仪器分析-红外

合集下载

仪器分析红外分光光度法

仪器分析红外分光光度法

(二)振动形式 modes of vibration -多原子分子 伸缩振动 弯曲振动 -双原子分子
伸缩振动
H C H
伸缩振动 stretching vibration
不对称伸 as asymmetrical
对称伸缩 s symmetrical
H
H
C
*
弯曲振动
banding vibration
*
非谐振子
Ev = ( V+1/2 ) h -(V+1/2)2xh + …
1
非谐性常数,其值远小于0
2
*
2. 振动频率
(s -1)
(cm-1)
K—化学键力常数
’— 折合原子量
’=
mA.mB
mA + mB
*
K(N/cm) (cm-1) c-c 单键 5 1190 c=c 双键 10 1690 c=c 三键 15 2100 c-H 5 2900 K越大,基频峰的波数越高。 由于氢原子的原子量最小,因此含氢官能团的基频峰的波数都很大。
正己烷
CCl4
CHCl3
1727cm-1
1720cm-1
1705cm-1
*
(四)特征区和指纹区
在特征区吸收峰较稀疏,包括大多数特征峰,很少与其他峰重叠,强度也大,最易识别。
指纹区谱带密集,反映分子结构中的微小变化,如同人的指纹一样各不相同。
特征区 指纹区

(二)基频峰的分布规律
01
折合原子质量越小,基团的伸缩振动频率越高
02
折合原子量相同的基团,K越大,基团的伸缩振动频率越高
03
折合原子量相同的基团,一般 > >

食品仪器分析-红外光谱法参考答案

食品仪器分析-红外光谱法参考答案

红外光谱习题一、选择题1、红外光谱是 ACEA 、分子光谱B 、原子光谱C 、吸光光谱D 、电子光谱E 、振动光谱 2、当用红外光激发分子振动能级跃迁时,化学键越强,则:ACEA 、吸收光子的能量越大B 、吸收光子的波长越长C 、吸收光子的频率越大D 、吸收光子的数目越多E 、吸收光子的波数越大 3、在下面各种振动模式中,不产生红外吸收的是:AC A 、乙炔分子中对称伸缩振动 B 、乙醚分子中不对称伸缩振动 C 、CO 2分子中对称伸缩振动 D 、H 2O 分子中对称伸缩振动E 、HCl 分子中H -Cl 键伸缩振动 4、下面五种气体,不吸收红外光的是:DA 、O H 2B 、2COC 、HClD 、2NE 、4CH 5、分子不具有红外活性的,必须是:DA 、分子的偶极矩为零B 、分子没有振动C :非极性分子D 、分子振动时没有偶极矩变化E 、双原子分子 二、问答题1、产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么?答:条件:激发能与分子的振动能级差相匹配同时有偶极矩的变化。

并非所有的分子振动都会产生红外吸收光谱具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。

2、何谓基团频率? 它有什么重要用途?答:与一定结构单元相联系的振动频率称为基团频率基团频率大多集中在4000-1350 cm -1,称为基团频率区,基团频率可用于鉴定官能团。

3、红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程。

答:基本依据:红外对有机化合物的定性具有鲜明的特征性,因为每一化合物都有特征的红外光谱,光谱带的数目、位置、形状、强度均随化合物及其聚集态的不同而不同。

定性分析的过程如下:(1)试样的分离和精制;(2)了解试样有关的资料;(3)谱图解析;(4)与标准谱图对照;(5)联机检索。

4、和是同分异构体,如何应用红外光谱检测它们?答:后者分子中存在-C=O ,在1600cm-1会有一强吸收带,而前者则无此特征峰。

仪器分析-红外吸收光谱法

仪器分析-红外吸收光谱法

第 6 章红外吸收光谱法6.1 内容提要6.1.1 基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。

红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。

振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。

不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。

分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。

转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。

分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。

伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。

弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。

红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。

诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。

共轭效应——分子中形成大键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。

氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。

溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。

基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。

振动偶合一一两个相邻基团的振动之间的相互作用称为振动偶合。

基团频率区一一红外吸收光谱中能反映和表征官能团(基团)存在的区域。

《仪器分析》--红外吸收光谱法习题集及答案

《仪器分析》--红外吸收光谱法习题集及答案

六、红外吸收光谱法(193题)一、选择题( 共61题)1. 2 分(1009)在红外光谱分析中,用 KBr制作为试样池,这是因为: ( )(1) KBr 晶体在 4000~400cm-1范围内不会散射红外光(2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性(3) KBr 在 4000~400 cm-1范围内无红外光吸收(4) 在 4000~400 cm-1范围内,KBr 对红外无反射2. 2 分(1022)下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的?为什么? ( )3. 2 分(1023)下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的,为什么?4. 2 分(1068)一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与光谱最近于一致?5. 2 分(1072)1072羰基化合物中,C = O 伸缩振动频率出现最低者为 ( )(1) I (2) II (3) III (4) IV6. 2 分(1075)一种能作为色散型红外光谱仪色散元件的材料为 ( )(1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃7. 2 分(1088)并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( )(1) 分子既有振动运动,又有转动运动,太复杂(2) 分子中有些振动能量是简并的(3) 因为分子中有 C、H、O 以外的原子存在(4) 分子某些振动能量相互抵消了8. 2 分(1097)下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( )9. 2 分(1104)请回答下列化合物中哪个吸收峰的频率最高? ( )10. 2 分(1114)在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( )(1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇11. 2 分(1179)水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( )(1) 2 个,不对称伸缩 (2) 4 个,弯曲(3) 3 个,不对称伸缩 (4) 2 个,对称伸缩12. 2 分(1180)CO2的如下振动中,何种属于非红外活性振动 ? ( )(1) ←→ (2) →←→ (3)↑↑ (4 )O=C=O O = C =O O = C =O O = C = O↓13. 2 分(1181)苯分子的振动自由度为 ( )(1) 18 (2) 12 (3) 30 (4) 3114. 2 分(1182)双原子分子在如下转动情况下 (如图),转动不形成转动自由度的是 ( )15. 2 分(1183)任何两个振动能级间的能量差为 ( )(1) 1/2 h (2) 3/2 h (3) h (4) 2/3 h16. 2 分(1184)在以下三种分子式中 C=C 双键的红外吸收哪一种最强? ( )(a) CH3- CH = CH2(b) CH3- CH = CH - CH3(顺式)(c) CH3- CH = CH - CH3(反式)(1) a 最强 (2) b 最强 (3) c 最强 (4) 强度相同17. 2 分(1206)在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( )(1) 向高波数方向移动 (2) 向低波数方向移动(3) 不移动 (4) 稍有振动18. 2 分(1234)以下四种气体不吸收红外光的是 ( )(1)H2O (2)CO2 (3)HCl (4)N219. 2 分(1678)某化合物的相对分子质量M r=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为 ( )(1) C4H8O (2) C3H4O2 (3) C3H6NO (4) (1)或(2)20. 2 分(1679)红外吸收光谱的产生是由于 ( )(1) 分子外层电子、振动、转动能级的跃迁(2) 原子外层电子、振动、转动能级的跃迁(3) 分子振动-转动能级的跃迁(4) 分子外层电子的能级跃迁21. 1 分(1680)乙炔分子振动自由度是 ( )(1) 5 (2) 6 (3) 7 (4) 822. 1 分(1681)甲烷分子振动自由度是 ( )(1) 5 (2) 6 (3) 9 (4) 1023. 1 分(1682)Cl2分子基本振动数目为 ( )(1) 0 (2) 1 (3) 2 (4) 324. 2 分(1683)Cl2分子在红外光谱图上基频吸收峰的数目为 ( )(1) 0 (2) 1 (3) 2 (4) 325. 2 分(1684)红外光谱法试样可以是 ( )(1) 水溶液 (2) 含游离水 (3) 含结晶水 (4) 不含水26. 2 分(1685)能与气相色谱仪联用的红外光谱仪为 ( )(1) 色散型红外分光光度计 (2) 双光束红外分光光度计(3) 傅里叶变换红外分光光度计 (4) 快扫描红外分光光度计27. 2 分(1686)下列化合物在红外光谱图上1675~1500cm-1处有吸收峰的是 ( )28. 2 分(1687)某化合物的红外光谱在3500~3100cm-1处有吸收谱带, 该化合物可能是 ( ) (1) CH3CH2CN(4) CH3CO-N(CH3)229. 2 分(1688)试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰, 频率最小的是 ( )(1) C-H (2) N-H (3) O-H (4) F-H30. 2 分(1689)已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N·cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为 ( )(1) C-C > C-N > C-O (2) C-N > C-O > C-C(3) C-C > C-O > C-N (4) C-O > C-N > C-C31. 2 分(1690)下列化合物中, C=O伸缩振动频率最高者为 ( )32. 2 分(1691)下列化合物中, 在稀溶液里, C=O伸缩振动频率最低者为 ( )33. 2 分(1692)羰基化合物中, C=O伸缩振动频率最高者为 ( )34. 2 分(1693)1693下列的几种醛中, C=O伸缩振动频率哪一个最低? ( )(1) RCHO(2) R-CH=CH-CHO(3) R-CH=CH-CH=CH-CHO35. 2 分(1694)丁二烯分子中C=C键伸缩振动如下:A. ←→←→CH2=CH-CH=CH2B. ←→→←CH2=CH-CH=CH2有红外活性的振动为 ( )(1) A (2) B (3) A, B都有 (4) A, B都没有36. 2 分(1695)下列有环外双键的烯烃中, C=C伸缩振动频率最高的是哪个? ( )37. 2 分(1696)一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰, 下列化合物最可能的是 ( )(1) CH3-CHO (2) CH3-CO-CH3(3) CH3-CHOH-CH3 (4) CH3-O-CH2-CH338. 2 分(1697)某化合物的红外光谱在3040-3010cm-1和1670-1620cm-1处有吸收带, 该化合物可能是 ( )39. 2 分(1698)红外光谱法, 试样状态可以是 ( )(1) 气体状态 (2) 固体状态(3) 固体, 液体状态 (4) 气体, 液体, 固体状态都可以40. 2 分(1699)用红外吸收光谱法测定有机物结构时, 试样应该是 ( )(1) 单质 (2) 纯物质(3) 混合物 (4) 任何试样41. 2 分(1700)试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰强度最大的是 ( )(1) C-H (2) N-H (3) O-H (4) F-H42. 2 分(1701)一个有机化合物的红外光谱图上在3000cm-1附近只有2930cm-1和2702cm-1处各有一个吸收峰, 可能的有机化合物是 ( )(2) CH3─CHO(4) CH2= CH-CHO43. 2 分(1702)羰基化合物中, C=O伸缩振动频率最低者是 ( )(1) CH3COCH344. 2 分(1703)色散型红外分光光度计检测器多用 ( )(1) 电子倍增器 (2) 光电倍增管(3) 高真空热电偶 (4) 无线电线圈45. 2 分(1704)红外光谱仪光源使用 ( )(1) 空心阴级灯 (2) 能斯特灯(3) 氘灯 (4) 碘钨灯46. 2 分(1705)某物质能吸收红外光波, 产生红外吸收谱图, 其分子结构必然是 ( )(1) 具有不饱和键 (2) 具有共轭体系(3) 发生偶极矩的净变化 (4) 具有对称性47. 3 分(1714)下列化合物的红外谱中σ(C=O)从低波数到高波数的顺序应为 ( )(1) a b c d (2) d a b c (3) a d b c (4) c b a d48. 1 分(1715)对于含n个原子的非线性分子, 其红外谱 ( )(1) 有3n-6个基频峰 (2) 有3n-6个吸收峰(3) 有少于或等于3n-6个基频峰 (4) 有少于或等于3n-6个吸收峰49. 2 分(1725)下列关于分子振动的红外活性的叙述中正确的是 ( )(1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的(2) 极性键的伸缩和变形振动都是红外活性的(3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动(4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是50. 2 分(1790)某一化合物以水或乙醇作溶剂, 在UV光区204nm处有一弱吸收带, 在红外光谱的官能团区有如下吸收峰:3300~2500cm-1(宽而强); 1710cm-1, 则该化合物可能是 ( )(1) 醛 (2) 酮 (3) 羧酸 (4) 酯51. 3 分(1791)某一化合物以水作溶剂, 在UV光区214nm处有一弱吸收带, 在红外光谱的官能团区有如下吸收峰:3540~3480cm-1和3420~3380cm-1双峰;1690cm-1强吸收。

仪器分析课件-第10章-红外光谱分析法

仪器分析课件-第10章-红外光谱分析法
化学键键强越强(即键的力常数 K 越大)原子折合质量越小,化学键的振动频率 越大,吸收峰将出现在高波数区。如:
13:15:17
红外光谱分析基本原理
三、 分子的振动形式
两类基本振动形式:变形振动和伸缩振动。以甲烷为例:变形振动
13:15:17
红外光谱分析基本原理
五. 红外光谱峰的吸收强度 P297
这种方法适用于组分简单,样品厚度一定(一般在液体样品 池中进行),特征吸收谱带重叠较少,而浓度与吸光度不成线性 关系的样品。
13:15:17
红外光谱的应用
3 .吸收度比法 该发适用于厚度难以控制或不能准确测定其厚度的样品,例如厚度不均匀 的高分子膜,糊状法的样品等。这一方法要求各组分的特征吸收谱带相互 不重叠,且服从于郎伯 — 比尔定律。 如有二元组分 X 和 Y ,根据 朗伯 -比尔定律 ,应存在以下关系;
1.位置:由振动频率决定,化学键的力常数 K 越大,原子折合质量 m 越小, 键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低 波数区(高波长区); 2.峰数:分子的基本振动理论峰数,可由振动自由度来计算,对于由 n 个原子 组成的分子,其自由度为3 n
3n= 平动自由度+振动自由度+转动自由度 分子的平动自由度为3,转动自由度为:非线性分子3,线性分子2
13:15:17
红外光谱的应用
二、定性分析
定性分析大致可分为官能团定性和结构定性两个方面。 定性分析的一般过程: 1. 试样的分离和精制 2.了解与试样性质有关的其它方面的材料 3. 谱图的解析 4. 和标准谱图进行对照 5. 计算机红外光谱谱库及其检索系统 6. 确定分子的结构
13:15:17
红外光谱的应用

仪器分析第十五章红外吸收光谱法

仪器分析第十五章红外吸收光谱法
单 核 芳 烃 的 C = C 伸 缩 振 动 出 现 在 1600 - 1500cm-1附近,有2-4个峰,这是芳环的骨架振动, 用于确定有无芳核的存在。
苯的衍生物在2000-1650cm-1区域出现C-H面外弯曲变 形振动的倍频或者组合频吸收,但因为强度较弱,只有在加 大样品浓度时才呈现出来。可以根据该区的吸收情况,判断 苯环的取代情况。
影响基团频率位移的因素-外部因素和内部因素
(1)电子效应-包括诱导效应、共轭效应和中介 效应,是由于化学键的电子分布不均匀引起的。
诱导效应(I效应)-由于取代基的不同的电负性, 通过静电诱导作用,引起分子中的电子分布的变化, 改变了键的力常数,使特征频率发生位移。例如有 电负性较强的元素如Cl与羰基相连时,由于诱导效 应,发生氧上电子转移,使C=O的力常数变大,吸 收向高波数移动。元素电负性越强,移动越厉害。
组频——如果分子吸收一个红外光子,同时激 发了基频分别为v1和v2的两种跃迁,此时所产 生的吸收频率应该等于上述两种跃迁的吸收频 率之和,故称组频。
对谐振子,倍频、组频均为禁阻跃迁。
但由于真实分子的非谐性,倍频、组频跃迁几 率并不为零。但强度都很弱。
分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定, 则由N个原子组成的分子就有了3N个坐标,或称为 有3N个运动自由度。分子本身作为一个整体,有三 个平动自由度和三个转动自由度。
线性分子只有两个转动自由度,因为总有一个 轴心于双原子分子的键轴重合,原子在空间的 坐标并不改变。线性分子的振动自由度为3N-5, 非线性为3N-6。
例如苯分子的振动自由度为3×12-6=30,即30 种简正振动。任何一个分子的振动,都可看成 3N-6或者3N-5个简正振动的叠加而成。

仪器分析作业6-红外

仪器分析作业6-红外

作业5一、 判断题( F )1、红外吸收光谱就是物质分子被红外光所激发,由振动激发态跃迁到振动基态所产生的光谱 ( T )2、H 2O 是不对称结构分子,所有是红外活性分子( F )3、分子吸收红外光发生振动能级跃迁时,化学键越强的吸收光子的数目越少。

( T )4、醛、酮、羧酸、酯等的羰基的伸缩振动在红外光谱中所产生的吸收峰频率是不同的。

( T )5、分子中必须具有红外活性振动是分子产生红外吸收的必备条件之一。

( F )6、红外吸收光谱中1380cm -1附近有没有吸收峰是判断有没有亚甲基的重要依据。

( T )7、红外吸收光谱中,2720cm -1是醛类化合物的唯一特征峰,它是区别醛酮的唯一依据( T )8、红外吸收光谱的吸收池是金属卤化物的晶体压成薄片制成,这种薄片可透过,红外光而不产生吸收,但易吸水受潮,因此放置红外光谱仪的仪器室应控制一定的湿度。

( T )9、分子式为C 7H 9NO 的不饱和度Ω=1+7+1/2(1-9)=4.( T )10、红外光谱法测定的物质必须纯度高,不含游离水。

( F )11、采用压片法制样时,样品量越多越好。

( T )12、一张比较理想的红外光谱图,其透光率应处于15%-70%范围内为宜。

( T )13、红外吸收光谱法的峰特征性很强,最适合对纯物质进行定性鉴定。

( F )14、通过基频振动峰公式计算所得的基频峰均应该在红外光谱图中都能找到对应的位置。

( T )15、利用红外光谱图对化合物进行定性分析时既要管能团区在找出官能团的位置,还应该在指纹区找到对应的峰进行佐证。

二、 选择题1、HCl 在红外光谱中出现吸收峰的数目是( )。

A .1 B.2 C.3 D.42、红外吸收光谱中,芳烃的C=C 骨架振动吸收峰出现在( )cm -1。

A.2400~200B.1900~1650 C .1600~1400 D.1000~6503、以下分子中不产生红外吸收的是( )。

仪器分析红外分光光度法

仪器分析红外分光光度法

红外分光光度法的优势与局限性
优势
红外光谱具有高灵敏度、高分辨率和 无损检测等优点,能够提供丰富的化 学结构信息,有助于快速准确地鉴定 和鉴别物质。
局限性
对于一些低浓度的物质,可能需要较 高的检测限;另外,对于一些复杂的 样品或未知物,解析红外光谱可能会 比较困难,需要结合其他分析方法进 行综合判断。
01
采用棱镜作为分束器,能够提供高分辨率和高精度的光谱数据,
但体积较大。
傅里叶变换型红外分光光度计
02
采用干涉仪作为分束器,能够快速扫描并获得连续光谱数据,
具有高灵敏度和高分辨率,体积较小。
光栅型红外分光光度计
03
采用光栅作为分束器,能够提供高精度的光谱数据,但扫描速
度较慢。
04
实验操作流程与注意事项
红外分光光度法的应用领域
有机化合物分析
生物样品分析
红外光谱能够提供有机化合物的官能 团、化学键和分子结构等信息,广泛 应用于有机化合物的定性和定量分析。
在生物领域,红外光谱可以用于研究 生物大分子的结构和功能,如蛋白质、 核酸等。
无机物分析
对于一些无机物,如矿物、金属氧化 物等,红外光谱也可以提供有关其结 构和组成的信息。
数据处理与分析
05 对记录的数据进行处理和分析
,计算样品的浓度、含量等参 数。
结果报告
06 整理实验数据,撰写实验报告
,将结果报告给相关人员。
实验注意事项
样品纯度
仪器保养
操作规范
确保待测样品的纯度, 以减小误差。
定期对仪器进行保养和 维护,确保其正常运转。
严格遵守操作规程,避 免因操作不当导致实验
仪器分析红外分光光度法
• 红外分光光度法简介 • 仪器分析在红外分光光度法中的作用 • 红外分光光度计的组成与工作原理 • 实验操作流程与注意事项 • 案例分析

仪器分析 红外光谱

仪器分析   红外光谱

10
分子振动方程式
任意两个相邻的能级间的能量差为:
h E h 2 k

k

1


1 2c

1370
k

K化学键的力常数,与键能和键长有关,
为双原子的折合质量 =m1m2/(m1+m2)
发生振动能级跃迁需要能量的大小取决于键两 端原子的折合质量和键的力常数,即取决于分 子的结构特征。
18
但对于直线型分子, 若贯穿所有原子的轴是在 x方向,则整个分子只能 绕y、z轴转动,因此,直 线性分子的振动形式为 (3n-5)种。
19
第二节
基本原理
水—非线型分子的振动形式: 3n-6=9-6=3
二氧化碳—线型分子的振动形式:3n-5=9-5=4
20
第二节
红外吸收基本原理
三、产生红外吸收的条件
33
2. 双键伸缩振动区(1200 1900 cm-1 )
(1) RC=CR’ 1620 1680 cm-1 强度弱, R=R’(对称)时,无红外活性。
34
单核芳烃的C=C伸缩振动出现在 1600 cm-1、1500 cm-1、1450 cm-1附近,有 两个峰,这是芳环的骨架结构,用于确认有 无芳核的存在。
2. 简正振动的基本形式 一般将振动形式分成两类:伸缩振动和变形振动。 (1)伸缩振动 原子沿键轴方向伸缩,键长发生变化而键角不变的振动 称为伸缩振动,用符号表示。它又可以分为对称伸缩振动 ( s)和不对称伸缩振动( as )。对同一基团,不对称伸缩 振动的频率要稍高于对称伸缩振动。 (2)变形振动(又称弯曲振动或变角振动)基团键角发生周 期变化而键长不变的振动称为变形振动,用符号表示。 变形振动又分为面内变形和面外变形振动。 面内变形振动又分为剪式(以表示)和平面摇摆振动 (以表示)。 面外变形振动又分为非平面摇摆(以表示)和扭曲振 15 动(以表示)。

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动

仪器分析红外光谱法

仪器分析红外光谱法

仪器分析红外光谱法红外光谱法是一种常用的仪器分析方法,可以用于分析物质的组成和结构。

本文将详细介绍红外光谱法的原理、仪器设备和应用领域,并对其中的一些关键技术进行探讨。

红外光谱法是一种基于化学键振动的分析技术。

通过测量样品在红外辐射下的吸收光谱,可以获得有关样品分子的信息。

红外辐射的波长范围为0.78-1000微米,对应的频率范围为12.82-3000THz。

在这个频率范围内,物质的分子会吸收特定波长的辐射能量,这些吸收峰对应着不同的化学键振动。

通过比较样品的吸收光谱和标准库中的光谱,可以确定样品的组分或结构。

红外光谱仪是进行红外光谱分析的关键设备。

它主要由光源、样品室、光谱分束系统和探测器组成。

常见的光源有红外灯、光纤波导和测量系统本体产生的光源,它们的特点是辐射能量可见、红外或拉曼光谱区域。

光谱分束系统可以将样品吸收的红外光谱分解为连续光的波长与光强分布的结果,常用的分束器有棱镜和光栅两种。

光谱分束系统将被分解的光聚集到一个探测器上进行测量,常见的探测器有热电偶、焦平面阵列、差分红外探测器等。

根据实际需要,还可以配备测光计、计算机等辅助设备,以提高测量的准确性和效率。

红外光谱法在实际应用中有广泛的用途。

它可以用于各种领域的研究和分析,如化学、材料科学、制药、食品科学等。

红外光谱法可以用于分析有机化合物、无机物质、生物大分子等类型的样品。

在有机化合物分析中,红外光谱法可以确定化学键的类型、鉴别不同的功能基团、判断化学结构等。

在材料科学中,红外光谱法可以用于表面分析、结构表征、聚合物反应动力学等研究。

在制药和食品科学中,红外光谱法可以用于药物质量控制、药物配方优化、食品成分分析等。

为了提高红外光谱法的测量精度和灵敏度,一些关键技术被引入到了仪器分析中。

其中,ATR技术(全反射红外光谱技术)是一种常用的技术。

它通过将样品直接置于晶体表面进行测量,避免了传统方法中液体制备和气体膜片制备的麻烦。

此外,荧光红外光谱技术也是一项重要的技术。

仪器分析红外吸收光谱法习题和答案解析

仪器分析红外吸收光谱法习题和答案解析

红外吸收光谱法一.填空题1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) . 2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区,其中中红外区的应用最广.3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收.4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性,相反则称为红外非活性的 .一般来说,前者在红外光谱图上出现吸收峰。

5.红外分光光度计的光源主要有能斯特灯和硅碳棒 .6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm—1, 3300—3000 cm-1, 3000—2700 cm-1.7.基团一C≡C、一C≡N ;-C==O;一C=N,一C=C-的伸缩振动频率范围分别出现在 2400-2100 cm-1, 1900—1650 cm—1, 1650—1500 cm-1。

8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm—1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。

二、选择题1.二氧化碳分子的平动、转动和振动自由度的数目分别(A)A。

3,2,4 B。

2,3,4 C。

3,4,2 D。

4,2,32.乙炔分子的平动、转动和振动自由度的数目分别为(C)A. 2,3,3B. 3,2,8 C。

3,2,7 D. 2,3,74.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH3CH2COH的吸收带?(D)A. 3000-2700cm-1,1675—1500cm—1,1475—1300cm一1。

仪器分析 第4章 红外吸收光谱法

仪器分析 第4章  红外吸收光谱法

4.2 基本原理
4.2.3 多原子分子的振动类型(P56)
伸缩振动 (υ):键长发生变化 1.简正振动基本形式 变形振动 (δ):键角发生变化
伸缩振动(υ)
对称伸缩振动(υs)
不对称伸缩振动(υas)
变形振动(δ)
面内变形振动(β)
面外变形振动(γ)
亚甲基的各种振动形式
2. 基本振动的理论数(分子振动自由度)
4.4 试样的处理和制备
4.4 试样的处理和制备
4.4.1 红外光谱法对试样的要求 (1)单一组分纯物质,纯度 > 98%; (2)样品中不含游离水; (3)要选择合适的浓度和测试厚度, 使大多数吸收峰透射比处于10%~80%。
4.4 试样的处理和制备
4.4.2 制样方法 1.气体样品的制备 2.液体和溶液样品的制备 3.固体样品的制备
分子振动自由度:多原子分子的基本振动
数目,也就是基频吸收峰的数目。
基频吸收峰:分子吸收一定频率的红外光后,
其振动能级由基态跃迁到第一
激发态时所产生的吸收峰。
2. 基本振动的理论数
线型分子振动自由度 = 3N – 5(如CO2)
非线型分子振动自由度 = 3N – 6(如H2O)
图5.12 CO2分子的简正振 动形式
来指导谱图解析。
基本概念
基团频率区: 在4000~1300cm-1 范围内的吸收峰,有一 共同特点:既每一吸收峰都和一定的官能 团相对应,因此称为基团频率区。
在基团频率区,原则上每个吸收峰都可以找到归属。
基本概念
指纹区: 在1300~400cm-1范围内,虽然有些吸收也对应 着某些官能团,但大量吸收峰仅显示了化合物 的红外特征,犹如人的指纹,故称为指纹区。

整理仪器分析—红外光谱分析法课件

整理仪器分析—红外光谱分析法课件

仪器分析红外光谱分析法课件
整理表
姓名:
职业工种:
申请级别:
受理机构:
填报日期:
A4打印/ 修订/ 内容可编辑
教学日历(2020 至2021 学年第一学期)
课程名称现代仪器分析课程性
质必修
总学时48 讲授40 实验8 上机0
授课班级环科18-1,18-2 学生人
数51
任课教师王广利职称副教授
开课学院地球科学学院系(教研室)盆地中心教材名称仪器分析(第四版)编/著者朱明华
出版单位高等教育出版社出版时
间2008
中国石油大学(北京)教务处制
第1页共6页
第2页共6页
整理丨尼克
本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

第3页共6页。

仪器分析红外光谱法

仪器分析红外光谱法

一 官能团区和指纹区
官能团区:4000-1300 cm-1 (伸缩振动) 1) 4000-2500 cm-1 x-H伸缩振动(x: O, N, C, S)
O-H: 3700-3200 cm-1 COO-H: 3600-2500 cm-1 N-H: 3500-3300 cm-1
{ C-H >3000 cm-1, 不饱和,=C-H或≡C-H <3000 cm-1, 饱和,-C-H
2. 影响吸收峰强度的因素
振动能级的跃迁几率 基态(v=0)至第一激发态(v=1)跃迁几率大, 基频吸收带较强
基态(v=0)至第二激发态(v=2)跃迁几率小, 倍频吸收带较弱
振动过程中偶极矩的变化
0
0
r•q
O C O 0
C、O电负性差别大, 伸缩振动时, 偶极矩变化大
CO强度 CC强度,
O=C=O反对称伸缩振动偶极矩发生变化 红外吸收。 O=C=O对称伸缩振动偶极矩无变化 无红外吸收峰产生
1: OH 2: CO
CC16 9155c4m 0 1
1640cm-1
1613cm-1
(二)外部因素
物质状态 溶剂
§5-4 红外光谱仪及制样方法
一 色散型红外分光光度计
1 基本组成
1) 光源
能斯特灯 稳定, 不需用水冷却。但需预热, 机械强度差。
硅碳棒 使用波数范围较宽, 坚固, 发光面积大。电极接
触部分需用水冷却。
1730
1800
.. O R C Cl
O RCF
1920
共轭效应I(M效应)
CO(cm1)
O RБайду номын сангаасC NH2
1680
O R C OR

仪器分析课件-4红外光谱基本原理

仪器分析课件-4红外光谱基本原理
同基团的特征吸收并不总在一个固定频率上。 影响其吸收峰位置的主要因素分为内部因素和外部因素。
1.内部因素
(1)电子效应:引起化学键电子分布变化的效应。 a.诱导效应(Induction effect):取代基电负性-静电诱导-电 子分布改变-k 增加-特征频率增加(移向高波数)。 R-COR C=O 1715cm-1 ; R-COH C=O 1730cm-1 ; R-COCl C=O 1800cm-1 ; R-COF C=O 1920cm-1 。
10
Company Logo
11
Company Logo
因此,当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和它一致,二者就会产生共振,此时
光的能量通过分子偶极矩的变化而传递给分子,这个基
团就吸收一定频率的红外光,产生振动跃迁。
对称分子:没有偶极矩,辐射不能引起共振,无 红外活性。如:N2、O2、Cl2 等。
cm -1 1 6 6 0
c. 中介效应(Mesomeric effect):孤对电子与多重键相连产生的 p- 共轭,结果类似于共轭效应。 当诱导与共轭两种效应同时存在时,振动频率的位移的 程度取决于它们的净效应。
28
Company Logo
(2)氢键效应
形成氢键使电子云密度平均化(缔合态),使体系能量 下降,基团伸缩振动频率降低,其强度增加但峰形变宽。使 伸缩振动频率向低波数方向移动.
分子振动和转动能级的跃迁;价电子和分子轨道上的电子在电子能级 上的跃迁。
2. 研究对象不同
在振动中伴随有偶极矩变化的化合物;不饱合有机化合物特别是具有 共轭体系的有机化合物。
3.可分析的试样形式不同,使用范围不同
气、液、固均可,既可定性又可定量,非破坏性分析;既可定性又可 定量,有时是试样破坏性的。

仪器分析教程第3章 红外光谱

仪器分析教程第3章 红外光谱
多原子分子中,基本振动的数目叫振动自由度。 每一个基本振动都代表了一种振动的形式,都有它 固有的特征频率,都可能产生相应的红外吸收峰。
一. 基本振动的类型 伸缩振动和弯曲振动。
1. 伸缩振动(Stretching Vibration)
用 v 表示。 特点:成键原子沿键轴方向伸缩,键长发生周 期性的变化,其键角不变。 当分子中原子数 >=3 时,可产生对称伸缩振动
键或官能团的吸收频率,这种现象叫诱导效应。
诱导效应的影响沿着分子中的化学键而传递,
与分子的几何形状无关。
羰基碳上的 电负性基团使羰基伸缩振动吸收峰
向高频方向移动(蓝移)。
O R-C-R O R-C-Cl O F-C-F O CH3-C-O-CH=CH2 为什么 ? vC=O 1770cm-1 1928cm-1 1800cm-1 1715cm-1 O R-C-H O R-C-F O R-C-NH2 1680cm-1 O CH3-C-O-CH2CH3 1734cm-1 1920cm-1 1730cm -1
例:水分子(非线性分子)。 振动自由度数 = 3 × 3 - 6 = 3
3600~3000cm-1
1647cm-1
990~400cm-1
例:
CO2分子(线性分子)。 振动自由度= 3×3-5 = 4
2349 cm-1
667 cm-1
3.1.3 红外吸收峰强度
intensity of Infrared absorption band (一)红外吸收峰强度的表示方法
O R- C
H- NH C- R O
1690 cm-1 3500 cm-1 1650 cm-1
HN- H
游离:
vC=O vN-H

仪器分析第十三章红外吸收光谱法

仪器分析第十三章红外吸收光谱法

振动形式:伸缩( ):对称 对称( 振动形式:伸缩( ν ):对称(νs) 不对称( 不对称( νas ) 弯曲:面内弯曲( 简动( 弯曲:面内弯曲(β):简动(δ) 摇摆(ρ) 摇摆( 面外弯曲( 面外弯曲(γ):摇摆(ω) 摇摆( 扭曲( 扭曲( τ) 变形:对称( 变形:对称( δs ) 不对称( 不对称( δas )
Hale Waihona Puke 基频峰和泛频峰基频峰 振动能级由基态( 振动能级由基态(V=0)跃迁至第一激发 所产生的吸收峰。 态(V=1)所产生的吸收峰。νL=ν,强 度一般比较大,容易识别。 度一般比较大,容易识别。 泛频峰 倍频峰、合频峰、差频峰等。强度较弱, 倍频峰、合频峰、差频峰等。强度较弱, 可能观察不到。 可能观察不到。
O R-C-R' O R-C-OR' O R-C-Cl O R-C-F
1715cm-1 1735cm-1
1800cm-1 1870cm-1
影响峰位的因素
1.分子内部结构因素 (1)电子效应 共轭效应(conjugative effect, +C, +M): 使吸收峰向低频方向移动
O R-C-R'
O R-C
红外光谱区划
区域 近红外区 中红外区 远红外区 波长 波数 -1) 能级跃迁类型 λ( m ) σ(cm 0.76~2.5 2.5~50 50~500 13158~4000 倍频吸收区 4000~200 振动 伴转动 振动,伴转动 200~20 转动
苯酰胺的红外光谱
红外光谱与紫外光谱的区别
红外光谱 起源 应用 范围 特征性 紫外光谱
教学目标
熟悉红外光谱的基本原理与应用。
了解红外分光光度计的主要部件和制 样方法。 了解几类化合物红外光谱的主要特征 及光谱解析的一般步骤。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

λ / μm /cm-1
在电磁波谱中红外光位于可见光和微波之间。这样的划 分是因为在测定这些区的光谱时,所用仪器不同、各个区域 所得到的信息不同。 红外光具有的能量约0.00124~2.48 eV,与有机化合物基团振
(转)能级跃迁所需的能量相当。其中,中红外区应用最广
泛,一般讲的红外光谱主要指的中红外区。 中红外光谱: 2.5~15.4 μm; 4,000~650 cm-1
★面外变形振动γ:面外摇摆,扭曲变形。
由于伸缩振动可引起化学键电子云密度较大的偏离,所以 其振动频率比变形振动的频率要高(通常v>1300,δ< 1300)。
亚甲基(-CH2-)有六 种振动形式:
伸缩振动
变形振动
2.3
振动形式和IR吸收峰
原则上,分子中某一简正振动符合 IR吸收产生的条 件,在IR谱上就会出现一个特征吸收峰。有机化合物一 般为多原子分子, IR吸收峰一般较多。实际上多原子分 子的IR谱中振动形式和吸收峰并非一一对应。 常见的情况是 谱峰数<简正振动数 引起吸收峰减少的原因: (1)振动未引起偶极矩的变化,
和对称伸缩振动带3400 cm-1附近 ,仲胺为单峰,此区的单
峰或双峰是区别伯胺还是仲胺的特征。 伯酰胺的N-H伸缩振动带有两个,强度中等,吸收带在 3350及3180 cm-1附近。伯、仲和叔酰胺的C=O伸缩振动 带的频率比相对应的酮类略低,并依次向低频移动。 对N-H面内弯曲振动吸收带,伯酰胺在1600-1640 cm-1 间,而仲酰胺则在1600 cm-1以下。伯酰胺的面外弯曲振 动带在875-750 cm-1间,强度中等,而仲酰胺则在750-
致。
3.1
基团(特征)频率
经验地对积累的许多 IR 谱进行比较后发现,特定的
基团具有类似的吸收带,这种吸收(带)称为特征吸收, 其振动频率称为基团(特征)频率,即基团频率(group
frequency)是与一定的结构单元相联系的振动频率。
同一类型的基团在不同物质中所处的化学环境各不相 同,因此其基团频率有一定的差别。这种差别常常能反映 出结构上的特点。
根据振动方程式,在不同的分子中,相同基团的M是 一定的,只是由于分子内部环境不同,使K变化。已知 三键的力常数.>双键.>单键,所以: 凡是增加单键成分或增加键的极性,使化学键的电 子云分布更不均匀的效应,都会使K↑,波数↑(蓝移) 凡是增加双键成分或降低键的极性,使化学键的电 子云分布更均匀的效应,都会使K↓ ,波数↓ (红移)。
650 cm-1间。
3.4
影响基团频率位移的因素
分子中各种基团的振动不是孤立的,而是受到分子
中其它基团的影响,这些因素称为内部因素。 另外在测定红外光谱时,样品状态、溶剂、样品厚 度、仪器条件等也会影响基团频率的位置、吸收峰的形 状、强度等。 这些因素统称为外部因素。 以下着重介绍几种内部因素:
1.电子效应
第六章
红外(吸收)光谱法
Infrared (Absorption) Spectrometry IR
1、 红外波谱和红外吸收光谱 2、 分子的振动和红外吸收峰 3、 有机化合物的特征吸收 4、 红外光谱仪简介 5、 红外吸收光谱的解析
1.1
红外波谱
可见 近红外 0.78~2.5 12,820~4,000 中红外 2.5~50 4,000~200 远红外 50~103 200~10 微波
K 与键的电子云分布有关,表示键 发生振动的难易程度。 一般单键 K =3 ~ 8 双键K = 8~12 三键K = 12~18。 M为两个原子的折合质量:
1 K v 2c M
m1m2 M m1 m2
m1、m2分别为两个原子的原子量。
1 K v 2c M
C = O的伸缩振动
k v 1303 m1m2 m1 m2
1150 cm-1附近。酚的C-O伸缩振动在1200 cm-1附近,且 强而宽。
5.醚 特征吸收带就是C—O—C伸缩振动吸收带。 饱和脂肪醚的对称和不对称伸缩振动带分别在940和1125 cm-1 附近。 芳基烷基醚的1280-1220及1100-1050 cm-1之间有两个强
吸收பைடு நூலகம்.
6.酮和醛 酮的唯一特征吸收带是C=O伸缩振动引起的。 饱和脂肪醛的C=O伸缩振动带处于1740-1720 cm-1间。 醛类在2830和2720 cm-1附近会出现两个吸收带,利用 它们可将醛类与其它羰基化合物区别开来。
Cl2C=CCl2的全对称伸缩振动也没有红外活性。
1.4
红外吸收光谱的强度
根据量子理论,红外光谱的强度与分子振动时偶极 矩变化的平方成正比。 影响谱带强度的因素很多,主要是: ●化学键的极性越强,吸收峰就越强。 伸缩振动 ●分子结构的对称性越差,吸收峰就越强。 R—CH=CH2 ε= 40
R—CH=CH—R’(顺式)
为强度差不多的两个峰(~1380,~1370 cm-1 )。特征。
叔丁基裂分为~1400,~1370 cm-1两个峰,较低频峰是较
高频峰的两倍。特征。
2、烯烃和炔烃
R—C≡C—R′ 如果R=R′ 红外非活性。 R≠R′不对称炔(2190~2260 cm-1 )
端基炔 R—C≡CH(2140~2100 cm-1 )
烯烃有三个重要特征吸收带: =C-H伸缩振动带约在3100-3000 cm-1
C=C双键的伸缩振动频率在1680-1620 cm-1 对乙烯基型化合物,在990、910 cm-1附近有两个很强的 -CH=CH2面外振动带。 烯烃的面外变形振动用于顺、反构型的判断: 反式结构 970cm-1
顺式结构 690cm-1
波数——波长的倒数, 表示1cm 光波中电磁波的数目。
v cm1



E h h
vs
1
c
1 104 cm m
1 10 1
vcm 3.0 10 cm s

c
hc
波数与光子能量成正比,光谱学中常以波数作为能 量单位。
vCO 1303 12 1724cm 1 12 16 12 16
计算结果与红外光谱检测得到的羰基伸缩振动频率在 1850 ~1650cm-1基本一致。
根据振动方程式:
质量效应 :
1 K v 2c M
振动频率(波数)随成键原子质量↑而↓ 1300~1000 cm-1
含氢基团(OH,NH,CH) 3700~2800cm-1 将其中的H改为C C—Cl(800~600),C—Br(600~500),C—I(530~470)
吸收红外光的过程实际上是将红外辐射的能量转移到分子的
内部,而这种能量的转移是通过偶极矩的变化来实现的。
只有能引起瞬时偶极矩变化的振动才能引起可观测到的 IR吸收,这种振动称为红外活性(infrared active)振动,反 之,则称为红外非活性(infrared inactive)振动。 同核双原子分子(H2,O2,Cl2)不会产生红外吸收,
3.芳烃 芳环上的=C-H伸缩振动在3100-3000 cm-1之间有三个 吸收带。 芳环的骨架(C=C)伸缩振动,在1600、1500及1450 cm-1
附近有三个吸收带,
芳环上=C-H面外弯曲振动吸收带在900-650 cm-1间, 而吸收带的位置、数目及强度取决于芳环上相邻的氢原子 数目.
苯环上C—H弯曲振动的吸收峰与环上的取代类型有关 邻位取代 770~730,s 双取代 间位取代 810~750,s
725~680,m
对位取代 860~800,s 单取代 770~730,s 710~690,s
4.醇和酚 O-H键的伸缩振动频率带出现在3550-3200 cm-1间。吸收 带强而宽。 C-O键的伸缩振动频率出现在1260-1000 cm-1区间,强
度大,且伯醇、仲醇和叔醇其吸收带分别在1050、1100、
2850 cm-1附近。 甲基的对称变形振动在1380-1365 cm-1间 ; -CH2-的剪式 振动吸收约在1480-1440 cm-1区,强度中等。
—CH3 δas 1450±20, cm-1 δs 1380~1370,cm-1,特征。 异丙基裂分和叔丁基裂分。很特征: 异丙基裂分 两个—CH3偶合,使得—CH3的δs裂分
(3)差频 已处在某个振动激发态的分子再吸收足够的外加
辐射能而跃迁到另一激发振动态,vm-vn
合频和差频合称组(合)频,特点是谱带强度弱。
(4)偶合 两个相同的基团靠得很近时,其特征吸收峰常 发生分裂,形成两个峰。 异丙基裂分 H3C
H3 C
CH—
两个-CH3偶合,使得-CH3 δs裂分为强度差不多的两个峰 (~1380,~1370)。特征峰。 叔丁基裂分为~1400,~1370两个峰,较低频峰是较高频峰 的两倍。特征峰。
7.酸和酯 O-H伸缩振动带在3000 cm-1附近,吸收带强而宽,会与 饱和C-H伸缩振动带重叠。
由于缔合作用,使C=O伸缩振动频率移向低频,在1720
cm-1附近。
C-O伸缩振动以及O-H面内变形振动,在1440—1395及
1320—1210 cm-1区间有两个吸收带。
8.胺和酰胺 伯胺的N-H键伸缩振动产生双峰,分别为不对称3500 cm-1
(2)有的振动频率相同,它们的吸收带重合,彼此简并。
(3)强、宽峰掩盖弱、窄的峰, (4)仪器分辨率或灵敏度不够。
★有一些原因使吸收峰增多: (1)倍频 基态v=0, v0→1的跃迁,其吸收频率为基频。有时 会发生0→2,0→3的跃迁,其吸收频率称为倍频,其跃迁几 率较小,谱带强度较弱。 (2)合频 由吸收的光子同时激发两种频率的振动 ,vm+vn
1.2
红外吸收光谱
以一束连续波长的红外光照射某一物质时,由于物质
对光的选择性吸收,部分红外光被吸收,引起分子振动
相关文档
最新文档