云南省曲靖市陆良县第二中学2014-2015学年八年级数学下学期期中试题
2014-2015学年第二学期期中考试试卷初二数学附答案
一、选择题(本大题共10小题,每小题3分,共30分)
1.下列图形中,既是轴对称图形又是中心对称图形的是()
A. B.C.D.
2.下列分式中,属于最简分式的是()
A. B. C. D.
3.某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确的是()
D.在相同条件下,只要试验 Nhomakorabea次数足够多,频率就可以作为概率的估计值
5.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=45°.∠B′=110°,则∠BCA′的度数是()
A.55° B.75°C.95° D.110°
6.菱形具有而矩形不一定具有的性质是()
A.对角线互相垂直B.对 角线相等C.对角线互相平分D.对角互补
A.该学生捐赠款为0.6a元B.捐赠款所对应的圆心角为240°
C.捐赠款是购书款的2倍D.其他支出占10%
4.下列说法中不正确的是()
A.
抛掷一枚硬币,硬币落地时正面朝上是随机事件
B.
把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件
C.
任意打开七年级下册数学教科书,正好是97页是确定事件
(2 )若四边形BFDE是菱形, AB=2,求菱形BFDE的面积.
26.(本题10分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果的数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
()
A.20 B.18 C.16 D.10
9.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为 ;④四边形AnBnCnDn面积为 .上述结论正确的是()
2014-2015学年度第二学期八年级数学期中考试卷附答案
2014-2015学年度第二学期八年级数学期中考试卷(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下。
1.下列式子是分式的是( )A.2x B.11+x C.y x +2 D.πxy2 2. 使分式2-x x有意义的x 的取值范围是( )A. 2x =B.2x ≠C.2x =-D.2x ≠-3. 某种感冒病毒的直径是0.00000012米,用科学记数法表示为( )米.A .71.210-⨯ B .71012.0-⨯ C .6102.1-⨯ D .61012.0-⨯ 4.点)0,2(在( )A.x 轴上B.y 轴上C.第一象限D.第四象限 5.点P (5,4-)关于x 轴对称点是( )A .(5,4) B.(5,4-) C.(4,5-) D.(5-,4-) 6.若点P(3,-1m )在第二象限,则m 的取值范围是( )A. m <1B. m <0C. m >0D. m >1 7.函数23-=x y 的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限8.在同一坐标系中,函数x ky =和3+=kx y )0(≠k 的图像大致是( )9. 在平行四边形ABCD 中,A B C D ∠∠∠∠∶∶∶的值可以是( ) A.1234∶∶∶ B.1221∶∶∶ C.2211∶∶∶ D.2121∶∶∶ 10.下列说法错误的是( )学校: 班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分E A .平行四边形的对角相等 B.平行四边形的对角互补 C .平行四边形的对边相等 D.平行四边形的内角和是360°11.如图1,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形的面积等于( )A .6 B. 10 C. 12 D. 1512. 如图2,a b ∥,下列线段中是a b ,之间的距离的是( )A.AB B.AE C.EF D.BC图2 13.已知2111=-b a ,则b a ab -的值是( ) A .21 B.21- C.2 D.2-14.当一次函数32-=x y 的图像在第四象限时,自变量x 的取值范围是( ) A.0<x <23 B.x >0 C.x <23D.无法确定二、填空题:(每小题4分,共16分)15. 若分式方程212-=--x x m x 有增根,则这个增根是=x 16.若反比例函数xky = 的图象经过点(1,-2),则此函数的解析式为 。
2014-2015学年八年级(下)期中数学检测题(含答案)
数学期中检测试题得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.要使分式1|x |-5有意义,x 应满足的条件是( )A .x ≠5B .x ≠-5C .-5<x <5D .x ≠5且x ≠-5 2.化简(1x -3-x +1x 2-1)·(x -3)的结果是( )A .2 B.2x -1 C.2x -3 D.x -4x -13.下列运算正确的是( )A .(π-3.14)0=0B .5x -1=5xC .-(-32)-2=32D .3-3=-194.太阳的半径大约是696 000千米,用科学记数法可表示为( )A .696×103千米B .69.6×104千米C .6.96×105千米D .6.96×106千米 5.反比例函数y =1-2kx 的图象经过点(-2,3),则k 的值为( )A .6B .-6 C.72 D .-726.如果ab >0,a c <0,则直线y =-a b x +ca不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.小兰画了一个函数y =a x -1的图象如图,那么关于x 的分式方程ax -1=2的解是( )A .x =1B .x =2C .x =3D .x =4 8.已知k 1<0<k 2,则函数y =k 1x -1和y =k 2x的图象大致是( )9.如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1 D .0<k <1210.A ,B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是( )A .a >0B .a <0C .b =0D .ab <0第9题图 第10题图二、填空题(每小题3分,共24分)11.点(4,-3)关于原点对称的点的坐标是______________.12.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是____. 13.计算:2a 3b ·b 4a 3÷1a 2=____.14.当a =____时,分式方程x x -3=2+a x -3会产生增根. 15.若点A (x 1,y 1)和点B (x 2,y 2)在反比例函数y =2x的图象上,且0<x 1<x 2,则y 1与y 2的大小关系是____.16.如图,某航空公司托运行李费用y (元)与托运行李质量x (kg)的关系为一次函数,由图中可知行李的质量只要不超过____kg ,就可免费托运. 17.化简:1x +1x (x -1)=____.18.新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”,若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为____.三、解答题(共66分) 19.(8分)化简:(1)(1x +1-1x -1)÷2x 2-1; (2)x -1x 2+x ÷x 2-2x +1x 2-1-1x .20.(8分)先化简:1-a -1a ÷a 2-1a 2+2a ,再选取一个合适的a 值代入计算.21.(9分)如图,在平面直角坐标系中,O 为原点,一次函数与反比例函数的图象相交于A(2,1),B(-1,-2)两点,与x轴交于点C.(1)分别求出反比例函数和一次函数的解析式(关系式);(2)连结OA,求△AOC的面积.22.(9分)甲、乙两名大学生到距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车按原路返回.乙取到相机后(在学校取相机所用时间忽略不计),骑电动车追甲,在距乡镇13.5千米处追上甲并同车前往乡镇.若电动车速度始终不变,设甲与学校相距y甲(千米),乙与学校相距y乙(千米),甲离开学校的时间为x(分钟),y甲,y乙与x之间的函数图象如图所示.结合图象解答下列问题:(1)电动车的速度为__0.9__千米/分钟;(2)甲步行所用时间为__45__分钟;(3)求乙返回到学校时,甲与学校相距多远.23.(9分)2014年10月7日,云南省普洱市景谷县发生了里氏6.6级强烈地震.某厂接到在规定时间内加工1 500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?24.(10分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30时,求y与x之间的函数关系式;(2)若小李4月份上网20小时,则他应付多少元的上网费用?(3)若小李4月份上网费用为75元,则他在该月上网的时间是多少?25.(13分)某厂从2011年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)表示其变化规律,说明确定是这种函数而不是另一种函数的理由,并求出它的解析式;(2)按照这种变化规律,若2015年已投入技改资金5万元.①预计生产成本每件比2014年降低多少万元?②如果打算在2015年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)参考答案一、选择题(每小题3分,共30分)1.要使分式1|x |-5有意义,x 应满足的条件是( D )A .x ≠5B .x ≠-5C .-5<x <5D .x ≠5且x ≠-5 2.化简(1x -3-x +1x 2-1)·(x -3)的结果是( B )A .2 B.2x -1 C.2x -3 D.x -4x -13.下列运算正确的是( B )A .(π-3.14)0=0B .5x -1=5xC .-(-32)-2=32D .3-3=-194.太阳的半径大约是696 000千米,用科学记数法可表示为( C )A .696×103千米B .69.6×104千米C .6.96×105千米D .6.96×106千米 5.反比例函数y =1-2kx 的图象经过点(-2,3),则k 的值为( C )A .6B .-6 C.72 D .-726.如果ab >0,a c <0,则直线y =-a b x +ca不经过( A )A .第一象限B .第二象限C .第三象限D .第四象限7.小兰画了一个函数y =a x -1的图象如图,那么关于x 的分式方程ax -1=2的解是( A )A .x =1B .x =2C .x =3D .x =4 8.已知k 1<0<k 2,则函数y =k 1x -1和y =k 2x的图象大致是( A )9.如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( B )A .k >2B .1<k <2 C.12<k <1 D .0<k <1210.A ,B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x +a ,y +b ),B (x ,y ),下列结论正确的是( B )A .a >0B .a <0C .b =0D .ab <0第9题图 第10题图二、填空题(每小题3分,共24分)11.点(4,-3)关于原点对称的点的坐标是__(-4,3)__.12.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是__m <3__. 13.计算:2a 3b ·b 4a 3÷1a 2=__16__.14.当a =__3__时,分式方程x x -3=2+ax -3会产生增根.15.若点A (x 1,y 1)和点B (x 2,y 2)在反比例函数y =2x的图象上,且0<x 1<x 2,则y 1与y 2的大小关系是__y 1>y 2__.16.如图,某航空公司托运行李费用y (元)与托运行李质量x (kg)的关系为一次函数,由图中可知行李的质量只要不超过__20__kg ,就可免费托运. 17.化简:1x +1x (x -1)=__1x -1__.18.新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”,若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为__x =3__.三、解答题(共66分) 19.(8分)化简: (1)(1x +1-1x -1)÷2x 2-1; 解:-1(2)x -1x 2+x ÷x 2-2x +1x 2-1-1x .解:020.(8分)先化简:1-a -1a ÷a 2-1a 2+2a,再选取一个合适的a 值代入计算.解:原式=1-a -1a ·a (a +2)(a +1)(a -1)=1-a +2a +1=-1a +1,a 取除0,-2,-1,1以外的数,如取a =10,原式=-11121.(9分)如图,在平面直角坐标系中,O 为原点,一次函数与反比例函数的图象相交于A (2,1),B (-1,-2)两点,与x 轴交于点C .(1)分别求出反比例函数和一次函数的解析式(关系式); (2)连结OA ,求△AOC 的面积.解:(1)设反比例函数的解析式为y =k 1x ,当x =2 时,y =1,∴k 1=xy =2×1=2,∴反比例函数解析式为y =2x ,设一次函数解析式为y =k 2x +b ,把x =2,y =1,x =-1,y =-2代入得⎩⎪⎨⎪⎧2k 2+b =1,-k 2+b =-2,解得⎩⎪⎨⎪⎧k 2=1,b =-1,∴一次函数解析式为y =x -1(2)令y =x -1=0,得x =1.∴C (1,0).∵A (2,1),∴S △AOC =12×1×2=122.(9分)甲、乙两名大学生到距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车按原路返回.乙取到相机后(在学校取相机所用时间忽略不计),骑电动车追甲,在距乡镇13.5千米处追上甲并同车前往乡镇.若电动车速度始终不变,设甲与学校相距y 甲(千米),乙与学校相距y 乙(千米),甲离开学校的时间为x (分钟),y 甲,y 乙与x 之间的函数图象如图所示.结合图象解答下列问题:(1)电动车的速度为__0.9__千米/分钟; (2)甲步行所用时间为__45__分钟; (3)求乙返回到学校时,甲与学校相距多远.解:(3)甲步行过程中,设y 甲与x 的函数关系式为y 甲=kx +b. 根据题意,y 甲与x 之间的函数图象经过点(20,18),(65,22.5).∴⎩⎪⎨⎪⎧20k +b =18,65k +b =22.5.解得⎩⎪⎨⎪⎧k =0.1,b =16.∴y 甲=0.1x +16.当x =40时,y 甲=0.1x +16=0.1×40+16=20. 答:乙返回到学校时,甲与学校相距20千米23.(9分)2014年10月7日,云南省普洱市景谷县发生了里氏6.6级强烈地震.某厂接到在规定时间内加工1 500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷? 解:设该厂原来每天加工x 顶帐篷,提高效率后每天加工1.5x 顶帐篷, 根据题意得1 500x -(300x +1 500-3001.5x)=4.解得x =100.经检验,x =100是原分式方程的解.答:该厂原来每天加工100顶帐篷24.(10分)某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30时,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,则他应付多少元的上网费用? (3)若小李4月份上网费用为75元,则他在该月上网的时间是多少?解:(1)当x≥30时,设函数y =kx +b ,由题意,得⎩⎪⎨⎪⎧30k +b =60,40k +b =90,解得⎩⎪⎨⎪⎧k =3,b =-30,∴y =3x -30(2)4月份上网20小时,应付上网费60元 (3)由75=3x -30,x =35,即这个月上网35小时25.(13分)某厂从2011年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:表示其变化规律,说明确定是这种函数而不是另一种函数的理由,并求出它的解析式; (2)按照这种变化规律,若2015年已投入技改资金5万元. ①预计生产成本每件比2014年降低多少万元?②如果打算在2015年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)解:(1)①设其为一次函数,解析式为y =kx +b ,当x =2.5时,y =7.2;当x =3时,y =6.⎩⎪⎨⎪⎧7.2=2.5k +b ,6=3k +b ,解得⎩⎪⎨⎪⎧k =-2.4,b =13.2, ∴一次函数解析式为y =-2.4x +13.2,把x =4时,y =4.5代入此函数解析式,左边≠右边, ∴它不是一次函数②设其为反比例函数,解析式y =k x ,当x =2.5时,y =7.2,可得7.2=k2.5,∴k =18,∴反比例函数解析式为y =18x ,验证:当x =3时,y =183=6,符合反比例函数,同理可验证x =4时,y =4.5;x =4.5时,y =4成立, ∴可用反比例函数y =18x 表示其变化规律(2)①当x =5万元时,y =185=3.6(万元/件),∵4-3.6=0.4,∴生产成本每件比2013年降低0.4万元 ②当y =3.2时,3.2=18x,∴x =5.625,∵5.625-5=0.625≈0.63(万元),∴还需投入约0.63万元。
2014—2015学年度第 二学期期中试卷初二数学
2014—2015学年度第二学期期中试卷初二数学2015年4月一、选择题(本大题共10题,每小题3分,共计30分)1. 下列各式a 5、n 2m 、12π、a b +1、a +b 3中分式有…………………………………( ▲ ) A .2个 B .3个 C .4个 D .5个2. 顺次连结矩形四边的中点所得的四边形是………………………………………( ▲ )A .矩形B . 正方形C . 菱形D .以上都不对3.下列各组线段(单位:㎝)中,成比例线段的是( ▲ )A 、1、2、3、4B 、1、2、2、4C 、3、5、9、13D 、1、2、2、34.如图所示,要使得△ABC ∽△ACD ,只需增加条件 ( ▲ )A .BCAB CD AC = B .DB AD CD ∙=2 C .B BCD ∠=∠ D .ADC ACB ∠=∠ 5. 如果把分式nm n -3中的m 和n 都扩大3倍,那么分式的值………………( ▲ ) A .不变 B .扩大3倍 C .缩小3倍 D .扩大9倍6.如图,平行四边形ABCD 的对角线交于点O ,且AB =7,△OCD 的周长为23,则平行四边形ABCD的两条对角线的和是……………………………………………………( ▲ )A .32B .28C .16D .467.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0的一个根是0,则m 的值为………………( ▲ )A.1B. 1或-1C. -1D.0.58.为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是………………( ▲ )A .40004000210x x -=+B .40004000210x x-=+ C .40004000210x x -=- D .40004000210x x -=- 9.若要使分式3x 2-6x +3(x-1)3的值为整数,则整数x 可取的个数为( ▲ ) A. 5个 B. 2个 C. 3个 D. 4个10.在平面直角坐标系中,直角梯形AOBC 的位置如图所示,∠OAC =90°,AC ∥OB ,OA =4,AC=5,OB =6.M 、N 分别在线段AC 、线段BC 上运动,当△MON 的面积达到最大时,存在一种使得△MON 周长最小的情况,则此时点M 的坐标为 ( ▲ )A.(0,4) B .(3,4) C . ( 52,4) D . (3, 3) 二、填空题(本大题共8小题,每小题3分,共计24分)11.当x ▲时,分式12x x +-的值为0.12.34,1x y xy -的最简公分母是 ____▲ . 13.在比例尺为1:7500的某市建设规划图上,量得两点之间的直线距离约为200cm ,则这两地的实际距离为 ▲ 千米.14.如图,在□ABCD 中,BD 为对角线,E 、F 分别是AD 、BD 的中点,连结EF .若EF =3,则CD的长为 ▲ .15. 如果分式方程x x +1 = m x +1无解,则m = ▲ . 16.已知113x y -=,则代数式2722x xy y x xy y+---的值为 ▲ . 17.如图,将三角形纸片的一角折叠,使点B 落在AC 边上的F 处,折痕为DE .已知AB =A C =3,BC =4,若以点E ,F ,C 为顶点的三角形与△ABC 相似,那么BE 的长是 ▲ .18.关于x 的方程:c c x x 11+=+的解是c x =1,c x 12=,cc x x 11-=-解是c x =1,c x 12-= , 则x +1x -3 = c +1c -3的解是 ▲ . 三、解答题(本大题共8小题,共计66分)19.(本题满分8分)计算或化简:(1)计算:211a a a --+ ;(2)先化简122)12143(22+-+÷---+m m m m m m ,再从(1)中m 的取值范围内,选取一个你认为合适的m 的整数值代入求值.20.解方程(本题满分8分)(1)(x -5)2 =2(5-x ) (2)2x 2-4x -6=0(用配方法);21.(本题满分8分)如图1,在4×4的正方形方格中,△ABC 的顶点都在边长为1的小正方形的顶点.(1)填空:AB= _,∠BAC= °.(2)请在图2中的两个3×3的正方形方格中各.画一.个.和△ABC 相似但不全等...的格点三角形.ABC(第 14题图) (第17题图)图1 图222.(本题满分7分)如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线点F.(1)△AP E与△FPA相似吗?请说明理由.(2)若PE=1,EF=2,试求PC的长度.23.(本题满分8分)某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,后来每天比原来多做25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?24. (本题满分8分)阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形. 如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形(▲)A . 平行四边形B. 矩形C. 菱形D. 等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形....ABCD的和 , 请直接写出∠ABC的度数.谐线,且AB BC25.(本题9分)如图1,矩形ABCD 中,点P 从A 出发,以3cm/s 的速度沿边A →B →C →D 匀速运动;同时点Q 从B 出发,沿边B →C →D 匀速运动,当其中一个点到达终点时两点同时停止运动,设点P 运动的时间为t s .△APQ 的面积s (cm 2)与t (s)之间函数关系的部分图像由图2中的曲线段OE 与线段EF 给出.(1)点Q 运动的速度为 ▲ cm/s ,a ﹦ ▲cm 2;(2)若BC ﹦3cm ,① 写出当t >3时S 关于t 的函数关系式;② 在图(2)中画出①中相应的函数图像.26.(本题满分10分)如图①,在□ABCD 中,AB =13,BC =50,点P 从点B 出发,沿B —A —D—A 运动.已知沿B —A 运动时的速度为每秒13个单位长度,沿A —D —A 运动时的速度为每秒8个单位长度.点Q 从点 B 出发沿BC 方向运动,速度为每秒5个单位长度. 若P 、Q 两点同时出发,当点Q 到达点C 时,P 、Q 两点同时停止运动.设点P 的运动时间为t (秒).连结PQ .(1)当点P 沿A —D —A 运动时,求AP 的长(用含t 的代数式表示).(2)过点Q 作QR//AB ,交AD 于点R ,连结BR ,如图②.在点P 沿B —A —D 运动过程中,是否存在线段PQ 扫过的图形(阴影部分)被线段BR 分成面积相等的两部分的情况,若存在,求出所有t 的值,若不存在,请说明理由.(3)设点C 、D 关于直线PQ 的对称点分别为'C 、'D ,在点P 沿B —A —D 运动过程中,当''C D //BC 时,求t 的值(直接写出结果).(图1) C D Q。
2014—2015学年度第二学期期中考试试卷八年级数学
2014—2015学年度第二学期期中考试试卷八年级数学2015.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:l 、答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2、答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3、考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.) 1.分式12x x -+的值为0时,x 的值是A .0B .1C .-1D . -2 2.下列事件中,属于不可能事件的是 A .明天某地区早晨有雾B .抛掷一枚质地均匀的骰子,向上一面的点数是6C .一个不透明的袋子中有2个红球和1个白球,从中摸出1个球,该球是黑球D .明天见到的第一辆公交车的牌照的末位数字将是偶数 3.已知平行四边形ABCD 中,∠B=4 ∠A ,则∠C=A .180︒B .36︒C .72︒D .144︒ 4.下列计算错误的是A .0.220.77a ba ba b a b ++=-- B .3223xx yx y y=C .1a b b a--=- D .123ccc+=5.已知四边形ABCD 中,∠A=∠B=∠C=90︒,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是A .∠D=90︒B .AB=CDC .AD=BCD .BC=CD6.已知:菱形ABCD 中,对角线AC 与BD 相交O .E 是BC 中点E , AD =6,则OE 的长为A .6B .4C .3D .2 7.若双曲线k y x=与直线y =2x +1的一个交点的横坐标为-1,则k 的值为A .-1B .1C .-2D .28.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有A .4个B .3个C .2个D .1个9.函数y=mx+n 与y =n mx,其中m ≠0,n ≠0,那么它们在同一坐标系中的图象可能是10.如图,将矩形ABCO 放在直角坐标系中,其中顶点B 的坐标为(10, 8),E 是BC 边上一点,:博△ABE 沿AE 折叠,点B 刚好与OC 边上点D 重合,过点E 的反比例函数y=k x的图象与边AB 交于点F , 则线段AF的长为 A .154B. 2 C .158D .32二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上) 11.已知反比例函数y=13m x- (m 为常数)的图象在一、三象限,则m 的取值范围为 ▲ .12.分式方程3220xx --=的解为x = ▲ .13.某学校计划开设A ,B ,C ,D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C 课程的学生有 ▲ 人.14.如图,在矩形ABCD 中,AB =3,BC =5,以点B 为圆心,BC 长为半径画弧,交边 AD于点E ,则AE ·ED = ▲ . 15.已知1112ab+=,则ab a b+的值是 ▲ .16.如图,点O 是菱形ABCD 两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 ▲ . 17.如图,已知正方形ABCD 的边长为1,连接AC 、BD ,CE 平分∠ACD 交BD 于点E , 则DE = ▲ . 18.如图,△OAC 和△BAD 都是等腰直角三角形,∠A CO =∠ADB =90︒,反比例函数y=k x在第一象限的图象经过点B ,若OA 2-AB 2=6,则k 的值为 ▲ .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明). 19.(本题满分8分,每小题4分)约分: (1) 262ab b-; (2)22222a a bab b-++ .20.(本题满分5分) 解方程:22210224x x x x x -++--=-21.(本题满分6分)先化简,再求值:21211x x ---,其中x =1.22.(本题满分6分)下面是小明和同学做“抛掷质地均匀的硬币试验”获得的数据.(1)填写表中的空格; (2)画出折线统计图; (3)当试验次数很大时,“正面朝上”的频率在 ▲ 附近摆动.23.(本题满分7分)如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点. (1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;24.(本题满分6分) 如图,已知点A 、B 的坐标分别为(0,0),(4,0),将△ABC 绕点A 按逆时针方向旋转90°得到△AB ′C '. (1)画出AAB 'C ';(2)写出点C ′,的坐标 ▲ ; (3)线段BB ′的长为 ▲ .25.(本题满分6分)给出下列命题: 命题l :直线y=x 与双曲线y=1x有一个交点是(1,1);命题2:直线y=8x 与双曲线y=2x有一个交点是(12,4);命题3:直线y=27x 与双曲线y=3x有一个交点是(13,9);命题4:直线y=64x 与双曲线y=4x有一个交点是(14,16);(1)请你阅读、观察上面命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.26.(本题满分10分)如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF .(1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数;(3)当点P 是AB 的中点且AB=2,则BF 的长为 ▲ .27.(本题满分10分)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=k x的图象经过点A (2,m ),过点A 作AB 上⊥x 轴于点B ,且△A OB 的面积为12.(1)则m = ▲ ,k = ▲ ;(2)点C (x ,y )在该反比例函数的图象上,求当1≤x ≤3时函数值y 的取值范围;(3)过原点O 的直线l 与该反比例函数的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.28.(本题满分12分) 已知,矩形ABCD 中.AB =4cm ,BC =8cm ,对角线AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE ,试证明:四边形AFCE 为菱形; (2)求AF 的长;(3)如图2,动点P 以每秒5cm 的速度自A →F →B →A 运动、同时点Q 以每秒4cm 的速度自C →D →E →C 运动,当点P 到达A 点时两点同时停止运动. 若运动t 秒后,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.。
初二下册数学 2014-2015学年度八年级下册数学期中试卷及答案
21.(本题 10 分)某超市经销为每件 40 元的商品.据市场调查分析,如果按 每件 50 元销售,一周能售出 500 件;若销售单价每涨 1 元,每周销售量就减少 10 件.设 销售单价为 x 元(x≥50),一周的销售量为 y 件.
(1) 求 y 与 x 之间的函数关系式; (2) 在超市对该种商品投入不超过 10000 元的情况下,要使得一周的销售利润达到 8000 元,销售单价应定为多少元?
)
A.0.3ab
B.3ab
C.
D.
7.若
,则 的值为(
)
A.1
B. -1
C. 2012
D. -2012
8.在某校“我的比赛中,有 9 名学生参加决赛,他们决赛的最终成绩各不相同.
其中的一名学生想要知道自己能否进入前 5 名,不仅要了解自己的成绩,还要了解这 9
名学生成绩的(
)
A.众数
B.方差
C.平均数
A.36°
B.108°
C.72°
) D.60°
4.已知三角形两边的长分别是 4 和 3,第三边的长是一元二次方程 的一个实
数根,则该三角形的面积是(
)
A.6
B.12
C.6 或 2
D. 12 或
5.若关于
2-4y-3=3y+4 ,则 k (
)
A.k>
B.k≥
且 k≠0 C.k≥
D.k 且 k≠0
6.设 ,用含 a,b 的式子表示 ,则下列表示正确的是(
图1
(3)当点 D 在直线 BC 上,其它条件不变,试猜想线段 DE、DF 之间的数量关系,请直 接写出等式(不需证明)。
图2
参考答案
一、选择题
2014-2015学年下学期八年级下册数学期中试卷和答案 (4)
12014-2015学年第二学期八年级期中数学试题姓名 班级 考号 得分:(考试时间:100分钟 满分:120分)一. 填空题(每空3分,共30分)1. 用科学记数法表示-0.000043为 。
2.计算:计算()=⎪⎭⎫⎝⎛+--1311 ; 232()3y x=__________; a b b b a a -+-= ; yx x x y xy x 22+⋅+= 。
3.当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。
4.反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是 ;在每一象限内y 随x 的增大而 。
5. 如果反比例函数x my =过A (2,-3),则m= 。
6. 设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 7.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不包括树根)长度是 m.8. 三角形的两边长分别为3和5,要使这个三角形是直角三角 A D形,则第三条边长是 .9. 如图若正方形ABCD 的边长是4,BE=1,在AC 上找一点使PE+PB 的值最小,则最小值为 。
C210.如图,公路PQ 和公路MN 交于点P,且∠NPQ=30°,公路PQ 上有一所学校A,AP=160米,若有一拖拉机沿MN 方向以18米∕秒的速度行驶并对学校产生影响,则造成影响的时间为 秒。
二.单项选择题(每小题3分,共18分)11.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 12.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c === 14.在同一直角坐标系中,函数y=kx+k 与(0)ky k x=≠的图像大致是( )15.如图所示:数轴上点A 所表示的数为a ,则a 的值是(A .16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .63三、解答题:17.(10分)计算:(1)xy y x y x ---22 (2)22111a a a a a ++---18.(8分)先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值.19.(10分)解方程: (1)1233x x x=+-- (2)482222-=-+-+x x x x x4/ 2mm20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。
2014—2015学年度第二学期期中考试初二年级数学试卷附答案
OABCD2014—2015学年度第二学期期中考试初二年级数学试卷考试时间:100分钟 满分:100分一、选择题 (每小题3分,共30分)1.下列各组长度的线段能组成直角三角形的是( ) A .a =2,b =3,c =4 B .a =4,b =4,c =5 C .a =5,b =6,c =7 D .a =5,b =12,c =132.下面各条件中,能判定四边形是平行四边形的是( )A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等3.直角三角形一条直角边长为8 cm ,它所对的角为30°,则斜边为( ) A. 16 cm B. 4cm C. 12cm D. 8 cm 4.用配方法解方程0262=+-x x 时,下列配方正确的是( )A .9)3(2=-xB .7)3(2=-xC .9)9(2=-xD . 7)9(2=-x 5.顺次连结菱形各边中点所围成的四边形是( )A .一般的平行四边形B .矩形C .菱形D .等腰梯形6.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为( )A .6B .3C .33D .637.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.如图,□ABCD 中,∠DAB 的平分线AE 交CD 于E ,AB=5, BC=3,则EC 的长( ) A. 1 B. 1.5 C. 2 D. 39.直角三角形两直角边的长度分别为6和8,则斜边上的高为( )CBAED年级 班级 姓名 学号装 订 线3A.10B.5C. 9.6D.4.810.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围 是 ( )A.1k >-B. 1k >-且0k ≠C.1k <D. 1k <且0k ≠二、填空题(每小题3分,共30分)11.命题“菱形是对角线互相垂直的四边形”的逆命题是 . 12.梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 米. 13.如果菱形的两条对角线长为cm 10与cm 12,则此菱形的面积______2cm . 14.在ABC ∆中,∠C=090,AC=12,BC=5,则AB 边上的中线CD= . 15.一个正方形的面积为81cm 2,则它的对角线长为 cm.16. 已知□ABCD 的周长是24,对角线AC 、BD 相交于点O ,且△OAB 的周长比△OBC 的周长大4,则AB= .17.若关于x 的一元二次方程 220x x k -+=的一个实数根为2,则k 的值为________.18.如下图,已知OA=OB ,那么数轴上点A 所表示的数是____________.19.若(m -2)22-m x+x -3=0是关于x 的一元二次方程,则m 的值是______.20. 如图,⊿ABC 的周长为16,D, E, F 分别为AB, BC, AC1-30-1-2-4231B A A的中点,M, N, P 分别为DE, EF, DF 的中点,则⊿MNP 的周长为 。
2014-2015学年度第二学期期中考试试卷初二数学附答案
2014-2015学年度第二学期期中考试试卷初二数学班级______分层班________ 姓名______________ 学号_________ 成绩___________注意:时间100分钟,满分120分一、选择题(本题共30分,每小题3分)1. 一元二次方程2410x x +-=的二次项系数、一次项系数、常数项分别是( ). A .4,0,1B .4,1,1C .4,1,-1D .4,1,02. 由下列线段a ,b ,c 不能..组成直角三角形的是( ). A .a =1,b =2,c =3 B .a =1, b =2, c =5 C .a =3,b =4,c =5 D .a =2,b=c =33. 如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形C .菱形D .正方形4. 下列各式是完全平方式的是( ). A. 224x x ++B. 269x x -+C. 244x x --D. 232x x -+5. 正方形具有而矩形不一定具有的性质是( ). A .四个角都是直角 B .对角线互相平分 C .对角线相等 D .对角线互相垂直6. 如图,数轴上点M 所表示的数为m ,则m 的值是( ).AB .CD7. 已知平行四边形ABCD 的两条对角线 AC 、BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( ).A. (3,-2)B. (2,-3)C. (-3,2)D. (-2,-3)8. 某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则由题意可列方程为( ). A. 100)1(1442=-x B. 144)1(1002=-xC. 100)1(1442=+x D. 144)1(1002=+x9. 如图,平行四边形ABCD 的两条对角线相交于点O ,E 是AB边的中点,第16题图图中与△ADE 面积相等的三角形(不包括...△.ADE ...)的个数为( ). A . 3 B . 4 C . 5 D . 610. 如图,在长方形ABCD 中,AC 是对角线,将长方形ABCD 绕点B 顺时针旋转90°到长方形GBEF 位置,H 是EG 的中点,若AB =6,BC =8, 则线段CH 的长为( ).A .52B .41C .102D .21 二、填空题(本题共24分,每小题3分)11. 已知2x =是一元二次方程2280x ax ++=的一个根,则a 的值为 .12. 如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出它们的中点M 和N .如果测得MN =15m ,则A ,B 两点间的距离为 m .13. 如图,在□ABCD 中,CE ⊥AB 于E ,如果∠A =125°,那么∠BCE = °.14. 若把代数式223x x --化为2()x m k -+的形式,其中m 、k 为常数,则m +k = .15.如图,在□ABCD 中,E 为AB 中点,AC BC ⊥,若CE =3,则CD = .16. 如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 .17. 如图,菱形ABCD 的周长为40,∠ABC =60°,E 是AB 的中点,点P 是BD 上的一个动点, 则P A+PE 的最小值为___________.班级______分层班________ 姓名________ 学号______第17题图第12题图第13题图第15题图8. 如图:在平面直角坐标系中,A 、B 两点的坐标分别为 (1,5)、(3,3), M 、N 分别是x 轴、y 轴上的点. 如果以点A 、B 、M 、N 为顶点的四边形是平行四边形, 则M .的坐标...为 .三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程:(1) x 2(3)25-=; (2) 2610x x -+=.解: 解:20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm ,DE 平分∠ADC 交BC 边于点E , 求BE 的长度. 解:21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少? 解:22. 已知:关于x 的一元二次方程2(21)20x m x m +++=.B(1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明:(2)解:四、解答题(本题共20分,第23题6分,第24、25题每小题7分)23.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1) 求证:BD =EC ; (2) 若∠E =57°,求∠BAO 的大小.(1)证明:(2)解:班级______分层班________ 姓名_____ 学号____24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) (2)25. 阅读下列材料:问题:如图1,在□ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:(2)解:线段EG、AG、BG之间的数量关系为____________________________.班级______分层班________姓名_____学号____图1图2五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为___________;代数式32635a a a ++-的值为___________.27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 形; ②四边形A 3B 3C 3D 3是 形; ③四边形A 5B 5C 5D 5的周长是 ; ④四边形A n B n C n D n 的面积是 .28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,保........留作图痕迹,不写作法..........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证明:B图1(2)在方框内用尺规作图,..........保留作图痕迹,不写作法...........(3)解:图3图2初二数学 答案及评分参考标准班级_____ 姓名_____ 学号_____ 成绩_____一、选择题(本题共30分每小题3分,)三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程(1)x 2(3)25-=解: 35x -=± ----------------------------3分 ∴ 1282x x ==-, ------------------------5分(2) 2610x x -+=解: 261x x -=- -----------------------1分 2698x x -+= -----------------------2分2(3)8x -= --------------------3分3x -=± --------------4分∴13x =+23x =- --------------5分 另解:1a =,6b =-,1c =,--------------------------1分()224641132b ac -=--⨯⨯= -----------------2分x 3=± ------------------- 4分∴ 13x =+23x =- --------------5分20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm , DE 平分∠ADC 交BC 边于点E ,求BE 的长度.解: ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =12cm ,AD =BC =16cm , ---------2分 ∵AD ∥BC ∴∠ADE =∠DEC ,∵DE 平分∠ADC ,∴∠ADE =∠E DC , ∴∠DEC =∠EDC ,∴CE=CD =12cm , ----------4分 ∴BE=BC-CE =4cm. ----------5分21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少?解:设矩形长为x cm ,则宽为(1x -)cm ,--------------1分 依题意得 (x 1)90x -=--------------3分解得1210,9x x ==-(不合题意,舍去)--------------4分 答:矩形的长和宽各是10cm 、9cm .--------------5分 22.已知:关于x 的一元二次方程2(21)20x m x m +++=. (1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明: 2(21)412m m ∆=+-⨯⨯ 2441m m =-+ 2(21)m =-.∵2(21)m -≥0,即∆≥0,--------------1分∴无论m 为何值,此方程总有两个实数根.-----------2分(2)解:因式分解,得 (2)(1)0x m x ++=.于是得 20x m +=或10x +=.解得 12x m =-,21x =-. --------------4分∵10-<,而06x <<,∴2x m =-,即 026m <-<.∴30m -<<. ……………………………… 5分 ∵m 为整数,∴1m =-或2-. ……………………………… 6分B第19题B四、解答题(本题共20分,第23题6分,第24、25题每小题,7分) 23. 如图,已知菱形ABCD 的对角线相交于点O,延长AB 至点E,使BE=AB,连结CE. (1)求证:BD=EC;(2)若∠E =50°,求∠BAO 的大小. (1)证明:∵菱形ABCD ,∴AB=CD ,AB ∥CD ,……………………………1分 又∵BE=AB , ∴BE=CD ,BE ∥CD ,∴四边形BECD 是平行四边形,…………………………2分 ∴BD=EC …………………………3分 (2)解:∵平行四边形BECD ,∴BD ∥CE ,∴∠ABO=∠E=57°,…………………………4分 又∵菱形ABCD , ∴AC 丄BD ,∴∠BAO=90°…………………………5分 ∴∠BAO +∠ABO=90°∴∠BAO =90°-∠ABO=33°.………………………………6分24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) ∵关于x 的一元二次方程2251(21)0422a x a x a +++++=有实数根. 22222514(21)4()42221(1)0a b ac a a a a a ∴-=+-++=-+-=--≥……………………1分 1a ∴=……………………………2分(2)由1a =得2330kx x k ---=当k=0时,所给方程为-3x-3=0,有整数根x= -1.……………………………3分 当k ≠0时,所给方程为二次方程,有(1)(3)0x kx k +--= 12331,1k x x k k+∴=-==+……………………………5分 1,3k x k ∴=±±、为整数……………………………6分综上0,1,3k =±±.……………………………7分 25. 阅读下列材料:问题:如图1,在□ABCD 中,E 是AD 上一点,AE =AB ,∠EAB =60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG . 求证:EG =AG +BG .小明同学的思路是:作∠GAH =∠EAB 交GE 于点H ,构造全等三角形,经过推理使问题得到解决.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明; (2)如果将原问题中的“∠EAB =60°”改为“∠EAB =90°”,原问题中的其它条件不变(如图2),请探究线段EG 、AG 、BG 之间的数量关系,并证明你的结论.图1 图2(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H , 则∠GAB=∠HAE .……………………1分 ∵∠EAB=∠EGB ,∠AOE=∠BOF , ∴∠ABG=∠AEH . 在△ABG 和△AEH 中OGAB HAE AB AEABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=60°, ∴△AGH 是等边三角形. ∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .……………………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°. ∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分 ∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形. ∴AG=HG ,∴EG+BG =AG .……………………7分五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为__-5____;代数式32635a a a ++-的值为___-3____. ……………………每空3分27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 菱形;………1分 ②四边形A 3B 3C 3D 3是 矩形 ;………2分ABD1A1C1D 2A2C2D2B③四边形A 5B 5C 5D 5的周长是 4m n+ ;………4分 ④四边形A n B n C n D n 的面积是 12n mn+ .……6分28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,.......保留作图痕迹,不写作法...........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证:(1)∵AD ∥BC , ∴∠ABC+∠BAD=180°,∠ADB=∠DBC . ∵∠BAD=120°, ∴∠ABC=60°. ∵BD 平分∠ABC , ∴∠ABD=∠DBC=30°, ∴∠ABD=∠ADB , ∴△ADB 是等腰三角形.…………………1分 在△BCD 中,∠C=75°,∠DBC=30°, ∴∠BDC=∠C=75°, ∴△BCD 为等腰三角形,∴BD 是四边形ABCD 的和谐线;……………………2分 (2)由题意作图为:图2,图3 ……………………4分(在方框内用.....尺规作图,..... 保留作图痕迹,....... 不写作法....)解(3)∵AC 是四边形ABCD 的和谐线,图1图3图2∴△ACD 是等腰三角形. ∵AB=AD=BC ,如图4,当AD=AC 时, ∴AB=AC=BC ,∠ACD=∠ADC ∴△ABC 是正三角形, ∴∠BAC=∠BCA=60°. ∵∠BAD=90°, ∴∠CAD=30°, ∴∠ACD=∠ADC=75°, ∴∠BCD=60°+75°=135°.……………………5分 如图5,当AD=CD 时, ∴AB=AD=BC=CD . ∵∠BAD=90°, ∴四边形ABCD 是正方形, ∴∠BCD=90°……………………6分 如图6,当AC=CD 时 法(一):过点C 作CE ⊥AD 于E ,过点B 作BF ⊥CE 于F , ∵AC=CD .CE ⊥AD , ∴AE=AD ,∠ACE=∠DCE . ∵∠BAD=∠AEF=∠BFE=90°, ∴四边形ABFE 是矩形. ∴BF=AE . ∵AB=AD=BC , ∴BF=BC , ∴∠BCF=30°. ∵AB=BC , ∴∠ACB=∠BAC . ∵AB ∥CE , ∴∠BAC=∠ACE , ∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.……………………8分 法(二): 作DM ⊥AD ,作BM ⊥AB ,则四边形ABMD 是正方形 ∴BC=B M ∵AC=CD ∴∠CA D=∠CDA ∴∠BAC=∠C DM在△AB C和△DMC中AB BAC CDM AC ⎧⎪∠∠⎨⎪⎩=DM ==CD∴△ABC ≌△D MC.B∴BC=CM,∠BCA=∠MCD∴△BCM为等边三角形∴∠CMD=150o∵MC=MD∴∠MCD=∠MDC=15o∴∠BCD=∠BCM-∠MCD=60°-15=45o……………………8分。
2014-2015年下学期八年级数学期中考试试题及答案
2014-2015年下学期八年级期中考试数学试卷总分:120分 时量:120分钟一.精心选一选,旗开得胜(每小题3分,共30分)1. 把直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的( )A.8倍B.4倍错误!未找到引用源。
C. 2倍D. 6倍2.两个直角三角形全等的条件是( )A. 一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面的性质中,平行四边形不一定具有的是( )A.内角和为360°B.邻角互补C.对角相等D. 对角互补4.如图,如果平行四边形ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对ODCB A第4题图 5.□ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则□ABCD 的两条对角线的和是 ( )A.18B.28C.36D.466. 若点M(x ,y )满足x+y=0,则点M位于 ( )A. 第一、三象限两坐标轴夹角的平分线上;B. x 轴上;C. 第二、四象限两坐标轴夹角的平分线上;D. y 轴上。
7.已知x 、y 为正数,且|42-X |+(y 2-3)2=0,如果以x ,y 的长为直角边作一直角三角形, 那么以此直角三角形的斜边为边长的正方形的面积为( )A.5B.25C.7D.158.在平面中,下列说法正确的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个第9题图 第10题图10. 如图所示,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若BD = 6,则四边形CODE 的周长是( ) A .10 B .12 C .18 D .24二.细心填一填,一锤定音(每小题3分,共30分)11. 在Rt ∆ABC 中,∠C=90°,∠A=65°,则∠B= .D CA B 12一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm ,那么斜边上的高为 cm .13.如图,已知□ABCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长是 .C F ED A B C D FEA B C D1A B -2-10 第13题图 第15题图 第17题图14.□ABCD 的周长为60cm,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm, 则 AB= cm.15.如图,已知在□ABCD 中,AB=4cm,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线 于点F ,则DF= cm.16. 一个多边形的每一个外角等于30°,则此多边形是 边形,它的内角和等于 。
2014-2015学年第二学期期中试卷初二数学附答案
2014-2015学年第二学期期中试卷初二数学一、选择题(本大题共10小题,每小题3分,共30分.每小题都有四个选项,将正确的一个答案的代号填在答题卷相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B .C .D .2.在4y ,y x +6,xx x -2,πy +5,y x 1+中分式的个数有( ▲ )A.1个B.2个C.3个D.4个 3.不论x 取何值,下列分式中一定有意义的是( ▲ ) A .21xx - B .11-+x x C .11-+x x D .11+-x x 4.如果把分式yx xy+中的x 和y 都扩大为2倍,则分式的值( ▲ ) A .扩大为4倍; B .扩大为2倍; C .不变; D .缩小2倍5.下列函数中,当x >0时,y 随x 的增大而增大的是 ( ▲ )A .y =2-3xB .y =2x C .y =-2x -1 D .y =-12x6.正方形具备而矩形不具备的特征是 ( ▲ ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分且相等 D .对角线互相平分7.如图,点D 、E 、F 分别是△ABC 三边的中点, 则下列判断错误的是 ( ▲ ) A .四边形AEDF 一定是平行四边形B .若∠A =90°,则四边形AEDF 是矩形C .若AD 平分∠BAC ,则四边形AEDF 是正方形D .若AD ⊥BC ,则四边形AEDF 是菱形 第7题图 8.已知点A (1,1y )、B (2,2y )、C (-3,3y )都在反比例函数xy 1=的图象上,则1y 、2y 和3y 的大小关系是( ▲ )A. 213y y y <<B. 321y y y <<C. 312y y y <<D. 123y y y << 9.下列图形中,阴影部分面积最大的是( ▲ )A B C D10.如图,在正方形ABCD 中,点E 、F 分别在B C 、CD 上, △AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①BE=DF ;②∠DAF=15°;③ AC 垂直平分EF ;④BE+DF=EF 其中正确的结论有 ( ▲ ) A .①②③ B .①②④C .②③④D .①②③④第10题图二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应横线上)11.若分式112--x x 的值为0,则x 的取值为 ▲ .12.分式34a b -与abc 61的最简公分母是 ▲ .第13题图 第14题图 第15题图13.如图,在△ABC 中,∠CAB =70º,在同一平面内,将△ABC 绕点A 逆时针旋转50º到△C B A ''的位置,则∠B CA '= _____▲_________度 14.如图,以正方形ABCD 的对角线AC 为一边作菱形AEFC ,则∠FAB 的度数为 ▲ . 15.如图,在梯形ABCD 中,AD ∥BC ,AB=DC=3,AD=5, ∠C=60°,则下底BC= ▲ . 16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,E 、F 、G 、H 分别为AD 、AB 、BC 、CD 的中点,若AC =8,BD=10,则四边形EFGH 的面积是 ▲ .17.已知反比例函数x y 9=,当3-≥x 时,y 的取值范围是 ▲ . 18.如图,反比例函数xky =(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为12,则k = ▲ .第16题图 第18题图三、简答题(本大题共11小题,共76分,解答时应写出必要的计算过程、推演步骤或文字说明) 19.(本题8分,每小题4分)化简与计算:(1)()2333⎪⎪⎭⎫ ⎝⎛-∙-÷⎪⎭⎫ ⎝⎛-a b ab b a (2)()x x x x x x -+∙+÷++-2121242220.(本题5分)化简分式2221121xx x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从12x -≤≤中选一个你喜欢的整数x 代入求值.21.(本题5分)解分式方程:12112-=--x x x22.(本题5分)已知关于x 的分式方程111x k kx x +-=+-的解为正数,求k 的取值范围.23.(本题满分6分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-4,3)、B (-3,1)、C (-1,3).请按下列要求画图:①将△ABC 绕点O 顺时针旋转90°得到△111C B A ,画出△111C B A ;②△222C B A 与△ABC 关于原点O 成中心对称,画出△222C B A .24.(本题满分6分)已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.25.(本题满分7分)如图,已知反比例函数k y 11=的图像与一次函数b x k y +=22的图像交于A 、B 两点,A (1,n ),B (21-,2-).(1)求反比例函数和一次函数的解析式;(2)观察图像,直接写出不等式12y y >的解集; (3)求∆AOB 的面积.26.(本题满分7分)有200个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作2小时后,乙才开始工作,因此比甲迟20分钟完成任务,已知乙每小时加工零件的个数是甲的2倍,问甲、乙两车间每小时各加工多少零件? 27.(本题满分8分)如图,菱形OABC 放置在第一象限内,顶点A 在x 轴上,若顶点B 的坐标是(4,3),(1)请求出菱形边长OA 的长度. (2)反比例函数xky =经过点C ,请求出k 的值.28.(本题满分9分)(1)如图1,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,AE 与BF 交于点O ,∠AOF =90°,求证:BF =AE .(2) 如图2,在正方形ABCD 中,点E 、F 、G 分别在边BC 、CD 和AB 上,AE 与FG 交于点O ,∠AOF =90°,AE 与FG 相等吗?证明你的结论.(3) 如图3,正方形ABCD 边长为12,将正方形沿MN 折叠,使点A 落在DC 边上的点E 处,且DE =5,则折痕MN 的长是 .图1 图2 图329.(本题满分10分)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F . 试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请画出图形并判断MN与EF 是否平行.证明你的结论. ③ 在②中,反比例函数为xy 12=,且M (2,m ), 当四边形MEFN 的面积为14时,点N的坐标为 .班级____ 姓名_______ 准考证号_______ 考场号____ 座位号____密封线内不要答题 2014—2015学年第二学期期中测试(初二数学答题卷)密封线内不要答题班级____ 姓名_______ 准考证号_______ 考场号____ 座位号____密封线内不要答题 2014—2015学年第二学期期中测试(初二数学答案卷)10分)已知<)证出全等2分得到线段相等1分)证出全等2分得到线段相等1分题答29.(本题满分10分)(1)证明:分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°.∴CG∥DH.∵△ABC与△ABD的面积相等,∴CG=DH.∴四边形CGHD为平行四边形.∴AB∥CD.3分(2)①证明:连结MF,NE.设点M的坐标为(x1,y1),点N的坐标为(x2,y2).∵点M,N在反比例函数(k>0)的图象上,∴∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2.∴S△EFM =S△EFN =∴S△EFM =S△EFN.由(1)中的结论可知:MN∥EF.3分②准确画出图形并判断出MN∥EF 1分证明1分。
2014—2015学年度第二学期期中教学质量检测八年级数学试卷附答案
2014—2015学年度第二学期期中教学质量检测八年级数学试卷一、选择题(30分)1x 的取值范围是( ) A .x >0 B .x ≥-2 C .x ≥2 D .x ≤2 2.下列式子中,属于最简二次根式的是( ) A.B.C.D.3.下列计算正确的是( )A. B. C. D.4.如图,数轴上点A 对应的数为2,AB ⊥OA 于A ,且AB=1,以OB 为半径画圆,交数轴于点C ,则OC 的长为( )A .3 BCD.5.下列命题中正确的是( )A. 有一组邻边相等的四边形是菱形B. 有一个角是直角的平行四边形是矩形C. 对角线垂直的平行四边形是正方形D. 一组对边平行的四边形是平行四边形 6.如图所示,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( ) A.AB=DC B.∠1=∠2 C.AB=AD D.∠D=∠B7.ABC ∆的三边为,,a b c 且2()()a b a b c +-=,则该三角形是( ) A.以a 为斜边的直角三角形 B.以b 为斜边的直角三角形 C.以c 为斜边的直角三角形 D.锐角三角形8.如图, 15个外径为1m 的钢管以如图方式堆放, 为了防雨, 需要搭建防雨棚的高度最低应为_______m. ( ) A. 23+1 B.255 C. 5 D. 23+29.如图,两个正方形的边长分别为a 和b ,如果a+b=10,ab=20,那么阴影部分的面积是( )A.10 B.20 C .30 D .4010.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( ) A .2.4 B .4 C .4.8 D .5二、填空题(24分)11.2(-= .12.已知x =+,y =,则x 2y +xy 2=________.13.已知△ABC 是直角三角形,AB=5,BC=12,则AC= .14.如图,在□ABCD 中,点E 、F 分别在边AD ,BC 上,且BE ∥DF .若∠EBF =50°,则∠EDF 的度数是________°.15.如图,在□ABCD 中,AC ⊥AB ,∠ABD =30°,AC 交BD 于O ,AO =1,则BC 的长为___ _____. 16.如图,网格中的小正方形边长均为1,△ABC 的三个顶点均在格点上,则AB 边上的高为 .17.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB =5,AD =12,则四边形ABOM的周长为_____ ___.18.如图,矩形ABCD 中,AB =12cm ,BC =24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BDE 的面积 cm 2.三、解答题 (46分)19.化简与计算(5+6)B(1)计算:-÷ (2)计算:21)---21.(7分)如图,在矩形ABCD 中,对角线AC 与DB 相交于点O ,CP ∥DB , BP ∥AC 。
2014-2015学年第二学期初二年级数学学科期中考试试卷附答案
2014-2015学年第二学期初二年级数学学科期中考试试卷一、选择题:1、下列图形中,既是轴对称图形,又是中心对称图形的有 ( ▲ )A .1个B . 2个C . 3个D . 4个2、下列等式一定成立的是( ▲ )A .工=B . 1553=C 3=±D .()992=-3、若式子21+-x x 在实数范围内有意义,则x 的取值范围是 ( ▲ ) A . x ≥1且0≠x B .1>x 且 2-≠x C .x ≥1 D .x ≥1 且 2-≠x4、下列约分结果正确的是 ( ▲ )A BC D 5、关于函数y =6x,下列说法错误的是( ) A .它的图像分布在第一、三象限 B .它的图像既是轴对称图形又是中心对称图形 C .当x>0时,y 的值随x 的增大而增大 D .当x<0时,y 的值随x 的增大而减小6、如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x>0)的图像经过顶点B ,则k 的值为 ( ▲ ) A .12B .20C .24D .327、已知()111,P x y 、()222,P x y 、()333,P x y 是反比例函数2y x=的图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( ▲ )A .321y y y <<B .123y y y <<C .213y y y <<D .231y y y << 8、如图,已知双曲线)0(>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若点B 的坐标是(6,4),则△OBC 的面积为( ▲ ) A .12 B .9 C .6 D .4第6题 第8题 第10题9、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ▲ )A . 选①②B . 选②③C . 选①③D . 选②④10、我们学校教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:30)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( ▲ )A .7:00B .7:05C .7:10D .7:15二、填空题:11、不改变分式的值,使ba b a 322122+-的分子分母中不含分数为 ▲12、计算:32234ba ab -∙= ▲ , 13、2)236(-= ▲14、若a>0,则化简____▲___15、在平行四边形ABCD 中,∠A 与∠B 的度数比是2:3,则∠C= ▲ ,∠D= ▲ 16、如图,在边长为12的正方形ABCD 中,点E 在边DC 上,AE = 14,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为 ▲17、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于 ▲第16题 第17题 第18题18、根据图象写出使一次函数的值小于反比例函数的值的x 的值取值范围是 ▲19、已知关于x 的分式方程32122x a x x =---的解是非负数,则a 的取值范围是_ ▲ __ 20、点A (x 1,y 1)、B (x 2,y 2)分别在双曲线y =x1-的两分支上,若y 1+y 2>0,则x 1+x 2的范围是 ▲ . 三、解答题: 21、计算:(1) (2)baa b ab 1)122(18413÷-∙ ()0,0>>b a (3))252(23--+÷--x x x x 22、解方程23、已知:a 是2222214164821442a a a aa a a a a --+++÷-+-+-,再求值.24、已知:图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (2)若该函数的图象与正比例函数y=2x 的图象在第一象限内的交点为A ,过点A 作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.(3)在题(2)的条件下,点(,)C x y 在反比例函数5m y x-=的图象上,求当31<≤x 时,函数值y 的取值范围;25、如图,在口ABCD 中,AB ⊥AC ,AB=1,BC=BD 、AC 交于点O .将直线AC 绕点O 顺时针旋转分别交BC 、AD 于点E 、F . (1)试说明在旋转过程中,AF 与CE 总保持相等;(2)证明:当旋转角为90°时,四边形ABEF 是平行四边形; (3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC 绕点O 顺时针旋转的角度.26、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款163104245--+=--x x x x1.2万元,付乙工程队工程款0.5万元,工程领导小组根据甲、乙两队的投标书测算,列出如下方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定工期多用6天;③若甲、乙两队合做3天,则余下的工程由乙队单独做也正好如期完成.那么在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由. 27、(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由. (2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F . 试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行,为什么?28、已知:如图①,在矩形ABCD 中,AB=5,AD=,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .(1)∠FAB ∠ADB (填>或<或=)(2)求AE 、BE 的值(2)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.ABDC图①图③初二年级数学学科期中考试答题卷一、选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共10小题,每小题2分,共20分)11.____________;12.____ ___;13 14.;15.,_______;16._____________;17._______;18._____________;19.____________;20.三、解答题(本大题共8题,共60分)21.(本题12分)(1(2)baabab1)122(18413÷-∙()0,0>>ba(3))252(23--+÷--xxxx22.(本题4分)解方程:23.(本题5分)已知:a是2的小数部分,考场号______________座位号____________班级__________姓名____________成绩____________————————————————————————装订线————————————————————————————163104245--+=--xxxx求:222214164821442a a a aa a a a a--++÷-+-+-的值.24.(本题7分)(1)(2)(3)25.(本题9分)(1)(2)(3)26.(本题6分)27.(本题8分)(1)(2)①②28.(本题9分)(1)∠FAB ∠ADB (2)A BD C图①图③(3)初二年级数学学科期中考试答案一、选择题(本大题共10小题,每小题2分,共20分)11.b a b a 3322+-; 12.b a 26-; 13.31224- 14.ab b -;15.72°,108°; 16.13212± 17.3.5; 18.04<<-x 或2>x ; 19.34-≥a 且31≠a ; 20.>0三、解答题(本大题共8题,共60分) 21.(本题12分) (1)323223+ (2) 263a - (3) 31+x 22.(本题4分)无解 23.(本题5分)a =12-,22211+=-a 24.(本题7分)(1)第三象限, 5>m (2)A(2,4),xy 8= (3)838≤<x25. (本题9分) (1)略 (2)略 (3)45° 26. (本题6分)设甲独做需x 天完成工程 ,则163=++x xx ,x =6,甲独做需工程款=7.2万元, 甲乙合做需工程款=6.6万元,则甲乙合做省工程款 27.(本题8分)(1)略(2)①证明:连结MF ,NE设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2) ∵ 点M ,N 在反比例函数xky =(k >0)的图象上, ∴ k y x =11,k y x =22∵ ME ⊥y 轴,NF ⊥x 轴∴ OE =y 1,OF =x 2. ∴ S △EFM =k y x 212111=⋅S △EFN =k y x212122=⋅∴S △EFM =S △EFN . 由(1)中的结论可知:MN ∥EF 多于 ② MN ∥EF ,略 28.(本题9分) (1)=(2)AE=4,BE=3 (3)存在.理由如下:在旋转过程中,等腰△DPQ 依次有以下4种情形:①如答图3﹣1所示,点Q 落在BD 延长线上,且PD=DQ ,易知∠2=2∠Q , ∵∠1=∠3+∠Q ,∠1=∠2,∴∠3=∠Q ,∴A ′Q=A ′B=5,∴F ′Q=F ′A ′+A ′Q=4+5=9. 在Rt △BF ′Q 中,由勾股定理得:BQ===.∴DQ=BQ ﹣BD=﹣;②如答图3﹣2所示,点Q 落在BD 上,且PQ=DQ ,易知∠2=∠P , ∵∠1=∠2,∴∠1=∠P , ∴BA ′∥PD ,则此时点A ′落在BC 边上. ∵∠3=∠2,∴∠3=∠1,∴BQ=A ′Q ,∴F ′Q=F ′A ′﹣A ′Q=4﹣BQ .在Rt △BQF ′中,由勾股定理得:BF ′2+F ′Q 2=BQ 2,即:32+(4﹣BQ )2=BQ 2,解得:BQ=,∴DQ=BD ﹣BQ=﹣=;③如答图3﹣3所示,点Q 落在BD 上,且PD=DQ ,易知∠3=∠4. ∵∠2+∠3+∠4=180°,∠3=∠4, ∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1. ∴∠A ′QB=∠4=90°﹣∠1, ∴∠A ′BQ=180°﹣∠A ′QB ﹣∠1=90°﹣∠1,∴∠A ′QB=∠A ′BQ ,∴A ′Q=A ′B=5,∴F ′Q=A ′Q ﹣A ′F ′=5﹣4=1.在Rt △BF ′Q 中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.。
2014-2015学年八年级下学期期中考试数学试题
2014-2015学年八年级下学期期中考试数学试题八年级数学下学期期中联考试卷一、选择题(40分)1、下列各数中,没有平方根的是( )A 、()22- B 、64 C 、21 D 、22- 2、下列二次根式有意义的范围为x ≥2的是( )A 、21-x B 、2-x C 、21+x D 、2+x3、下列运算正确的是( )A 、235=- B 、312914= C 、()52522-=- D 、32321+=-4、由线段a 、b 、c 组成的三角形不是直角三角形的是( )A 、a=7,b=24,c=25;B 、a=13,b=14,c=15; C 、a=54,b=1,c=34; D 、b=4,c=5;5、若平行四边形中两个内角的度数比为1∶2,则其中较小的内角是( )A 、30°B 、45°C 、60°D 、75° 6、已知n12是整数,则满足条件的最小正整数n 为( )A 、2B 、3C 、4D 、5延长AF 与BC 的延长线交于点M 。
以下结论:①AB=CM ; ②AE=AB+CE ;③S △AEF =ABCFS31四边形;④∠AFE=90°,其中正确结论的个数有( )A 、1个B 、2个C 、3个D 、4个二、填空题(24分) 10题图11、计算⑴20= ; ⑵114= 。
12、平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为 。
13、如图,平行四边形ABCD 的顶点A 、B 、D 的坐标分别是(0,0)、(5,0)、(2,3),则顶点C 的坐标是 。
13题图 14题图 15题图 14、如图,若将四根木条钉成的矩形木框变成平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于15、如图,在Rt ΔABC 中,∠ACB=90°,AC=4,BC=3,DABCEDCBAD为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= 时,平行四边形CDEB为菱形。
2014-2015学年第二学期初二数学期中试卷附答案
2014-2015学年第二学期初二数学期中试卷2015、4一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是…………………( ▲ ) A .B .C .D .2.用配方法解一元二次方程2430x x -+=时可配方得……………… ( ▲ ) A .2(2)7x -= B .2(2)1x += C .2(2)1x -= D .2(2)2x += 3.矩形具有而菱形不一定具有的性质是…………………… ( ▲ ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补4.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,如果AC=10,BD=8,AB=x ,则x 的取值范围是 ……… ( ▲ ) A .1<x <9 B .2<x <18 C .8<x <10 D .4<x <55.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是……… ( ▲ ) A .x 2+4=0 B .4x 2-4x +1=0 C .x 2+x +3=0 D .x 2+2x -1=06. 某市为发展教育事业,加强了对教育经费的投入,2013年投入3 000万元,预计2015年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是 …………………………………………………… ( ▲ ) A .23000(1)5000x +=% B .230005000x =C .23000(1)5000x +=D .23000(1)3000(1)5000x x +++=7.函数ky x=的图象经过点A (6,-1),则下列点中不在该函数图象上的点是 A .(-2,3) B .(-1,-6) C .(1,-6) D .(2,-3) ( ▲ ) 8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( ▲ ) A .不小于54 m 3 B .小于54 m 3 C .不小于45m 3D .小于45m 39.如图,P 为平行四边形ABCD 内一点,过点P 分别作AB 、AD 的平行线交平行四边 形于E 、F 、G 、H 四点,若5,3==PFCG AHPE S S ,则PBD S ∆为 ( ▲ )第4题第8题第9题A .0.5B .1C .1.5D .210.如图所示,已知A (21,1y ),B (2,2y )为反比例函数 1y x=图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 A (21,0) B (1,0) C (23,0) D (25,0) ( ▲ ) 二、填空题(本大题共8小题,每空2分,共18分)11.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 1+x 2=__▲____,x 1·x 2= ▲ . 12.已知y 与2x+1成反比例,且当x=1时,y=2,那么当x=-2时,y=__▲____. 13.关于x 的一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 ▲ . 14.在菱形ABCD 中,已知AB=10,AC=16,那么菱形ABCD 的面积为___▲____.15.如图,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 折叠,使点A 正好与CD 上的F 点重合,若△FDE 的周长为16,△FCB 的周长为28,则FC 的长为 ▲ .16.若函数y=kx的图象在第二、四象限,则函数y=kx-1的图象经过第__▲___象限.17.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 ▲ .18.如图,在平面直角坐标系中,A(1,0),B(0,3),以AB 为边在第一象限作正方形ABCD,点D 在双曲线y=kx(k≠0)上,将正方形沿x 轴负方向平移 m 个单位长度后,点C 恰好落在双曲线上,则m的值是 ▲ . 三、解答题(共82分)19.解方程组(每题4分,共16分)(1) x 2-5x -6=0 (2) 3x 2-4x -1=0;(3) x(x-1)=3-3x ; (4)x 222-x+1=020.(本题8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点.(1)若AE ⊥BD ,CF ⊥BD ,证明BE =DF .(2)若AE =CF ,能否说明BE =DF ?若能,请说明理由;若不能,请画出反例.A B CDOxy(第18题) 第15题第17题21.(本题8分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?22.(本题8分)在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于F ,且AF=BD ,连接BF . (1)求证:BD=CD .(2)如果AB=AC ,试判断四边形AFBD 的形状,并证明你的结论.23.(本题12分)如图,已知()n A ,4-,()4,2-B 是一次函数b kx y +=1的图象和 反比例函数xmy =2的图象的两个交点. (1) 求一次函数、反比例函数的关系式;(2) 求△AOB 的面积.(3) 当自变量x 满足什么条件时,y 1>y 2 .(直接写出答案)(4)将反比例函数xmy =2的图象向右平移n (n >0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y 3.(直接写出答案)24.(本题6分)矩形纸片ABCD 中,AB=5,AD=4.(1)如图1,四边形MNEF 是在矩形纸片ABCD 中裁剪..出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是 ;(不必说明理由)ABCDE F (图1)ABCD(备用图)1米1米AFB C D E(2)请用矩形纸片ABCD 剪拼..成一个面积最大的正方形.要求:在图2的矩形ABCD 中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).25.(本题12分)如图,ABCD 是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK .(1)若∠1=70°,求∠MKN 的度数. (2)△MNK 的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由. (3)如何折叠能够使△MNK 的面积最大?请你利用备用图探究可能出现的情况.......,求出最大值.26.(本题12分)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
2014-2015学年第二学期期中质量检测八年级数学卷 附答案
学校:____________________ 班级:___________________ 姓名:___________________ 考号:_________________ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2014-2015学年第二学期期中质量检测八年级数学卷2015.5一、精心选一选:(每题3分,共30分)1. 9化简的结果是( ) A. -3B. 3C. ±3D. 32.下列方程中,属于一元二次方程的是 ( )A 、321-=-x xB 、022=-x xC 、y x =-23D 、0312=+-x x 3.下列运算正确的是 ( ) A. 2(11)11-=- B. 2221-=C. 2(2)2-=D. 22223+23+23+25===4、关于x 的方程 有实数根,则a 的取值可能是( )A 、-2B 、-3C 、-4D 、-5 5.某多边形的内角和是其外角和的3倍,则此多边形的边数是 ( ) A .5B .6C .7D .86.把方程2460x x --=配方,化为2(+)x m n =的形式应为( )A. 2(-4)6x =B. 2(-2)4x =C. 2(-2)0x =D. 2(-2)10x =7.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元) 20 30 35 50 100 学生数(人) 51051510在这次活动中,该班同学捐款金额的众数和中位数分别是( ).A .50,50B .50,35C .30,35D .15,508、三角形的两边长分别为3和6,第三边长是方程x 2-6x +8=0的根,则这个三角形的周长 是( )A 、 11B 、 13C 、11或13D 、11和13 9、如图,P 是□ABCD 上一点.已知3=∆ABP S , 2=∆PDC S ,那么 平行四边形ABCD 的面积是( )A .6B .8C .10D .无法确定032=--a x x10. 如图,在□ABCD 中,AB =6,AD =8,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于G ,BG =24,则四边形AECD 的周长为( ) A .20 B .21 C .22 D .23二、专心填一填:(每小题3分,共24分)11.若12+x 是二次根式,则字母x 满足的条件是 . 12 、化简515-= 13.已知x =-2是方程220x mx ++=的一个根,则m 的值是 . 14.如图,在平行四边形ABCD 中,∠A+∠C=2400, 则∠B= 度; 15..数据3,2,x ,-1,-3,的平均数是1,则这组数的方差是 .16.如图,某小区规划在一个长40m 、宽30m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为58m 2,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程16题 17题17.如图,在□ABCD 中,对角线AC,BD 交于点E ,AC ⊥BC , 若BC=5,AB=13,则BD 的长是 .18、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF=5CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为 .第18题ABCD八年级数学答案一、精心选一选(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BBcBBDABCA二、专心填一填(每小题3分,共24分)11. X ≥ - . 12. 13. 3 . 14. 60 .15. . 16. (40-2x)(30-x)=6×58 .17. . 18. 6 . 三、耐心做一做(本题有6大题,共46分) 19.(本题8分)计算(1) 解:原式=6-5+3 (3分) =4 (1分)(2)解:原式=1625)32(3622++=--++ (3分) 626+= (1分) 20. (1) x 1=3 x 2=0 (4分)(2) (4分)21.(1) 证明:∵四边形ABCD 是平行四边形,∴AB=DC ,AB ∥DC 。
2014~2015学年第二学期期中考试试卷八年级数学附答案
ODCBA2014~2015学年第二学期期中考试试卷八年级数学一、精心选一选(本大题共有8小题,每小题3分,共24分) 1.下列图形中,是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.下列各式:()22214151 ,, ,,232x x y a x x b yπ-+--其中分式共有( ) A .2个 B .3个 C .4个 D .5个 3.如图,等边△ABC 中,点D 、E 分别为边AB 、AC 的中点,则∠DEC 的度数为( )A . 30°B . 60°C . 120°D . 150°4. 下列说法中不正确的是( )A . 抛掷一枚硬币,硬币落地时正面朝上是随机事件B . 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C . 任意打开七年级下册数学教科书,正好是97页是确定事件D . 一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是65.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定四边形ABCD 为平行四边形的是( )A . AB ∥CD ,AD ∥BC B . OA =OC ,OB =OD C . AD =BC ,AB ∥CD D . AB =CD ,AD =BC6.若分式方程2233x mx x --=--有增根,则m 的值为( ) A. 1- B. 1 C. 0 D.以上都不对7.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )第3题图第5题图班级 姓名 考试号 .第8题图A .600600254x x -=+ B .600600254x x -=+ C .600600254x x -=- D .600600254x x -=- 8.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是( ) A .(63,32) B .(64,32) C .(63,31)D .(64,31)二、填空题(本大题共8小题,每空2分,共18分,请把答案直接填在题中的横线上)9.若分式211x x -+的值为零,则x 的值为____ ___;10.计算:(1) y 26x ÷y 3x = ;(2) a -2a -1-2a -3a -1= .11.分式2123a a-的值为负数,则a 的取值范围是__________.12.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 .13.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的 中点,PO =5,则菱形ABCD 的周长是 .14.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是 .15.如图,在平面直角坐标系中,已知点A (1,1),B (﹣1,1), C (﹣1,﹣2),D (1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的 另一端所在位置的点的坐标是 .16.如图,AB =12,AB ⊥BC 于点B ,AB ⊥AD 于点A ,AD =5, BC =10,E 是CD 的中点,则AE 的长是____ ___. 三、解答题(本大题共有10小题,共58分) 17. (本题满分6分)计算: (1)÷; (2) (1+)÷ADC BO P第12题图第14题图第13题图第15题图第16题图18、(本题满分7分)解方程:(1)212x x-=-(2)2216124xx x--=+-19.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标____________________.20.(本题满分5分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克。
2014-2015学年度第二学期期中考试 八年级数学试卷
数学试卷 第1页 (共4页 ) 数学试卷 第2页 (共4页)2014-2015学年度第二学期期中考试八年级 数学试卷3分,共 30 分)的相反数是 ( )A. C. 下列二次根式中,最简二次根式是( ) A.51B.5.0C.5D.50 下列各式成立的是 ( ) A.2)2(2-=-5=± C.6=±2=如图所示,在数轴上点A 所表示的数为a ,则a 的值为 ( ) 51--B. 51-C. 5-D. 51+-计算)2012)(3252(+-的结果是( )A.32B.16C.8D.4在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A.26 B.18 C.20 D.21如图,ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=4 cm ,AB 的长为 ( ) A. 4 cm B.8 cm C.2 cmD.6cm 如果一个平行四边形的两条对角线相等,那么这个四边形是 ( ) A.平行四边形 B.菱形 C.矩形 D. 正方形已知a 、b 、c 是三角形的三边长,如果满足()010862=-+-+-c b a ,则三角形的形状是( )A.底与边不相等的等腰三角形 B.等边三角形 C.钝角三角形 D.直角三角形如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 º,EF ⊥AB ,垂足为F ,则EF 的长为 ( ) A .1 B . 2 C .4-2 2 D .32-4 二、填空题(每小题4分,共32分.请将答案直接填在横线上) 11.ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度.12. 式子x . 13.利用公式2(0)a a =≥,在实数范围内把7-x 2分解因式为 .14. 在平面直角坐标系中,点A (-1,0)与点B (0,2)的距离是_______.15. 已知菱形的两条对角线长为8cm 和6cm,那么这个菱形的周长是 cm,面积是 cm 2. 16. 如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为__ ____.17.如图,将四根木条钉成矩形木框变形为平行四边形ABCD 的形状,并使其面积变为矩形面积的一半,则平行四边形ABCD 的最小内角的大小为 .18.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF.若菱形ABCD 的边长为2cm ,∠A=120°,则EF= .三、解答题(解答时,应写出必要的文字说明、证明过程或演算步骤. 共52分) 19.计算:(每小题4分,共16分)(1)272833-+- (2)22)2664(÷-(3)((2211 (4)220.(本小题8分)如图是一块地,已知AD =4m,CD =3m, AB =13m, BC =12 m , 且CD ⊥AD,求这块地的面积.B A16题图17题图第10题图数学试卷 第3页 (共4页) 数学试卷 第4页 (共4页)DN21. (本小题8分)如图,已知△A BC 中,∠ACB=90 º,BC=6cm ,AC=8cm. (1)用直尺和圆规按下列要求作图:(保留作图痕迹,不写作法) 作线段AB 的垂直平分线,分别交AB 、AC 于点D 、E. 连接CD. (2)试求CD 和AE 的长.22.(本小题10分) 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD. (1)试判断四边形OCED 的形状,并说明理由;(5分) (2)若AB =6,BC =8,求四边形OCED 的面积.(5分)23.(本小题10分) 已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点;(1)(4分)求证:△ABM ≌△DCM ;(2)(5分)判断四边形MENF 是什么特殊四边形,并证明你的结论;(3)(1分)当AD :AB=____________时,四边形MENF 是正方形(只写结论,不需证明)。
2014--2015八下数学期中测试
2014----2015学年度第二学期八年级数学期中测试题 一、选择题(每小题3分,共21分)1、下列图形中,是中心对称图形,但不是轴对称图形的是( )2、如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是( ) A .15cm B .16cm C .17cm D .16cm 或17cm3、给出下列命题,正确的有( )①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形 A.1个 B.2个 C.3个 D.4个 4、若a<b ,则下列各式中一定正确的是A .ab<0B .ab>0C .a -b>0D .-a>-b5、把23)()(x a a x ---分解因式的结果为( ). A .)1()(2+--a x a x B.)1()(2---a x a x C.)()(2a x a x +- D.)1()(2---a x x a6、已知点P ()在第一象限,则a 的取值范围在数轴上表示正确的是A.B .C .D .7、如图,有一条通过点(-3,-2)的直线l.若四点(-2,a),(0,b),(c,0),(d ,-1)在l 上,则下列数值的判断,哪个正确?( ).A .a =3B .b >-2C .c <-3D .d =2一、填空题(每小题3分,共30分)8、一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为______克 9、“等腰三角形的两腰上的高相等”的逆命题是 10、钟表的分针匀速旋转一周需要60分,经过25分,分针旋转___________度。
11、如果52-=x y ,那么当0<y 时,x25。
(填写“>”或“<”号)12、如果162++mx x是一个完全平方式,则m=______.13、若关于x 的不等式组的解集是x >2,则m 的取值范围是 .14、若),4)(2)(2(162x x x xn+-+=-则n 的值为 .15、边长为6cm 的等边三角形中,其一边上高的长度为__________________. 16、如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为 17、已知,24552455,15441544,833833,3223222222⨯=+⨯=+⨯=+⨯=+ ,若aba b ⨯=+21010符合前面式子的规律, 则b a += ___ ___ . 三、解答题:1. (6分)因式分解:(1))2(9)2(22m y m x-+- (2)2224)1(x x -+2、(4分)解不等式组:31,2(1)1,x x x +>⎧⎨+-≤⎩①②并把它的解集在数轴上表示出来.3、(4分)若0178222=+-++y y x x ,求xy的值4、(4分)如图所示,在边长为1的网格中作出△ABC 绕点A 按逆时针方向旋转90º后的图形△A ¹B ¹C ¹5、(5分)如图,矩形ABCD 中,AB =3,BC =4,将该矩形沿对角线BD 折叠,则图中阴影部分的面积是多少?6、(5分)已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上.7、(5分)若一个三角形的三边长分别为c b a ,,,且满足0222222=--++bc ab c b a ,试判断该三角形是什么三角形,并加以说明.8、(6分)已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC. AB 于点M.N(保留作图痕迹,不写作法). (2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.9、(10分)福岛核爆炸后,日本南方某蔬菜培育中心决定向灾区配送无辐射蔬菜和水果共3 200箱,其中水果比蔬菜多800箱. (1)求水果和蔬菜各有多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批水果和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装水果400箱和蔬菜100箱,每辆乙种货车最多可装水果和蔬菜各200箱,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费4 000元,乙种货车每辆需付运费3 600元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?CD。
云南省曲靖市陆良县第二中学八年级数学下学期期中试题 新人教版
云南省曲靖市陆良县第二中学2014-2015学年八年级数学下学期期中试题一、选择题(共10小题,每小题3分,满分24分)1x 的取值范围是( )2.下列式子中,属于最简二次根式的是( )3.下列各式计算正确的是()A.6=B.=C.==4.不能判定四边形ABCD 为平行四边形的条件是( )A. AB ∥CD ,AD=BCB. AB ∥CD ,∠A=∠CC. AD ∥BC ,AD=BCD. ∠A=∠C ,∠B=∠D5.下列命题中逆命题成立的有( )①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.6.如图,四边形ABCD 中,AB=6cm ,BC=8cm ,CD=24cm ,DA=26cm ,且∠ABC=90°,则四边形ABCD 的面积是( )cm 2. 7.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 6 个图形有( )个小圆。
A.42B.44C.46D.48 8、如图,过平行四边形ABCD 对角线交点O 的直线交AD 于E ,交BC 于F ,若AB =5,BC =6,第1个图形第 2 个图形 第3个图形 第 4 个图形OE=2,那么四边形EFCD周长是()A、16B、15C、14D、13二、填空题(30分)9=10.在△ABC中,∠C=90°,若AC=5,BC=12,则AB= .11.一只蚂蚁沿棱长为2的正方体表面从顶点A爬到顶点B,则它走过的最短路程为12.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为13.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为hcm,则h的取值范围是_____________.14. 若直角三角形的两直角边长为a、b ,且满足,则该直角三角形的斜边长为______ .15.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于________.16. 实数a,ba的化简结果为____________.17.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省曲靖市陆良县第二中学2014-2015学年八年级数学下学期期
中试题
一、选择题(共10小题,每小题3分,满分24分) 1
x 的取值范围是( )
2.下列式子中,属于最简二次根式的是( )
3.下列各式计算正确的是( )
A.6=
B.=
C.==4.不能判定四边形ABCD 为平行四边形的条件是( )
A. AB ∥CD ,AD=BC
B. AB ∥CD ,∠A=∠C
C. AD ∥BC ,AD=BC
D. ∠A=∠C ,∠B=∠D 5.下列命题中逆命题成立的有( )
①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③全等三角形的对应边相等;
④如果两个实数相等,那么它们的平方相等. 6.如图,四边形ABCD 中,AB=6cm ,BC=8cm ,CD=24cm ,DA=26cm ,且∠AB C=90°,
则四边形ABCD 的面积是( )cm 2
.
7.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 6 个图形有( )个小圆。
A.42
B.44
C.46
D.48 8、如图,过平行四边形ABCD 对角线交点O 的直线交AD 于E ,交BC 于F ,若AB =5,BC =6,
第1个图形
第 2 个图形
第3个图形
第 4 个图形
OE=2,那么四边形EFCD周长是()
A、16
B、15
C、14
D、13
二、填空题(30分)
9
=
10.在△ABC中,∠C=90°,若AC=5,BC=12,则AB= .
11.一只蚂蚁沿棱长为2的正方体表面从顶点A爬到顶点B,则它走过的最短路程为
12.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为
13.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为hcm,则h的取值范围是_____________.
14. 若直角三角形的两直角边长为a、b ,且满足,则该直角三角
形的斜边长为______ .
15.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于________.
16. 实数a,b
a的化简结果为____________.17.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是。
18. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①;
13
2
2=
+b
a②;1
2=
b③;
12
2
2=
-b
a④6
=
ab
其中正确结论序号是 __________
三、解答题(试题内容在答题卷上)
陆良二中2014---2015学年下学期期中考试
八年级数学答题卷
班级: 姓名: 学号:
一、选择题
(第13题图)(第11题图)
18题
17题
16题
15题
O
B
A
H
D
二、填空题
9、。
10、。
11、。
12、。
13、。
14、。
15、。
16、。
17、。
18、。
三、解答题(66分)
19、(8分)计算:)2
27
(
3
2
8-
-
+
20、
(6分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC,求□ABCD的面积。
21、(6分)如图,□ABCD
的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=C F,求证:四边形BFDE是平行四边形。
22、(6分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形。
(1)在图①中画一条线段MN,使
(2)在图②中画一个△ABC,使其三边长分别为3.
23、(8
分)已知1x =,1y =,求下列各式的值。
(1)22x y -; (2)22x xy y ++
24、(8分)如图,E 、F 、 G 、H 分别为四边形ABCD 四边之中点. (1)求证:四边形EFGH 为平行四边形;
(2)当AC 、BD 满足__________时,四边形EFGH 为菱形. 当AC 、BD 满足__________时,四边形EFGH 为矩形. 当AC 、BD 满足____ ______时,四边形EFGH 为正方形.
25、(12分)如图1,四边形ABCD 是正方形,点G 是BC 边上任意一点,DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F 。
⑴求证:AE =BF ;
H G
F
E
D
C
B
A
⑵如图2,连接DF 、CE ,探究线段DF 与CE 的关系并证明;
⑶如图3,若AB G 为CB 中点,连接CF , 直接写出四边形CDEF 的面积为 。
26.(12分)如图,在平面直角坐标系中,AB ∥OC ,A (0,12),B (a ,c ),
C (b ,0)
,并且a ,b 满足16b =。
一动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向
F E B
C
A
D
G
点C 运动,点P 、Q 分别从点A 、O 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒) (1)求B 、C 两点的坐标;
(2)当t 为何值时,四边形PQCB 是平行四边形?并求出此时P 、Q 两点的坐标;
(3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.。