2019-2020年上海市中考数学绝密预测试卷(含答案) (4)
上海市闵行区2019-2020学年中考数学第一次押题试卷含解析
上海市闵行区2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列图形中为正方体的平面展开图的是( )A .B .C .D .2.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x--=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( ) A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<3.﹣3的相反数是( ) A .13-B .13C .3-D .34.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B 的落点依次为B 1,B 2,B 3,…,则B 2017的坐标为( )A .(1345,0)B .(1345.5,32) C .(1345,32) D .(1345.5,0)5.△ABC 在网络中的位置如图所示,则cos ∠ACB 的值为( )A .12B .22C .32D .336.下列运算正确的是( )A .a 6÷a 2=a 3B .(2a+b )(2a ﹣b )=4a 2﹣b 2C .(﹣a )2•a 3=a 6D .5a+2b=7ab7.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109B.3×108C.30×108D.0.3×10108.如图图形中,可以看作中心对称图形的是()A .B .C .D .9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.13C .14D.3410.下列图形中,周长不是32 m的图形是( )A.B.C.D.11.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:412.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=kx(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.14.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE 为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为______.15.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是_____.16.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.17.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____.18.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,BC=12,tanA=34,∠B=30°;求AC和AB的长.20.(6分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m).21.(6分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).22.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,2≈1.414,3)23.(8分)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线212y x bx c =-++经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD .()1求此抛物线的解析式.()2求此抛物线顶点D 的坐标和四边形ABCD 的面积.24.(10分)如图,在边长为1 个单位长度的小正方形网格中:(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2. (3)求△CC 1C 2的面积.25.(10分)将一个等边三角形纸片AOB 放置在平面直角坐标系中,点O (0,0),点B (6,0).点C 、D 分别在OB 、AB 边上,DC ∥OA ,3(I )如图①,将△DCB 沿射线CB 方向平移,得到△D′C′B′.当点C 平移到OB 的中点时,求点D′的坐标;(II )如图②,若边D′C′与AB 的交点为M ,边D′B′与∠ABB′的角平分线交于点N ,当BB′多大时,四边形MBND′为菱形?并说明理由.(III )若将△DCB 绕点B 顺时针旋转,得到△D′C′B ,连接AD′,边D′C′的中点为P ,连接AP ,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).26.(12分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 3835 45 51 48 57 49 47 53 58 49(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:范围25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人数(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:平均数中位数满分率46.8 47.5 45%得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:平均数中位数满分率45.3 49 51.2%请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.27.(12分)计算:30﹣|﹣3|+(﹣1)2015+(12)﹣1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】利用正方体及其表面展开图的特点依次判断解题. 【详解】由四棱柱四个侧面和上下两个底面的特征可知A ,B ,D 上底面不可能有两个,故不是正方体的展开图,选项C 可以拼成一个正方体,故选C . 【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键. 2.B 【解析】 【分析】 【详解】解:根据题意可得:210a --p∴反比例函数处于二、四象限,则在每个象限内为增函数, 且当x <0时y >0,当x >0时,y <0, ∴2y <3y <1y . 3.D 【解析】 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1. 【详解】根据相反数的定义可得:-3的相反数是3.故选D. 【点睛】本题考查相反数,题目简单,熟记定义是关键. 4.B 【解析】连接AC ,如图所示. ∵四边形OABC 是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5,3),∴B3的坐标为(1.5+1322,3),故选B.点睛:本题是规律题,能正确地寻找规律“每翻转6次,图形向右平移2”是解题的关键. 5.B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则2BD.cos∠ACB=222ADAB==,故选B.6.B 【解析】【分析】A 选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B 选项:利用平方差公式,应先把2a 看成一个整体,应等于(2a )2-b 2而不是2a 2-b 2,故本选项错误;C 选项:先把(-a )2化为a 2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D 选项:两项不是同类项,故不能进行合并. 【详解】A 选项:a 6÷a 2=a 4,故本选项错误;B 选项:(2a+b )(2a-b )=4a 2-b 2,故本选项正确;C 选项:(-a )2•a 3=a 5,故本选项错误;D 选项:5a 与2b 不是同类项,不能合并,故本选项错误; 故选:B . 【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断. 7.A 【解析】 【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】将数据30亿用科学记数法表示为9310⨯, 故选A . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 8.D 【解析】 【分析】根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可. 【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义.9.C【解析】【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得. 【详解】画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为14.故选C.10.B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.C【解析】【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.12.D【解析】【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO 中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1k2k﹣1>0,∴点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.1或1﹣22【解析】【分析】当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值.【详解】解:如图1所示:由翻折的性质可知PF=CF=1,∵ABFE为正方形,边长为2,∴AF=22.∴PA=1﹣22.如图2所示:由翻折的性质可知PF=FC=1.∵ABFE为正方形,∴BE为AF的垂直平分线.∴AP=PF=1.故答案为:1或1﹣22.【点睛】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.15.1【解析】分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.详解:设∠AEF=n°,由题意,解得n=120,∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=EF=1,∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.75【解析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为75.17.1【解析】【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n , 由题意得,()2180n n -︒g =144°, 解得n=1.故答案为1.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.18.23π. 【解析】 试题分析:连结OC 、OD ,因为C 、D 是半圆O 的三等分点,所以,∠BOD =∠COD =60°,所以,三角形OCD 为等边三角形,所以,半圆O 的半径为OC =CD =2,S 扇形OBDC =1204360π⨯=43π,S △OBC =12312⨯⨯=3,S 弓形CD =S 扇形ODC -S △ODC =6041233602π⨯-⨯⨯=233π-,所以阴影部分的面积为为S =43π-3-(233π-)=23π.考点:扇形的面积计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.3【解析】【分析】如图作CH ⊥AB 于H .在Rt △BHC 求出CH 、BH ,在Rt △ACH 中求出AH 、AC 即可解决问题;【详解】解:如图作CH ⊥AB 于H .在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH22BC CH-3在Rt△ACH中,tanA=34=CHAH,∴AH=8,∴AC22AH CH+10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE 的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD 的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE=3tan3020oAE⋅=11.54,∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m.21.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b <﹣ 且b≠﹣2或b >.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.22.17.3米.【解析】分析:过点C 作CD PQ ⊥于D ,根据3060CAB CBD ∠=︒∠=︒,,得到30,ACB ∠=︒ 20AB BC ==,在Rt △CDB 中,解三角形即可得到河的宽度.详解:过点C 作CD PQ ⊥于D ,∵3060CAB CBD ∠=︒∠=︒,∴30,ACB ∠=︒∴20AB BC ==米,在Rt △CDB 中,∵90BDC ,∠=︒ sin ,CD CBD BC ∠=∴sin60,CD BC︒= ∴3,220CD = ∴103CD =米,∴17.3CD ≈米.答:这条河的宽是17.3米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.23.()1 21242y x x =-++;()212. 【解析】【分析】 (1)由正方形的性质可求得B 、C 的坐标,代入抛物线解析式可求得b 、c 的值,则可求得抛物线的解析式;(2)把抛物线解析式化为顶点式可求得D 点坐标,再由S 四边形ABDC =S △ABC +S △BCD 可求得四边形ABDC 的面积.【详解】()1由已知得:()0,4C ,()4,4B ,把B 与C 坐标代入212y x bx c =-++得: 4124b c c +=⎧⎨=⎩, 解得:2b =,4c =, 则解析式为21242y x x =-++; ()2∵221124(2)622y x x x =-++=--+, ∴抛物线顶点坐标为()2,6, 则114442841222ABC BCD ABDC S S S =+=⨯⨯+⨯⨯=+=V V 四边形. 【点睛】二次函数的综合应用.解题的关键是:在(1)中确定出B 、C 的坐标是解题的关键,在(2)中把四边形转化成两个三角形.24.(1)见解析 (2)见解析 (3) 9【解析】试题分析:(1)将△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1,如图所示; (2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,如图所示.试题解析:(1)根据题意画出图形,△A 1B 1C 1为所求三角形;(2)根据题意画出图形,△A 2B 2C 2为所求三角形.考点:1.作图-位似变换,2. 作图-平移变换25.(Ⅰ)D′(3+3,3);(Ⅱ)当BB'=3时,四边形MBND'是菱形,理由见解析;(Ⅲ)P(1533,22).【解析】【分析】(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;(Ⅱ)当BB'=3时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大. 【详解】(Ⅰ)如图①中,作DH⊥BC于H,∵△AOB是等边三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等边三角形,∵3DH⊥CB,∴3,DH=3,∴D(633),∵C′B=3,∴33,∴DD′=CC′=23﹣3,∴D′(3+3,3).(Ⅱ)当BB'=3时,四边形MBND'是菱形,理由:如图②中,∵△ABC是等边三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分线,∴∠NBB′'=12∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四边形MBND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等边三角形,∴MC=CE',NC=CC',∵B'C'=23,∵四边形MBND'是菱形,∴BN=BM,∴BB'=12B'C'=3;(Ⅲ)如图连接BP,在△ABP中,由三角形三边关系得,AP<AB+BP,∴当点A,B,P三点共线时,AP最大,如图③中,在△D'BE'中,由P 为D'E 的中点,得AP ⊥D'E',,∴CP=3,∴AP=6+3=9,在Rt △APD'中,由勾股定理得,此时P (152,﹣2). 【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A ,C ,P 三点共线时,AP 最大.26.(1)补充表格见解析;(2)①61;②见解析.【解析】【分析】(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.【详解】(1)补充表格如下:(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×20≈61, 故答案为:61;②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好; 从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.【点睛】本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键. 27.-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:0﹣|﹣3|+(﹣1)2015+(12)﹣1=1﹣3+(﹣1)+2=﹣1. 点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.。
上海市金山区2019-2020学年中考数学第二次押题试卷含解析
上海市金山区2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若分式31x +在实数范围内有意义,则实数x 的取值范围是( ) A .1x >-B .1x <-C .1x =-D .1x ≠- 2.对于代数式ax 2+bx+c(a≠0),下列说法正确的是( )①如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则a 2x +bx+c=a (x-p )(x-q )②存在三个实数m≠n≠s ,使得am 2+bm+c=an 2+bn+c=as 2+bs+c③如果ac <0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c④如果ac >0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+cA .③B .①③C .②④D .①③④3.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( ) A .3 B .6 C .12 D .54.下列事件中,属于不确定事件的是( )A .科学实验,前100次实验都失败了,第101次实验会成功B .投掷一枚骰子,朝上面出现的点数是7点C .太阳从西边升起来了D .用长度分别是3cm ,4cm ,5cm 的细木条首尾顺次相连可组成一个直角三角形5.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元6.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.17.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE 的延长线交BC于F,则∠CFD的度数为()A.80°B.90°C.100°D.120°8.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.249.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山10.下列运算正确的是()11.下列各数中,无理数是()A.0 B.227C.4D.π12.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.14.函数32xyx=-中,自变量x的取值范围是______15.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD 的长为________.16.计算:(12)﹣1﹣(5﹣π)0=_____.17.图中是两个全等的正五边形,则∠α=______.18.函数y=123xx++中,自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?20.(6分)如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中ADEV≌DFC△,可知ED FC=,求得DMC∠=______.如图②,在矩形()ABCD AB BC>的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.()1求证:ED FC=.()2若20ADE∠=o,求DMC∠的度数.21.(6分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.(1)求四边形OEBF的面积;(2)求证:OG•BD=EF2;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.与Y轴交于点D,已知10OA=,A(n,1),点B的坐标为(﹣2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求△AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是.23.(8分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.24.(10分)如图,抛物线y=﹣12x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.25.(10分)如图,ABC∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,在图1中画出AB 边上的中线CD ;在图2中画出ABEF Y ,使得ABEF ABC S S ∆=Y .26.(12分)如图,AB 是半径为2的⊙O 的直径,直线l 与AB 所在直线垂直,垂足为C ,OC =3,P 是圆上异于A 、B 的动点,直线AP 、BP 分别交l 于M 、N 两点.(1)当∠A =30°时,MN 的长是 ; (2)求证:MC•CN 是定值;(3)MN 是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN 为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.27.(12分)先化简,再求值:2211()111x x x x -÷+--,其中12x =-.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】故选:D .【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.2.A【解析】设2(0)y ax bx c a =++≠(1)如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则说明在2(0)y ax bx c a =++≠中,当x=p 和x=q 时的y 值相等,但并不能说明此时p 、q 是2(0)y ax bx c a =++≠与x 轴交点的横坐标,故①中结论不一定成立;(2)若am 2+bm+c=an 2+bn+c=as 2+bs+c ,则说明在2(0)y ax bx c a =++≠中当x=m 、n 、s 时,对应的y 值相等,因此m 、n 、s 中至少有两个数是相等的,故②错误;(3)如果ac <0,则b 2-4ac>0,则2(0)y ax bx c a =++≠的图象和x 轴必有两个不同的交点,所以此时一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c ,故③在结论正确;(4)如果ac >0,则b 2-4ac 的值的正负无法确定,此时2(0)y ax bx c a =++≠的图象与x 轴的交点情况无法确定,所以④中结论不一定成立.综上所述,四种说法中正确的是③.故选A.3.C【解析】【分析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦L 即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦L =3, 则()()()()22222123122222222n S x a x a x a x a n L ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L =4×3【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.4.A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.6.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.7.B【解析】【分析】根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【详解】解:∵将△ABC绕点A顺时针旋转得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故选:B.【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.8.D根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】Q E、F分别是AC、DC的中点,∴EF是ADCV的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624==⨯=.AD故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.9.A【解析】【分析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.10.B【解析】【分析】根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】11.D【解析】【分析】利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键. 12.A【解析】【分析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.14.x≠1【解析】【详解】解:∵32xyx=-有意义,∴x-1≠0,∴x≠1;故答案是:x≠1.15.1【解析】【分析】如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【详解】在Rt△ABC中,由勾股定理.得6436+,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴DE AD BC AB=,∴3=610AD,∴AD=1.故答案为1【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.16.1【解析】【分析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式=2﹣1=1,故答案为1.【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大17.108°【解析】【分析】先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.【详解】如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是0 (52)1805-⨯=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.18.x≠﹣32.【解析】【分析】该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.【详解】解:根据分式有意义的条件得:2x+3≠1解得:32x≠-.故答案为32x≠-.【点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B类图书购进400本,利润最大.【解析】【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得540540101.5x x-=,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A 类图书t 本,总利润为w 元,A 类图书的标价为(27-a )元(0<a <5),由题意得,()1812100016800600t t t +-≤⎧≥⎨⎩, 解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t )=(9-a )t+6(1000-t )=6000+(3-a )t ,故当0<a <3时,3-a >0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t 值如何变化,总利润均为6000元;当3<a <5时,3-a <0,t=600时,总利润最大,且小于6000元;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.20.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.21.(1)14;(2)详见解析;(3)AE=14. 【解析】【分析】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得S 四边形OEBF =S △BOC =14S 正方形ABCD ; (2)易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG•OB=OE 2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论;(3)首先设AE=x ,则BE=CF=1﹣x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得AE 的长.【详解】(1)∵四边形ABCD 是正方形,∴OB=OC ,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF ,在△BOE 和△COF 中,,BOE COF OB OCOBE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△COF (ASA ),∴S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD 111144=⨯⨯=; (2)证明:∵∠EOG=∠BOE ,∠OEG=∠OBE=45°,∴△OEG ∽△OBE ,∴OE :OB=OG :OE ,∴OG•OB=OE 2,∵122OB BD OE EF ==,, ∴OG•BD=EF 2;(3)如图,过点O 作OH ⊥BC ,∵BC=1, ∴1122OH BC ==, 设AE=x ,则BE=CF=1﹣x ,BF=x ,∴S △BEF +S △COF =12BE•BF+12CF•OH ()()21111911222432x x x x ⎛⎫=-+-⨯=--+ ⎪⎝⎭, ∵102a =-<, ∴当14x =时,S △BEF +S △COF 最大; 即在旋转过程中,当△BEF 与△COF 的面积之和最大时,14AE =.【点睛】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.22.(1)y=3x;y=12x﹣12;(2)54;(1)﹣2<x<0或x>1;【解析】【分析】(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.(1)根据A、B的横坐标结合图象即可得出答案.【详解】解:(1)过A作AM⊥x轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=.把B(﹣2,n)代入反比例函数的解析式得:n=﹣,即B的坐标是(﹣2,﹣),把A、B的坐标代入y=ax+b得:,解得:k=.b=﹣,即一次函数的解析式是y=x﹣.(2)连接OB,∵y=x﹣,∴当x=0时,y=﹣,即OD=,∴△AOB的面积是S△BOD+S△AOD=××2+××1=.(1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,故答案为﹣2<x<0或x>1.【点睛】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.23.(1)画图见解析;(2)画图见解析;(35【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得EM=5.【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理. 24.(1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】【分析】(1)令y=0,得到关于x 的一元二次方程﹣12x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣12t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=12PD×OA=12PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣12x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴404bk b=⎧⎨=-+⎩解得:14 kb=⎧⎨=⎩∴AC解析式为y=x+4.设P(t,﹣12t2﹣t+4)则D(t,t+4)∴PD=(﹣12t2﹣t+4)﹣(t+4)=﹣12t2﹣2t=﹣12(t+2)2+2∴S△ACP=12PD×4=﹣(t+2)2+4∴当t=﹣2时,△ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.25.(1)见解析;(2)见解析.【解析】【分析】(1)利用矩形的性质得出AB的中点,进而得出答案.(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等. 【详解】(1)如图所示:CD即为所求.(2)【点睛】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.26.(1)833;(2)MC•NC=5;(3)a+b的最小值为5(4)以MN为直径的一系列圆经过定点D,此定点D 在直线AB 上且CD 的长为5. 【解析】 【分析】 (1)由题意得AO=OB =2、OC =3、AC =5、BC =1,根据MC =ACtan ∠A = 533、CN =3tan BC BNC =∠可得答案; (2)证△ACM ∽△NCB 得MC AC BC NC=,由此即可求得答案; (3)设MC =a 、NC =b ,由(2)知ab =5,由P 是圆上异于A 、B 的动点知a >0,可得b =5a (a >0),根据反比例函数的性质得a+b 不存在最大值,当a =b 时,a+b 最小,据此求解可得;(4)设该圆与AC 的交点为D ,连接DM 、DN ,证△MDC ∽△DNC 得MC DC DC NC=,即MC •NC =DC 2=5,即DC =5,据此知以MN 为直径的一系列圆经过定点D ,此顶点D 在直线AB 上且CD 的长为5.【详解】(1)如图所示,根据题意知,AO =OB =2、OC =3,则AC =OA+OC =5,BC =OC ﹣OB =1,∵AC ⊥直线l ,∴∠ACM =∠ACN =90°,∴MC =ACtan ∠A =5×3353, ∵∠ABP =∠NBC ,∴∠BNC =∠A =30°, ∴CN =3tan 3BC BNC ==∠则MN=MC+CN=533+3=83,故答案为:83;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴MC AC BC NC=,即MC•NC=AC•BC=5×1=5;(3)设MC=a、NC=b,由(2)知ab=5,∵P是圆上异于A、B的动点,∴a>0,∴b=5a(a>0),根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,由a=b得a=5a,解之得a=5(负值舍去),此时b=5,此时a+b的最小值为25;(4)如图,设该圆与AC的交点为D,连接DM、DN,∵MN为直径,∴∠MDN=90°,则∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,则△MDC∽△DNC,∴MC DCDC NC=,即MC•NC=DC2,由(2)知MC•NC=5,∴DC2=5,∴DC5∴以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD5【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.27.2x -,4.【解析】【分析】先括号内通分,然后计算除法,最后代入化简即可.【详解】原式=()2221112=-1x x xxx x--+-⨯-.当12x=-时,原式=4.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.。
2019年上海市中考数学预测试题(附答案)
上海市中考数学预测试题一、选择题1.下列等式成立的是( )(A )24±= (B )π=722(C )2328= (D )b a b a +=+|| 2.下列关于x 的方程一定有实数解的是( ) (A )m x =2 (B )m x =2(C )m x =+11(D )m x =+1 3.下列函数中,图像经过第二象限的是( ) (A )x y 2= (B )xy 2=(C )2-=x y (D )22-=x y 4.下列图形中既是轴对称图形又是中心对称图形的是( )(A )正五边形 (B )正六边形 (C )等腰三角形 (D )等腰梯形5.某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是( )成绩(环) 6 789 10 次数14 2 6 3(A )2(B )3(C )8(D )96.已知圆O 是正n 边形n A A A 21的外接圆,半径长为18,如果弧21A A 的长为π,那么边数n 为( ) (A )5 (B )10(C )36(D )72二、填空题 7.计算:=-+-ab a b a b . 8.写出b a -的一个有理化因式: .9.如果关于x 的方程012=+-mx mx 有两个相等的实数根,那么实数m 的值是 . 10.函数x xy +-=21的定义域是 . 11.如果函数m x y -=2的图像向左平移2个单位后经过原点,那么m = .12.在分别写有数字-1,0,2,3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为 . 13.在△ABC 中,点M 、N 分别在边AB 、AC 上,且AM :MB =CN :NA =1:2,如果b AC a AB ==,,那么=MN (用b a ,表示).14.某大型超市有斜坡式的自动扶梯,人站在自动扶梯上,沿着斜坡向上方向前进13米时,在铅锤方向上升了5米,如果自动扶梯所在的斜坡的坡度i =1:m ,那么m = .15.某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m 的值是 .16.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2,写出一个函数)0(≠=k xky ,使它的图像与正方形OABC 的边有公共点,这个函数的解析式可以是 .17.在矩形ABCD 中,AB =3,AD =4,点O 为边AD 的中点,如果以点O 为圆心,r 为半径的圆与对角线BD 所在的直线相切,那么r 的值是 .18.如图,将平行四边形ABCD 绕点A 旋转到平行四边形AEFG 的位置,其中点B 、C 、D 分别落在点E 、F 、G 处,且点B 、E 、D 、F 在一直线上,如果点E 恰好是对角线BD 的中点,那么ADAB的值是.三、解答题19.计算:|273|30cos 6)31()23(2-︒-++--.20.解不等式组:⎪⎩⎪⎨⎧+<-->-525)1(312x x x x ,并写出它的所有非负整数解.21.已知,在Rt △ABC 中,︒=∠90ACB ,︒=∠30A ,点M 、N 分别是边AC 、AB 的中点,点D 是线段BM 的中点.(1)求证:MBCDAB CN =; (2)求NCD ∠的余切值.22.某山山脚的M 处到山顶的N 处有一条长为600米的登山路,小李沿此路从M 走到N ,停留后再原路返回,期间小李离开M 处的路程y 米与离开M 处的时间x 分(x >0)之间的函数关系如图中折线OABCD 所示.(1)求上山时y 关于x 的函数解析式,并写出定义域:(2)已知小李下山的时间共26分钟,其中前18分钟内的平均速度与后8分钟内的平均速度之比为2:3,试求点C 的纵坐标.23.已知:如图,在直角梯形纸片ABCD 中,DC ∥AB ,AB >CD >AD ,︒=∠90A ,将纸片沿过点D 的直线翻折,使点A 落在边CD 上的点E 处,折痕为DF ,联结EF 并展开纸片. (1)求证:四边形ADEF 为正方形;(2)取线段AF 的中点G ,联结GE ,当BG =CD 时,求证:四边形GBCE 为等腰梯形.24.已知在直角坐标系中,抛物线)0(382<+-=a ax ax y 与y 轴交于点A ,顶点为D ,其对称轴交x 轴于点B ,点P 在抛物线上,且位于抛物线对称轴的右侧. (1)当AB =BD 时(如图),求抛物线的表达式;(2)在第(1)小题的条件下,当DP ∥AB 时,求点P 的坐标; (3)点G 在对称轴BD 上,且ABD AGB ∠=∠21,求△ABG 的面积.25.已知:半圆O 的直径AB =6,点C 在半圆O 上,且22tan =∠ABC ,点D 为弧AC 上一点,联结DC (如图)(1)求BC 的长;(2)若射线DC 交射线AB 于点M ,且△MBC 与△MOC 相似,求CD 的长;(3)联结OD ,当OD ∥BC 时,作DOB ∠的平分线交线段DC 于点N ,求ON 的长.参考答案1-6:CADBDC。
上海市普陀区2019-2020学年中考数学第四次押题试卷含解析
上海市普陀区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =3,则△ACE 的面积为( )A .1B .3C .2D .23 2.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是 A . B . C . D .3.反比例函数y=a x (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=a x 的图象上,MC ⊥x 轴于点C ,交y=2x 的图象于点A ;MD ⊥y 轴于点D ,交y=2x 的图象于点B ,当点M 在y=a x 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .34.将抛物线2 21y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )A .()2212y x =---B .()2212y x =-+- C .()2214y x =--+ D .()2214y x =-++ 5.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤6.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是()A.B.C.D.7.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.58.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A .3,-1B .1,-3C .-3,1D .-1,39.已知二次函数2()1y x h =-+(h 为常数),当13x ≤≤时,函数的最小值为5,则h 的值为( ) A .-1或5 B .-1或3 C .1或5 D .1或310.下列计算正确的是( )A .x 2+x 2=x 4B .x 8÷x 2=x 4C .x 2•x 3=x 6D .(-x )2-x 2=011.(﹣1)0+|﹣1|=( )A .2B .1C .0D .﹣112.二次函数y=ax 2+bx+c(a≠0)的图象如图,a ,b ,c 的取值范围( )A .a<0,b<0,c<0B .a<0,b>0,c<0C .a>0,b>0,c<0D .a>0,b<0,c<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,已知点A (﹣4,0)、B (0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.14.若式子2x +有意义,则x 的取值范围是_____. 15.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2=________.16.ABCD 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动,P 、Q 两点从出发开始到__________秒时,点P 和点Q 的距离是10 cm.17.若二次函数y =-x 2-4x +k 的最大值是9,则k =______.18.二次根式1x -中字母x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy 中有不重合的两个点()11,Q x y 与()22,P x y .若Q 、P 为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“直距”记做PQ D ,特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.例如下图中,点()1,1P ,点()3,2Q ,此时点Q 与点P 之间的“直距”3PQ D =.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则AO D =_________,BO D =_________; ②点C 在直线3y x =-+上,求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点,点F 是直线24y x =+上一动点.直接写出点E 与点F 之间“直距”EF D 的最小值.20.(6分)如图,在△ABC 中,AB=BC ,CD ⊥AB 于点D ,CD=BD .BE 平分∠ABC ,点H 是BC 边的中点.连接DH ,交BE 于点G .连接CG .(1)求证:△ADC ≌△FDB ;(2)求证:1CE BF 2=; (3)判断△ECG 的形状,并证明你的结论.21.(6分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m 个单位长度后恰好落在直线BE上的点G处.(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:①当点G与点D重合时,求平移距离m的值;②用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP 与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.22.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为32,求BC的长.23.(8分)如图,抛物线232 2y ax x=--(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.24.(10分)在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下:A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案) 25.(10分)如图,△DEF 是由△ABC 通过一次旋转得到的,请用直尺和圆规画出旋转中心.26.(12分)如图,已知AB 是O e 的直径,点C 、D 在O e 上,60D ∠=o 且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O e 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S . 27.(12分)如图,在四边形ABCD 中,∠ABC=90°,∠CAB=30°,DE ⊥AC 于E ,且AE=CE ,若DE=5,EB=12,求四边形ABCD 的周长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由折叠的性质可得,DE=EF ,AC=EF 的长,即可求△ACE 的面积.【详解】解:∵点F 是AC 的中点,∴AF=CF=12AC , ∵将△CDE 沿CE 折叠到△CFE ,∴DE=EF ,∴AC=在Rt △ACD 中,.∵S △ADC =S △AEC +S △CDE , ∴12×AD×CD=12×AC×EF+12×CD×DE∴,∴DE=EF=1,∴S △AEC=12× 故选B .【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键. 2.D【解析】【分析】本题主要考查二次函数的解析式解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为. 故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.3.D【解析】【分析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a ,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确;故答案选D .考点:反比例系数的几何意义.4.A【解析】【分析】根据二次函数的平移规律即可得出.【详解】解:221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为()2212y x =---故答案为:A .本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.5.B【解析】试题分析:①、MN=12AB,所以MN的长度不变;②、周长C△PAB=12(AB+PA+PB),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线6.D【解析】【分析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【详解】由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.故选: D.【点睛】本题主要考查函数模型及其应用.7.B【解析】【分析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B (4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B (4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB 有交点,且过第一、三象限时,k 满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB 有交点,则k 的值不可能是-2.故选B .【点睛】本题考查了一次函数y=kx+b (k≠0)的性质:当k >0时,图象必过第一、三象限,k 越大直线越靠近y 轴;当k <0时,图象必过第二、四象限,k 越小直线越靠近y 轴.8.A【解析】【分析】根据题意可得方程组2127a b a b +=⎧⎨-=⎩,再解方程组即可. 【详解】由题意得:2127a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=-⎩, 故选A .9.A【解析】【分析】由解析式可知该函数在x=h 时取得最小值1,x>h 时,y 随x 的增大而增大;当x<h 时,y 随x 的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1,可得x=1时,y 取得最小值5;②若h>3,可得当x=3时,y 取得最小值5,分别列出关于h 的方程求解即可.【详解】解:∵x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小,∴①若h<1,当13x ≤≤时,y 随x 的增大而增大,∴当x=1时,y 取得最小值5,可得:2(151)-+=h ,解得:h=−1或h=3(舍),∴h=−1;②若h>3,当13x ≤≤时,y 随x 的增大而减小,当x=3时,y 取得最小值5,可得:2(153)-+=h ,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3时,当x=h 时,y 取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上所述,h 的值为−1或5,故选:A .【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键. 10.D【解析】试题解析:A 原式=2x 2,故A 不正确;B 原式=x 6,故B 不正确;C 原式=x 5,故C 不正确;D 原式=x 2-x 2=0,故D 正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.11.A【解析】【分析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.12.D【解析】试题分析:根据二次函数的图象依次分析各项即可。
上海市宝山区2019-2020学年中考数学第四次押题试卷含解析
上海市宝山区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在矩形ABCD 中AB =2,BC =1,将矩形ABCD 绕顶点B 旋转得到矩形A'BC'D ,点A 恰好落在矩形ABCD 的边CD 上,则AD 扫过的部分(即阴影部分)面积为( )A .8πB .222π-C .23π-D .6π 2.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r3.下面调查中,适合采用全面调查的是( ) A .对南宁市市民进行“南宁地铁1号线线路” B .对你安宁市食品安全合格情况的调查 C .对南宁市电视台《新闻在线》收视率的调查 D .对你所在的班级同学的身高情况的调查4.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠15.若一个凸多边形的内角和为720°,则这个多边形的边数为( ) A .4B .5C .6D .76.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )A .B .C .D .7.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,则下面所列方程中正确的是( ) A .1200012000100 1.2x x =+B .12000120001001.2x x =+ C .1200012000100 1.2x x=-D .12000120001001.2x x=- 8.如图,点A ,B 在反比例函数的图象上,点C ,D 在反比例函数的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为,则k 的值为( )A .4B .3C .2D .9.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF ⊥AC 分别交DC 于F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG ;(2)OG= 12BC ;(3)△OGE 是等边三角形;(4)16AOE ABCDS S ∆=矩形.A .1B .2C .3D .410.函数1y x =-x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1x ≥11.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确12.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于( )A .30°B .35°C .40°D .50°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一个正多边形的一个外角为30°,则它的内角和为_____.14.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____. 16.若a 是方程2320x x --=的根,则2526a a +-=_____.17.对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{}min 2,3--= ________;若{}22min (1)1x x -=,,则x =________.18.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 长为半径的圆恰好与BC 相切于点D ,分别交AC ,AB 于点E ,F .(1)若∠B=30°,求证:以A ,O ,D ,E 为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD ,则⊙O 的半径为 ,AD 的长为 .20.(6分)如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE .求证:四边形ABCD 是菱形;若AB =5,BD =2,求OE 的长.21.(6分)解方程(2x+1)2=3(2x+1)22.(8分)如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m 的影子CE ;而当光线与地面的夹角是45º时,教学楼顶A 在地面上的影子F 与墙角C 有13m 的距离(B 、F 、C 在一条直线上).求教学楼AB 的高度;学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离(结果保留整数).23.(8分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.24.(10分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.25.(10分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围.26.(12分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段A 50.5~60.5B 60.5~70.5C 70.5~80.5D 80.5~90.5E 90.5~100.5请你根据上面的信息,解答下列问题.(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?27.(12分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S 与时间t 之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:(1)图(1)中的BC 长是多少? (2)图(2)中的a 是多少? (3)图(1)中的图形面积是多少? (4)图(2)中的b 是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】本题首先利用A 点恰好落在边CD 上,可以求出A´C =BC´=1,又因为A´B 2△A´BC 为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´ 【详解】先连接BD,首先求得正方形ABCD 212=,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为2452118024=ππ⨯⨯,扇形BDD´的面积为24531318028ππ⨯⨯=,面积ADA´=面积ABCD -面积A´BC -扇形面积ABA´1121122424ππ⨯⨯--=--;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=)3113121112282282ππ⨯⨯---=--,阴影部分面积=面积DA´D´+面积ADA´=8π【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.2.B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误. 故选B. 3.D 【解析】 【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答. 【详解】A 、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B 、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C 、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;D 、对你所在的班级同学的身高情况的调查适宜采用普查方式; 故选D . 【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 4.D 【解析】 【分析】先根据AB ∥CD 得出∠BCD=∠1,再由CD ∥EF 得出∠DCE=180°-∠2,再把两式相加即可得出结论. 【详解】 解:∵AB ∥CD , ∴∠BCD=∠1, ∵CD ∥EF , ∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1. 故选:D . 【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补. 5.C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.6.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.7.B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.8.B【解析】【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.9.C【解析】∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12 AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°, ∴△OGE 是等边三角形,故(3)正确; 设AE=2a ,则OE=OG=a ,由勾股定理得,,∵O 为AC 中点,∴,∴BC=12,在Rt △ABC 中,由勾股定理得,,∵四边形ABCD 是矩形, ∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12BC=2a , ∴OG≠12BC ,故(2)错误;∵S △AOE =12=22,S ABCD 2, ∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个, 故选C .【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键. 10.D 【解析】 【分析】根据二次根式的意义,被开方数是非负数. 【详解】根据题意得10x -≥, 解得1x ≥. 故选D . 【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.11.A【解析】【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.12.C【解析】分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1800°【解析】 试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.14.(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,1),第五次P 5(17,2),… 发现点P 的位置4次一个循环,∵2017÷4=504余1,P 2017的纵坐标与P 1相同为2,横坐标为5+3×2016=6053,∴P 2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.15.2π3【解析】 根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π. 16.1【解析】【分析】 利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1.故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.3- 2或-1.【解析】①∵-2>-3,∴min{-2,-3}=-3;②∵min{(x−1)2,x 2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x 1=2,x 2=0(不合题意,舍去),当x ⩽0.5时,x 2=1,解得:x 1=1(不合题意,舍去),x 2=−1,18.18°【解析】试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=×360°=90°,则θ=108°-90°=18°. 考点:圆锥的展开图三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) 见解析;(2)15,354【解析】【分析】(1) 先通过证明△AOE 为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE 是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证.(2) 利用在Rt △OBD 中,sin ∠B==可得出半径长度,在Rt △ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.【详解】解:(1)证明:连接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圆O的切线,OD是半径,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四边形AODE是平行四边形,∵OD=OA∴四边形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圆O的切线,OD是半径,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【点睛】本题主要考查圆中的计算问题、菱形以及相似三角形的判定与性质20.(1)见解析;(1)OE=1.【解析】【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【详解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(1)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=12BD=1,在Rt△AOB中,AB=5,OB=1,∴OA=22AB OB-=1,∴OE=OA=1.【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键21.x1=-12,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣12,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.22.(1)2m(2)27m【解析】【分析】(1)首先构造直角三角形△AEM,利用0AMtan22ME=,求出即可.(2)利用Rt△AME中,0MEcos22AE=,求出AE即可.【详解】解:(1)过点E作EM⊥AB,垂足为M.设AB为x.在Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+1.在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,又∵0AM tan22ME =,∴x 22x 135-≈+,解得:x≈2. ∴教学楼的高2m .(2)由(1)可得ME=BC=x+1≈2+1=3.在Rt △AME 中,0ME cos22AE =, ∴AE=MEcos22°≈15252716⨯≈. ∴A 、E 之间的距离约为27m .23.见解析【解析】【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P 点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.24.(3)证明见解析(3)3或﹣3【解析】【分析】(3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k -3)3,然后根据非负数的性质,即k 的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k 的值.【详解】证明:(3)△=[﹣(4k+3)]3﹣4k (3k+3)=(3k ﹣3)3.∵k 为整数,∴(3k ﹣3)3>2,即△>2.∴方程有两个不相等的实数根.(3)解:∵方程kx 3﹣(4k+3)x+3k+3=2为一元二次方程,∴k≠2.∵kx 3﹣(4k+3)x+3k+3=2,即[kx ﹣(k+3)](x ﹣3)=2,∴x 3=3,2111k x k k+==+. ∵方程的两个实数根都是整数,且k 为整数,∴k=3或﹣3.【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.25. (1)点A 在直线l 上,理由见解析;(2)43≤t≤4. 【解析】【分析】(1)由题意得点B 、A 坐标,把点A 的横坐标x =-1代入解析式y =2x +4得出y 的值,即可得出点A 在直线l 上;(2)当直线l 经过点D 时,设l 的解析式代入数值解出即可【详解】(1)此时点A 在直线l 上.∵BC =AB =2,点O 为BC 中点,∴点B(-1,0),A(-1,2).把点A 的横坐标x =-1代入解析式y =2x +4,得y =2,等于点A 的纵坐标2,∴此时点A 在直线l 上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l 经过点D 时,设l 的解析式为y =kx +t(k≠0), ∴解得由(1)知,当直线l 经过点A 时,t =4.∴当直线l 与AD 边有公共点时,t 的取值范围是≤t≤4.【点睛】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.26.(1)40(2)126°,1(3)940名【解析】【分析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【详解】(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×70200=126°.C组的人数是:200×25%=1.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.27.(1)8cm(2)24cm2(3)60cm2(4) 17s【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.【详解】(1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;(2) a=S△ABC=12×6×8=24(㎝2) ;(3) 同理,由图象知CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为6×14-4×6=60㎝2 ;(4) 图1中的多边形的周长为(14+6)×2=40㎝b=(40-6)÷2=17秒.。
上海市浦东新区2019-2020学年中考数学第四次押题试卷含解析
上海市浦东新区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°2.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x3.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+4.下列4个点,不在反比例函数图象上的是()A.(2,-3)B.(-3,2)C.(3,-2)D.(3,2)5.如图,空心圆柱体的左视图是()A.B.C.D.6.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,157.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A .3.5B .4C .7D .148.若x ﹣2y+1=0,则2x ÷4y ×8等于( ) A .1 B .4C .8D .﹣169.若分式11x x -+的值为零,则x 的值是( ) A .1B .1-C .1±D .210.下列运算正确的是( ) A .4x+5y=9xy B .(−m )3•m 7=m 10 C .(x 3y )5=x 8y 5D .a 12÷a 8=a 411.下列计算正确的是( ) A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a12.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:3m 2﹣6mn+3n 2=_____.14.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,若⊙O 的半径是5,CD =8,则AE =______.15.若﹣4x a y+x 2y b =﹣3x 2y ,则a+b =_____.16.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________. 17.已知一组数据-3,x ,-2, 3,1,6的众数为3,则这组数据的中位数为______. 18.化简3m ﹣2(m ﹣n )的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y (℃)和通电时间x (min )成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题: (1)分别求出当0≤x≤8和8<x≤a 时,y 和x 之间的关系式; (2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.20.(6分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.21.(6分)如图,直线y=﹣x+2与反比例函数kyx(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.22.(8分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为___________.图①(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD ,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.图 ②23.(8分)解方程: (1)x 2﹣7x ﹣18=0 (2)3x (x ﹣1)=2﹣2x24.(10分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.25.(10分)如图,一次函数y=kx+b 的图象与二次函数y=﹣x 2+c 的图象相交于A (﹣1,2),B (2,n )两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x 的取值范围;(3)设二次函数y=﹣x 2+c 的图象与y 轴相交于点C ,连接AC ,BC ,求△ABC 的面积.26.(12分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时. (1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加109m%小时,求m 的值.27.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.2.C【解析】试题解析:11(1)1 1111x x xx x x x----===-----.故选C.考点:分式的加减法. 3.A 【解析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。
上海市金山区2019-2020学年中考数学第四次押题试卷含解析
上海市金山区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.一个多边形的内角和比它的外角和的3倍少180°,那么这个多边形的边数是( ) A .7B .8C .9D .102.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 3.下列方程中,是一元二次方程的是( ) A .2x ﹣y=3B .x 2+1x=2 C .x 2+1=x 2﹣1 D .x (x ﹣1)=04.下列计算正确的是( ) A .a 6÷a 2=a 3B .(﹣2)﹣1=2C .(﹣3x 2)•2x 3=﹣6x 6D .(π﹣3)0=15.下列各数中负数是( )A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .﹣(﹣2)3 6.一元一次不等式组的解集中,整数解的个数是( )A .4B .5C .6D .77.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( ) A .∠1=50°,∠1=40° B .∠1=40°,∠1=50° C .∠1=30°,∠1=60°D .∠1=∠1=45°8.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( ) A .4 B .﹣4 C .3 D .﹣39.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°10.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A .204×103B .20.4×104C .2.04×105D .2.04×106 118的叙述正确的是( )A .8=35+B .在数轴上不存在表示8的点C .8=±22D .与8最接近的整数是312.下列计算正确的是( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 . 14.因式分解:a 3b ﹣ab 3=_____.15.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是_____. 16.若-2a m b 4与5a 2b n+7是同类项,则m+n= .17.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于x ,y 的方程组为__. 18.方程3211xx x---=1的解是___. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则BD =CE . (1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题: (2)如图2,AB =BC ,∠ABC =∠BDC =60°,求证:AD+CD =BD ;(3)如图3,在△ABC 中,AB =AC ,∠BAC =m°,点E 为△ABC 外一点,点D 为BC 中点,∠EBC =∠ACF ,ED ⊥FD ,求∠EAF 的度数(用含有m 的式子表示).20.(6分)解分式方程:28124x x x -=--21.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC =36°,求∠CAO度数.22.(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.分别求每台A型, B型挖掘机一小时挖土多少立方米?若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?23.(8分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.24.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=539,OD=3,求线段CE的长.25.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?26.(12分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.27.(12分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案. 【详解】设这个多边形的边数为n,依题意得: 180(n-2)=360×3-180, 解之得 n=7. 故选A. 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可. 2.A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 3.D 【解析】试题解析:A.含有两个未知数,B.不是整式方程,C 没有二次项. 故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 4.D 【解析】解:A.a6÷a2=a4,故A错误;B.(﹣2)﹣1=﹣12,故B错误;C.(﹣3x2)•2x3=﹣6x5,故C错;D.(π﹣3)0=1,故D正确.故选D.5.B【解析】【分析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数.故选B.【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.6.C【解析】试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.考点:一元一次不等式组的整数解.7.D【解析】【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.8.A【解析】【分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.9.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=1 2(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.10.C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.11.D【解析】【分析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A B C选项D.故选D.【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.12.D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 10【解析】【分析】让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是3 10.故答案为:3 10.【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.14.ab (a+b )(a ﹣b ) 【解析】 【分析】先提取公因式ab ,然后再利用平方差公式分解即可. 【详解】 a 3b ﹣ab 3 =ab (a 2﹣b 2) =ab (a+b )(a ﹣b ), 故答案为ab (a+b )(a ﹣b ). 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底. 15.2(110%)(1)1x -+=. 【解析】 【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x ,每天相对于前一天就上涨到1+x ,由此列出方程解答即可. 【详解】设这两天此股票股价的平均增长率为x ,由题意得 (1﹣10%)(1+x )2=1.故答案为:(1﹣10%)(1+x )2=1. 【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=. 16.-1. 【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m 、n 的值,根据有理数的加法,可得答案. 试题解析:由-2a m b 4与5a 2b n+7是同类项,得,解得.∴m+n=-1.考点:同类项.17.【解析】【分析】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据甲、乙两厂5月份用水量与6月份用水量列出关于x、y的方程组即可.【详解】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:,故答案为:.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.18.x=﹣4【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE 即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE ,连接FM 、CM .想办法证明△AFE ≌△AFG ,可得∠EAF=∠FAG=12m°. 详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===,∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.20.无解【解析】【分析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x -2)得:x (x+2)-(x+2)(x -2)=8去括号,得:2x +2x -2x +4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.21.(1)证明见解析(2)18°【解析】【分析】(1)根据HL 证明Rt △ABC ≌Rt △BAD 即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.【详解】(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是Rt △,在Rt △ABC 和Rt △BAD 中,AD BC AB BA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL );(2)∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∵∠C =90°,∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°.【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.22.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩ 所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.23.(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②【解析】【分析】(1)只要证明AB=ED ,AB ∥ED 即可解决问题;(2)成立.如图2中,过点M 作MG ∥DE 交CE 于G .由四边形DMGE 是平行四边形,推出ED=GM ,且ED ∥GM ,由(1)可知AB=GM ,AB ∥GM ,可知AB ∥DE ,AB=DE ,即可推出四边形ABDE 是平行四边形;(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=12AM,MI⊥AC,即可解决问题;②设DH=x,则AH=3x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出HF HDHA HB=,可得3423xxx=+,解方程即可;【详解】(1)证明:如图1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=12 BH,∵BH⊥A C,且BH=AM.∴MI=12AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则3x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴HF HDHA HB=,3423xxx=+,解得515,∴5【点睛】本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.24.(1)证明见解析;(2)证明见解析;(3)CE13【解析】【分析】(1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.(2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.(3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.【详解】解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE =60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB=12AC=AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=32,DN=2,∵tan∠BMF,∴tan∠NDE,392x+=,解得x=1,∴NE=52,∴DE∴CE故答案为(1)证明见解析;(2)证明见解析;(3)CE【点睛】本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.25.(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.26.(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】【分析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得. ∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵ BE∥轴,∴点E的坐标是(0,-4).而CD =5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.∴□CBED是菱形27.(1)见解析;(2)见解析【解析】【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【详解】解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四边形BCFE是平行四边形.又∵BE=FE,∴四边形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等边三角形.∴菱形的边长为4,高为3∴菱形的面积为4×233。
2020年上海市中考数学绝密预测试卷(有答案)
上海市中考数学绝密预测试卷一、选择题:1.如果x=2是方程的一个根,那么a的值是( )(A)0;(B)2;(C)-2;(D)-6.2.在同一直角坐标系内,若正比例函数的图像与反比例函数的图像没有公共点,则( )(A);(B);(C);(D).3.某篮球队12名队员的年龄如下表所示:年龄(岁) 18 19 20 21人数 5 4 1 2 则这12名队员年龄的众数和中位数分别是( )(A)2,19;(B)18,19;(C)2,9.5;(D)18,19.54.下列命题中,真命题是( )(A)周长相等的锐角三角形都全等;(B)周长相等的直角三角形都全等;(C)周长相等的钝角三角形都全等;(D)周长相等的等腰直角三角形都全等。
5.下列图形中,是中心对称图形但不是轴对称图形的是( )(A)(B)(C)(D)6.设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的一个平方根。
其中,所有正确说法的序号是( )(A)①④;(B)②③(C)①②④(D)①③④二、填空题:7.分解因式:__________________;8.不等式的解集是_________________;9.方程的解为_________________;10.如果关于x的方程有两个实数根,那么m的取值范围是____________;11.如果将抛物线平移到抛物线的位置,那么平移的方向和距离分别是____________________;12.一个盒子内有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸出白球的概率是_______;13.如图,△ABC中,如果AB=AC,A D⊥BC于点D,M为AC中点,AD与BM交于点G,那么的值为_______;14.如图,在△ABC中,记AB a=u u u r r,AC b=u u u r r,点P为BC的中点,则APu u u r=______________(用ar、br来表示);15.如图,Rt△ABC中,∠ACB=90°,BC=4cm,AC=3cm,是以BC为直径的圆,如果与相内切,那么的半径长为_____________;第15题图第14题图第13题图OPGMB CAB C C AA16.本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动。
上海市静安区2019-2020学年中考数学第四次押题试卷含解析
上海市静安区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)2.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )A .5.46×108B .5.46×109C .5.46×1010D .5.46×10113.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A ,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .344.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是() A . B . C . D .5.下列生态环保标志中,是中心对称图形的是( )A .B .C .D .6.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°7.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB .由,得2x ﹣2﹣x =﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+68.如果数据x1,x2,…,x n的方差是3,则另一组数据2x1,2x2,…,2x n的方差是()A.3 B.6 C.12 D.59.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cm B.20cm C.10πcm D.20πcm10.方程组2121x y ax y a-=+⎧⎨+=-⎩的解x、y满足不等式2x﹣y>1,则a的取值范围为()A.a≥12B.a>13C.a≤23D.a>3211.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=42,则点G 到BE的距离是()A.165B.362C.322D.18512.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.14.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.16.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =5x(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2的值为_____.17.如图,数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,若原点O 是线段AC 上的任意一点,那么a+b-2c= ______ .18.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?20.(6分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21.(6分)如图,已知平行四边形ABCD ,点M 、N 分别是边DC 、BC 的中点,设AB u u u r =a r ,AD u u u r =b r,求向量MN u u u u r 关于a r 、b r的分解式.22.(8分)如图,在Rt △ABC 与Rt △ABD 中,∠ABC=∠BAD=90°,AD=BC ,AC ,BD 相交于点G ,过点A 作AE ∥DB 交CB 的延长线于点E ,过点B 作BF ∥CA 交DA 的延长线于点F ,AE ,BF 相交于点H .图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG 是菱形;若使四边形AHBG 是正方形,还需在Rt △ABC 的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)23.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?24.(10分)如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, 2 ≈1.41, 3 ≈1.73)25.(10分)已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?27.(12分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将546亿用科学记数法表示为:5.46×1010,故本题选C.【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.3.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,2222∴=+=+=,AD AO OD3534=,故选D.∴正方形ABCD的面积是3434344.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.6.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.7.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C .由,得:5y ﹣15=3y ,此选项错误;D .由,得:3( y+1)=2y+6,此选项正确.故选D .【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.C【解析】【分析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦L 即可得到答案. 【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦L =3, 则()()()()22222123122222222n S x a x a x a x a n L ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦L =4×3=12,故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.9.A【解析】 试题解析:扇形的弧长为:12030180π⨯=20πcm , ∴圆锥底面半径为20π÷2π=10cm ,故选A .考点:圆锥的计算.10.B【解析】【分析】方程组两方程相加表示出2x ﹣y ,代入已知不等式即可求出a 的范围.【详解】2121x y a x y a -=+⎧⎨+=-⎩①② ①+②得:2-31x y a =>, 解得:13a >.故选:B .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.11.A【解析】【分析】根据平行线的判定,可得AB 与GE 的关系,根据平行线间的距离相等,可得△BEG 与△AEG 的关系,根据根据勾股定理,可得AH 与BE 的关系,再根据勾股定理,可得BE 的长,根据三角形的面积公式,可得G 到BE 的距离. 【详解】连接GB 、GE ,由已知可知∠BAE=45°.又∵GE 为正方形AEFG 的对角线,∴∠AEG=45°.∴AB ∥GE .∵2,AB 与GE 间的距离相等,∴GE=8,S △BEG =S △AEG =12S AEFG =1. 过点B 作BH ⊥AE 于点H ,∵AB=2,∴BH =AH∴HE =.∴BE =设点G 到BE 的距离为h .∴S △BEG =12•BE•h =12×h =1.∴h即点G 到BE 故选A .【点睛】 本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.12.C【解析】【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入k y x=得,k=b (﹣1﹣n 2),即 241b n =--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【详解】解:把(2,2)代入k y x =, 得k=4,把(b ,﹣1﹣n 2)代入k y x =得: k=b (﹣1﹣n 2),即241b n =--, ∵k=4>0,241b n =--<0, ∴一次函数y=kx+b 的图象经过第一、三、四象限,故选C .【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是。
上海市嘉定区2019-2020学年中考数学第四次押题试卷含解析
上海市嘉定区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.2.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.3.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.16B.13C.12D.234.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.255.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.6.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.2B.4 C.32D.27.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15°B.30°C.45°D.60°8.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为( )A.13×710kg B.0.13×810kg C.1.3×710kg D.1.3×810kg9.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4 ④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.2411.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.1512.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.14.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)15.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.16.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.17.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.18.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.(2)当方程有一个根为1时,求k 的值.20.(6分)如图,AB 是O e 的直径,AF 是O e 切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作DA 的平行线与AF 相交于点F ,已知CD 23=,BE 1=.()1求AD 的长;()2求证:FC 是O e 的切线.21.(6分)在Rt △ABC 中,∠BAC=,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE的延长线于点F . 求证:△AEF ≌△DEB ;证明四边形ADCF 是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.22.(8分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息: 信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?23.(8分)问题提出(1)如图1,正方形ABCD 的对角线交于点O ,△CDE 是边长为6的等边三角形,则O 、E 之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD 中,以CD 为直径作半圆O ,点P 为弧CD 上一动点,求A 、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.24.(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).25.(10分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)26.(12分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);27.(12分)计算:(13)-1+(32+)0+27-2cos30°.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.2.A【解析】【分析】根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.【详解】解:∵一次函数y=kx+b的图象可知k>1,b<1,故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.3.B【解析】【分析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:26=13.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可. 4.C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.5.C是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.6.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.7.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=1∠COB即可解决问题.如图,连接OC ,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB 是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°, 故选B .【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.8.D【解析】试题分析:科学计数法是指:a×10n ,且110a ≤<,n 为原数的整数位数减一.9.C【解析】【分析】根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.【详解】①(﹣2a 2)3=﹣8a 6,错误;②(x ﹣2)(x+3)=x 2+x ﹣6,错误;③(x ﹣2)2=x 2﹣4x+4,错误④﹣2m 3+m 3=﹣m 3,正确;⑤﹣16=﹣1,正确.计算正确的有2个.故选C .【点睛】10.A【解析】【详解】解:∵四边形ABCD 为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF=AD=10,EF=DE ,在Rt △ABF 中,∵,∴CF=BC-BF=10-6=4,∴△CEF 的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A .11.A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.12.D【解析】【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得: AD AE DB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】∵401201,20051005AB AC AE AD ====, ∴AB AC AE AD =, 又∵∠A=∠A ,∴△ABC ∽△AED , ∴15BC AB DE AE ==, ∵BC=30,∴DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.14.(3a ﹣b )【解析】解:由题意可得,剩余金额为:(3a-b )元,故答案为:(3a-b ).点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.15.【解析】【分析】根据旋转的性质知AB=AE ,在直角三角形ADE 中根据勾股定理求得AE 长即可得.【详解】∵四边形ABCD 是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,∴EF=BC=3,AE=AB ,∵DE=EF ,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.16.()2 1.8250x x ++=【解析】【分析】河北四库来水量为x 亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.【详解】河北四库来水量为x 亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,由题意得:x+(2x+1.82)=50,故答案为x+(2x+1.82)=50.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.17.135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=m,所以在Rt△ACD中,AD==135m.考点:解直角三角形的应用.18.1【解析】试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.考点:三角形的外角性质;三角形内角和定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(2)证明见解析;(2)k2=2,k2=2.【解析】【分析】(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【详解】(2)证明:△=b2﹣4ac,=[﹣(2k+2)]2﹣4(k2+k),=4k2+4k+2﹣4k2﹣4k,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,解得:k2=2,k2=2.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.20.(1)AD ;(2)证明见解析.【解析】【分析】(1)首先连接OD ,由垂径定理,可求得DE 的长,又由勾股定理,可求得半径OD 的长,然后由勾股定理求得AD 的长;(2)连接OF 、OC ,先证明四边形AFCD 是菱形,易证得△AFO ≌△CFO ,继而可证得FC 是⊙O 的切线.【详解】证明:()1连接OD ,AB Q 是O e 的直径,CD AB ⊥,11CE DE CD 23322∴===⨯= 设OD x =, BE 1=Q ,OE x 1∴=-,在Rt ODE V 中,222OD OE DE =+,222x (x 1)3)∴=-+,解得:x 2=,OA OD 2∴==,OE 1=,AE 3∴=,在Rt AED V 中,2222AD AE DE 3(3)23=+=+=()2连接OF 、OC ,AF Q 是O e 切线,AF AB ∴⊥,CD AB ⊥Q ,AF//CD ∴,CF//AD Q ,∴四边形FADC 是平行四边形,AB CD ⊥QAC AD ∴=n nAD CD ∴=,∴平行四边形FADC 是菱形FA FC ∴=,FAC FCA ∠∠∴=,AO CO =Q ,OAC OCA ∠∠∴=,FAC OAC FCA OCA ∠∠∠∠∴+=+,即OCF OAF 90∠∠==o ,即OC FC ⊥,Q 点C 在O e 上,FC ∴是O e 的切线.【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.(1)证明详见解析;(2)证明详见解析;(3)1.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB .∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=12 BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=12AC▪DF=12×4×5=1.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.22.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键. 23.(1)333+;(2)353+;(2)小贝的说法正确,理由见解析,110553+. 【解析】【分析】(1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt △ANO 中,设AO=r ,由勾股定理可求出r ,在Rt △OEB 中,由勾股定理可得BO 长,易知BP 长.【详解】解:(1)如图1,连接AC ,BD ,对角线交点为O ,连接OE 交CD 于H ,则OD=OC .∵△DCE 为等边三角形,∴ED=EC ,∵OD=OC∴OE 垂直平分DC ,∴DH 12=DC=1. ∵四边形ABCD 为正方形,∴△OHD 为等腰直角三角形,∴OH=DH=1,在Rt △DHE 中,HE 3=3∴31;(2)如图2,补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,AD=6,DO=1,∴AO 22AD DO =+=15,3OP DO ==Q∴AP=AO+OP=15+1;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD=1.6,ON ⊥AD , 在Rt △ANO 中, 设AO=r ,则ON=r ﹣1.2.∵AN 2+ON 2=AO 2,∴1.62+(r ﹣1.2)2=r 2,解得:r 53=, ∴AE=ON 53=-1.2715=, 在Rt △OEB 中,OE=AN=1.6,BE=AB ﹣AE 2315=, ∴BO 22110515OE BE =+=, ∴BP=BO+PO 110553=+,∴门角B到门窗弓形弧AD的最大距离为5 153+.【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.24.(1)D(0);(1)C(11﹣,18);(3)B'(0),(10).【解析】【分析】(1)设OD为x,则x,在RT△ODA中应用勾股定理即可求解;(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,),∴AO=3,BO=∴AB=6∵折叠∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(OD)1.∴∴D(0(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴BD BCBO AB=且BD=AC,∴66 33BD-=∴BD=123﹣18∴OD=33﹣(123﹣18)=18﹣93∵tan∠ABO=3 OB3 AO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=3 BDCD=,∴CD=11﹣63∴D(11﹣63,113﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,3∵BC=AB﹣AC∴BC=6﹣1=4若点B'落在A点右边,∵折叠∴BC=B'C=4,3CE⊥OA∴22'13B C CE-=∴13∴B'(130)若点B'落在A 点左边,∵折叠∴BC=B'C=4,CE ⊥OA∴=∴ 1∴B'(10)综上所述:B'(0),(10)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键. 25.51.96米.【解析】【分析】先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt △BDC 中,sin60CD BC︒=,即可求出CD 的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt △BDC 中, sin60CD BC︒=∴sin606051.962CD BC =⋅︒=⨯=≈(米). 答:文峰塔的高度CD 约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.26.(1)(3,3);(2)顶点 N 坐标为(2n ,24n );(3)详见解析;(4)72<n <113 . 【解析】【分析】(1)由正方形的性质及A 、B 、D 三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n ,0)代入y=-x 2+bx+c 求得b=n 、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N 的坐标代入y=x 2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y >3,当x=3时y <2,据此列出关于n 的不等式组,解之可得.【详解】(1)∵A (2,2),B (3,2),D (2,3),∴AD =BC =1, 则点 C (3,3),故答案为:(3,3);(2)把(0,0)(n ,0)代入 y =﹣x2+bx+c 得:200c n bn c =⎧⎨-++=⎩ , 解得:0b n c =⎧⎨=⎩, ∴抛物线解析式为 y =﹣x 2+nx =﹣(x ﹣2n )2+24n , ∴顶点 N 坐标为(2n ,24n ); (3)由(2)把 x =2n 代入 y =x 2=(2n )2= 24n , ∴抛物线的顶点在函数 y =x 2的图象上运动;(4)根据题意,得:当 x =2 时 y >3,当 x =3 时 y <2, 即423932n n -+⎧⎨-+⎩><, 解得:72<n<113. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.27.【解析】【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】原式。
上海市闵行区2019-2020学年中考数学第三次押题试卷含解析
上海市闵行区2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在-3,12,0,-2这四个数中,最小的数是( ) A .3 B .12 C .0 D .-22.抛物线223y x +=(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)3.下列事件是必然事件的是( )A .任意作一个平行四边形其对角线互相垂直B .任意作一个矩形其对角线相等C .任意作一个三角形其内角和为360︒D .任意作一个菱形其对角线相等且互相垂直平分4.下列命题是真命题的是( )A .如果a+b =0,那么a =b =0B .16的平方根是±4C .有公共顶点的两个角是对顶角D .等腰三角形两底角相等5.把图中的五角星图案,绕着它的中心点O 进行旋转,若旋转后与自身重合,则至少旋转( )A .36°B .45°C .72°D .90°6.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=a x与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .7.已知反比例函数,下列结论不正确的是( )A .图象必经过点(﹣1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若,则 8.将直线y=﹣x+a 的图象向右平移2个单位后经过点A (3,3),则a 的值为( )A .4B .﹣4C .2D .﹣29.下列计算中,正确的是( )A .3322a a =()B .325a a a +=C .842a a a ÷=D .236a a =()10.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .9 11.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解12.将(x+3)2﹣(x ﹣1)2分解因式的结果是( )A .4(2x+2)B .8x+8C .8(x+1)D . 4(x+1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:a 3﹣a=_____.14.如图,在正方形ABCD 中,AD=5,点E ,F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为__________.15.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,点D 是劣弧AC 上一点,若点E 在直径AB 另一侧的半圆上,且∠AED=27°,则∠BCD 的度数为_______.16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.17.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.18.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校组织了一次初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率.20.(6分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.21.(6分)如图,四边形ABCD 中,∠A=∠BCD=90°,BC=CD ,CE ⊥AD ,垂足为E ,求证:AE=CE .22.(8分)已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB围成的封闭图形记作G .(1)求此抛物线的解析式;(2)点P 为图形G 中的抛物线上一点,且点P 的横坐标为m ,过点P 作//PQ y 轴,交线段AB 于点Q .当APQ V 为等腰直角三角形时,求m 的值;(3)点C 是直线AB 上一点,且点C 的横坐标为n ,以线段AC 为边作正方形ACDE ,且使正方形ACDE与图形G 在直线AB 的同侧,当D ,E 两点中只有一个点在图形G 的内部时,请直接写出n 的取值范围.23.(8分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?24.(10分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元(1)求A、B型商品的进价;(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.25.(10分)如图,两座建筑物的水平距离BC为60m.从C点测得A点的仰角α为53° ,从A点测得D点的俯角β为37° ,求两座建筑物的高度(参考数据:34334 37,3737, 53453?35) 55453 sin cos tan sin cos tan ≈≈≈≈≈≈o o o o o o,,,26.(12分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.27.(12分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】312,0,﹣1这四个数中,﹣130<12,故最小的数为:﹣1.故选D.【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.2.A【解析】【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.3.B【解析】【分析】必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180°,所以任意作一个三角形其内角和为360 是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.4.D【解析】【分析】【详解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;5.C【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.故选C .点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.6.C【解析】【分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.7.B【解析】试题分析:根据反比例函数y=的性质,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大,即可作出判断.试题解析:A 、(-1,2)满足函数的解析式,则图象必经过点(-1,2);B 、在每个象限内y 随x 的增大而增大,在自变量取值范围内不成立,则命题错误;C 、命题正确;D 、命题正确.考点:反比例函数的性质8.A【解析】【分析】直接根据“左加右减”的原则求出平移后的解析式,然后把A (3,3)代入即可求出a 的值.【详解】由“右加左减”的原则可知,将直线y=-x+b 向右平移2个单位所得直线的解析式为:y=-x+b+2, 把A (3,3)代入,得3=-3+b+2,解得b=4.故选A.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b 向左平移m 个单位,是y=k(x+m)+b, 向右平移m 个单位是y=k(x-m)+b,即左右平移时,自变量x 左加右减;②y=kx+b 向上平移n 个单位,是y=kx+b+n, 向下平移n 个单位是y=kx+b-n ,即上下平移时,b 的值上加下减.9.D【解析】【分析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【详解】A 、(2a )3=8a 3,故本选项错误;B 、a 3+a 2不能合并,故本选项错误;C 、a 8÷a 4=a 4,故本选项错误;D 、(a 2)3=a 6,故本选项正确;故选D .【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键. 10.B【解析】【分析】由已知可得:2,(11m n mn +==+-=-【详解】由已知可得:2,(11m n mn +==+-=-,原式3=== 故选:B【点睛】考核知识点:二次根式运算.配方是关键.11.C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .12.C【解析】【分析】直接利用平方差公式分解因式即可.【详解】(x +3)2−(x−1)2=[(x +3)+(x−1)][(x +3)−(x−1)]=4(2x +2)=8(x +1).故选C .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a (a+1)(a ﹣1)【解析】解:a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1).故答案为:a (a+1)(a ﹣1).14【解析】分析:延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.详解:延长AE 交DF 于G ,如图, ∵AB=5,AE=3,BE=4,∴△ABE 是直角三角形,同理可得△DFC 是直角三角形,可得△AGD 是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵EAB GDAAD ABABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.15.117°【解析】【分析】连接AD,BD,利用圆周角定理解答即可.【详解】连接AD,BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案为117°【点睛】此题考查圆周角定理,关键是根据圆周角定理解答.16.k >-14且k≠1 【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k >-1/4 且k≠1.17.13【解析】【分析】求出黑色区域面积与正方形总面积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是3193==, 故答案为13. 【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比=几何概率.18.5.2【解析】分析:首先根据平均数求出x 的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8, ∴方差为:()()()()()2222213646668696 5.25⎡⎤-+-+-+-+-=⎣⎦. 点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)25件;(2)见解析;(3)B 班的获奖率高;(4).【解析】试题分析:(1)直接利用扇形统计图中百分数,进而求出B 班参赛作品数量;(2)利用C 班提供的参赛作品的获奖率为50%,结合C 班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率.试题解析:(1)由题意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班参赛作品有25件;(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:;(3)A班的获奖率为:×100%=40%,B班的获奖率为:×100%=44%,C班的获奖率为:=50%;D班的获奖率为:×100%=40%,故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.20.(1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【解析】【分析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.21.证明见解析.【解析】【分析】过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证.【详解】证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BCF ≌△CDE(AAS),∴BF=CE ,又∵∠A=90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE=BF ,∴AE=CE.22.(1)23y x x =+-;(2)-2或-1;(3)-1≤n<1或1<n≤3. 【解析】【分析】(1)把点(1,1)A -,(3,3)B -代入抛物线23y ax bx =+-得关于a,b 的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 319333a b a b +-=-⎧⎨--=⎩解得:11a b =⎧⎨=⎩∴此抛物线的解析式23y x x =+- ;(2)设直线AB 的解析式为y=kx+b,依题意得:133k b k b +=-⎧⎨-+=⎩解得:10k b =-⎧⎨=⎩ ∴直线AB 的解析式为y=-x.∵点P 的横坐标为m ,且在抛物线上,∴点P 的坐标为(m, 23m m +-)∵//PQ y 轴,且点Q 有线段AB 上,∴点Q 的坐标为(m,-m )① 当PQ=AP 时,如图,∵∠APQ=90°,//PQ y 轴,∴2213m m m -=--解得,m=-2或m=1(舍去)② 当AQ=AP 时,如图,过点A 作AC ⊥PQ 于C ,∵APQ V 为等腰直角三角形,∴2AC=PQ222(1)3m m m -=--即m=1(舍去)或m=-1.综上所述,当APQ V 为等腰直角三角形时,求m 的值是-2惑-1.;(3)①如图,当n<1时,依题意可知C,D 的横坐标相同,CE=2(1-n )∴点E 的坐标为(n,n-2)当点E 恰好在抛物线上时,232n n n +-=-解得,n=-1.∴此时n 的取值范围-1≤n<1.②如图,当n>1时,依题可知点E 的坐标为(2-n,-n )当点E 在抛物线上时,2(2)3(2)n n n +--=--解得,n=3或n=1.∵n>1.∴n=3.∴此时n 的取值范围1<n≤3.综上所述,n 的取值范围为-1≤n<1或1<n≤3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.23.裁掉的正方形的边长为2dm ,底面积为12dm 2.【解析】试题分析:设裁掉的正方形的边长为xdm ,则制作无盖的长方体容器的长为(10-2x )dm ,宽为(6-2x )dm ,根据长方体底面面积为12dm 2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm ,由题意可得(10-2x)(6-2x)=12,即x 2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm ,底面积为12dm 2.24.(1)80,100;(2)100件,22000元;(3)答案见解析.【解析】【分析】(1)先设A 型商品的进价为a 元/件,求得B 型商品的进价为(a+20)元/件,由题意得等式16001000220a a =⨯+ ,解得a =80,再检验a 是否符合条件,得到答案.(2)先设购机A 型商品x 件,则由题意可得到等式80x+100(200﹣x )≤18000,解得,x≥100;再设获得的利润为w 元,由题意可得w =(160﹣80)x+(240﹣100)(200﹣x )=﹣60x+28000,当x=100时代入w =﹣60x+28000,从而得答案.(3)设获得的利润为w 元,由题意可得w (a ﹣60)x+28000,分类讨论:当50<a <60时,当a =60时,当60<a <70时,各个阶段的利润,得出最大值.【详解】解:(1)设A 型商品的进价为a 元/件,则B 型商品的进价为(a+20)元/件,16001000220a a =⨯+ , 解得,a =80,经检验,a =80是原分式方程的解,∴a+20=100,答:A 、B 型商品的进价分别为80元/件、100元/件;(2)设购机A 型商品x 件,80x+100(200﹣x )≤18000,解得,x ≥100,设获得的利润为w 元,w =(160﹣80)x+(240﹣100)(200﹣x )=﹣60x+28000,∴当x =100时,w 取得最大值,此时w =22000,答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;(3)w =(160﹣80+a )x+(240﹣100)(200﹣x )=(a ﹣60)x+28000,∵50<a <70,∴当50<a <60时,a ﹣60<0,y 随x 的增大而减小,则甲100件,乙100件时利润最大;当a =60时,w =28000,此时甲乙只要是满足条件的整数即可;当60<a <70时,a ﹣60>0,y 随x 的增大而增大,则甲120件,乙80件时利润最大.【点睛】本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.25.建筑物AB 的高度为80m .建筑物CD 的高度为35m .【解析】分析:过点D 作DE ⊥AB 于于E ,则DE=BC=60m .在Rt △ABC 中,求出AB .在Rt △ADE 中求出AE 即可解决问题.详解:过点D 作DE ⊥AB 于于E ,则DE=BC=60m ,在Rt △ABC 中,tan53°=60AB AB BC ∴,=43,∴AB=80(m ). 在Rt △ADE 中,tan37°=34AE DE ∴,=60AE ,∴AE=45(m ), ∴BE=CD=AB ﹣AE=35(m ).答:两座建筑物的高度分别为80m 和35m .点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.(1)10;(2)87;(3)9环 【解析】【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.27.(1)200;0.6(2)非常了解20%,比较了解60%;72°;(3) 900人【解析】【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.。
上海市闵行区2019-2020学年中考数学第五次押题试卷含解析
上海市闵行区2019-2020学年中考数学第五次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B.2C.32D.422.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为()A.3 B.4 C.6 D.83.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°米折返跑.在整个过程中,跑步者距起跑线的距离y(单4.小苏和小林在如图①所示的跑道上进行450位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次5.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、406.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .187.二次函数2y ax bx c =++的图象如图所示,则反比例函数a y x =与一次函数y bx c =+在同一坐标系中的大致图象是( )A .B .C .D .8.下列各数中负数是( )A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .﹣(﹣2)39.下列方程中是一元二次方程的是( )A .20ax bx c ++=B .2211x x +=C .(1)(2)1x x -+=D .223250x xy y --=10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .25411.已知二次函数y=(x+m )2–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y=mn x 的图象可能是( )A .B .C .D .12.﹣2的绝对值是( )A .2B .12C .12-D .2-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,AD=5,AB=4,E 是BC 上的一点,BE=3,DF ⊥AE ,垂足为F ,则tan ∠FDC=_____.14.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 .15.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =5x(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2的值为_____.16212273=_____. 17.因式分解:4ax 2﹣4ay 2=_____.181275=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值; 20.(6分)如图,AB 、AD 是⊙O 的弦,△ABC 是等腰直角三角形,△ADC ≌△AEB ,请仅用无刻度直尺作图:在图1中作出圆心O ;在图2中过点B 作BF ∥AC .21.(6分)已知抛物线y=ax 2+ c(a≠0).(1)若抛物线与x 轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;(2)若a>0,c =0,OA 、OB 是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A 、B 两点,求证:直线AB 恒经过定点(0,1a); (3)若a>0,c <0,抛物线与x 轴交于A ,B 两点(A 在B 左边),顶点为C ,点P 在抛物线上且位于第四象限.直线PA 、PB 与y 轴分别交于M 、N 两点.当点P 运动时,OC OM ON +是否为定值?若是,试求出该定值;若不是,请说明理由.22.(8分)已知函数1y x=的图象与函数()0y kx k =≠的图象交于点()P m n ,. (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.23.(8分)先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2. 24.(10分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.25.(10分)先化简,再求值:2231422a a a a a a-÷--+-,其中a 与2,3构成ABC ∆的三边,且a 为整数.26.(12分)解方程: +=1.27.(12分)如图1,AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的切线,切点为C . (1)求证:∠ACD=∠B ;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】【详解】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42∴22AB BG-,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.2.D【解析】【分析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得22OA OD=4,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.3.D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.4.D【解析】【详解】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.5.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.6.B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-33×3+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即△=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为3.故选B.考点:3.等腰三角形的性质;3.一元二次方程的解.7.D【解析】【分析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.8.B【解析】【分析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.【详解】A 、-(-2)=2,是正数;B 、-|-2|=-2,是负数;C 、(-2)2=4,是正数;D 、-(-2)3=8,是正数.故选B .【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键. 9.C【解析】【分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【详解】解:A 、当a=0时,20ax bx c ++=不是一元二次方程,故本选项错误;B 、2211x x +=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确;D 、223250x xy y --=是二元二次方程,故本选项错误;故选:C .【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.10.B【解析】【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB =,BE =CE =x ﹣52,即525522x yx -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5;故选B .【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.C【解析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y=mx+n 的图象经过第一、二、四象限,反比例函数mn y x =的图象在第二、四象限. 故选D.12.A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】首先根据矩形的性质以及垂线的性质得到∠FDC=∠ABE,进而得出tan∠FDC=tan∠AEB=,即可得出答案.【详解】∵DF⊥AE,垂足为F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=,∵在矩形ABCD中,AB=4,E是BC上的一点,BE=3,∴tan∠FDC=.故答案为.【点睛】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tan∠FDC=tan∠AEB是解题关键. 14.-1.【解析】【分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【详解】∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1•x1=1,解得x1=-1.故答案为-1.15.1.【解析】解:∵平移后解析式是y=x﹣b,代入y=5x得:x﹣b=5x,即x2﹣bx=5,y=x﹣b与x轴交点B的坐标是(b,0),设A的坐标是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案为1.点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.16.【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】原式=故答案为【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.4a(x﹣y)(x+y)【解析】【分析】首先提取公因式4a,再利用平方差公式分解因式即可.【详解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案为4a(x-y)(x+y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.18.-【解析】原式==-故答案为:-三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12k≤;(2)k=-3【解析】【分析】(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【详解】解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0解得12 k≤(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1 解得k1=k2=1∵12 k≤∴k1=k2=1不合题意,舍去②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1) 解得k1=1,k2=-3∵12 k≤∴k=-3综合①、②可知k=-3【点睛】一元二次方程根与系数关系,根判别式.20.见解析.【解析】【分析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 21.(1)211655y x =-;(2)详见解析;(3)OC OM ON +为定值,OC OM ON +=12【解析】【分析】(1)把点B(4,0),点P(1,–3)代入y=ax 2+ c(a≠0),用待定系数法求解即可;(2)如图作辅助线AE 、BF 垂直 x 轴,设A(m ,am 2)、B(n ,an 2),由△AOE ∽△OBF ,可得到21a mn =-,然后表示出直线AB 的解析式即可得到结论;(3)作PQ ⊥AB 于点Q ,设P (m ,am 2+c )、A (–t ,0)、B (t ,0),则at 2+c=0, c= –at 2由PQ ∥ON ,可得ON=amt+at 2,OM= –amt+at 2,然后把ON ,OM ,OC 的值代入整理即可.【详解】(1)把点B(4,0),点P(1,–3)代入y=ax 2+ c(a≠0), 1603a c a c +=⎧⎨+=-⎩, 解之得15165a c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴211655y x =-; (2)如图作辅助线AE 、BF 垂直 x 轴,设A(m ,am 2)、B(n ,an 2),∵OA ⊥OB ,∴∠AOE=∠OBF ,∴△AOE ∽△OBF , ∴AE OF OE BF =,22am n m an=-,21a mn =-, 直线AB 过点A(m ,am 2)、点B(n ,an 2),∴()()1y a m n x amn a m n x a =+-=++过点(0,1a); (3)作PQ ⊥AB 于点Q ,设P (m ,am 2+c )、A (–t ,0)、B (t ,0),则at 2+c=0, c= –at 2∵PQ ∥ON ,∴ON OB PQ QB=, ON=()2am c t PQ OB QB t m -+⋅=-=()2am c t m t+-=()22am at t m t --=()()at m t m t m t -+-=at(m+t)= amt+at 2, 同理:OM= –amt+at 2,所以,OM+ON= 2at 2=–2c=OC ,所以,OC OM ON +=12. 【点睛】本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.22.(1)12k =,22P ⎭,,或22P ⎛-- ⎝⎭,;(2) 1k ≥. 【解析】【分析】(1)将P (m ,n )代入y=kx ,再结合m=2n 即可求得k 的值,联立y=1x 与y=kx 组成方程组,解方程组即可求得点P 的坐标; (2)画出两个函数的图象,观察函数的图象即可得. 【详解】(1)∵函数()y kx k 0=≠的图象交于点()P m n ,,∴n=mk ,∵m=2n ,∴n=2nk ,∴k=12, ∴直线解析式为:y=12x , 解方程组112y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得1122x y ⎧=⎪⎨=⎪⎩,2222x y ⎧=-⎪⎨=-⎪⎩, ∴交点P 的坐标为:(2,2)或(-2,-2); (2)由题意画出函数1y x =的图象与函数y kx =的图象如图所示, ∵函数1y x=的图象与函数y kx =的交点P 的坐标为(m ,n ), ∴当k=1时,P 的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k>1时,结合图象可知此时|m|<|n|,∴当m n ≤时, k ≥1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键. 23.原式=2a b a b-=+ 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+, 当a=1+2,b=1﹣2时,原式=12121212+-+++-=2. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键. 24.(1)12;(2)34 【解析】【分析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=12; 故答案为12; (2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=34. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25.1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a 的值,然后代入进行计算即可.试题解析:原式=()()()()()()()()()2113212232323233aa a a a a a a a a a a a a a a +--⋅+=+==+--------- , ∵a 与2、3构成△ABC 的三边,∴3−2<a<3+2,即1<a<5,又∵a 为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式=14-3=1 26.-3【解析】试题分析:解得x=-3经检验: x=-3是原方程的根.∴原方程的根是x=-3考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.27.(1)详见解析;(2)∠CEF=45°.【解析】试题分析:(1)连接OC ,根据切线的性质和直径所对的圆周角是直角得出∠DCO =∠ACB =90°,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明∠CEF=∠CFE 即可求解.试题解析:(1)证明:如图1中,连接OC .∵OA =OC ,∴∠1=∠2,∵CD 是⊙O 切线,∴OC ⊥CD ,∴∠DCO =90°,∴∠3+∠2=90°,∵AB 是直径,∴∠1+∠B =90°,∴∠3=∠B .(2)解:∵∠CEF =∠ECD +∠CDE ,∠CFE =∠B +∠FDB ,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.。
2019-2020学年上海市中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,23)B.(﹣2,4)C.(﹣2,22)D.(﹣2,23)2.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.43.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b4.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°7.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是()A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD =BC9.已知△ABC 中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是()A.B.C.D.10.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8二、填空题(本题包括8个小题)11.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分12.27的立方根为.13.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.14.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b >mx>-2的解集为_________________.15.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.16.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.17.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是18.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.三、解答题(本题包括8个小题)方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?20.(6分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.21.(6分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=mx(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2时,x的取值范围.22.(8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树24.(10分)如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.25.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?26.(12分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表: 商品名称甲 乙 进价(元/件)40 90 售价(元/件) 60 120设其中甲种商品购进x 件,商场售完这100件商品的总利润为y 元.写出y 关于x 的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,23)-;∵△OAB 按顺时针方向旋转60,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='=', ∴点A′与点B 重合,即点A′的坐标为(2,3)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.2.B【解析】【分析】此题可根据反比例函数图象的对称性得到A 、B 两点关于原点对称,再由S △ABM =1S △AOM 并结合反比例函数系数k 的几何意义得到k 的值.【详解】根据双曲线的对称性可得:OA=OB,则S △ABM =1S △AOM =1,S △AOM =12|k|=1, 则k =±1.又由于反比例函数图象位于一三象限,k >0,所以k =1.故选B .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.3.A根据数轴得到b <a <0<c ,根据有理数的加法法则,减法法则得到c-a >0,a+b <0,根据绝对值的性质化简计算.【详解】由数轴可知,b <a <0<c ,∴c-a >0,a+b <0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.4.A【解析】【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.5.B【解析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.7.A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A 8.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.10.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题(本题包括8个小题)11.6【解析】【分析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;解:点P在以O为圆心OA为半径的圆上,∴P是两个圆的交点,当⊙O与⊙M外切时,AB最小,∵⊙M的半径为2,圆心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.12.1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算13.2753x yx y+=⎧⎨=⎩【解析】【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得2753x yx y+=⎧⎨=⎩,故答案是:2753x yx y+=⎧⎨=⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.14.-4<x<1【解析】的横坐标x=-4,即可由图直接求出不等式kx+b >mx >-1的解集为y 1>y 1>-1时,x 的取值范围为-4<x <1. 故答案为-4<x <1.点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x 轴的交点坐标是解题的关键.15.2【解析】【分析】根据勾股定理可以得出AB 的长度,从而得知CD 的长度,再根据旋转的性质可知BC=B 1C ,从而可以得出答案.【详解】∵在△ACB 中,∠ACB =90°,AC =6,BC =8, ∴10AB =,∵点D 为AB 的中点,∴152CD AB ==,∵将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.∴CB 1=BC =8,∴DB 1=CB 1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB 的长是解题的关键.16.1:4【解析】【分析】由S △BDE :S △CDE =1:3,得到BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4.【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.17.13. 【解析】【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13 【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.18.1.【解析】试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.考点:整体思想.三、解答题(本题包括8个小题)19.(1)()3084{?48(8)x x y x x≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的. 【解析】【分析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48 ∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x =(x >8)∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩ (2)结合实际,令48y x =中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16 ∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20. (1)m≥﹣;(2)m 的值为2. 【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m 的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m 2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m 2,∵α+β+αβ=1,∴﹣(2m+2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m≥﹣,所以m 1=﹣1应舍去,m 的值为2.【点睛】本题考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx+c =1(a≠1)的两根时,x 1+x 2=﹣,x 1x 2=是解答此题的关键.21.(1)y 1=-2x +4,y 2=-6x;(2)x<-1或0<x<1. 【解析】【分析】 (1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x 的取值即可.【详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x =(m≠0)得:m=﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩, ∴24k b =-⎧⎨=⎩, ∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.22.54小时 【解析】【分析】过点C 作CD ⊥AB 交AB 延长线于D .先解Rt △ACD 得出CD=AC=40海里,再解Rt △CBD 中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题23.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y 为整数,∴y 最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.24.(1)(0,3);(2)112y x =-.【解析】【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=, ∴222213)OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA ,∴12BC×2=4,∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-,∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.25.(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯. 答:该店应按原售价的九折出售.26. (Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品. 103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x 时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A .B .C .D .2.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴3.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<4.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①12AF FD =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③5.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:16.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32-7.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .8.估计3﹣2的值应该在( ) A .﹣1﹣0之间B .0﹣1之间C .1﹣2之间D .2﹣3之间9.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .2 cmB .32cmC .42cmD .4cm10.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,⊙P 的圆心在x 轴上,且经过点A (m ,﹣3)和点B (﹣1,n ),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是_____.12.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.13.若关于x 的一元二次方程(a ﹣1)x 2﹣x+1=0有实数根,则a 的取值范围为________.14.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的15.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.16.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561 560 561 560方差s2(cm2) 3.5 3.5 15.5 16.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.17.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.18.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.三、解答题(本题包括8个小题)19.(6分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=mx的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=mx交于P、Q两点,且PQ=2QD,求点D的坐标.20.(6分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =3如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)21.(6分)如果a2+2a-1=0,求代数式24()2aaa a-⋅-的值.22.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?23.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?24.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.25.(10分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.26.(12分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.B 【解析】 【分析】观察图形,利用中心对称图形的性质解答即可. 【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.2.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).3.D【解析】【分析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.4.D【解析】【详解】∵在▱ABCD中,AO=12 AC,。
上海市青浦区2019-2020学年中考数学第四次押题试卷含解析
上海市青浦区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( ) A .90° B .120° C .150° D .180°2.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->3.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .4.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为( )A .30°B .50°C .60°D .70°5.化简(﹣a 2)•a 5所得的结果是( ) A .a 7B .﹣a 7C .a 10D .﹣a 106.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )A .B .C .D .7.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为( )米. A .42.3×104B .4.23×102C .4.23×105D .4.23×1068.如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图象大致为( )A .B .C .D .9.下列运算正确的是 ( ) A .22a +a=33a B .()32m =5mC .()222x y x y +=+D .63a a ÷=3a10.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,∠BAC 的平分线交BD 于E ,交BC 于F ,BH ⊥AF 于H ,交AC 于G ,交CD 于P ,连接GE 、GF ,以下结论:①△OAE ≌△OBG ;②四边形BEGF 是菱形;③BE =CG ;④PG2AE=﹣1;⑤S △PBC :S △AFC =1:2,其中正确的有( )个.A .2B .3C .4D .511.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )A .252πB .10πC .24+4πD .24+5π12.如果关于x 的方程220x x c ++=没有实数根,那么c 在2、1、0、3-中取值是( ) A .2;B .1;C .0;D .3-.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线m ∥n ,△ABC 为等腰直角三角形,∠BAC=90°,则∠1= 度.14.如果23a b =,那么22242a b a ab--的结果是______.15.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 . 16.写出一个大于3且小于4的无理数:___________.17.如图,在平行四边形ABCD 中,过对角线AC 与BD 的交点O 作AC 的垂线交于点E ,连接CE ,若AB=4,BC=6,则△CDE 的周长是______.18.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(操作发现)(1)如图1,△ABC 为等边三角形,先将三角板中的60°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB 交于点D ,在三角板斜边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=30°,连接AF ,EF . ①求∠EAF 的度数;②DE 与EF 相等吗?请说明理由; (类比探究)(2)如图2,△ABC 为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB 重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB 交于点D ,在三角板另一直角边上取一点F ,使CF=CD ,线段AB 上取点E ,使∠DCE=45°,连接AF ,EF .请直接写出探究结果: ①∠EAF 的度数;②线段AE ,ED ,DB 之间的数量关系.20.(6分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:2≈1.41,3≈1.73,10≈3.16)21.(6分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:填空:这次被调查的同学共有人,a+b=,m=;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.22.(8分)如图,在楼房AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D 点,且俯角α为45°,从楼底B 点1米的P 点处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF=6米,求塔CD 的高度(结果保留根号).23.(8分)已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.24.(10分)如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F . (1)求证:BD=CD ; (2)求证:DC 2=CE•AC ;(3)当AC=5,BC=6时,求DF 的长.25.(10分)楼房AB后有一假山,其坡度为i=1:3,山坡坡面上E点处有一休息亭,测得假山坡脚C 与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)26.(12分)先化简代数式222x x11x x x2x1-⎛⎫-÷⎪+++⎝⎭,再从12x-≤≤范围内选取一个合适的整数作为x的值代入求值。
上海市闵行区2019-2020学年中考数学第四次押题试卷含解析
上海市闵行区2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.112.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好3.数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,54.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是( )A .甲乙都对B .甲乙都不对C .甲对,乙不对D .甲不对,已对5.在下列条件中,能够判定一个四边形是平行四边形的是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线 6.下列计算正确的是( ) A .a 4+a 5=a 9 B .(2a 2b 3)2=4a 4b 6C .﹣2a (a+3)=﹣2a 2+6aD .(2a ﹣b )2=4a 2﹣b 27.如图,在平行四边形ABCD 中,AE :EB=1:2,E 为AB 上一点,AC 与DE 相交于点F , S △AEF =3,则S △FCD 为( )A .6B .9C .12D .278.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为( ) A .6×105B .6×106C .6×107D .6×10810.下列计算结果等于0的是( ) A .11-+B .11--C .11-⨯D .11-÷11.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .12.某校八(2)班6名女同学的体重(单位:kg )分别为35,36,38,40,42,42,则这组数据的中位数是( ) A .38B .39C .40D .42二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.化简:1m m -÷21m m-=_____. 14.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 度数是_____度.15.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.16.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差S 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.甲 乙 丙 丁 x7 8 8 7 s 211.20.91.817.若一次函数y=﹣2(x+1)+4的值是正数,则x 的取值范围是_______.18.如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3o ,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7o ,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈o ,cos32.30.85≈o ,tan32.30.63≈o ,sin55.70.83≈o ,cos55.70.56≈,tan55.7 1.47)≈o20.(6分)下表中给出了变量x ,与y=ax 2,y=ax 2+bx+c 之间的部分对应值,(表格中的符号“…”表示该项数据已丢失) x ﹣1 0 1 ax 2 … … 1 ax 2+bx+c72…(1)求抛物线y=ax 2+bx+c 的表达式(2)抛物线y=ax 2+bx+c 的顶点为D ,与y 轴的交点为A ,点M 是抛物线对称轴上一点,直线AM 交对称轴右侧的抛物线于点B ,当△ADM 与△BDM 的面积比为2:3时,求B 点坐标;(3)在(2)的条件下,设线段BD 与x 轴交于点C ,试写出∠BAD 和∠DCO 的数量关系,并说明理由.21.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.22.(8分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?23.(8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC. (1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.24.(10分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.25.(10分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)26.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?27.(12分)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过点A 作x 轴的平行线,交函数2(0)y x x =<的图象于B 点,交函数6(0)y x x=>的图象于C ,过C 作y 轴和平行线交BO 的延长线于D .(1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比; (2)如果点A 的坐标为(0,a ),求线段AB 与线段CA 的长度之比; (3)在(1)条件下,四边形AODC 的面积为多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】试题解析:∵D 、E 、F 分别为AB 、BC 、AC 中点,∴DF=12BC=2,DF ∥BC ,EF=12AB=32,EF ∥AB ,∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=1.故选B .2.C 【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A 正确,C 错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.3.D【解析】【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选D.4.A【解析】【分析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.【详解】证明:(1)如图1,连接OM,OA.∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;(1)如图1.∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确.故选A.【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.5.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.6.B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.7.D【解析】【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.【详解】解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF ∽△CDF , ∵S △AEF =3,∴AEF FCD S S V V =3FCD S V =(13)2, 解得S △FCD =1. 故选D. 【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键. 8.B【解析】试题解析:A. 是轴对称图形但不是中心对称图形 B.既是轴对称图形又是中心对称图形; C.是中心对称图形,但不是轴对称图形; D.是轴对称图形不是中心对称图形; 故选B. 9.C 【解析】 【分析】将一个数写成10n a ⨯的形式,其中110a ≤<,n 是正数,这种记数的方法叫做科学记数法,根据定义解答即可. 【详解】解:6000万=6×1. 故选:C . 【点睛】此题考查科学记数法,当所表示的数的绝对值大于1时,n 为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n 为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n 的值的确定是解题的关键. 10.A 【解析】 【分析】各项计算得到结果,即可作出判断. 【详解】解:A 、原式=0,符合题意;B 、原式=-1+(-1)=-2,不符合题意;C、原式=-1,不符合题意;D、原式=-1,不符合题意,故选:A.【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.11.B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年上海市中考数学绝密预测试卷
一、选择题:
1.如果x=2是方程的一个根,那么a的值是( )
(A)0;(B)2;(C)-2;(D)-6.
2.在同一直角坐标系内,若正比例函数的图像与反比例函数的图像没有公共点,则
( )
(A);(B);(C);(D).
3.
2
(A)2,19;(B)18,19;(C)2,9.5;(D)18,19.5
4.下列命题中,真命题是( )
(A)周长相等的锐角三角形都全等;(B)周长相等的直角三角形都全等;
(C)周长相等的钝角三角形都全等;(D)周长相等的等腰直角三角形都全等。
5.下列图形中,是中心对称图形但不是轴对称图形的是( )
(A)(B)(C)(D)
6.设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴
上的一个点来表示;③3<a<4;④a是18的一个平方根。
其中,所有正确说法的序号是( )
(A)①④;(B)②③(C)①②④(D)①③④
二、填空题:
7.分解因式:__________________;
8.不等式的解集是_________________;
9.方程的解为_________________;
10.如果关于x的方程有两个实数根,那么m的取值范围是____________;
11.如果将抛物线平移到抛物线的位置,那么平移的方向和距离分别是
____________________;
12. 一个盒子内有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个
球不放回,再摸出一个球,则两次都摸出白球的概率是_______;
13. 如图,△ABC 中,如果AB=AC ,A D ⊥BC 于点D ,M 为AC 中点,AD 与BM 交于点G ,那
么
的值为_______;
14. 如图,在△ABC 中,记AB a =,AC b =,点P 为BC 的中点,则AP =______________(用a 、
b 来表示);
15. 如图,Rt △ABC 中,∠ACB=90°,BC=4cm ,AC=3cm ,
是以BC 为直径的圆,如果
与
相内切,那么
的半径长为_____________;
第15题图
第14题图
第13题图
P
A
B
C
A
16. 本市某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动。
为了了解本校师生的出行
方式,在本校范围内随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图。
已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是_______人;
17.
l 北
18. 对于平面直角坐标系
x Oy 中的点P (a ,b ),若点的坐标为(其中k 为常数,且
),则称点为点P 的“k 属派
生点”。
例如:P (1,4)的“2属派生点”
为,
即.若点P 的“k 属派生点”的坐标为(3,3),请写出一个符合条件的P 的坐标
______________;
19. 如图,△ABC 中,∠ABC>90°,tan ∠BAC=
3
4
,BC=4, 将三角形绕着点A 旋转,点C 落在直线AB 上的点C 处, 点B 落在点B’处,若C 、B 、B’恰好在同一直线上,则 AB 的长为__________.
三、 解答题: 20.
计算:
)
1
112cos3012-⎛⎫
︒+ ⎪⎝⎭
21. 解方程组:22
3
240
xy x xy y =⎧⎨-+-=⎩
22. 如图,在一笔直的海岸线l 上有A 、B 两个观察站,A 在B 的正东方向,A 与B 相距2千米,有
一艘小船在点P 处,从A 测得小船在北偏西60°的方向,从B 测得小船在北偏东45°的方向。
(1) 求点P 到海岸线l 的距离;
(2) 小船从点P 处沿折线AP 方向航行一段时间后到达点C 处,此时,从B 点测得小船在北偏
西15°的方向。
求点C 与点B 之间的距离。
(注:答案均保留根号)
A
23. 现有甲、乙两个空调安装队分别为A 、B 两个公司安装空调,甲安装队为A 公司安装66台空调,
乙安装队为B 公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务。
已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调。
24. 已知,如图,Rt △ABC 和R t △CDE 中,∠ABC=∠CDE=90°,
且BC 与CD 共线,联结AE 。
点M 为AE 中点,联结BM , 交AC 于点G ,联结MD ,交CE 于点H 。
(1) 求证:MB=MD ;
(2) 当AB=BC ,DC=DE 时,求证:四边形
MGCH 为矩形。
25. 已知,在直角坐标系中,直线
与x 轴交于点A ,与y 轴交于点B ,抛物线
的顶点D 在直线AB 上,与y 轴的交点为C 。
(1) 若点C (非顶点)与点B 重合,求抛物线的表达式;
(2) 若抛物线的对称轴在y 轴右侧,且CD ⊥AB ,求∠CAD 的正切值; (3) 在(2)的条件下,在∠ACD 的内部作射线CP 交抛物线的对称轴于点P ,使得∠DCP =∠CAD ,
求点P 的坐标。
26. 在Rt △ABC 中,∠BAC =90°,BC =10,tan ∠ABC =
3
4
,点O 是AB 边上的动点,以O 为圆心,OB 为半径的
与边BC 的另一交点为D ,过点D 作AB 的垂线,交
于点E ,联结BE 、AE .
(1) 当AE ∥BC (如图(1))时,求
的半径;
(2) 设BO=x ,AE=y ,求y 关于x 的函数关系式,并写出定义域; (3) 若以A 为圆心的
与有公共点D 、E ,当恰好也过点C 时,求DE 的长。
图(1)
备用图
参考答案。