2.1.2指数函数及其性质(1)课件
2.1.2__指数函数及其性质(第一课时)
2.1.2 指数函数及其性质(第一课时)1、若函数f(x)=3x +3-x 与g(x)=3x -3-x 的定义域为R ,则( )A .f(x)与g(x)均为偶函数B .f(x)为偶函数,g(x)为奇函数C .f(x)与g(x)均为奇函数D .f(x)为奇函数,g(x)为偶函数2、已知函数f(x)=⎩⎨⎧ 2x+1,x <1x 2+ax ,x≥1,若f[f(0)]=4a ,则实数a 等于( )A.12B.45 C .2 D .9 3.不论a 取何正实数,函数f(x)=a x +1-2恒过点( )A .(-1,-1)B .(-1,0)C .(0,-1)D .(-1,-3)4、使不等式23x -1>2成立的x 的取值为( )A .(23,+∞)B .(1,+∞)C .(13,+∞)D .(-13,+∞)5、为了得到函数y =3×(13)x 的图象,可以把函数y =(13)x 的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6、在同一平面直角坐标系中,函数f(x)=ax 与g(x)=a x (a >0且a≠1)的图象可能是()7、当x>0时,指数函数f(x)=(a -1)x <1恒成立,则实数a 的取值范围是( )A .a>2B .1<a<2C .a>1D .a ∈R8、函数y =a x (a>0且a≠1)在[0,1]上的最大值与最小值的和为3,则a 的值为( )A.12 B .2 C .4 D.149、函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .A <1C .0<a <1D .a≠110、函数y =-2-x 的图象一定过第________象限.11、方程4x +1-4=0的解是x =________.12、函数y =a 2x +b +1(a >0,且a≠1)的图象恒过定点(1,2),则b =________.13、方程|2x -1|=a 有唯一实数解,则a 的取值范围是________.14、函数y =(12)|x|的图象有什么特征?你能根据图象指出其值域和单调区间吗?15、若关于x 的方程a x =3m -2(a >0且a≠1)有负根,求实数m 的取值范围.16、已知-1≤x≤2,求函数f(x)=3+2·3x +1-9x的值域.17、 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=x 2的图象的关系,⑴y =12+x 与y=22+x . ⑵y =12-x 与y=22-x .18、 求下列函数的定义域、值域(1)110.3x y -=(2)y =19、 求下列函数的定义域与值域(1)412-=x y ;(2)||2()3x y =;(3)1241++=+x x y ;20、用函数单调性定义证明a >1时,y = a x 是增函数.。
课件12:2.1.2. 第1课时 指数函数及其性质
新知初探
知识点一 指数函数的定义 函数__y_=__a_x_ (a>0 且 a≠1)叫做指数函数,其中 x 是自变量. 指数函数解析式的 3 个特征 (1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
A.y=(-3)x B.y=-3x C.y=3x-1
D.y=13x
解析:根据指数函数的定义 y=ax(a>0 且 a≠1)可知只有 D 项正确.
答案:D
3.函数 f(x)= 2x1-1的定义域为(
)
A.R B.(0,+∞) C.[0,+∞)
D.(-∞,0)
解析:要使函数有意义,则 2x-1>0,∴2x>1,∴x>0. 答案:B 4.已知集合 A={x|x<3},B={x|2x>4},则 A∩B=( )
跟踪训练 2 (1)已知 1>n>m>0,则指数函数①y=mx,②y=nx 的 图象为( )
(2)若 a>1,-1<b<0,则函数 y=ax+b 的图象一定在( ) A.第一、二、பைடு நூலகம்象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限
解析:(1)由于 0<m<n<1,所以 y=mx 与 y=nx 都是减函数,故排除 A、B,作直线 x=1 与两个曲线相交,交点在下面的是函数 y=mx 的图象,故选 C. (2)∵a>1,且-1<b<0,故其图象如右图所示.
跟踪训练 1 (1)若函数 y=(3-2a)x 为指数函数,则实数 a 的 取值范围是________; (2)下列函数中是指数函数的是________.(填序号) ①y=2·( 2)x ②y=2x-1 ③y=2πx ④y=xx
2121 指数函数的图象及性质 课件.ppt
3.在同一平面直角坐标系中函数 y=ax(a>0,a≠1)与 y=1a x(a>0,a≠1)的图象关于 y 轴对称.
数学 ·必修1(A)
课前自主预习 课堂互动探究 状元笔记探秘 学业达标测试
数学 ·必修1(A)
课前自主预习 课堂互动探究 状元笔记探秘 学业达标测试
活页作业
1.判断一个函数是否为指数函数的方法 判断一个函数是否是指数函数,其关键是分析该函数是否 具备指数函数三大特征: (1)底数a>0,且a≠1; (2)ax的系数为1. (3)y=ax中“a是常数”,x为自变量,自变量在指数位置 上.
课前自主预习 课堂互动探究 状元笔记探秘 学业达标测试
活页作业
数学 ·必修1(A)
课前自主预习 课堂互动探究 状元笔记探秘 学业达标测试
活页作业
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa2>-03且a+a≠3=1,1, 解得aa= >10或 且2a, ≠1. ∴a=2.
的值域为[1,10)∪(10,+∞).
数学 ·必修1(A)
课前自主预习 课堂互动探究 状元笔记探秘 学业达标测试
活页作业
(2)定义域为 x∈R. ∵|x|≥0, ∴y=23-|x|=32|x|≥320=1. 故 y=23-|x|的值域为{y|y≥1}.
>0,
1
所以函数 y=10 x-1 的值域为{y|y>0,且 y≠1}.
2.1.2指数函数及其性质(1)
1.图像向左、向右是无限延伸的。 (0,1)
2.图像都在x轴的上方。 3.都过定点(0,1)。
0
x
y a x (a 0且a 1) 的图象和特征:
a>1
图
6
5
象 4
3
2
11
-4
-2
0
2
4
6
-1
1.图象在x轴上方
特 2.从左到右上升 征 3.过定点 (0,1)
4、a越大,向上越靠近y轴
0<a<1
2.1.2指数函数及其性质
第一课时
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
问题 引入
质
4.单调性:
在R上是增函数
单调性: 在R上是减函数
对称性: y=ax和y=a-x关于y轴对称
例3、 如图为指数函数:
(1) y ax (2) y bx (3) y cx (4) y d x的图象,
y
(2) (3)
(1)
(4)
比较 a, b, c, d 与1的大小关系.
O
x
c d 1 a b
例5、已知指数函数 f (x) ax (a 0且a 1) 的图像经过 点(3,π)求 f(0), f(1), f(-3)的值。
解:因为 f (x) a x 的图像过点(3, ),所以
课件4:2.1.2 指数函数及其性质 第1课时
本节内容结束 更多精彩内容请登录:
解析 由图象可知③④的底数必大于 1,①②的底数必小于 1. 过点(1,0)作直线 x=1,在第一象限内分别与各曲线相交,可知 1<d<c,b<a<1,从而可知 a,b,c,d 与 1 的大小关系为 b<a<1<d<c. 答案 B
规律方法 指数函数的图象随底数变化的规律可归纳为: (1)无论指数函数的底数 a 如何变化,指数函数 y=ax(a>0,a≠1) 的图象与直线 x=1 相交于点(1,a),由图象可知:在 y 轴右侧, 图象从下到上相应的底数由小变大. (2)指数函数的底数与图象间的关系可概括记忆为:在第一象限 内,底数自下而上依次增大.
名师点睛 1.对指数函数的定义的理解 (1)因为 a>0,x 是任意一个实数时,ax 是一个确定的实数,所以函 数的定义域为实数集 R. (2)规定底数 a 大于零且不等于 1. (3)指数函数解析式的特征:ax 的系数是 1,a 为常量,x 为自变量, 有些函数貌似指数函数,实际上却不是,例如 y=ax+1(a>0,a≠1); 有些函数看起来不象指数函数,实际上却是,例如 y=a-x(a>0, a≠1),因为这可等价化归为 y=1ax其中1a>0且1a≠1.
[正解] ∵函数 y=(a2-4a+4)ax 是指数函数, ∴由指数函数的定义得aa2>-0且4aa+≠41=,1, ∴aa= >01且或aa≠=13,. ∴a=3.
指数函数要求形如:f(x)=ax(a>0 且 a≠1),即指数式 前面系数为 1,另外 a>0 且 a≠1.
课堂总结 1.判断一个函数是否为指数函数只需判定其解析式是否符合y=ax(a>0且 a≠1)这一结构形式. 2.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关 系.在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从 下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针 方向变大. 3.由于指数函数y=ax(a>0且a≠1)的定义域为R,所以函数y=af(x)(a>0且 a≠1)与函数f(x)的定义域相同,求与指数函数有关的函数的值域时,要考虑 并利用指数函数本身的要求,并利用好指数函数的单调性.
2.1.2 指数函数的概念与性质 (必修一 数学 优秀课件)
二、指数函数的图像和性质
1 x 1、在方格纸上画出: y2 ,y 1 ,y 3 ,y 2 3
x x x
的图像,并分析函数图象有哪些特点? 画函数图象的步骤:
列表 描点 连线
列表: x
y2
x
x
-2
1 4
-1
1 2
0
1
2
1
1 1
2
1 2
4
1 4
1 y 2
0.3 y a x3.1 1.R 3 上的减函数, 当0 a 1 时, 是 又∵ 2.5<3 1.7 0.9 ∴函数 y=a 为减函数
3 ∴ 又∵ 1.72.5 < 1.7 , x=1.3>0
a3 a2
∴0.81.3>0.61.3
比较指数幂大小的方法:
①同底异指:构造函数法(一个), 利用函数的单 调性,若底数是参变量要注意分类讨论。 ②异底同指:构造函数法(多个),利用函数图象在 y轴左右两侧的特点。 ③异底异指:寻求中间量
记忆方法
一撇,一捺
性质补充
• 1.底数互为倒数的两个指数函数,即 y=ax与y=(1/a)x的图象关于y轴对称。 • 2.当a>1时,a越大,曲线越靠近y轴。 当a<0时,a越小,曲线越靠近y轴。所 谓越靠近y轴,就是表明随着x的增大, y的值增长的速度越快。 • 3.指数函数都不具有奇偶性。
学以致用
x
定义:形如y a (a 0且a 1)的函数称为指数函数; 其中x是自变量,函数的定义域为R.
注意 :
(1)ax为一个整体,前面系数为1; (2)a>0,且 a≠1 ; (3)自变量x在幂指数的位置且为单个x;
数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)
高一数学必修1:2.1.2《指数函数及其性质的应用》课件
例3 求下列函数的定义域:
1
(1) y 5 x1 ;(2) y 2 x4 .
问题提出 1.什么是指数函数?其定义域是什么?大致 图象如何?
2.任何一类函数都有一些基本性质,那么指 数函数具有那些基本性质呢?
知识探究(一):函数 y ax (a 1) 的性质
考察函数
y ax (的a图象:1)
一
2
想 共同点?
指数函数定义:
函数 y=ax (a>0,a≠1)叫做指数函数,
其中x是自变量,函数的定义域为R
探究1:为什么要规定a>0,且a 1呢?
①若a=0,则当x≤0时, ax无意义
②若a<0,对于x的某些数值,可能使 ax无意义11来自如:a 2、a 4等等
③若a=1,则对于任何x R,
a x =1,是一个常量,没有研究的必要性.
思考3:上述函数在其结构上有何共同特点?
思考4:我们把形如 y ax的函数叫做指数函
数,其中x是自变量.为了便于研究,底数a的 取值范围应如何规定为宜?
a 0, a 1
思考5:指数函数y=ax(a>0,a≠1)的定义 域是什么?
知识探究(二):指数函数的图象 思考1:研究函数的基本特性,一般先研究其
探究2:函数 y 2 3x是指数函数吗?
不是!指数函数中要求 a x的系数必须是1
思考:下列函数是指数函数吗,为什么?
y 2x2 y 4x2 y x y 2x
指数函数的图象和性质:
在同一坐标系中分别作出如下函数的图像:
y 2x
列表如下:
y
1
x
2
x -3 -2 -1
2 x 0.13 0.25 0.5
2.1.2指数函数及其性质
图象如下:
y
4 y=2x+1
3 Y=2x
2
1
-2 -1 0 1 2 3
x
思考题: 怎样由y=2x的图象得到y=1+2x的图象。
思考与探究3
观察同一坐标系下不同指数函数的图象,
这些图象总体上看有何规律?幂底数与图象
有何关系?y
y 1 x 2
y 1 x 3
的图象,则a,b,c,d与1的大小关系是_b__<_a__<__1_<__d__<__c_. 解:c,d大于1且c>d A B y C D
a,b大于0小于1且b<a
∴b<a<1<d<c
O
x
题2.若函数y=2|1-x|+m的图象与x轴有公共点,则m的
取值范围是( A )
A.m≤-1 B.-1≤m<0
C.m≥1 D.0<m≤1
例题展示
例 3 求函数 f(x)=(12)x2-6x+17 的定义域、值域、单调区间. [解析] 函数 f(x)的定义域为 R.令 t=x2-6x+17,则 f(t)=(12)t. ∵t=x2-6x+17=(x-3)2+8 在(-∞,3)上是减函数, 而 f(t)=(12)t 在其定义域内是减函数, ∴函数 f(x)在(-∞,3)上为增函数.
1
O1
x
1
O
1
x
D
A
B
C
解析:函数有意义,需要使 ex ex 0
其定义域为x | x 0 ,排除C、D,
又因为 y = ex + e-x = e2x + 1 = 1 + 2
ex - e-x
e2x - 1
e2x - 1
所以当时x>0时函数为减函数
2014-2015学年高一数学必修1精品课件:2.1.2 指数函数及其性质 第1课时
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
2.1.2 指数函数及其性质 第1课时 指数函数及其性质
数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
自主学习 新知突破
数学 必修1
第二章 基本初等函数(Ⅰ)
x
1 ,…在实数范围内函数值不存在. 16 (3)如果a=1,那么y=1x=1是常量,对此就没有研究的必 要.
数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
指数函数的图象与性质
a>1 0<a<1
图象
定义域 值域 性 质 过定点 函数值的 变化 单调性
量.
数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 的理由
x 当 x >0 时, a 恒为0; (1)如果a=0,则 x 当 x <0 时, a 无意义.
1 1 1 (2)如果a<0,比如y=(-2) ,这时对于x= , , , 2 4 8
数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
合作探究 课堂互动
数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
指数函数的概念
若函数y=(a2-3a+3)ax是指数函数,求a的值. [思路探究]
1.判断一个函数是不是指数函数的依据是什么?
数学 必修1
第二章 基本初等函数(Ⅰ)
2.1.2指数函数及性质(1)
细胞分裂问题 … … … …
用x表示y的关系式是:
y 2 , x N
x
…
… … …
分裂次数x 细胞总数y
1
2
3
2
4
… …
2
1
2
2
3
2
4
引例2
一尺之棰,日取其半,万世不竭
出自《庄子 天下篇》
设木杖 原长为1个单位
… 3 4 …
截取次数x 剩余长度y
1
2
引例2
一尺之棰,日取其半,万世不竭
出自《庄子 天下篇》
A先生从今天开始每天给你10万元,而你 承担如下任务:第一天给A先生1元,第二天给A 先生2元,,第三天给A先生4元,第四天给A先生 8元,依次下去…那么,A先生要和你签定15天 的合同,你同意吗?又A先生要和你签定30天的 合同,你能签这个合同吗?
2.1.2指数函数及性质
引例1
细胞分裂问题
分裂次数x 细胞总数y
引例1
细胞分裂问题
分裂次数x 细胞总数y
1
2
1
引例1
细胞分裂问题
分裂次数x 细胞总数y
1
2
2
1
2
2
引例1
细胞分裂问题
分裂次数x 细胞总数y
1
2
3
2
2
1
2
2
3
引例1
细胞分裂问题
分裂次数x 细胞总数y
1
2
3
2
4
2
1
2
2
3
2
4
引例1
4-3a>0, 4-3a≠1,
4 故 a 的取值范围为{a|a< 且 a≠1}. 3 答案 4 {a|a< 且 a≠1} 3
高中数学人教A版必修一课件:第二章 2.1.2指数函数 (共17张PPT)
我们把这种自变量在指数位置上而底数是一个
大于0且不等于1的常量的函数叫做指数函数.
指数函数的定义:
函数 y a x (a 0且a 1)
叫做指数函数,其中x是自变量,函数定义域是R。
第四页,编辑于星期日:二十三点 十四分。
探究1:为什么要规定a>0,且a
1呢? zxxk
什么?
分裂次数:1,2,3,4,…,x 细胞个数:2,4,8,16,…,y
由上面的对应关系. 可知,函数关系是
y 2x
引例2:某种商品的价格从今年起每年降低15%,
设原来的价格为1,x年后的价格为y,则y与x的
函数关系式为
y 0.85x
第三页,编辑于星期日:二十三点 十四分。
在 y 2 x , y 0.85x 中指数x是自变量,
0.5 1 2 1.7 3 9
2.5 … 15.6 …
0.6 0.3 0.1 0.06 …
第八页,编辑于星期日:二十三点 十四分。
x
… -3 -2 -1
y 2x … 0.13 0.25 0.5
y 1 x … 8
4
2
2
-0.5 0 0.71 1 1.4 1
0.5 1 2
3
…
1.4 2 4
8
…
0.71 0.5 0.25 0.13 …
1 x 2
… -3 -2 -1 … 0.13 0.25 0.5
…8
4
2
x … -2.5 -2 -1
3x … 0.06 0.1 0.3
1 x … 15.6 9
3
3
-0.5 0 0.71 1 1.4 1
-0.5 0 0.6 1 1.7 1
2.1.2指数函数及其性质(第一课时)
莘县一中 袁 迪
学习目标:
1、了解指数函数模型的实际背景 2、理解指数函数的概念,掌握指数函数的性质
3、会利用指数函数的单调性比较大小
一、情景引入
情景1、把一张厚度为1毫米的纸对折1次,2次,3次的厚 度分别是多少?对折30次呢?
2
2
223ຫໍສະໝຸດ 230那么,假设厚度为1,对折x次后,厚度y如何表示?
q x = ( ) 3
1x
6
h x =
x 3
5
4
g x =
(2 )
-2
1x
3
fx = 2 x
2
1
-4
2
4
y
y
y
1 y 2
x
1 y 3
x
x
y 3
x
y 2
x
ya
( a 1)
ya
x
( 0 a 1)
1 1
1 1
0
x
0
16
0
1
14
1
3
2
9
3
27 1/27
…
… …
y3
…
x
1/27 1/9 27 9
1/3 3
12 10
1 y 3
…
1
1/3 1/9
g x =
(3 )
1x
8
6
fx =
x 3
4
2
-10
-5
5
10
q x = ( ) 3
1x
6
h x =
x 3
5
4
g x =
高中数学 2.1.2.1指数函数的定义与简单性质课件 新人教A版必修1
1
32
[走出误区] 易错点⊳忽略分类讨论致求指数型函数值域出错 [典例] [2013·赤壁高一检测]若函数f(x)=ax-1(a>0且a≠1)的定义域和值域都是[0,2],求实数a的值.
a0-1=0, [错解档案] 由题意可知a2-1=2, 解得a= 3.
[误区警示] 虽然结果正确,但解题过程缺少步骤,没有分类讨论的意识.实际上在不知底数a的取 值的情况下,要对a的取值分a>1和0<a<1两种情况讨论.
由指数函数的性质知,y=(13) x-2≤(13)0=1, 且y>0,故此函数的值域为(0,1].
1
31
[规律小结] 1.指数函数的定义 理解指数函数的定义,需注意的几个问题:
(1)因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R;且ax>0,所 以函数的值域是(0,+∞).
1.底数a与1的大小关系决定了指数函数图象的“升降”;当a>1时,指数函数的图象“上升”;当 0<a<1时,指数函数的图象“下降”.
2.底数的大小决定了图象相对位置的高低:不论是a>1,还是0<a<1,在第一象限内底数越大,函数 图象越靠近y轴.
当a>b>1时, (1)若x>0,则ax>bx>1; (2)若x<0,则1>bx>ax>0. 当1>a>b>0时, (1)若x>0,则1>ax>bx>0; (2)若x<0,则bx>ax>1.
1
16
【跟踪训练1】 函数f(x)=(a2-3a+3)ax是指数函数,则有( )
A.a=1或a=2
指数函数的图像及性质 PPT
知新益能
1.指数函数定义 一般地,函数y=ax(a>0,且a≠1)叫做__指__数__函__数___,其
中__x_为自变量,函数的定义域为_R__.
注意:
1.底数为常数,指数为自变量 2.三个“1”
小试牛刀
下列哪些是指数函数?
(1)y= 2x (3)y=(-2)x (5)y= 2-x (7)y= 2x+1
(2)y= x2 (4)y=-2x (6)y= 22x (8)y= 2x+1
新知 2
一下指数函数的图象。
新知提炼
2.指数函数y=ax(a>0,且a≠1)的图象和性质
a>1
0<a<1
图 象
定义域为_R_;值域为__(0_,__+__∞__) __
性 质
根据指数函数的概念,求函数解析式. 例1 指数函数 f ( x) 的图象过点 (3 , 27),求 f (0) , f (1) , f (2) 的值
解:设 f ( x) a x (a 0且a 1)
因为函数 f (x) 过点( 3 , 27 ) 所以有 f (3) 27 ,即a3 27 解得 a 3, 于是 f (x) 3x
过定点__(0_,_1_) ,即_x_=__0_时,__y=__1_ 若x>0,则__y_>__1_; 若x>0,则_0_<__y_<__1_; 若x<0,则_0_<__y_<__1_ 若x<0,则_y_>__1__
在R上是__增__函_数___ 在R上是__减__函__数__
考点突破
指数函数的概念
所以 f (0) 30 1 , f (1) 3 ,
f (2) 32 1 9
指数函数的图象及性质--优质获奖精品课件 (1)
1
2
3
4
5
3.函数y=(a2-5a+7)(a-1)x是指数函数,则a的值为( B ) A.2 解析 B.3 C.2或3 D.任意值 由指数函数的定义可得a2-5a+7=1,
解得a=3或a=2, 又因为a-1>0且a-1≠1,故a=3.
解析答案
1
2
3
4
5
4.已知函数f(x)=4+ax+1的图象经过定点P,则点P的坐标是( A ) A.(-1,5) C.(0,4) 解析 B.(-1,4) D.(4,0) 当x+1=0,即x=-1时,ax+1=a0=1,为常数,
x
解析答案
1 (3)y= 2
x 2 2 x 3
;
x 2 2 x 3
解
1 y= 2
x 2 2 x 3
的定义域为 R.
∵x2-2x-3=(x-1)2-4≥-4,
1 ∴ 2
1 -4 ≤2 =16.
x 2 2 x 3
1 x -4
1 又 ≠0,即 2 x-4
故 y= 2
1 x -4
≠1,
的值域为{y|y>0,且 y≠1}.
解析答案
(2)y= 1-2x;
解
由1-2x≥0,得2x≤1,∴x≤0,
∴y= 1-2x的定义域为(-∞,0].
由0<2x≤1,得-1≤-2x<0,∴0≤1-2x<1,
∴y= 1-2 的值域为[0,1).
1 解得 a=2.
解
2 2a -3a+2=1, 由题意得a>0, a≠1,
1 ∴a 的值为2.
解析答案
题型二
指数函数的图象 )
例2
如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
x a (a>0且a≠1)
的函数叫做指数函数.其中x是自变量,函
系数为1
y= 1 · a
x
自变量
常数
探究3:
为什么指数函数y=ax的底数a 要满足范围 a>0 且a≠1?
1 2 1.当a<0时,ax不一定有意义,如(-2)
2.当a=0时,0x不一定有意义如 00 、 0-2
3.当a=1时,y=1x =1 是常数函数
x
中间剪一次剩下 的函数关系是:
米,若这条绳子剪x次剩下y米,则y与x
x
1 y , (x N ) 2
课堂小结:
1.指数函数的定义其及一般表达式的特征: 一般地:形如 y = ax(a>0且a≠1) 的函数叫做指数函数.其中x是自变量,函
数的定义域是R. 2.指数型函数:原有量为N,每次的增长率 为p,经过x次增长,该量增长到y, 则 y N (1 p) x
)
例2.已知指数函数 f ( x) a x(a>0且a≠1)的
图像经过点(3, ),求f(0), f(1), f(-3)的值。 解:因为 f ( x) a 的图象经过点(3,
x
所以 f (3) 解得 a
0
1 3
即
a
3
x 3
)
,
于是 f ( x)
1 3 3
所以
x y ka (k R, 且k 0;a 0, 且a 1) 形如
的函数称为指数型函数.
练习:P58
3
第 一 分裂次数: 次
第 二 次
第 三 次
第 四 次
第 次
通过分析y与x 应有如下关系:
x
一个 细胞
…...
y 2
4 8
x
2
1
1
2 16 24 4
3
22
2 3
细胞个数:2
13 13 1% 13 (1 1%)(亿);
解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y亿. 1999年底,我国人口约为13亿; 经过1年(即2000年),人口数为
13 13 1% 13 (1 1%)(亿);
经过2年(即2001年),人口数为
13 (1 1%)+13 (1 1%) 1% 2 13 (1 1%) (亿);
3
经过3年(即2002年),人口数为
所以,经过x年,人口数为
x
13 (1 1%) (亿);
x
y 13 (1 1%) 13 1.01 (亿). 20 当x 20时,y 13 1.01 16(亿).
所以,经过20年后,我国人口最多为16亿.
在实际问题中,经常会遇到类似的指数 增长模型:设原有量为N,每次的增长 率为p,经过x次增长,该量增长到y, x y N (1 p ) 则
布置作业
1、课本P59: A组 5、6
2、预习作业: 用列表、描点法在同一坐标系下 画出下列函数的图象并说说它们有什 么共同特征?有什么不同地方?
y2
x
1 x y( ) 2
例2.已知指数函数 f ( x) a (a>0且a≠1)的
x
图像经过点(3, ),求f(0), f(1), f(-3)的值。 分析:要求f(0), f(1), f(-3)的值,我们需 要先求出指数函数f ( x) a 的解析式,也
x
就是要先求a的值,根据函数图像过点(3,
这一条件,可以求得底数a的值。
4
8
16
?
x
… … y 2x x
故所求解析式为: y
2 (x N )
*
课堂练习:
(1)、一张白纸对折一次得两层,对折两次得4层, 对折3次得8层,问若对折 x 次所得层数为y,则y与x 的函数关系是:
1 (2)、一根1米长的绳子从中间剪一次剩下 2 米,再从 1
4
y 2 ,( x N )
2.1.2 指数函数及 其性质
第一课时指数函数及其性质
课题引入:
本节开头的问题2中的时间t和碳14 t 1 5730 含量P的对应关系 P ( ) (t 0 ) 2 和问题1中时间x与GDP值y的对应关系
y 1.073
x
( x N 且x 20)
*
能否构成函数? 探究1: 若把t和x的范围改成R呢?
以上三种情况都不利于我们研究 指数函数,所以规定:a>0 且a≠1
探讨1: 下列哪些是指数函数?
(1)y= 2x (3)y=-2x (5)y= x3
x (7)y= 3× 2 x
2 y 3 (9)
(2)y= 2-x (4)y=(-2)x (6)y= 2x +1 (8)y= 2x+1
探讨2:要使
y (a 5a 5) a
探究2:
的解析式和我们所 y 1.073 (x R)
x
1 函数 P ( ) 2
t 5730
和函数 (t R)
学过的函数一样吗?它们有什么共同特征? 1、都可以表示成
y = ax 的形式
2、定义域是 R
讲授新课
1. 指数函数的定义 一般地:形如y 数的定义域是R.
探究3:为什么指数函 数y=ax的底数a要满足 范围口数为
13 (1 1%) +13 (1 1%) 1% 3 13 (1 1%) (亿);
经过1年(即2000年),人口数为 经过2年(即2001年),人口数为
2
13 13 1% 13 (1 1%)(亿);
13 (1 1%) (亿);
2
(10)y=1
x
(a为常数)为指数函数,a的值是____ 解:由 a 2 5a 5 1 得a=4或a=1 又 a>0 且a≠1, 故a=4
例1. 求下列函数的定义域
(1) y 2
1 x1
(2) y 4
2 x 6
解:(1)由 x-1 ≠0 得 x≠1 故 原函数的定义域为{ x/ x≠1 } 即 (-∞,1)∪(1,+∞) (2)由 2x-6 ≥0 得 x≥3 故 原函数的定义域为{ x/ x≥3} 即 [ 3,+∞) 练习P58: 2 答案、(1) [ 2,∞) (2)(-∞,0)∪(0,+∞)
1
f (0) 1
f (1)
f (3)
1
例3:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在 1%,那么经过20年后,我国人口数最多 为多少(精确到亿)?
解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y亿. 1999年底,我国人口约为13亿; 经过1年(即2000年),人口数为