹣1,2),C(﹣5,1).(I)以O为位似中心,在x轴下方将△ABC放大为原来的2倍形成△A2B2C2;(2)求S.18.如图,已知O为坐标原点,B,C两点坐标为(3,﹣1),(2,1).(1)在y轴的左侧将△OBC放大到原来的2倍,画出放大后△O1B1C1;(2)写出B1,C1的坐标;(3)在(1)条件下,若△OBC内部有一点M的坐标为(x,y),写出M的对应点M1的坐标.参考答案一.选择题1.解:连接AE并延长交x轴于H,则点H为位似中心,∵点A的坐标为(﹣4,2)点E的坐标为(﹣1,1),∴OF=1,OB=4,EF=1,AB=2,∵正方形ABCD和正方形EFOG是位似图形,∴EF∥AB,∴△HEF∽△HAB,∴=,即=,解得,OH=2,∴点H的坐标为(2,0),故选:A.2.解:∵六边形ABCDEF与六边形A1B1C1D1E1F1是位似图形,∴六边形ABCDEF∽六边形A1B1C1D1E1F1,DE∥D′E′,∴△ODE∽△OD1E1,∴==,∴==2:1,故选:D.3.解:∵四边形ABCD与四边形A'B'C'D'位似,∴四边形ABCD∽四边形A'B'C'D',AB∥A′B′,∴△OAB∽△OA′B′,∴==,∴四边形ABCD与四边形A'B'C′D'的面积比=()2=,故选:C.4.解:∵以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△A′B′C′与△ABC的相似比为1:2,点A(2,3),∴A′的坐标为(2×,3×)或(﹣2×,﹣3×),即(1,)或(﹣1,﹣),故选:C.5.解:以点C为坐标原点建立新的坐标系,∵点C的坐标是(﹣1,0),∴点B′的横坐标为:a+1,以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B'C′,则点B在以C为坐标原点的坐标系中的横坐标为:﹣,∴点B在原坐标系中的横坐标为:﹣﹣1=﹣,故选:D.6.解:A、如果把一个多边形的面积扩大为原来的5倍,那么它的各边也扩大为原来的倍,本选项说法错误,符合题意;B、如果把一个三角形的各边扩大为原来的5倍,那么它的周长也扩大为原来的5倍,本选项说法正确,不符合题意;C、相似三角形对应高的比等于对应中线的比,本选项说法正确,不符合题意;D、相似多边形的面积比等于周长比的平方,本选项说法正确,不符合题意;故选:A.7.解:以C为坐标原点建立平面直角坐标系,则点A在新坐标系中的坐标为(﹣1,3),∵△ABC与△A'B'C'以点C为位似中心,在x轴下方作△ABC的位似图形△A'B'C',把△ABC的边长放大为原来的2倍,∴点A'在新坐标系中的坐标为(1×2,﹣3×2),即(2,﹣6),则点A'的坐标为(1,﹣7),故选:B.8.解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA ==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.9.解:∵△ABC与△A1B1C1是以O为位似中心的位似图形,∴△ABC∽△A1B1C1,∵OA=3AA1,∴△ABC与△A1B1C1的相似比为:=,∴△ABC与△A1B1C1的面积比为:()2=,∵S△ABC=36,∴S=36÷=64,故选:A.10.解:由题意可得:△OBC∽△ODE,则==,∵BC=4,∴ED=12,∵等腰Rt△CDE,∴CE=DE=12,∴=,解得:CO=6,故EO=18,∴点D的坐标是(18,12).故选:A.二.填空题11.解:∵以原点O为位似中心,相似比1:2,把△EFO在y右侧缩小,E(﹣6,2),∴点E的对应点E1的坐标为(6×,﹣2×),即(3,﹣1),故答案为:(3,﹣1).12.解:∵正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,∴=,=,即=,=,解得,OD=6,OF=6,则点E的坐标为(6,6),故答案为:(6,6).13.解:∵以原点O为位似中心,在y轴的右侧把线段AB缩小为原来的,点A的坐标为(﹣2,4),∴点A的对应点A′的坐标为(﹣2×(﹣),4×(﹣)),即(1,﹣2),故答案为:(1,﹣2).14.解:∵以原点O为位似中心,相似比为,把线段AB缩短为CD,CD在y轴的右侧,点B的坐标为(6,3),∴点D的坐标为(6×,3×),即(3,),故答案为:(3,).15.解:作CF⊥AB于F,∵等边△ABC与等边△BDE是以原点为位似中心的位似图形,∴BC∥DE,∴△OBC∽△ODE,∴=,∵△ABC与△BDE的相似比为,等边△BDE边长为6,∴==,解得,BC=2,OB=3,∴OA=1,∵CA=CB,CF⊥AB,∴AF=1,由勾股定理得,CF==,∴OF=OA+AF=2,∴点C的坐标为(2,),故答案为:(2,).三.解答题16.解:(1)如图,△AB1C1为所作;(2)如图,△A2B2C2为所作;点C2的坐标为(2,10).(3)△A2B2C2的面积=4S△ABC=4(4×3﹣×1×3﹣×3×2﹣×1×4)=22.17.解:(1)如图,△A2B2C2为所作;(2)S=6×8﹣×6×2﹣×8×2﹣×4×6=22.18.解:(1)如图,△O1B1C1即为所求作.(2)B1(﹣6,2),C1(﹣4,﹣2).(3)M1(﹣2x,﹣2y).。
华东师大新版数学九年级上册《位似图形》同步练习
华东师大新版数学九年级上册《位似图形》同步练习一.选择题〔共6小题〕1.以下3个图形中是位似图形的有〔〕A.0个B.1个C.2个D.3个2.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N区分是边AB、AD的中点,衔接OM、ON、MN,那么以下表达正确的选项是〔〕A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON和四边形ABCD都是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形3.如图,以点O为位似中心,将△ABC增加后失掉△A′B′C′,BB′=2OB′,那么△A′B′C′与△ABC的面积之比〔〕A.1:3 B.1:4 C.1:5 D.1:94.△ABC与△DEF是位似图形,且△ABC与△DEF的位似比为,那么△ABC与△DEF的周长之比是〔〕A.B.C.D.5.如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,假定OA:OA'=2:3,那么四边形ABCD与A'B'C'D'的面积比是〔〕A.4:9 B.2:5 C.2:3D.:6.以下四边形ABCD和四边形EFGD是位似图形,它们的位似中心是〔〕A.点E B.点F C.点G D.点D二.填空题〔共6小题〕7.把一个三角形变成和它位似的另一个三角形,假定边长增加到倍,那么面积增加到原来的倍.8.如图,△ABC与△DEF位似,位似中心为点O,且S△ABC=S△DEF,那么AB:DE的值为9.在由边长为1的正三角形组成的正六边形网格中画一个与△ABC相似但不全等的三角形.10.如图,以点O为位似中心,将△ABC增加失掉△A′B′C,假定AA′=2OA′,那么△ABC与△A′B′C′的周长比为.11.如图,矩形ABCD与矩形A′B′C′D′是位似图形,A是位似中心,矩形ABCD的周长为24,BB′=4,DD′=2.求AB和AD的长.12.如图,四边形ABCD与四边形EFGH位似,位似中心是点O,假定=,那么=.三.解答题〔共4小题〕13.如图,点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP于B,请在射线BF上找一点M,使以B、M、C为顶点的三角形与△ABP相似.14.在4×4的方格中,△ABC的三个顶点都在格点上.〔1〕在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形〔画出一个即可〕;〔2〕在图2、图3中各作一格点D,使得△ACD∽△DCB,并请连结AD、CD、BD.15.如图,在6×6的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,△ABC是一个格点三角形.〔1〕在图①中,请判别△ABC与△DEF能否相似,并说明理由;〔2〕在图②中,以O为位似中心,再画一个格点三角形,使它与△ABC的位似比为2:1〔3〕在图③中,请画出一切满足条件的格点三角形,它与△ABC相似,且有一条公共边和一个公共角.16.在4×6的方格中〔1〕画出与格点△ABC相似的△DEF〔相似比不为1,且顶点应在格点上〕;〔2〕证明你的结论.参考答案一.选择题1.D.2.C.3.D.4.B.5.A.6.D.二.填空题7..8.2:3.9.如下图,△A′BC即为所求.10.3:1.11.8,4.12..三.解答题13.解:∵四边形ABCD为正方形,PB⊥BF,∴∠ABC=∠PBF=90°,∴∠ABP+∠PBC=∠PBC+∠CBF,∴∠ABP=∠CBF,当△ABP∽△CBM时,那么有=,即=,解得BM=3;当△ABP∽△MBC时,那么有=,即=,解得BM=;∴BM=3或.14.解:〔1〕如下图:〔2〕如下图:△ACD∽△DCB.15.解:〔1〕如图①所示:△ABC与△DEF相似,理由:∵AB=1,BC=,AC=2;DE=,EF=,DF=4,∴△ABC与△DEF相似;〔2〕如图②所示:△A′B′C′即为所求;〔3〕如图③所示:△ADC和△CEB即为所求.16.解:〔1〕如图,△DEF为所作;〔2〕证明如下:∵AB=4,BC==2,AC==2,DE=2,EF==,DF==,∴△DEF∽△ABC.。
4.8 图形的位似 课时练习(含答案解析)
北师大版数学九年级上册第3章第8节图形的位似同步检测一、选择题1.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF 的面积比是()A.1:8B.1:6C.1:4D.1:2答案:C解析:解答:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC∥DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选:C.分析:先由已知条件及位似图形的性质,得AC∥DF,求得AC:DF=OA:OD=1:2,再根据相似三角形面积的比等于相似比的平方,求得△ABC与△DEF的面积比.掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.2.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(-2,0)B.(-1.5,-1.5)C.(-2,-2)D.(-2,-2)答案:C解析:解答:∵正方形OABC,点A的坐标为(1,0),∴B点坐标为:(1,1),∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴E点的坐标为:(-2,-2).故选:C.分析:首先利用正方形的性质得出B点坐标,然后利用位似图形的性质,将B点横纵坐标都乘以-2得出答案.此题主要考查了位似图形的性质以及坐标与图形的性质,得出E点与B点坐标关系是解题的关键.3.已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点'A的坐标为()A.(1,12)B.(4,2)C.(1,12)或(-1,-12)D.(4,2)或(-4,-2)答案:D解析:解答:如图,则点A 的坐标为(4,2)或(-4,-2).故选:D.分析:先由已知条件画出符合条件的两个图形,再根据图中点的位置写出坐标.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.4.如图,在3×3正方形网格中,顶点是网格线的交点的三角形叫做格点三角形,给出下列命题:①一定存在全等的两个格点三角形②一定存在相似且不全等的两个格点三角形③一定存在两个格点三角形是位似图形④一定存在周长和面积均为无理数的格点三角形其中真命题的个数是()A.4个B.3个C.2个D.1个答案:B解析:解答:根据题意,得如图所示:△FBG≌△AFH,①正确;△ABC∽△FBC,但两者不全等,②正确;△ABC与△DBE位似,③正确;因为可以得到格点三角形两直角边长为整数,所以面积无法得到是无理数的格点三角形,④错误;故选:B.分析:根据题意,先在图中作出三角形,再分析得到答案.此题考查了位似、全等、相似的相关知识,注意三者的区别与联系.5.下列语句正确的是()A.相似图形一定是位似图形,位似图形一定是相似图形B.位似图形一定是相似图形,而且位似比等于相似比C.利用位似变换只能放大图形,不能缩小图形D.利用位似变换只能缩小图形,不能放大图形答案:B解析:解答:相似图形对应点的连线不一定都经过同一点,所以不一定是位似图形,故选项A错误;位似图形一定是相似图形,而且位似比等于相似比,故选项B正确;利用位似变换能放大图形,也能缩小图形,故C和D选项错误.故选:B.分析:如果相似图形的对应点的连线都经过同一点,那么这两个图形是位似图形,并且位似比等于相似比,也能扩大原有图形,也能缩小原有图形.相似图形不一定是位似图形,但位似图形一定是相似图形.6.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)答案:B解析:解答:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.分析:利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.解答此题的关键是正确把握位似比与对应点坐标的关系.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(-2,-2)D.(2,1)答案:B解析:解答:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=22,∴A(12,12),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为(1,1).故选:B.分析:先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似求得答案.若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky).8.已知△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,则△ABC与△DEF的面积比为()A.3:4B.3:7C.9:16D.9:49答案:C解析:解答:∵△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm和4cm,∴根据位似图形的性质,得△ABC与△DEF的位似比为:3:4,△ABC∽△DEF,∴△ABC与△DEF的相似比为:3:4,∴△ABC与△DEF的面积比为9:16.故选:C.分析:由△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,得△ABC∽△DEF,且相似比为3:4,再由相似三角形的面积比等于相似比的平方,求得△ABC与△DEF的面积比.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.9.如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC 的中点,则△DEF与△ABC的面积比是()A.1:6B.1:5C.1:4D.1:2答案:C解析:解答:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.分析:根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方求出面积之比.熟练掌握:位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等答案:D解析:解答:∵位似是相似的特殊形式,∴位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等∴正确答案为D.故选:D.分析:根据性质可知,位似是相似的特殊形式,位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等,由此得到正确答案.11.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解析:解答:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.分析:位似是特殊的相似,相似图形对应边的比相等.根据相似多边形对应边成比例得出DE:MN=2:3即可求解.12.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E'的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)答案:A解析:解答:∵E(-4,2),位似比为1:2,∴点E的对应点E'的坐标为(2,-1)或(-2,1).故选:A.分析:注意位似的两种位置关系,利用位似比为1:2,可求得点E的对应点E'的坐标为(2,-1)或(-2,1).此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.13.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点'A,'B,'C.下列说法正确的是()A.△'''A B C与△ABC是位似图形,位似中心是点(1,0)B.△'''A B C与△ABC是位似图形,位似中心是点(0,0)C.△'''A B C与△ABC是相似图形,但不是位似图形D.△'''A B C与△ABC不是相似图形答案:B解析:解答:∵△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍∴点'A,'B,'C的坐标分别为(2,4),(-4,6),(-2,0)∴直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0∴对应点的连线交于原点∴△'''A B C与△ABC是位似图形,位似中心是点(0,0)故选:B.分析:由已知条件△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,求得直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0,可知△'''A B C与△ABC是位似图形,位似中心是点(0,0).此题考查了位似的相关知识,位似是相似的特殊形式,位似图形的对应点的连线交于一点.14.下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个答案:C解析:解答:根据位似图形的定义可知:两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形的是第1个和第3个.故选:C.分析:如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.正确掌握位似图形的定义是解答此题的关键.15.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:2,点A的坐标为(0,1),则点E的坐标是()A.(-1.4,-1.4)B.(1.4,1.4)C.(-2,-2)D.(2,2)答案:D解析:解答:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(0,1),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选:D.分析:根据题意可得OA :OD =1:2,由点A 的坐标为(1,0),可求得OD 的长,再由正方形的性质,可求得E 点的坐标.此题考查了位似变换的性质与正方形的性质.二、填空题16.如图,在平面直角坐标系中,△ABC 和△A BC '''是以坐标原点O 为位似中心的位似图形,且点B (3,1),'B (6,2).若△ABC 的面积为m ,则△'''A B C 的面积(用含m 的代数式表示)是答案:4m解析:解答:∵△ABC 与△A BC '''的相似比为1:2 ∴'''14ABC A B C S S ∆∆=,∴'''14A B C m S ∆= ∴'''4A B C S m ∆=故答案为:4m .分析:利用位似是特殊的相似,利用面积比等于位似比的平方得出即可.此题考查位似变换;坐标与图形性质;相似三角形的性质.17.如图,已知E (-4,2),F (-1,-1),以原点O 为位似中心,按比例尺2:1把△EFO 缩小,则E 点对应点E '的坐标为答案:(2,-1)解析:解答:根据题意可知,点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-, 所以点E '的坐标为(2,-1).故答案为:(2,-1).分析:以O 为位似中心,按比例尺2:1,把△EFO 缩小,结合图形得出,则点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-,而得到的点E '的坐标为(2,-1).关于原点成位似的两个图形,若位似比是k ,则原图形上的点(x ,y ),经过位似变化得到的对应点的坐标是(kx ,ky )或(-kx ,-ky ).18.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△'''A B C 的位似比是1:2,已知△ABC 的面积是3,则△'''A B C 的面积是答案:12解析:解答:∵△ABC 与△'''A B C 是位似图形,且△ABC 与△'''A B C 的位似比是1:2,△ABC 的面积是3,∴△ABC 与△'''A B C 的面积比为:1:4,则△'''A B C 的面积是:12.故答案为:12.分析:利用位似图形的面积比等于位似比的平方得出答案.此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解答此题的关键.19.如图,在平面直角坐标系中,以P (4,6)为位似中心,把△ABC 缩小得到△DEF ,若变换后,点A 、B 的对应点分别为点D 、E ,则点C 的对应点F 的坐标应为答案:(4,4)解析:解答:∵△DEF ∽△ABC ,且F 点在CP 的连线上,∴可得F 点位置如图所示:故P 点坐标为(4,4).故答案为:(4,4)分析:根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F 点的坐标.此题考查位似的定义,注意掌握两位似图形的对应点的连线都经过同一点,这一点就是位似中心.20.如图,已知两点A (6,3),B (6,0),以原点O 为位似中心,相似比为1:3把线段AB 缩小,则点A 的对应点坐标是答案:(2,1)或(-2,-1)解析:解答:如图所示:∵A (6,3),B (6,0)两点,以坐标原点O 为位似中心,相似比为13,∴A '、A "的坐标分别是A '(2,1),A "(-2,-1).故答案为:(2,1)或(-2,-1).分析:易得线段AB 垂直于x 轴,根据所给相似比把各坐标都除以3或-3即可.此题主要考查了位似图形变换,用到的知识点为:各点到位似中心的距离比也等于相似比.三、解答题21.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,每个小正方形的边长都为1. 求△ABC 与△A ′B ′C ′的面积比.答案:14解析:解答:∵由已知条件可知ABC S ∆∽'''A B C S ∆∴'''22211424ABC A B C S S ∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 分析:已知△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,每个小正方形的边长都为1,根据位似图形是相似图形,相似图形的面积比等于相似比的平方计算求解.22.一般的室外放映的电影胶片上每一个图片的规格为3.5cm×3.5cm ,放映的银幕规格为2m×2m ,若影机的光源距胶片20cm 时,问银幕应在离镜头多远的地方,放映的图象刚好布满整个银幕? 答案:807m 解析:解答:如图,O 为位似中心,先计算位似比K =200400=3.57. 设银幕距镜头x cm ,则400207x =, 解得:x =80007. 答:银幕应在离镜头807m ,放映的图象刚好布满整个银幕.分析:由题意可知此题可以利用位似知识来解答,先根据胶片和银幕边之比,求出位似比,再借助位似比求得问题的答案.23.如图,已知△ABC 的三个顶点的坐标分别为A (-1,2)、B (-3,0)、C (0,0)(1)请直接写出点A 关于x 轴对称的点'A 的坐标;答案:(-1,-2)(2)以C 为位似中心,在x 轴下方作△ABC 的位似图形111A B C ∆,使放大前后位似比为1:2,请画出图形,并求出111A B C ∆的面积;答案:12解析:解答:(1)∵点A 的坐标为(-1,2),∴点A 关于x 轴对称的点'A 的横坐标为-1,纵坐标为-2,∴点A '的坐标为(-1,-2);(2)111A B C ∆的面积=12×6×4=12.分析:(1)已知点A 的坐标,点A 的横坐标不变,纵坐标变为原来的相反数,即得点'A 的坐标;(2)连接AC 延长到'A 使1A C =2AC ,延长BC 到1B ,使1B C =2BC ,点1C 的对应点为C ,顺次连接各点即可;111A B C ∆的面积=12×底边×高. 24.如图,四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A ′B ′C ′D ′和四边形A B C D """"位似,位似比2k =1.四边形A B C D """"和四边形ABCD 是位似图形吗?位似比是多少?答案:是位似图形|位似比为12解析:解答:∵四边形ABCD 和四边形A B C D ''''位似,∴四边形ABCD ∽四边形A B C D ''''.∵四边形A B C D ''''和四边形A B C D """"位似,∴四边形A B C D ''''∽四边形A B C D """".∴四边形A B C D """"∽四边形ABCD .∵对应顶点的连线过同一点,∴四边形A B C D """"和四边形ABCD 是位似图形.∵四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A B C D ''''和四边形A B C D """"位似,位似比2k =1,∴四边形A B C D """"和四边形ABCD 的位似比为12. 分析:此题考查位似图形的判定方法与性质.因为位似图形是特殊的相似图形,四边形A B C D """"和四边形ABCD 位似,所以四边形A B C D """"∽四边形ABCD ;相似具有传递性,可得四边形A B C D """"∽四边形ABCD ;因为位似比等于相似比,所以求得四边形A B C D """"和四边形ABCD 的位似比.25.如图,△ABC 中,A 、B 两点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形''A B C ∆,并把△ABC 的边长放大到原来的2倍.设点B 的对应点'B 的横坐标是2,求点B 的横坐标.答案:−2.5解析:解答:过点B 、'B 分别作BD ⊥x 轴于D ,'B E ⊥x 轴于E ,∴∠BDC =∠'B EC =90°.∵△ABC 的位似图形是''A B C ∆,∴点B 、C 、'B 在一条直线上,∴∠BCD =∠'B CE ,∴△BCD ∽△'B CE . ∴CD BC CE B C'=, 又∵1=2BC B C ', ∴12CD CE =, 又∵点'B 的横坐标是2,点C 的坐标是(-1,0),∴CE=3,∴CD=1.5.∴OD=2.5,∴点B的横坐标为−2.5.分析:过B和'B向x轴引垂线,构造相似比为1:2的相似三角形,那么利用相似比和所给B 的横坐标即可求得点B的横坐标.难点是利用对应点向x轴引垂线构造相似三角形,关键是利用相似比解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.6 图形的位似 同步练习
1、(05佛山)如图,在水平桌面上的两个“E”,当点1P ,2P ,O 在一条
直线上时,在点O 处用①号“E”测得的视力与用②号“E”测得的视力相同.
(1)图中1b ,2b ,1l ,2l 满足怎样的关系式?
(2)若1 3.2b =cm ,22b =cm ,①号“E ”的测试距离18l =m ,要使
测得的视力相同,则②号“E ”的测试距离2l 应为多少?
2、(06浙江台州)善于学习的小敏查资料知道:对应角相等,对应边成比例的两
个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其 他两边相交,所构成的三角形与原三角形相似”,提出如下两个 问题,你能帮助解决吗?
问题一 平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
O
第21题
(1)从特殊情形入手探究.假设梯形ABCD 中, AD ∥BC ,AB =6,BC =8,CD =4,
AD =2,MN 是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND 与梯形ABCD 是否相似?
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______________ (填“相似”或“不相似”或“相似性无法确定”.不要求证明) .
问题二 平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______________ (填“相似”或“不相似”或“相似性无法确定”.不要求证明).
(2)从特殊梯形入手探究.同上假设,梯形ABCD 中,AD ∥BC ,AB =6,BC =8,CD =4,AD =2,你能找到与梯形底边平行的直线PQ (点P,Q 在梯形的两腰上,如图②), 使得梯形APQD 与梯形PBCQ 相似吗? 请根据相似梯形的定义说明理由.
第25题
2 8 A D
C
B
4 6 P
Q A C
B
D M N 第25题
C
B A
E 图
F
C
D E
A
B
(3)一般结论:对于任意梯形(如图③),一定 (填“存在”
或“不存在”) 平行于梯形底边的直线PQ ,使截得的两个小梯形相似. 若存在,则确定这条平行线位置的条件是
AP
PB
= (不妨设AD= a ,BC= b ,AB=c ,CD= d .不要求证明 ) .
3、已知:如图1,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AD 和BC 相交于点E ,EF ⊥BD ,垂足为F ,我们可以证明EF
CD AB 111=+成立(不要求考生证明).若将图1中的垂线改为斜交,如图2,AB ∥CD ,AD ,BC 相交于点E ,过点E 作EF ∥AB ,交BD 于点F ,则:
⑴
EF
CD AB 1
11=+还成立吗?如果成立,请给出证明; 如果不成立,请说明理由;
⑵ 请找出S △ABD ,S △BED 和S △BDC 间的关系式,并给出证明.
第25题a b A D C B d
c P Q。