证明三点共线问题的方法
三点共线定理证明

三点共线定理证明
三点共线定理(Theorem of Three Points on One Line)是一个数学定理,它指出,如果三个不同的点都在同一条直线上,则这三个点必定位于同一条直线上。
它的证明可以用一般的方法,也可以用数学归纳法证明。
首先,假设有三个点A、B、C,它们都在同一条直线上。
我们需要证明:A、B、C三点共线。
1. 我们首先证明点A、B、C共线的基本情况——即当
A、B两点位于同一条直线上时,加入点C也在同一条直线上。
假设A、B两点位于同一条直线上,由定义,点C必须位于AB之间,即AB+BC=AC,所以AB+BC=AC,A、B、C三点共线,这就是基本情况的证明。
2. 假设基本情况已经证明,现在考虑一般情况,即假设有N个点A1、A2、…、AN,它们都在同一条直线上。
首先,当N=3时,根据基本情况,A1、A2、A3三点共线;当N=4时,A1、A2、A3三点共线,加入A4点,依然是A1、A2、A3、A4四点共线;以此类推,当N=n时,A1、
A2、…、An n个点共线。
3. 由于当N=3时,A1、A2、A3三点共线,当N=4时,A1、A2、A3、A4四点共线,当N=n时,A1、A2、…、An n个点共线,从而可以得出结论,即当有N个点A1、
A2、…、AN,它们都在同一条直线上时,A1、A2、…、AN N个点共线。
总结,三点共线定理可以用数学归纳法证明。
根据基本情况,A、B两点位于同一条直线上时,加入点C也在同一条直线上;通过对N个点的归纳,可以得出当有N个点A1、A2、…、AN,它们都在同一条直线上时,A1、
A2、…、AN N个点共线,即三点共线定理成立。
初中数学竞赛:证明三点共线

初中数学竞赛:证明三点共线【内容提要】1.要证明A,B,C三点在同一直线上,常用方法有:①连结AB,BC证明∠ABC是平角②连结AB,AC证明AB,AC重合③连结AB,BC,AC证明AB+BC=AC④连结并延长AB证明延长线经过点C2.证明三点共线常用的定理有:①过直线外一点有且只有一条直线和已知直线平行②经过一点有且只有一条直线和已知直线垂直③三角形中位线平行于第三边并且等于第三边的一半④梯形中位线平行于两底并且等于两底和的一半⑤两圆相切,切点在连心线上⑥轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上【例题】例1.已知:梯形ABCD中,AB∥CD,点P是形内的任一点,PM⊥AB,PN⊥CD求证:M,N,P三点在同一直线上∵AB∥CD,∴EF∥CD∠1+∠2=180 ,∠3+∠4=180∵PM⊥AB,PN⊥CD∴∠1=90 ,∠3=90 ∴∠1+∠3=180∴M,N,P三点在同一直线上例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上已知:平行四边形ABCD中,M,N分别是AD和BC的中点,O是AC和BD的交点求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB根据过直线外一点有且只有一条直线和已知直线平行 ∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N,∵MO 是△DAB 的中位线∴MO ∥AB在△CAB 中 ∵AO =OC ,ON ,∥AB∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90,∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上,例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称点是C ,求证B 和C 是关于原点O 的对称点解:连结OA ,OB ,OC∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY∴∠COY +∠BOX =90∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点例5.已知:⊙O 1和⊙O 2相交于A ,B 两点,过点B 的直线EF 分别交⊙O 1和⊙O 2于E ,F 。
高考数学复习---《三点共线问题》规律方法与典型例题讲解

高考数学复习---《三点共线问题》规律方法与典型例题讲解【规律方法】证明共线的方法:(1)斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;(2)距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;(3)向量法:利用向量共线定理证明三点共线;(4)直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;(5)点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.(6)面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.【典型例题】例1、(2023·全国·高三专题练习)已知2222:1(0,0)x y E a b a b −=>>的右焦点为2F ,点2F 到E 的2F 的直线与E 相交于,A B 两点.当AB x ⊥轴时,||AB =(1)求E 的方程.(2)若3,02M ⎛⎫⎪⎝⎭,N 是直线1x =上一点,当,,B M N 三点共线时,判断直线AN 的斜率是否为定值.若是定值,求出该定值;若不是定值,说明理由. 【解析】(1)根据对称性,不妨设()2,0F c 到直线0bx ay +=bcb c== 令x c =,则22221c y a b−=,解得2by a =±,所以当AB x ⊥轴时,22||b AB a ==a =故E 的方程为22122x y −=.(2)设()()1122,,,A x y B x y .当直线AB 的斜率不为0时,设直线AB 的方程为2x my =+, 联立方程组221222x y x my ⎧−=⎪⎨⎪=+⎩,化简得()221420m y my −++=, 由()22Δ81>010m m ⎧=+⎪⎨−≠⎪⎩,得1m ≠±,则12122242,11m y y y y m m +=−=−−设(1,)N t ,因为,,B M N 三点共线,所以221322y t x =−−,整理得2223y t x =−−. 因为()()()1221221212211222223212023232323y x y y my y my y y y y y t y x x x x −+++++−=+====−−−−,所以1101AN y tk x −==−,即直线AN 的斜率为定值0. 当直线AB 的斜率为0时,A ,B ,M ,N 都在x 轴上, 则直线AN 的斜率为定值. 综上所述,直线AN 的斜率为定值0.例2、(2023·全国·高三专题练习)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN 【解析】(1)由题意,椭圆半焦距cc e a ==,所以a = 又2221b a c =−=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y −=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x −+=,所以121234x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b −+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++−=, 所以2121222633,1313kb b x x x x k k −+=−⋅=++,所以MN== 化简得()22310k −=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =−⎧⎪⎨=⎪⎩:MN y x =y x =−所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN =例3、(2023·全国·高三专题练习)已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C ,离心率O 为坐标原点. (1)求椭圆E 的方程;(2)设A 、B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点P ,Q 为直线AD 上一点,且4OP OQ =⋅,求证:C 、B 、Q 三点共线. 【解析】(1)将点C 的坐标代入椭圆E 的坐标可得1b =,由题意可得2210c e a a c c ⎧==⎪⎪⎪−=⎨⎪>⎪⎪⎩,解得2a c =⎧⎪⎨=⎪⎩因此,椭圆E 的标准方程为2214x y +=;(2)椭圆E 的左、右顶点分别为()2,0A −、()2,0B ,设点()()0000,0D x y x y ≠,则220014x y +=,则220044x y −=,直线CD 的斜率为001CD y k x −=,则直线CD 的方程为0011y y x x −=+, 令0y =,可得001x x y =−,即点00,01x P y ⎛⎫⎪−⎝⎭, 设点()11,Q x y ,由104OP OQ x x ⋅==,可得()01041y x x −=, 直线AD 的斜率为002AD y k x =+,则直线AD 的方程为()0022y y x x =++, 将()0041y x x −=代入直线AD 的方程得()()000002222y x y y x x −+=+,所以点Q 的坐标为()()()000000041222,2y y x y x x x ⎛⎫−−+ ⎪ ⎪+⎝⎭, 直线BC 的斜率为101022BC k −==−− 直线BQ 的斜率为()()()2000000020000001012222222222424BQy x y x y y y y k x x y x x x y y −+−+===−+−−−−−20000200002214242BC x y y y k y x y y −+==−=−−, 又BQ 、BC 有公共点B ,因此,C 、B 、Q 三点共线.。
证明三点共线问题的方法Word版

证明三点共线问题的方法1、利用梅涅劳斯定理的逆定理例1、如图1,圆内接ΔABC 为不等边三角形,过点A 、B 、C 分别作圆的切线依次交直线BC 、CA 、AB 于1A 、1B 、1C ,求证:1A 、1B 、1C 三点共线。
解:记,,BC a CA b AB c ===,易知1111AC CCC BS AC C B S ∆∆=又易证11AC C CC B ∆∆.则11222AC C CC B S AC b S CB a∆∆⎛⎫== ⎪⎝⎭.同理12121212,BA c CB a A C b B A c ==.故1112221112221AC BA CB b c a C B A C B A a b c⋅⋅=⋅⋅=.由梅涅劳斯定理的逆定理,知1A 、1B 、1C 三点共线。
2、利用四点共圆(在圆内,主要由角相等或互补得到共线)例2 、如图,以锐角ΔABC 的一边BC 为直径作⊙O ,过点A 作⊙O 的两条切线,切点为M 、N ,点H 是ΔABC 的垂心.求证:M 、H 、N 三点共线。
(96中国奥数证明:射线AH 交BC 于D ,显然AD 为高。
记AB 与⊙O 的交点为E ,易知C 、H 、E 三点共线。
联结OM 、ON 、DM 、DN 、MH 、NH ,易知090AMO ANO ADO ∠=∠=∠=,∴A 、M 、O 、D 、N 五点共圆,更有A 、M 、D 、N 四点共圆, 此时,0+180AND ∠∠=AMD因为2AM AE AB AH AD =⋅=⋅(B 、D 、H 、E 四点共圆),即AM ADAH AM=;又MAH DAM ∠=∠,所以AMH ADM ∆∆,故AHM AMD ∠=∠同理,AHN AND ∠=∠。
因为0180AHM AHN AMD AND ∠+∠=∠+∠=,所以,M 、H 、N 三点共线。
3、利用面积法如果SS EMNFMN=∆∆,点E 、F 位于直线MN 的异侧,则直线MN 平分线段EF ,即M 、N 与ABCC 1B 1A 1EF的中点三点共线。
第107课--三点共线问题

第107课三点共线问题基本方法:三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线.在处理三点共线问题时,离不开解析几何的重要思想:“设而不求思想”.一、典型例题1.已知椭圆22:12x C y +=,41,33M ⎛⎫ ⎪⎝⎭为椭圆上一点,若,R S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12且直线l 与RS 交于点P ,O 为坐标原点,求证:,,P O M三点共线.答案:见解析解析:因为线段RS 的中垂线l 的斜率为12,所以直线RS 的斜率为2-.所以可设直线RS 的方程为2y x m =-+.由222,1,2y x m x y =-+⎧⎪⎨+=⎪⎩得2298220x mx m -+-=.设点()11,R x y ,()22,S x y ,()00,P x y .所以1289m x x +=,()1212128222222299m m y y x m x m x x m m +=-+-+=-++=-⋅+=.所以120429x x m x +==,12029y y m y +==.因为0014y =,所以0014y x =.所以点P 在直线14y x =上.又点()0,0O ,41,33M ⎛⎫ ⎪⎝⎭也在直线14y x =上,所以,,P O M 三点共线.2.已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率e =过椭圆的右焦点F作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.(1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥ ,求m 的取值范围;(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.答案:(1)2215x y +=;(2)805m <<;(3)在x 轴上存在定点5,02N ⎛⎫ ⎪⎝⎭,使得C 、B 、N 三点共线.解析:(1)设椭圆方程为22221(0)x y a b a b+=>>,由题意1b =,又e ===,∴25a =,故椭圆方程为2215x y +=.(2)由(1)得右焦点(2,0)F ,则02m ≤≤,设l 的方程为(2)y k x =-(0k ≠)代入2215x y +=,得2222(51)202050k x k x k +-+-=,∴220(1)0k ∆=+>,设1122(,),(,),A x yB x y 则21222051k x x k +=+,212220551k x x k -=+,且1212(4)y y k x x +=+-,2121()y y k x x -=-.∴11221212(,)(,)(2,)MA MB x m y x m y x x m y y +=-+-=+-+ ,2121(,)AB x x y y =-- ,由()MA MB AB +⊥ ,得()0MA MB AB +⋅= ,则12211221()(2)()()()0MA MB AB x x m x x y y y y +⋅=+--++⋅-= ,即12211221(2)()(4)()0x x m x x k x x k x x +--++-⋅-=,即2222220202(4)05151k k m k k k -+-=++,得2085m k m =>-,所以805m <<,∴当805m <<时,有()MA MB AB +⊥ 成立.(3)在x 轴上存在定点N ,使得C 、B 、N 三点共线.依题意11(,)C x y -,直线BC 的方程为211121()y y y x x y x x +=---,令0y =,则121122112121()N y x x y x y x x x y y y y -+=+=++, 点,A B 在直线:(2)l y k x =-上,∴1122(2),(2)y k x y k x =-=-,∴122112************(2)(2)22()(2)(2)()4N y x y x k x x k x x kx x k x x x y y k x k x k x x k +-⋅+-⋅-+===+-+-+-222222205202255151220451k k k k k k k k k k -⋅-⋅++==⋅-+,∴在x 轴上存在定点5,02N ⎛⎫ ⎪⎝⎭,使得C 、B 、N 三点共线.二、课堂练习1.抛物线2:4C y x =,已知斜率为k 的直线l 交y 轴于点P ,且与曲线C 相切于点A ,点B 在曲线C 上,且直线PB x 轴,P 关于点B 的对称点为Q ,判断点,,A Q O 是否共线,并说明理由.答案:点,,A Q O 共线,理由见解析解析:设直线:l y kx m =+,联立24y x y kx m⎧=⎪⎨=+⎪⎩,得()222240k x mk x m +-+=(*)由()()2222441610mk m k mk ∆=--=-=,解得1m =,则直线1:l y kx =+,得10,P k ⎛⎫ ⎪⎝⎭,211,4B k k ⎛⎫ ⎪⎝⎭,又P 关于点B 的对称点为Q ,故211,2Q k k ⎛⎫ ⎪⎝⎭,此时,(*)可化为222120k x x k -+=,解得21x k =,故12y kx k k =+=,即212,A k k ⎛⎫ ⎪⎝⎭,所以2OA OQ k k k ==,即点,,A Q O 共线.2.已知椭圆22143x y +=,点F 是椭圆的右焦点.是否在x 轴上存在定点D ,使得过D 的直线l 交椭圆于,A B 两点.设点E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.答案:存在定点()4,0D 满足条件,理由见解析解析:由题意易知直线l 斜率不为0.设直线l 方程为x my t =+,(),0D t ,联立22143x my t x y =+⎧⎪⎨+=⎪⎩,消去x 得()2223463120m y mt y t ++⋅+-=,设()11,A x y ,()22,B x y ,则()22,E x y -,则122212263431234mt y y m t y y m -⎧+=⎪+⎪⎨-⎪=⎪+⎩,且0∆>,由,,A F E 三点共线有()()2112110x y x y -+-=,即()()1212210my y t y y +-+=,()22231262103434t mt m t m m --∴⋅+-⋅=++,解得4t =,∴存在定点()4,0D 满足条件.三、课后作业1.已知抛物线2:4C y x =的焦点为F ,直线l 过点()1,0-,直线l 与抛物线C 相交于,A B 两点,点A 关于x 轴的对称点为D .证明:,,B F D 三点共线.解析:依题意,直线l 的斜率存在且不为零,设直线l 的方程为()10x my m =-≠,由214x my y x=-⎧⎪⎨=⎪⎩消去x 整理得2440y my -+=,设()()1122,,,A x y B x y ,则()11,D x y -,且12124,4y y m y y +==.又直线BD 的方程为()122221y y y y x x x x +-=--,即2222144y y y x y y ⎛⎫-=- ⎪ ⎪-⎝⎭,令0y =,得1214y y x ==.所以点()1,0F 在直线BD 上,即,,B F D 三点共线.2.已知椭圆:E 22162x y +=,其右焦点为F ,过x 轴上一点()3,0A 作直线l 与椭圆E 相交于,P Q 两点,设(1)AP AQ λλ=> ,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M ,试问,,M F Q 是否共线,若共线请证明;反之说明理由.答案:,,M F Q 三点共线,理由见解析解析:设()11,P x y ,()22,Q x y ,则11(3,)AP x y =- ,22(3,)AQ x y =- ,由已知得方程组()12122211222233162162x x y y x y x y λλ-=-⎧⎪=⎪⎪⎪⎨+=⎪⎪⎪+=⎪⎩,注意到1λ>,解得2512x λλ-=,因为()()112,0,,F M x y -,所以11211211(2,)((3)1,),,22FM x y x y y y λλλλλ--⎛⎫⎛⎫=--=-+-=-=- ⎪ ⎪⎝⎭⎝⎭,又22(2,)FQ x y =- 21,2y λλ-⎛⎫= ⎪⎝⎭,所以FM FQ λ=- ,从而三点共线.3.已知椭圆22:1x y E +=,过定点()3,4P -且斜率为k 的直线交椭圆E 于不同的两点,M N ,在线段MN 上取异于,M N 的点H ,满足PMMHPN NH =,证明:点H 恒在一条直线上,并求出这条直线的方程.答案:210x y -+=,证明见解析解析:设()()()112200,,,,,M x y N x y H x y ,由PMMHPN NH =,得01122033x x x x x x -+=+-,整理可得()1212012236x x x x x x x ++=++设直线():3434l y k x kx k =++=++,联立2234132y kx k x y =++⎧⎪⎨+=⎪⎩,得()()()2222363433460k x k k x k +++++-=由题0∆>,∴()12263432k k x x k -++=+,()21223346k x x k +-=+,则22122218241812122463232k k k k x x k k --++-++==++,()()22121222692416125472728423+3232k k k k k x x x x k k ++---++==++,∴072846710312241212k k x k k k++===-+---,而P 在l 上,则001053433411212k y kx k k k k k =++=-+++=-+--,∴00210x y -+=,即H 恒在直线210x y -+=上.。
专题30 三点共线证法

,又
,
,
故 BD 方程化为
,令 ,得 ,即结论成立。
【详细解析】(1)依题意知
所以抛物线 的方程
.
(2)设直线 的方程为
,解得 , ( ),
7.已知椭圆 C :
x2 a2
y2 b2
1(a
b
0) 的离心率与双曲线 C ' :
x2 y2 1的离心率互为 22
倒数,且经过点
M
4 3
,
1 3
.
(1)求椭圆 C 的标准方程;
﹣=
﹣
=0,
kBD=kBC, ∴B,C,D 三点共线.
4.给定椭圆 C: + =1(a>b>0),称圆 C1:x2+y2=a2+b2 为椭圆的“伴随圆”.已知 A(2,
1)是椭圆 G:x2+4y2 =m(m>0)上的点. (Ⅰ)若过点 P(0, )的直线 l 与椭圆 G 有且只有一个公共点,求直线 l 被椭圆 G 的“伴 随圆”G1 所截得的弦长; (Ⅱ)若椭圆 G 上的 M,N 两点满足 4k1k2=﹣1(k1,k2 是直线 AM,AN 的斜率),求证:M,N,O 三点共线. 【思路点拨】(Ⅰ)将 A 代入椭圆方程,可得 m,进而得到椭圆方程和伴椭圆方程,讨论直线 l 的斜率不存在和存在,设出 l 的方程,代入椭圆方程运用判别式为 0,求得 k,再由直线和 圆相交的弦长公式,计算即可得到所求弦长; (Ⅱ)设直线 AM,AN 的方程分别为 y﹣1=k1(x﹣2),y﹣1=k2(x﹣2),设点 M(x1,y1),N(x2, y2),联立椭圆方程求得交点 M,M 的坐标,运用直线的斜率公式,计算直线 OM,ON 的斜⇐ 率相 等,即可得证.
(1)求直线 FN 与直线 AB 的夹角 θ 的大小;
证明三点共线的几种方法

证明三点共线的几种方法贵阳市三十九中学 李明在高中数学学习中,许多同学感觉到对所学的基本概念,基本公式已经理解,熟练。
但解题时却力不从心,无从入手。
究其原因:是学生缺乏对解题策略的探究。
所以,多种方法解题,是可以帮助学生消化基础知识,优化思维素质,提高分析问题和解决问题能力的。
现就人教版高中第二册(上)第87页第3题的多种解法如下:题目:证明三点A (-2,12),B(1,3),C (4,-6)在同一条直线上。
一、用解析法解题:解(1): ∵两点确定一条直线,∴直线AB 的斜率K AB =Y B -Y A X B -X A= -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 ∵K AB = K AC 则直线AB,AC 平行,两直线共起点A 点, ∴直线AB,AC 重合, ∴A,B,C 三点共线。
解(2): 由直线方程的两点式求得直线AB 的方程:3x+y -6=0把点C 坐标代入直线AB 的方程,得: 3×4-6-6=0∵C 点在直线AB 上,∴A,B,C 三点共线。
解(3): 直线夹角为0来证明三点共线直线AB 的斜率K AB = Y B -Y A X B -X A= -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 设直线AB 与直线AC 的的夹角为 θ,则tan θ=|K AB -K AC 1+ K AB •K AC |= 0 又∵0≤θ<1800∴θ=0 ∴A,B,C 三点共线。
解(4)的面积为0证明三点共线∵直线AB 的方程为:3x+y-6=0∴点C (4,-6)到直线AB 的距离d= |3×4-6-6| 32+12= 0 又∵|AB|=(3-12)2+(1+2)2 =310∴S ABC =21×|AB|×d=21×310 ×0=0 ∴A,B,C 三点共线。
三点共线问题

高考数学优质专题(附经典解析)三点共线问题基本方法:三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0, 则三点共线.在处理三点共线问题时,离不开解析几何的重要思想:设而不求思想”.一、典型例题1 .已知椭圆C:y y2 =1,M 3,1为椭圆上一点,若R,S是椭圆C上的两个点,线段RS的中垂线I的斜率为1且直线l 与RS交于点P,O为2坐标原点,求证:P,O,M三点共线.2.已知椭圆的焦点在x轴上,它的一个顶点恰好是抛物线x2=4y的焦点,离心率e=$.过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点.(1)求椭圆的标准方程;(2)设点M(m,O)是线段OF上的一个动点,且(MA MB^ AB,求m的取值范围;(3)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N三点共线?若存在,求出定点N的坐标,若不存在,请说明理由.二、课堂练习1.抛物线c:y2=4x,已知斜率为k的直线I交y轴于点P,且与曲线C 相切于点A,点B在曲线C上,且直线PBjx轴,P关于点B的对称点为Q,判断点A,Q,O是否共线,并说明理由.2 22 .已知椭圆亍专=1,点F是椭圆的右焦点.是否在x轴上存在定点D,使得过D的直线l交椭圆于A,B两点.设点E为点B关于x轴的对称点,且A,F,E 三点共线?若存在,求D点坐标;若不存在,说明理由.三、课后作业1.已知抛物线C:y2—x的焦点为F,直线l过点(-1,0),直线l与抛物线C 相交于A,B两点,点A关于x轴的对称点为D.证明:B,F,D三点共线•2 22•已知椭圆E:+士/,其右焦点为F,过X轴上一点A3,o作直线l6 2与椭圆E相交于两点,设忑 =■ AQ(,1), 过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由•2 23•已知椭圆E:| •才“,过定点P -3,4且斜率为k的直线交椭圆E于不同的两点M,N,在线段MN上取异于M,N的点H,满足兽=件,|P叫| NH| ? 证明:点H恒在一条直线上,并求出这条直线的方程.。
三点共线问题

高考数学优质专题(附经典解析)三点共线问题基本方法:三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线.在处理三点共线问题时,离不开解析几何的重要思想:“设而不求思想”.一、典型例题1.已知椭圆22:12x C y +=,41,33M ⎛⎫ ⎪⎝⎭为椭圆上一点,若,R S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12且直线l 与RS 交于点P ,O 为坐标原点,求证:,,P O M 三点共线.2.已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率e =.过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.(1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.二、课堂练习1.抛物线2:4C y x =,已知斜率为k 的直线l 交y 轴于点P ,且与曲线C相切于点A ,点B 在曲线C 上,且直线PB x 轴,P 关于点B 的对称点为Q ,判断点,,A Q O 是否共线,并说明理由.2.已知椭圆22143x y +=,点F 是椭圆的右焦点. 是否在x 轴上存在定点D ,使得过D 的直线l 交椭圆于,A B 两点.设点E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.三、课后作业1. 已知抛物线2:4C yx =的焦点为F ,直线l 过点()1,0-,直线l 与抛物线C 相交于,A B 两点,点A 关于x 轴的对称点为D . 证明:,,B F D 三点共线.2.已知椭圆:E 22162x y +=,其右焦点为F ,过x 轴上一点()3,0A 作直线l与椭圆E 相交于,P Q 两点,设(1)AP AQ λλ=>,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M ,试问,,M F Q 是否共线,若共线请证明;反之说明理由.3.已知椭圆22:132x y E +=,过定点()3,4P -且斜率为k 的直线交椭圆E 于不同的两点,M N ,在线段MN 上取异于,M N 的点H ,满足PMMHPNNH =,证明:点H 恒在一条直线上,并求出这条直线的方程.。
初中数学中三点共线的方法

初中数学中三点共线的方法
1.两个角,如果两角相邻且加在一起180°,就是三点共线。
2.利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”。
可知:如果三点同属于两个相交的平面则三点共线。
3.在三角形中,AB+BC=AC,所以B点在AC上,所以:ABC三点共线。
1三点共线证明
例1.如图,在四面体ABCD中作截图PQR,PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K。
求证M、N、K三点共线。
由题意可知,M、N、K分别在直线PQ、RQ、RP上,根据公理1可知M、N、K在平面PQR上,同理,M、N、K分别在直线CB、DB、DC上,可知M、N、K在平面BCD上,根据公理3可知M、N、K在平面PQR与平面BCD的公共直线上,所以M、N、K三点共线。
数学三点共线定理

数学中的三点共线定理是平面几何中的重要结论之一,它描述了三个点在同一平面上,且任意两点之间的直线段与第三点所在的直线重合或平行。
具体来说,如果三点A、B、C共线,那么向量AB与AC共线,也就是说任意两点所在直线上的射影与第三点所在的直线重合。
为了证明这个定理,我们可以使用以下步骤:
首先,假设三个点A、B、C不在同一条直线上,那么存在一条直线AB和AC。
根据向量共线定理,存在一个实数λ,使得向量AB和λAC共线。
这意味着向量AB和AC的终点连线与AC平行。
因此,第三点C所在的直线与AB平行或重合。
其次,如果三个点A、B、C在同一条直线上,那么显然它们是共线的。
因为此时任意两点A 和B之间的直线段与第三点C所在的直线重合。
最后,我们需要注意到三点共线的逆命题也是成立的。
如果存在一个实数λ,使得向量AB=λAC,那么A、B、C三点共线。
这是因为此时向量AB和AC的终点连线与AC平行,从而证明了三点共线。
在证明过程中,我们需要使用向量的相关性质和几何中的基本原理。
此外,我们可以使用向量坐标等方法进行更简便的证明。
总的来说,三点共线定理是平面几何中一个重要的基本结论,它为解决许多几何问题提供了有力工具。
希望以上解答能对您有所帮助,如果您还有其他问题,欢迎告诉我。
有关平面向量三点共线问题的求解

有关平面向量三点共线问题的求解
三点共线向量公式:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。
三点共线指的是三点在同一条直线上。
可以设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。
三点共线证明方法:
方法一:挑两点奠定一条直线,排序该直线的.解析式.代入第三点座标看看与否满足用户该解析式(直线与方程)。
方法二:设三点为a、b、c,利用向量证明:λab=ac(其中λ为非零实数)。
方法三:利用点差法求出来ab斜率和ac斜率,成正比即为三点共线。
方法四:用梅涅劳斯定理。
方法五:利用几何中的公理“如果两个不重合的平面存有一个公共点,那么它们存有且只有一条过该点的公共直线”.所述:如果三点同属两个平行的平面则三点共线。
方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法。
如何证明三点共线的几何性质

如何证明三点共线的几何性质在几何学中,三点共线是一个基本的概念。
如果三个点在同一直线上,我们称这三个点为共线点。
证明三点共线的几何性质是学习几何学的重要内容之一。
本文将介绍如何证明三点共线的几何性质,包括点的投影、互相连接以及面积等方法。
一、点的投影证明法点的投影证明法是最基本的证明方法之一。
通过将每个点在同一直线上进行投影,如果它们的投影点重合,则说明这三个点共线。
具体步骤如下:1. 画出三个点 A、B、C,连成线段 AB、AC。
2. 以 AB 为直线,将点 C 在 AB 上进行投影,得到点C′。
3. 以 AC 为直线,将点 B 在 AC 上进行投影,得到点B′。
4. 连接点B′ 和C′。
如果连接点B′C′和直线 AB 重合,则 A、B、C 三点共线。
否则,三点不共线。
二、互相连接证明法这种方法利用了三点的连线特点。
连接两点得到线段,同时如果这个点与另外两个点都连线,那么它们应该互相连接。
具体步骤如下:1. 画出三个点 A、B、C。
2. 连接点 A 和 B,得到线段 AB。
3. 连接点 A 和 C,得到线段 AC。
4. 连接点 B 和 C,得到线段 BC。
5. 如果线段 AB、AC、BC 任意两个相交,那么这三个点 A、B、C 共线;如果它们不相交,则说明三个点不共线。
三、面积证明法这是一种用于证明三点共线的几何性质的可靠的证明方法。
根据向量积的定义,如果三个向量的向量积为零,则这三个向量共面。
具体步骤如下:1. 画出三个点 A、B、C,连接成ΔABC,即三角形 ABC。
2. 按照任意顺序带入向量公式:2×ΔABC=AB×AC+AC×BC+BC×BA,其中,2×ΔABC 是三角形 ABC 的面积,AB×AC+AC×BC+BC×BA 就是向量积。
3. 如果向量积为零,即2×ΔABC=0,则这三个点 A、B、C 共线,否则不共线。
三点共线计算公式

三点共线计算公式
三点共线的计算公式主要有以下几种:
斜率法:假设三个点的坐标分别为(x1,y1), (x2,y2), (x3,y3),如果它们在同一条直线上,则它们的坐标满足如下公式:
(y2 - y1) / (x2 - x1) = (y3 - y1) / (x3 - x1)
也就是说,如果两个线段的斜率相等,那么这三个点就在同一条直线上。
向量法:设三点为A、B、C,利用向量证明:λAB = AC(其中λ 为非零实数)。
如果向量AB 和AC 成比例,那么这三个点就在同一条直线上。
叉乘法:设给定三个点为A(x1, y1), B(x2, y2), C(x3, y3)。
首先计算向量AB 和AC 的叉乘,即(AB) × (AC),结果为0 时则说明三点共线。
向量AB 和AC 可以表示为(x2 - x1, y2 - y1) 和(x3 - x1, y3 - y1),那么(AB) × (AC) 的计算公式为:(x2 - x1)(y3 - y1) - (y2 - y1)(x3 - x1)。
如果结果为0,则三点共线。
以上是三种常用的三点共线计算公式,可以根据具体情况选择适合的方法进行计算。
高中数学知识点:证明三点共线问题

高中数学知识点:证明三点共线问题
所谓点共线问题就是证明三个或三个以上的点在同—条直线上.1.证明三点共线的依据是公理3:如果两个不重合的平面有一个公共点,那么它们还有其他的公共点,且所有这些公共点的集合是一条过这个公共点的直线.也就说一个点若是两个平面的公共点,则这个点在这两个平面的交线上.
对于这个公理应进一步理解下面三点:①如果两个相交平面有两个公共点,那么过这两点的直线就是它们的交线;②如果两个相交平面有三个公共点,那么这三点共线;③如果两个平面相交,那么一个平面内的直线和另一个平面的交点必在这两个平面的交线上.2.证明三点共线的常用方法
方法1:首先找出两个平面,然后证明这三点都是这两个平面的公共点.根据公理3知,这些点都在交线上.
方法2:选择其中两点确定一条直线,然后证明另一点也在其上.
第1 页共1 页。
如何证明三点共线高中数学

如何证明三点共线高中数学
证明三点共线有多种方法,下面给出几种常见的证明方法:
方法一:向量法
设三个点为A(x1, y1),B(x2, y2),C(x3, y3),则向量AB为
(Δx1, Δy1),向量AC为(Δx2, Δy2)。
如果向量AB和向量AC
共线,则它们的夹角为0或π,即(Δx1 * Δx2 + Δy1 * Δy2) = 0。
如果这个等式成立,证明三点共线。
方法二:斜率法
如果三个点的斜率相等,则它们共线。
设A(x1, y1),B(x2, y2),C(x3, y3),则斜率AB为(k1 = (y2 - y1) / (x2 - x1)),斜率AC
为(k2 = (y3 - y1) / (x3 - x1))。
如果k1 = k2,证明三点共线。
方法三:面积法
设三个点为A(x1, y1),B(x2, y2),C(x3, y3),计算三角形
ABC的面积,如果面积等于0,则三点共线。
三角形ABC的
面积可计算为:Area = 0.5 * |x1(y2 - y3) + x2(y3 - y1) + x3(y1 -
y2)|。
方法四:数学归纳法
如果已知三点A1, A2, A3共线,并且已知点A4也在同一直线上,我们可以通过数学归纳法证明所有的点都在同一直线上。
即假设已知点A1, A2, ..., An已经共线,并且点An+1也在同
一直线上,证明所有的点都在同一直线上。
需要注意的是,上述方法并非是证明三点共线的充分必要条件,
只是常用的一些证明方法。
在实际证明中,可以根据具体情况选择合适的方法来证明三点共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明三点共线问题的方法
1、利用梅涅劳斯定理的逆定理
例1、如图1,圆内接ΔABC 为不等边三角形,过点A 、B 、C 分别作圆的切线依次交直线BC 、CA 、AB 于1A 、1B 、1C ,求证:1A 、1B 、1C 三点共线。
解:记,,BC a CA b AB c ===,易知1111AC C
CC B S AC C B S ∆∆=
又易证1
1
AC C CC B ∆∆ .则112
2
2AC C CC B S AC b S CB a
∆∆⎛⎫== ⎪⎝⎭.
同理12121212,BA c CB a A C b B A c ==.故111222
1112221AC BA CB b c a C B A C B A a b c
⋅⋅=⋅⋅=.
由梅涅劳斯定理的逆定理,知1A 、1B 、1C 三点共线。
2、利用四点共圆(在圆内,主要由角相等或互补得到共线)
例2 、如图,以锐角ΔABC 的一边BC 为直径作⊙O ,过点A 作⊙O 的两条切线,切点为M 、N ,点H 是ΔABC 的垂心.求证:M 、H 、N 三点共线。
(96中国奥数
证明:射线AH 交BC 于D ,显然AD 为高。
记AB 与⊙O 的交点为E ,易知C 、H 、E 三点共线。
联结OM 、ON 、DM 、DN 、MH 、NH ,
易知090AMO ANO ADO ∠=∠=∠=,
∴A 、M 、O 、D 、N 五点共圆,更有A 、M 、D 、N 四点共圆, 此时,0+180AND ∠∠=AMD
因为2AM AE AB AH AD =⋅=⋅(B 、D 、H 、E 四点共圆),
即
AM AD
AH AM
=
;又MAH DAM ∠=∠,所以AMH ADM ∆∆ ,故AHM AMD ∠=∠ 同理,AHN AND ∠=∠。
因为0180AHM AHN AMD AND ∠+∠=∠+∠=,所以,M 、H 、N 三点共线。
3、利用面积法
如果S
S EMN
FMN
=∆∆,点E 、F 位于直线MN 的异侧,则直线MN 平分线段EF ,即M 、N 与
EF 的中点三点共线。
A
B
C
C 1
B 1A 1
例3 、如图,延长凸四边形ABCD 的边AB 、DC 交于点E ,延长边AD 、BC 交于点F ,又 M 、N 、L 分别是AC 、BD 、EF 的中点,求证:M 、N 、L 三点共线。
证明:设BC 的中点为O ,辅助线如图所示, 由//,//OM AE ON DE 可知, 点O 必在EMN ∆内,此时,
S S S S EMN OMN OME ONE =++∆∆∆∆
O O O B MN MB NC MN BCN S S S S S ∆∆∆∆∆=++=+
B B B
C 11111
()()()22224
MD BCD MC DMC A ADC ABCD S S S S S S S ∆∆∆∆∆∆=+=+=⋅+=四边形 同理,1
4
FMN S S ∆=四边形ABCD 。
因此S
S EMN
FMN
=∆∆。
此时,直线MN 平分EF ,即M 、N 、L 三点共线。
注:利用梅涅劳斯定理的逆定理也可证明此题。
4、利用同一法
尽管同一法是一种间接证法,但它却是一各很有用的证法,观察例4后,你会感到,同一法在证明三点共线问题时,也有其用武之地。
例4 、如图4(a),凸四边形ABCD 的四边皆与⊙O 相切,切点分别为P 、M 、Q 、N ,设PQ 与 MN 交于S ,证明:A 、S 、C 三点共线。
证明:如图4(b),令PQ 与AC 交于/
S
易证//APS CQS ∠∠与互补。
而//AS P CS Q ∠=∠,则
//////
sin sin sin sin AS APS CQS S C
AP AS P CS Q CQ
∠∠===∠∠, 故//AS AP S C CQ =。
再令MN 与AC 交于//S 。
同理可得////AS AM S C CN
= 但AP AM CQ CN =,所以//////AS AS S C S C =。
利用合比性质得,///
AS AS AC AC
=。
因此,///AS AS =,可断定/S 与//S 必重合于点S ,故A 、S 、C 三点共线。
注:观察本题图形,显然还可证得B 、S 、D 三点共线;换言之,AC 、BD 、PQ 、MN 四线共点。
E
(b)
(a)
B
5、利用位似形的性质
如果ABC ∆与///A B C ∆是两个位似三角形,点O 为位似中心,那么不仅A 、/A 、O ;B 、
/B 、O ;C 、/C 、O 分别三点共线,而且ABC ∆、///A B C ∆的两个对应点与位似中心O 也三
点共线,位似形的这种性质,对于证明三点共线,颇为有用。
例5、如图,ABC ∆内部的三个等圆⊙1O 、⊙2O 、⊙3O 两两相交且都经过点P ,其中每两个圆都与ABC ∆的一边相切,已知O 、I 分别是ABC ∆的外心、内心,证明:I 、P 、O 三点共线。
证明:联结12O O 、13O O 、23O O
12//O O AB 、23//O O BC 、13//O O 可断定ABC ∆与123O O O ∆且易知ABC ∆的内心I 因为⊙1O 、⊙2O 、⊙3O 为等圆, 即123PO PO PO ==,
所以点P 是123O O O
∆的外心。
又点O 是的外心,故P 、O 两点是两个位似三角形的对应点,利用位似形的性质,即得I 、P 、O 三点共线。
6、 利用反证法
有的几何题利用直接证法很难,而用反证法却能很快达到预期目的。
例6、如图,梯形ABCD 中、DC//AB ,对形内的三点1P 、2P 、3P ,如果到四边距离之和皆相等,那么,1P 、2P 、3P 三点共线,试证之。
证明:先看12P P 、两点,
设直线12PP 分别交AD 、BC 于M 、N ,
11PE BC ⊥于1E ,22P E BC ⊥于2E , 11PF AD ⊥于1F ,22P
F AD ⊥于2F 。
因为DC//AB ,则点1P 到AB 、CD 的距离之和等于点2P 到AB 、CD 的距离之和。
由已知可得
/
B
11112222PE PF P E P F +=+。
过点1P 作AD 的平行线、过点2P 作BC 的平行线得交点P (由于
AD 与BC 不平行)。
记1PP 交22P F 于G ,2P P 交11PE 于H 。
观察上式有11222211PE P E P F PF -=-。
所以,1
2PH P G =。
因为12PPP ∆有两条高12PH P G =,所以,12PPP ∆是等腰三角形,则1221PPP PP P ∠=∠。
故1221DMN PPP PP P CNM ∠=∠=∠=∠。
再用反证法证明点3P 一定在12PP 上:假设点3P 不在12PP 上,联结13PP 并延长分别交AD 、BC 于//M N 、,易知点//M N 、在MN 的异侧;因为点1P 到AD 、BC 的距离之和等于点3P 到AD 、BC 的距离之和,由上述证明过程知必有////DM N CN M ∠=∠。
事实上,观察图形只能得到////DM N DMN CNM CN M ∠>∠=∠>∠,矛盾,这说明点3P 必在12PP 上,即MN 上,因此1P 、2P 、3P 三点共线。
7、 用塞瓦定量的逆定理
变三点共线为三线共点,利用塞瓦定理的逆定理,在圆内接凸六边形ABCDEF 中,若
AB CD EF BC DE FA ⋅⋅=⋅⋅,则AD 、BE 、CF 三线共点;反之亦然,利用这个结果来证明某
些三点共线问题,可立竿见影。
例7、如图7,凸四边形ABCD 内接于圆,延长AD 、BC 交于点P ,作PE 、PF 切圆于E 、F ,又AC 与BD 交于K ,证明:E 、K 、F 三点共线。
解:联结AE 、ED 、CF 、FB 得凸六边形ABFCDE 。
欲证E 、K 、F 三点共线,即AC 、BD 、EF 三线共点, 只须证AB FC DE BF CD EA ⋅⋅=⋅⋅。
注意到,,PAB PCD PFC PBF PDE PEA ∆∆∆∆∆∆ 。
则
,,AB PA FC PC DE PE
CD PC BF PF EA PA ===。
又PE=PF , 则1AB FC DE PA PC PE CD BF EA PC PF PA ⋅⋅=⋅⋅=。
故AB FC DE BF CD EA ⋅⋅=⋅⋅。
因此,AC 、BD 、EF 三线共点,即E 、K 、F 三点共线。