九年级数学阶段性考试试卷及答案

合集下载

九年级数学阶段性测试卷含答案

九年级数学阶段性测试卷含答案

九年级数学阶段性测试卷2019.3一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的) 1.-3的相反数是( ▲ ).A .-3B .3C .31D .31- 2.函数的自变量的取值范围是 ( ▲ ) A . B . C . D .3.PM2.5是指大气中直径小于等于2.5微米,即0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ▲ )A.7105.2-⨯B.6105.2-⨯C.71025-⨯D.51025.0-⨯ 4.如果x =2是方程12x +a =-1的根,那么a 的值是( ▲ ) A .0 B .2 C .-2 D .-6 5.如果反比例函数y =k−1x的图象经过点(-1,-2),则k 的值是( ▲ )A.2B.-2C.-3D.36.已知点A (1,x )和点B (y,2)关于原点对称,则一定有( ▲ ) A.x=-2,y=-1 B.x=2,y =-1 C.x=-2,y=1 D.x=2,y=1 7.△ABC 中,∠C=90°,tanA=3,∠B 等于( ▲ )A .30°B .45°C .60°D .90° 8.如图,l 1∥l 2∥l 3,根据“平行线分线段成比例定理”,下列比例式中正确的是( ▲ ) A.AD CE BC DF = B. AD BC BE AF = C. AB CD CD EF = D. AD DFBC CE=9.如图给定的是纸盒的外表面,下面能由它折叠而成的是( ▲ )A .B . 第8题图C .D .10.在平面直角坐标系中,已知点P (-2,-1)、A (-1,-3),点A 关于点P 的对称点为B ,12y x =+x 0x >2x >-2x -≥2x ≠-在坐标轴上找一点C ,使得△ABC 为直角三角形,这样的点C 共有( ▲ )个。

初三数学试卷(含答案)

初三数学试卷(含答案)

初三数学试卷(含答案)一、选择题(每小题3分,共30分)1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³3. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)4. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或25. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³6. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)7. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或28. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³9. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)10. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或2二、填空题(每小题3分,共30分)11. 若a²4a+4=0,则a的值为______。

数学初三试卷含答案

数学初三试卷含答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. 3B. 2.5C. √4D. √22. 若x + y = 5,x - y = 1,则x² - y²的值为()A. 24B. 16C. 9D. 103. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x²C. y = 3/xD. y = 2x³4. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数是()A. 105°B. 75°C. 120°D. 90°5. 已知一元二次方程x² - 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂的值为()A. 5B. 6C. 2D. -56. 在平面直角坐标系中,点A(2,3)关于y轴的对称点B的坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)7. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 1,3,5,78. 若a、b、c是△ABC的三边,且a + b = c,则△ABC是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形9. 已知正方形的对角线长为10cm,则其边长为()A. 5cmB. 10cmC. 20cmD. 15cm10. 下列命题中,正确的是()A. 所有的平行四边形都是矩形B. 所有的矩形都是正方形C. 所有的等腰三角形都是等边三角形D. 所有的等边三角形都是等腰三角形二、填空题(每题3分,共30分)11. 若x² - 4x + 3 = 0,则x² - 2x的值为______。

12. 函数y = 2x - 1的图像是一条______直线。

13. 在△ABC中,若∠A = 60°,∠B = 75°,则∠C的度数为______。

九年级数学上学期阶段性学业水平测试试题苏科版

九年级数学上学期阶段性学业水平测试试题苏科版

2015—2016学年度第一学期阶段性学业水平测试九年级数学试卷(本卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号写在答题纸相应位置.......上)1.下列图形中不一定是相似图形的是【▲】A.两个等边三角形B.两个等腰直角三角形 C.两个长方形D.两个正方形2.反比例函数1yx=的图象是【▲】A.线段 B.直线C.抛物线 D.双曲线3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是【▲】A.2:3 B.: C.4:9 D.8:274.在反比例函数1kyx-=的每一条曲线上,y都随着x的增大而减小,则k的值可以是【▲】A.﹣1 B.1 C.2 D.35.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是【▲】A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1(第5题图) (第7题图)(第8题图)6.已知反比例函数2yx=-,下列结论不正确的是【▲】A.图象必经过点(﹣1,2) B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0 7.如图,下列条件不能判定△ADB∽△ABC的是【▲】A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.AD AB AB BC=8.如图,A、B两点在双曲线4yx=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=【▲】A.3 B.4 C.5 D.69.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是【▲】A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--(第9题图) (第10题图)(第12题图)10.如图,点A在双曲线3yx=上,点B在双曲线kyx=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为【▲】A.6 B.9 C.10 D.12二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答.题纸相应位置......上)11.已知反比例函数kyx=经过点(1,5),则k= ▲ .12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为▲ 度.13.点(﹣1,1y),(2,2y),(3,3y)均在函数6yx=的图象上,则1y,2y,3y的大小关系是▲ .14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于▲ .(第14题图)(第16题图)(第17题图)15.若函数4y x=与1yx=的图象有一个交点是(,2),则另一个交点坐标是▲ .16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是▲ 米.17.如图,已知A(,1y),B(2,2y)为反比例函数1yx=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是▲ .18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数kyx=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于▲ .(第18题图)三、解答题:(本大题共10小题,共96分,请在答题纸指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.20.(本小题满分10分)如图,已知反比例函数kyx的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.21.(本小题满分10分)如图,△ABC中,CD是边AB上的高,且AD CD CD BD=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.(本小题满分8分)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:100yx=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数100yx=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?23.(本小题满分8分)在平面直角坐标系中△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.24.(本小题满分10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数myx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣mx<0的解集(请直接写出答案).25.(本小题满分8分)如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.26.(本小题满分8分)阅读理解:对于任意正实数a,b,∵(2(a b≥0,∴a﹣ab+b≥0,∴a+b ab,只有当a=b时,等号成立.结论:在a+b ab(a,b均为正实数)中,若ab为定值P,则a+b P当a=b,a+b有最小值P根据上述内容,回答下列问题:(1)若x>0,4xx+的最小值为▲ .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线6yx=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.27.(本小题满分12分)在平面直角坐标系中,函数1y =12x(x >0),2y =3x-(x <0)的图象如图所示,点A ,B 分别是1y =12x(x >0),2y =3x-(x <0)图象上的点,连接OA ,OB .(1)若OA 与x 轴所成的角为45°,求点A 的坐标; (2)如图1,当∠AOB =90°,求OA OB的值;(3)设函数3k y x=(x >0)的图象与1y =12x(x >0)的图象关于x 轴对称,点B 的横坐标为﹣2,过点B 作BE ⊥x 轴,点F 是y 轴负半轴上的一个动点,函数3k y x=(x >0)的图象上是否存在一点G ,使以点O 、F 、G 为顶点的三角形与△OBE 相似?如果存在,求出点F 的坐标,如果不存在,请说明理由.28.(本小题满分12分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C 时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.初三数学阶段性测试参考答案与试题解析一.选择题(共10小题)1.下列图形中不一定是相似图形的是()A.两个等边三角形B.两个等腰直角三角形C.两个长方形D.两个正方形【考点】相似图形.【分析】根据相似图形的定义对各选项分析判断后利用排除法求解.【解答】解:A、两个等边三角形对应边成比例,对应角相等,一定相似,故本选项错误;B、两个等腰直角三角形,顶角都是直角相等,夹边成比例,一定相似,故本选项错误;C、两个长方形,四个角都是直角相等,但对应边不一定成比例,不一定相似,故本选项正确;D、两个正方形对应边成比例,对应角相等,一定相似,故本选项错误.故选C.【点评】本题考查了相似图形的概念,注意从对应边成比例,对应角相等两个方面考虑.2.反比例函数y=的图象是()A.线段 B.直线 C.抛物线D.双曲线【考点】反比例函数的性质.【分析】根据反比例函数的性质可直接得到答案.【解答】解:∵y=是反比例函数,∴图象是双曲线.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1 B.1 C.2 D.3【考点】反比例函数的性质.【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0即可.【解答】解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴1﹣k>0,解得k<1.故选A.【点评】本题主要考查反比例函数的性质的知识点,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.5.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是()A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1【考点】平行线分线段成比例.【分析】证明△AOB∽△DOC,得到AB:CD=AO:DO=1:2,即可解决问题.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴AB:CD=AO:DO=1:2,∴CD:AB=2:1,故选B.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是判断出△AOB∽△DOC.6.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0【考点】反比例函数的性质.【分析】根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.【解答】解:A、(﹣1,2)满足函数的解析式,则图象必经过点(﹣1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.【点评】本题考查了反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.7.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【考点】相似三角形的判定.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.8.如图,A、B两点在双曲线y=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=()A.3 B.4 C.5 D.6【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选D.【点评】本题考查了反比例函数系数k的几何意义,以及反比例函数的图象和性质及任一点坐标的意义,有一定的难度.9.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【考点】相似三角形的判定与性质;函数关系式;全等三角形的判定与性质.【分析】作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠DBE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中,,∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选A.【点评】本题考查了三角形全等的判定和性质,以及平行线的性质,辅助线的做法是解题的关键.10.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF 是矩形,得出S矩形AFOD=3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【解答】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,故选B.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二.填空题(共8小题)11.已知反比例函数y=经过点(1,5),则k= 5 .【考点】反比例函数图象上点的坐标特征.【分析】把点(1,5)代入反比例函数y=中,可直接求k的值.【解答】解:依题意,得x=1时,y=5,所以,k=xy=5.故答案为:5【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特点.关键是设函数关系式,根据已知条件求函数关系式.12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为40 度.【考点】相似三角形的性质.【分析】根据三角形的内角和得到∠ACP=40,然后根据相似三角形的性质即可得到结论.【解答】解:∵∠A=75°,∠APC=65°,∴∠ACP=40,∵△ABC∽△ACP,∴∠B=∠ACP=40°,故答案为:40.【点评】本题考查了相似三角形三角形的内角和,熟记相似三角形的性质是解题的关键.13.点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是y1<y3<y2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,y1),(2,y2),(3,y3)代入函数y=,求出y1,y2,y3的值,并比较出其大小即可.【解答】解:∵点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,∴y1==﹣6,y2==3,y3==2,∵﹣6<2<3,∴y1<y3<y2.故答案为:y1<y3<y2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于.【考点】相似三角形的判定与性质;正方形的性质.【专题】数形结合.【分析】利用两角对应相等易得△AOD∽△EAD,那么=.【解答】解:∵∠ADO=∠ADO,∠DOA=∠DAE=90°,∴△AOD∽△EAD,∴==.故答案为:.【点评】本题考查了相似三角形的判定与应用;把所求的线段的比进行相应的转移是解决本题的关键.15.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是(﹣,﹣2).【考点】反比例函数图象的对称性.【专题】计算题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么(,2)关于原点的对称点为:(﹣,﹣2).故答案为:(﹣,﹣2).【点评】本题考查反比例函数图象的中心对称性,较为简单,容易掌握.16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8 米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.17.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(,0).【考点】反比例函数图象上点的坐标特征.【分析】先求出A、B的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0);故答案为:(,0).【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于﹣.【考点】反比例函数系数k的几何意义.【分析】首先得出△AEB≌△GBE,再利用四边形BCDE的面积等于△ABE面积的5倍,进而得出AE与BC之间的关系,由△BCF∽△EAO,得出C点坐标,进而求出k的值.【解答】解:如图,作CF⊥y轴于F,作EG⊥BC于G,∵∠EGB=∠EAB=∠ABG=90°,∴四边形ABGE是矩形,在△AEB和△GBE中,,∴△AEB≌△GBE(SSS),∵A、B的坐标分别是A(﹣1,0)、B(0,﹣2),∴AB直线解析式为:y=kx+b,故将两点代入得出:,解得:,故直线AB解析式为:y=﹣2x﹣2,∵AD⊥AB,AO⊥BE,∴OA2=OE•OB,即12=OE×2,∴OE=,∴E(0,)∵S四边形BCDE=5S△AEB∴S四边形BCDE=5S△GBE∴S四边形CDEG=4S△GBE∴CG=2BG=2AE=2=,∴BG=,∵∠AEO=∠CBF,∠EOA=∠CFB=90°,∴△BCF∽△EAO,∴==,∵AE=BG=,BC=BG+CG=+=∴∴===3,∴BF=3EO=,CF=3AO=3,∴OF=OB﹣BF=2﹣=,设C的坐标为(x,y)则x=3,y=﹣.故k=xy=3×(﹣)=﹣.故答案为:﹣.【点评】本题考查了反比例函数的综合运用,通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标是解题关键.三.解答题(共10小题)19.如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.【考点】相似多边形的性质.【专题】计算题.【分析】由相似多边形的性质可得,AD:AB=A′D′:A′B′,∠C=∠C′,根据图中表明的数字求解即可.【解答】解:由题意得:,∴x=18,∵∠C′=360°﹣(63°+129°+78°)=90°,四边形ABCD∽四边形A′B′C′D′,∴∠C=∠C′=90°,即α=90°.【点评】本题考查相似多边形的性质:相似多边形的对应角相等,对应边成比例.20.如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征.【分析】(1)根据待定系数法即可求得;(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据0<1<3,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.【解答】解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.【点评】本题考查了待定系数法求解析式,反比例函数的性质等,熟练掌握反比例函数的性质是解题的关键.21.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.22.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【考点】反比例函数的应用.【专题】应用题.【分析】函数关系式y=中,y代表舒适度指数,x(分)代表等待时间.(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.【解答】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是根据函数关系及题目的已知条件,分别求解,要注意自变量和函数代表的实际意义.23.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.24.如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣<0的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.【解答】解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),∴m=1×(﹣4)=﹣4,∴y=﹣,将x=﹣4,y=n代入反比例解析式得:n=1,∴A(﹣4,1),∴将A与B坐标代入一次函数解析式得:,解得:,∴y=﹣x﹣3;(2)在直线y=﹣x﹣3中,当y=0时,x=﹣3,∴C(﹣3,0),即OC=3,∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;(3)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.【考点】平行线分线段成比例;一元二次方程的应用.【分析】(1)由DC∥AP,得到=,代入数据求得AP=90,于是得到结论;(2)设DQ=x米,则AQ=x+20,根据平行线分线段成比例定理得到=,得到方程=,求出AP=,解一元二次方程即可得到结论.【解答】解:(1)∵DC∥AP,∴=,∴=,∴AP=90,∴S△APQ=AQ•AP=1350米2;(2)设DQ=x米,则AQ=x+20,∵DC∥AP,∴=,∴=,∴AP=,由题意得××(x+20)=1600,化简得3x2﹣200 x+1200=0,解x=60或.经检验:x=60或是原方程的根,∴DQ的长应设计为60或米.【点评】本题考查了平行线分线段成比例,求三角形的面积,一元二次方程的应用,熟练掌握平行线分线段成比例定理是解题的关键.26.阅读理解:对于任意正实数a,b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值P,则a+b≥2,当a=b,a+b有最小值2.根据上述内容,回答下列问题:(1)若x>0,x+的最小值为 4 .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线y=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.【考点】反比例函数综合题.【专题】综合题.【分析】(1)利用在a+b≥2得到x+≥2,即可得到x+的最小值;(2)设p(x,),则C(x,0),D(0,),则可表示出四边形ABCD面积S=AC•DB=(x+2)(+3),变形得S=(x+)+6,利用前面的结论可得四边形ABCD面积的最小值为12.此时x=,则x=2,得到OA=OC=2,OD=OB=3,利用平行四边形的判定定理可得四边形ABCD是平行四边形,而AC⊥BD,再根据菱形的判定定理得到四边形ABCD是菱形.【解答】解:(1)4;(2)设P(x,),则C(x,0),D(0,),∴四边形ABCD面积S=AC•DB=(x+2)(+3)=(x+)+6,由(1)得若x>0,x+的最小值为4,∴四边形ABCD面积S≥×4+6=12,∴四边形ABCD面积的最小值为12.此时x=,则x=2,∴C(2,0),D(0,3),∴OA=OC=2,OD=OB=3,∴四边形ABCD是平行四边形.又AC⊥BD,∴四边形ABCD是菱形.【点评】本题考查了阅读理解题的解题方法:利用题目中给的方法或结论解决问题.也考查了利用坐标表示线段长以及平行四边形和菱形的判定方法.27.在平面直角坐标系中,函数y1=(x>0),y2=(x<0)的图象如图所示,点A,B分别是y1=(x>0),y2=(x<0)图象上的点,连接OA,OB.(1)若OA与x轴所成的角为45°,求点A的坐标;(2)如图1,当∠AO B=90°,求的值;(3)设函数y3=(x>0)的图象与y1=(x>0)的图象关于x轴对称,点B的横坐标为﹣2,过点B作BE⊥x轴,点F是y轴负半轴上的一个动点,函数y3=(x>0)的图象上是否存在一点G,使以点O、F、G为顶点的三角形与△OBE相似?如果存在,求出点F的坐标,如果不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)设A(a,b),根据反比例函数图象上点的坐标特征,得出ab=12,进而得出a=b=2,就可求得A的坐标;(2)过A、B分别作y轴的垂线,垂足为C、D,通过证得△AOC∽△OBD,然后根据相似三角形的性质即可求得;(3)分四种情况分别讨论求得.【解答】解:(1)设A(a,b),∵OA与x轴所成的角为45°,∴a=b,∵点A在y1=(x>0)图象上,∴ab=12,。

九年级第一学期阶段性测评数学试卷及答案 初三数学期中试题与解析

九年级第一学期阶段性测评数学试卷及答案 初三数学期中试题与解析

2020-2021 学年第一学期九年级阶段性测评一、选择题(每小题2 分,共20 分)数学试卷1. 若a=c= 2(b +d≠0) ,则a +c是()b d b +dA. 1B. 2C.12D. 4 【考点】比例的性质【难度星级】★【答案】B【解析】a = 2b, c = 2d ,∴a +c=2b + 2d= 2 .b +d b +d2.将方程(x +1)(2x - 3) = 1 化成“ax2 +bx +c = 0 ”的形式,当a=2 时,则b,c 的值分别为()A. b =-1,c =-3 C. b =-1,c =-4B. b =-5,c =-3 D. b = 5,c =-4【考点】一元二次方程的一般式【难度星级】★【答案】C【解析】化为一般式得2x2 -x - 4 = 0 ,所以b =-1, c =-4 .3.矩形、菱形、正方形的对角线都具有的性质是()A.对角线相等B. 对角线相互平分C. 对角线相互垂直D. 对角线互相垂直平分【考点】特殊平行四边形对角线性质【难度星级】★【答案】B【解析】矩形,菱形,正方形均为平行四边形,所以对角线互相平分.4.如图,一组互相平行的直线a、b、c 分别与直线l1,l2 交于A、B、C、D、E、F,直线l1,l2 交于点O,则下列各式不正确的是()A.AB=DEBC EFB.AB=DEAC DFC.EF=DEBC ABD.OE=EBEF FC【考点】平行线分线段成比例定理【难度星级】★★【答案】D【解析】D 选项中OE=EB. OF FC5.一元二次方程x2 + 6x + 9 = 0 的根的情况是()A.有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根【考点】根的判别式【难度星级】★【答案】A【解析】∆= 62 - 4 ⨯1⨯ 9 = 0 ,所以有两个相等实根.6.小明要用如图两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时所指的颜色恰好配成紫色的概率为()A.1 6B.1 4C.1 3D.1 2【考点】概率统计【难度星级】★★【答案】C【解析】由列表或树状图可知,总共有6 种等可能的情况,其中能配成紫色(即一蓝一红)的情况有2种,所以P =2=1.6 37.配方法解方程x2 - 8x + 5 = 0 ,将其化为(x +a)2 =b 的形式,正确的是()A. (x + 4)2 = 11B. (x + 4)2 = 21C. (x - 8)2 =11D. (x - 4)2 = 11【考点】配方法【难度星级】★【答案】D【解析】x2- 8x + 5 = 0 ⇒x2- 8x +16 = 11 ⇒(x - 4)2= 11.8.如图,△ABC,点P 是AB 边上的一点,过P 作PD∥BC,PE∥AC,分别交AC、BC 于D、E,连接CP,若四边形CDPE 是菱形,则线段CP 应满足的条件是()A.CP 平分∠ACBB.CP⊥ABC.CP 是AB 边上的中线D.CP=AP【考点】菱形的判定【难度星级】★★【答案】A【解析】由题意知,四边形CDPE 为平行四边形;当CP 平分∠ACB 时,∠DCP =∠ECP =∠DPC ,所以DC =DP ;所以四边形CDPE 为菱形.9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2 米,宽为1 米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程()A. 90% ⨯ (2 +x)(1 +x) = 2 ⨯1 C. 90% ⨯ (2 - 2x)(1 - 2x) = 2 ⨯1 【考点】一元二次方程的面积问题【难度星级】★★【答案】B B. 90% ⨯ (2 + 2x)(1 + 2x) = 2 ⨯1 D. (2 + 2x)(1 + 2x) = 2 ⨯1⨯90%【解析】读懂题意,图案加上四周的白边才构成了宣传版面.10.如图,在矩形ABCD 内有一点F,FB 与FC 分别平分∠ABC 和∠BCD,点E 为矩形ABCD 外一点,连接BE、CE,现添加以下条件:①BE∥CF,CE∥BF;②BE=CE,BC=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF。

九年级数学阶段性检测试卷参考答案

九年级数学阶段性检测试卷参考答案

九年级数学阶段性检测试卷参考答案Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】九年级数学阶段性检测试卷参考答案评分点()一、 填空题(24分)<x<7 二、选择题(18分)13. B 14. B 15. D 16. C 17. C 18. B 三、解答题(78分) 19. (6分)评分要点:BC=EF (2分)△ABC ≌△DEF (4分)AB ∥ED (6分)------------------------------------------------------------------------------------------------------------------------- 20. (8分)评分要点:(1)证明(略)(4分)(2)证明(略)(8分)------------------------------------------------------------------------------------------------------------------------- 21. (8分)(1) 9 , 9 ;(2分)(2)2甲S =32,2乙S =34(6分) (3)因为7==乙甲x x ,2甲S <2乙S (7分)所以推荐甲参加全国比赛更合适(8分)------------------------------------------------------------------------------------------------------------------------ 22. (8分) 评分要点:(1)证明(略)(4分)(2)点O 是在∠BAC 的角平分线上(5分) 证明(略)(8分)--------------------------------------------------- 23. (8分)(1)连接MC 、MD (1分)利用直角三角形斜边上的中线等于斜边的一半可证:MC =MD (3分)因N 是CD 的中点,所以MN 垂直CD (5分) (2)MN =3(8分) 24. (8分)Q 1(6,0),Q 2(5,0),Q 3(-5,0),Q 4(625,0)(每种情况2分,其中位置正确1分,坐标正确1分)--------------------------------------------------------------------------------------------------------------------- 25. (10分) 评分要点:(1)B’D 的长为3(3分) (2)证明过程(略)(8分) (3)25(10分) --------------------------------------------------------------------------------------------------------------------- 26. (10分) (1)5(2分) (2)11(5分)(3)四边形PQCD 的面积有最大值(6分) 设运动时间为t ,四边形PQCD 的面积为S , 则S=7(15+x )(7分)由题意:x 的取值范围是0<x ≤12(9分) 所以四边形PQCD 的面积有最大值为189(10分)(第23题)NMDCBA(第25题)PEB 'DC B AQPDCBA(第26题)----------------------------------------------------27. (12分)(1)证明(略)(4分)(2)作图(略)(6分)(3)思路:猜想:四边形CEFK是正方形(7分)评分点:可证CK∥DG,CK=DG.(8分)因正方形DEFG,所以EF∥DG,且EF=DG(9分)所以EF∥CK,且EF=CK(10分)因此四边形CEFK是平行四边形(4)n2(12分)AB CD G(第27题)。

初三数学段考试题及答案

初三数学段考试题及答案

初三数学段考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0B. 1C. πD. 4答案:C2. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个数的绝对值是它本身,那么这个数:A. 可以是正数或负数B. 可以是正数或0C. 可以是负数或0D. 只能是正数答案:B4. 以下哪个选项是二次根式?A. √2B. √(-1)C. √(0)D. √(2/3)答案:A5. 一个三角形的三个内角之和是:A. 90°B. 180°C. 270°D. 360°答案:B6. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x答案:A7. 一个数的立方根是它本身,那么这个数可以是:A. 1B. -1C. 0D. 所有选项答案:D8. 以下哪个选项是不等式的解?A. x > 5B. x ≤ 5C. x < 5D. x = 5答案:A9. 一个圆的周长是它的直径的:A. 2倍B. π倍C. 4倍D. 2π倍答案:B10. 以下哪个选项是二次方程?A. x^2 + 2x + 1 = 0B. x + 2 = 0C. x^3 - 8 = 0D. 2x + 1 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的平方是25,那么这个数是_____。

答案:±512. 如果一个角是直角的一半,那么这个角的度数是_____。

答案:45°13. 一个等腰三角形的底角是45°,那么顶角的度数是_____。

答案:90°14. 一个数的倒数是1/3,那么这个数是_____。

答案:315. 如果一个数的绝对值是5,那么这个数可以是_____或_____。

答案:5,-5三、解答题(每题10分,共50分)16. 解方程:2x - 1 = 9。

江苏省南京市南京市钟英中学2023~2024学年九年级上学期10月月考数学试卷(含答案)

江苏省南京市南京市钟英中学2023~2024学年九年级上学期10月月考数学试卷(含答案)

(第6题)九年级阶段性练习数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.下列方程中,是一元二次方程的是(▲)A .x ﹣1x=0B .3x 2=1C .2x ﹣y =5D .y 2+x +2=02.平面内,⊙O 的直径为3,OP =2,则点P 在(▲)A .⊙O 内B .⊙O 上C .⊙O 外D .以上都有可能3.把方程x 2﹣10x ﹣5=0变形为(x +h )2=k 的形式可以是(▲)A .(x ﹣5)2=30B .(x ﹣5)2=5C .(x +5)2=5D .(x +5)2=304.x =1是关于x 的一元二次方程x 2+ax +2b =0的解,则a +2b =(▲)A .﹣1B .1C .2D .﹣25.已知x 1、x 2是关于x 的方程x 2﹣2x ﹣m 2=0的两根,下列结论中不一定正确的是(▲)A .x 1+x 2>0B .x 1•x 2<0C .x 1≠x 2D .方程必有一正根6.如图,在矩形ABCD 中,AB =5,BC =4,以CD 为直径作⊙O .将矩形ABCD 绕点C 旋转,使所得矩形A 'B 'CD '的边A 'B '与⊙O 相切,切点为E ,边CD '与⊙O 相交于点F ,过点O ,E 的直线交CF 于点G ,则CF 的长为(▲)A .4.5B .4C .3.5D .3二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7.如图,⊙O 的半径OA 与弦AB 相等,C 点为⊙O 上一点,则∠ACB的度数是▲°.8.若关于x 的一元二次方程kx 2+2x -1=0有实数根,则k 的取值范围是▲.9.过三点A (2,2),B (6,2),C (2,4)的圆的圆心坐标为▲.10.若关于x 的方程ax 2+bx +c =0的解为x 1=﹣1,x 2=3,则方程a (x ﹣1)2+b (x ﹣1)+c =0的解为▲.11.如图,AD 是半圆的直径,O 为圆心,B 、C 是半圆上的两点,∠ABC =110°,则∠CAD =▲°.12.如图,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的半径为▲.13.如图,EB ,EC 是⊙O 的两条切线,与⊙O 相切于B ,C 两点,点A ,D 在圆上.若∠E =46°,∠DCF =32°,则∠A 的度数是▲°.14.如图,AB 是⊙O 的弦,点C 在过点B 的切线上,OC ⊥OA ,OC 交AB 于点P .若∠BPC =70°,则∠ABC 的度数等于▲°.15.如图,AB 是⊙O 的弦,点C 在AB ⌒上,点D 是AB 的中点.将AC ⌒沿AC 折叠后恰好经过点D ,若⊙O 的半径为25,AB =8.则AC 的长是▲.16.如图,以G (0,2)为圆心,半径为4的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,CF ⊥AE 于F ,当点E 在⊙O 的运动过程中,线段FG 的长度的最小值为▲.(第11题)(第13题)(第14题)(第15题)(第16题)(第7题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2﹣2x ﹣1=0;(2)(x ﹣1)(x +3)=5(x ﹣1).18.(7分)如图,在⊙O 中,弦AC ,BD 相交于点E ,AB ⌒=BC ⌒=CD ⌒.(1)求证AC =BD ;(2)连接CD ,若∠BDC =30°,则∠BEC 的度数为▲°.19.(8分)已知关于x 的一元二次方程x 2﹣2x ﹣3m 2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α﹣β=﹣4,求m 的值.20.(7分)在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点.(1)如图①,若大圆、小圆的半径分别为13和7,AB =24,则CD 的长为▲.(2)如图②,大圆的另一条弦EF 交小圆于G ,H 两点,若AB =EF ,求证CD =GH .①OBCADFHE G ②OBCAD(第20题)(第18题)21.(8分)如图,I 为△ABC 内一点,AI 的延长线交△ABC 的外接圆于点D .若DB =DI ,CD ⌒=BD ⌒.求证:I 为△ABC 的内心.22.(8分)某单位组织员工前往南京保利大剧院欣赏表演.表演前,主办方工作人员准备利用26米长的墙为一边,用48米隔栏绳为另三边,设立一个面积为300平方米的长方形等候区,如图,为了方便群众进出,在两边空出两个各为1米的出入口(出入口不用隔栏绳).那么围成的这个长方形的边长是多少米呢?23.(8分)如图,已知A 是直线l 外一点.用两种不同的方法作⊙O ,使⊙O 过A 点,且与直线l 相切.(要求:用直尺和圆规作图,保留作图痕迹,写出必要的文字说明........)(第21题)(第22题)AlAl24.(8分)如图,在Rt △ABC 中,∠ACB =90°,点D 在AC 边上,以AD 为直径作⊙O 交AB 于点E ,连接CE ,且CB =CE .(1)求证:CE 是⊙O 的切线;(2)若CD =2,AB =45,求⊙O 的半径.25.(8分)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如,方程x 2﹣4x +3=0的两个根是1和3,则这个方程就是“三倍根方程”.(1)下列方程是三倍根方程的是▲;①x 2﹣3x +2=0;②x 2﹣3x =0;③x 2﹣8x +12=0.(2)若关于n 的方程n 2﹣8n +c =0是“三倍根方程”,则n =▲;(3)若nx 2﹣(3n +m )x +3m =0(n ≠0)是关于x 的“三倍根方程”,求代数式2mnm n+-的值.(第24题)26.(8分)某工厂有甲乙两个车间,甲车间生产A产品,乙车间生产B产品.去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随看5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%,B产品产量将在去年的基础上减少a%.但B产品的销售单价将提高3a%.则今年A,B两种产品全部售出后总销售额将在去年的基础上增加2925a%.求a的值.27.(10分)如图,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半径长为1,已知点P是△ABC边上一动点(可以与顶点重合).(1)若点P到⊙C的切线长为3,则AP的长度为▲;(2)若点P到⊙C的切线长为m,求点P的位置有几个?(直接写出结果)(第27题)数学试卷第1页(共8页)九年级阶段性练习数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.308.k ≥-1且k ≠09.(4,3)10.x 1=4,x 2=011.2012.2013.99°14.70°15.6216.23-2三、解答题(本大题共11小题,共88分)17.(本题8分)(1)解:∵a =1,b =-2,c =-1,∴△=(-2)2-4×1×(-1)=8>0.······················································1分则x =-b ±b 2-4ac2a =2±82×1=1±2.···················································3分即x 1=1+2,x 2=1-2.·······································································4分(2)解:(x ﹣1)(x +3)=5(x ﹣1)(x ﹣1)(x +3)﹣5(x ﹣1)=0,(x ﹣1)(x +3﹣5)=0,(x ﹣1)(x ﹣2)=0,x ﹣1=0或x ﹣2=0,···················································································6分x 1=1,x 2=2;···························································································8分18.(本题7分)(1)证明:∵AB ⌒=BC ⌒=CD ⌒,∴AB ⌒+BC ⌒=CD ⌒+BC ⌒,题号123456答案BCAABB数学试卷第2页(共8页)∴⌒ABC =⌒DCB ,∴AC =BD .··································································································4分(2)答案为:120.……………………………………………….………………..……7分19.(本题8分)(1)证明:∵a =1,b =﹣2,c =﹣3m 2,∴Δ=(﹣2)2﹣4×1•(﹣3m 2)=4+12m 2>0,∴方程总有两个不相等的实数根;…………………………….……………………….4分(2)解:由题意得:24αβαβ+=⎧⎨-=-⎩解得:13αβ=-⎧⎨=⎩,…………………………….…………………………………….…….6分∵αβ=﹣3m 2,∴﹣3m 2=﹣3,∴m =±1,∴m 的值为±1.…………………………………………………………………..…….8分20.(本题7分)解:(1)46;……………….…………………………………………………………….3分(2)如图②,过点O 作OM ⊥AB ,ON ⊥EF ,垂足分别为M 、N ,连接OE 、OA 、GO 、CO.∵OM ⊥AB ,ON ⊥EF,∴EN =12EF ,AM =12AB ,∵AB =EF ,数学试卷第3页(共8页)∴EN =AM ,∵OE =OA ,∴△ENO ≌△AMO (HL)………………………………………………………..………5分∴OM =ON ,∵GO =CO ,∴△GON ≌△COM (HL)∴GN =CM ,∵OM ⊥CD ,ON ⊥GH,∴CD =2CM ,GH =2GN ,∴CD =GH .……………….…………………………………………………………….7分21.(本题8分)若DB =DI ,CD ⌒=BD ⌒∵CD ⌒=BD ⌒,∴∠BAD =∠CAD ,即AD 平分∠BAC .…………………………………………….….2分∵BD =DI ,∴∠IBD =∠BID .……………………………………….………………………..….….4分∵∠BID 是△ABI 的一个外角,∴∠BID =∠BAD +∠ABI .∵∠IBD =∠DBC +∠CBI ,………………….……………………….…………….….….6分∴∠ABI =∠CBI ,即BI 平分∠ABC ,∴I 为△ABC 的内心.…………………………………………………...…….……..….8分22.(本题8分)解:设长方形等候区的边AB 为x 米,···································································1分由题意得:x (48﹣2x +2)=300,………………………………………………………….4分整理,得x 2﹣25x +150=0,解得x1=10,x2=15,………………………………………………………………….……7分当x=10时,BC=30>26;当x=15时,BC=20<26,∴x=10不合题意,应舍去.答:长方形等候区的边AB为15米,BC为20米.………………………………..…….8分23.(本题8分)方法一:过点A作l的垂线,垂足为P,作AP的垂直平分线,与AP的交点为圆心O,以O为圆心,OA(或OP)为半径,作⊙O; (4)分方法二:取l上任意一点Q,作出AQ的垂直平分线,过点Q作l的垂线,与垂直平分线的交点为圆心O,以O为圆心,OA(或OQ)为半径,作⊙O.………………….……………………8分24.(本题8分)(1)证明:如图,连接OE,DE,∵∠ACB=90°,∴∠A+∠B=90°,∵AD是⊙O的直径,∴∠AED=∠DEB=90°,∴∠DEC+∠CEB=90°,∵CE=BC,∴∠B=∠CEB,数学试卷第4页(共8页)∴∠A=∠DEC,∵OE=OD,∴∠OED=∠ODE,∵∠A+∠ADE=90°,∴∠DEC+∠OED=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线;.…………………………………………4分(2)解:在Rt△ABC中,∠ACB=90°,CD=2,AB=45,BC=CE,设⊙O的半径为r,则OD=OE=r,OC=r+2,AC=2r+2,∴AC2+BC2=AB2,∴(2r+2)2+BC2=(45)2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+BC2=(r+2)2,∴BC2=(r+2)2﹣r2,∴(2r+2)2+(r+2)2﹣r2=(45)2,解得r=3,或r=﹣6(舍去).∴⊙O的半径为3..…………………………………………………………………..…8分25.(本题8分)解:(1)③;…………………………………………………………………………..…2分(2)设方程的两根为a,3a,根据根与系数的关系得a+3a=m+n,a•3a=mn,即m+n=4a,mn=3a2,所以(2)设方程x2﹣8x+c=0的两根为t,3t,根据根与系数的关系得t+3t=8,t•3t=c,解得t=2,所以c =3×22=12;故答案为:12;…………………………………………………..……………………..…4分(3)由一元二次方程nx 2﹣(3n +m )x +3m =0得(nx ﹣m )(x ﹣3)=0,∴x =m n或x =3,∵一元二次方程nx 2﹣(3n +m )x +3m =0(n ≠0)是“三倍根方程”,∴m n =9或m n =1,当m n =9时,m =9n ,∴2m n m n +-=1017…….………………………………………………….…………..…6分当m n =1时,m =n ,∴2m n m n +-=2,综上所述,2m n m n +-的值为1017或2.………………………….……………………..…8分26.(本题8分)解:解:(1)设A 产品的销售单价为x 元,B 产品的销售单价为y 元,依题意得:100500x y x y =+⎧⎨+=⎩,解得:300200x y =⎧⎨=⎩,答:A 产品的销售单价为300元,B 产品的销售单价为200元.………………..…3分(2)设去年每个车间生产产品的数量为t 件.依题意得:300(1+a %)t +200(1+3a %)(1﹣a %)t =500t (1+2925a %),……..…5分设a %=m ,则原方程可化简为5m 2﹣m =0,解得:m1=15,m2=0(不合题意,舍去),∴a=20.答:a的值为20.………………………………………………………………………8分27.(本题10分)解:(1)由题意切线长为3,半径为1,可得PC=2,所以点P只能在边BC或边AC 上.如图1中,连接PA.在Rt△PAC中,PA==25.如图2中,PA=AC=PC=4﹣2=2,综上所述,满足条件的PA的长为25或2.故答案为25或2.……………………….……………….……….………………….3分(2)如图3中,当CP⊥AB时.易知CP=125 AC BCAB∙=,此时切线长PE5,如图4中,当点P与点B重合时,切线长PE22,如图5中,当点P与点A重合时,切线长PE=15,观察图形可知:1当m=15时,点P的位置有1个位置.……………………….……………….4分2当0<m<5或22<m<15时,点P的位置有2个位置;…………….6分3当m=22或m=1195时,点P的位置有3个位置;……………………..….8分4当1195<m<22时,点P的位置有4个位置;…………………………….10分(分类①得1分,②③④各得2分,若回答范围不全只得1分,范围写错不得分)。

初三数学试卷试题及答案

初三数学试卷试题及答案

初三数学试卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 2D. -1答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 计算下列哪个表达式的结果为0?A. 3+2B. 4-4C. 5×0D. 8÷8答案:C4. 以下哪个图形不是轴对称图形?A. 圆形B. 等边三角形C. 正方形D. 平行四边形答案:D5. 一个等腰三角形的两个底角相等,如果一个底角为40°,那么顶角的度数为:A. 100°B. 80°C. 60°D. 40°答案:B6. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 0答案:C7. 以下哪个选项是不等式2x-3>0的解?A. x=1B. x=2C. x=0D. x=-1答案:B8. 一个长方体的长、宽、高分别为3cm、2cm、1cm,那么它的体积是:A. 6cm³B. 5cm³C. 12cm³D. 4cm³答案:A9. 一个圆的半径为5cm,那么它的周长是:A. 10π cmB. 5π cmC. 25π cmD. 15π cm答案:C10. 计算下列哪个表达式的结果为1?A. (-2)²B. (-1)³C. 2²D. 3²答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是_________。

答案:±512. 一个数的立方等于-8,这个数是_________。

答案:-213. 一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长是_________。

答案:5cm14. 一个等腰三角形的顶角为120°,那么它的底角是_________。

答案:30°15. 一个数的倒数是2,这个数是_________。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

江苏省江阴市文林中学2023-2024学年九年级上学期10月阶段性测试数学试卷(含解析)

江苏省江阴市文林中学2023-2024学年九年级上学期10月阶段性测试数学试卷(含解析)

初三数学阶段性测评卷班级姓名学号一、选择题(本大题共4个小题,每小题5分,共20分)1.下列方程是一元二次方程的是 A.B.C.D.2.下列方程中,没有实数根的是 A.B.C.D.3.若,相似比为,则与的周长比为 A.B.C.D.4.如图,对角线与交于点,且,,在延长线上取一点,使,连接交于,则的长为 A.B.C.D.1二、填空题(本大题共5小题,每小题4分,共20分)5.若,则 .6.若、是方程的两实根,则的值等于 .7.已知、是方程的两个实数根,则的值为 .8.如图,在中,为上一点,在下列四个条件中:①;②;③;④,能满足与相似的条件是 (只填序号).第4题图第8题图第9题图9.如图,中,点、分别是边、的中点,、分别交对角线于点、,则 .三、解答题(本大题共6小题,共60分)()20x x+=320x x-=10xy-=212xx+=()220x x-=2210x x--=2210x x-+=2220x x-+=ABC DEF∆∆∽1:2ABC∆DEF∆()2:11:24:11:4ABCDY AC BD O3AD=5AB=AB E 25BE AB=OE BC F BF()233456234x y z==≠3x yz+=1x2x2330x x+-=1221x xx x+αβ2210x x+-=23ααβ++ABC∆P AB ACP B∠=∠APC ACB∠=∠2AC AP AB=⋅AB CP AP CB⋅=⋅APC∆ACB∆ABCDY E F AD CD EC EF BD H G ::DG GH HB=10.(12分)用指定方法解下列一元二次方程(1)(直接开平方法) (2)(配方法)(3)(公式法) (4)(因式分解法)11.(8分)已知线段a 、b 、c,且.(1)求的值;(2)若线段a 、b 、c 满足a +b +c =60,求a 、b 、c 的值.12.(8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有 人,请将两幅统计图补充完整;(2)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?13.(10分)如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,BE ⊥EF .求证:23(21)120x --=22470x x --=210x x +-=22(21)0x x --=543c b a ==bb a +A B C D E x A 10090≤≤x B 9080<≤x C 8070<≤x D 7060<≤x E 60)x <(1)△ABE∽△DEF;(2)若AB=6,AE=9,DE=2,求EF的长.14.(10分)某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?15.(12分)【教材呈现】下面是华师版教材九年级上册52页的部分内容:我们可以发现,当两条直线与一组平行践相交时,所截得的线段存在一定的比例关系:.这就是如下的基本事实:两条直线被一组平行线所截,所傅的对应线段成比例,(简称“平行钱分线段成比例“【问题原型】如图①,中,点为边上的点,过点作交为边于点,点在边上,直线交于点,交于点.若,,,则 .【结论应用】(1)如图②,中,点在的延长线上,直线交于点交于点.求证:;(2)如图③,中,,,,若、分别是边、的中点,连接,点是边上任意一点,连结、分别交于点、,则周长的最小值是 .AD FE AB EC=)ABCD Y E AB E //EF AD CD F G AD GH BC H EF O 2AE =3EB = 1.8GO =OH =ABCD Y G DA GC AB E BD O GO CO CO EO=ABCD Y 4AB =6BC =60ABC ∠=︒E F AB CD EF G AD GB GC EF M N GMN ∆参考答案与试题解析一.选择题(共4小题)1.下列方程是一元二次方程的是 A .B .C .D .【分析】利用一元二次方程的定义,逐一分析各选项中的方程,即可得出结论.【解答】解:.方程是一元二次方程,选项符合题意;.方程是一元三次方程,选项不符合题意;.方程是二元二次方程,选项不符合题意;.方程是分式方程,选项不符合题意.故选:.【点评】本题考查了一元二次方程的定义,牢记“只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程”是解题的关键.2.下列方程中,没有实数根的是 A .B .C .D .【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:、△,方程有两个不相等的实数根,所以选项错误;、△,方程有两个不相等的实数根,所以选项错误;、△,方程有两个相等的实数根,所以选项错误;、△,方程没有实数根,所以选项正确.故选:.【点评】本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.3.若,相似比为,则与的周长比为 A .B .C .D .【分析】根据相似三角形的周长的比等于相似比得出.()20x x +=320x x -=10xy -=212x x +=A 20x x +=A B 320x x -=B C 10xy -=C D 212x x +=D A ()220x x -=2210x x --=2210x x -+=2220x x -+=A 2(2)41040=--⨯⨯=>A B 2(2)41(1)80=--⨯⨯-=>B C 2(2)4110=--⨯⨯=C D 2(2)41240=--⨯⨯=-<D D 20(0)ax bx c a ++=≠24b ac =-0>0=0<ABC DEF ∆∆∽1:2ABC ∆DEF ∆()2:11:24:11:4【解答】解:,与的相似比为,与的周长比为.故选:.【点评】本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.4.如图,对角线与交于点,且,,在延长线上取一点,使,连接交于,则的长为 A.B .C .D .1【分析】首先作辅助线:取的中点,连接,由平行四边形的性质与三角形中位线的性质,即可求得:与的值,利用相似三角形的对应边成比例即可求得的值.【解答】解:取的中点,连接,四边形是平行四边形,,,,,,,,,,,,,,故选:.ABC DEF ∆∆Q ∽ABC ∆DEF ∆1:2ABC ∴∆DEF ∆1:2B ABCD Y AC BD O 3AD =5AB =AB E 25BE AB =OE BC F BF ()233456AB M OM EFB EOM ∆∆∽OM BF AB M OM Q ABCD //AD BC ∴OB OD =////OM AD BC ∴1133222OM AD ==⨯=EFB EOM ∴∆∆∽∴BF BE OM EM=5AB =Q 25BE AB =2BE ∴=52BM =59222EM ∴=+=∴23922BF =23BF ∴=A【点评】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.二.填空题(共5小题)5.若,则 .【分析】设,则,,,再代入即可解答.【解答】解:设,则,,,.故答案为:.【点评】本题考查了比例的性质,解决本题的关键是设,求出,,.6.若、是方程的两实根,则的值等于 .【分析】根据一元二次方程的根与系数的关系得到,,然后变形原代数式为原式,再代值计算即可.【解答】解:、是方程的两实根,,.原式.故答案为:.【点评】本题考查了一元二次方程的根与系数的关系:若方程两根为,,则,.7.已知、是方程的两个实数根,则的值为 .0234x y z ==≠3x y z +=114234x y z a ===2x a =3y a =4z a =234x y z a ===2x a =3y a =4z a =3291111444x y a a a z a ++===114234x y z a ===2x a =3y a =4z a =1x 2x 2330x x +-=1221x x x x +5-20ax bx c ++=123x x +=-123x x =-g 2221212121212()2x x x x x x x x x x ++-==g g 1x Q 2x 2330x x +-=123x x ∴+=-123x x =-g ∴2221212121212()29653x x x x x x x x x x ++-+====--g g 5-20ax bx c ++=1x 2x 12b x x a +=-12c x x a=g αβ2210x x +-=23ααβ++1-【分析】根据方程的根的定义,以及根与系数之间的关系,即可得到,,根据即可求解.【解答】解:,是方程的两个实数根,,..故答案为:.【点评】本题考查了根与系数的关系:若,是一元二次方程的两根时,,.也考查了一元二次方程根的定义.8.如图,在中,为上一点,在下列四个条件中:①;②;③;④,能满足与相似的条件是 ①,②,③ (只填序号).【分析】本题主要应用两三角形相似的判定定理,做题即可.【解答】解:前三项正确,因为他们分别符合有两组角对应相等的两个三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似.故相似的条件是①,②,③.【点评】考查对相似三角形的判定方法的掌握情况.9.如图,中,点、分别是边、的中点,、分别交对角线于点、,则 .【分析】连接交于,根据相似三角形的判定与性质以及三角形中位线定理进行解答即可.【解答】解:连接交于,如图所示:2210αα+-=2αβ+=-2232ααβαααβ++=+++αQ β2210x x +-=2210αα∴+-=2αβ+=-221αα∴+=2232121ααβαααβ∴++=+++=-=-1-1x 2x 20(0)ax bx c a ++=≠12b x x a +=-12c x x a=ABC ∆P AB ACP B ∠=∠APC ACB ∠=∠2AC AP AB =⋅AB CP AP CB ⋅=⋅APC ∆ACB ∆ABCD Y E F AD CD EC EF BD H G ::DG GH HB =3:1:8AC BD O AC BD O四边形是平行四边形,,,,,,,点、分别是边、的中点,,是的中位线,,,,,是的中位线,,,,,,,,;故答案为:.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理、平行四边形的性质等知识;熟练掌握平行四边形的性质和三角形中位线定理,证明三角形相似是解题的关键.三.解答题(共6小题)10.用指定方法解下列一元二次方程(1)(直接开平方法)(2)(配方法)(3)(公式法)(4)(因式分解法)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用配方法求出解即可;Q ABCD OA OC ∴=OB OD =AD BC =//AD BC BCH DEH ∴∆∆∽∴DH DE HB BC=Q E F AD CD 2BC AD DE ∴==EF ACD ∆∴12DH DE HB BC ==//EF AC 12EF AC OA OC ===DG OG ∴=EG AOD ∆EGH COH ∆∆∽1122EG OA OC ∴==12GH EG OH OC ==2OH GH ∴=3DG OG GH ==6OB OD GH ==8HB GH ∴=::3:1:8DG GH HB ∴=3:1:823(21)120x --=22470x x --=210x x +-=22(21)0x x --=(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.【解答】解:(1),移项,得,两边都除以3,得,两边开平方,得,移项,得,解得:,;(2),两边都除以2,得,移项,得,配方,得,即,解得:,即(3),这里,,,,,解得:;(4),方程左边因式分解,得,即,解得:,.【点评】此题考查了解一元二次方程因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.23(21)120x --=23(21)12x -=2(21)4x -=212x -=±212x =±132x =212x =-22470x x --=27202x x --=2722x x -=29212x x -+=29(1)2x -=1x -=11x =21x =210x x +-=1a =1b =1c =-224141(1)5b ac -=-⨯⨯-=Q x ∴=1x =2x =22(21)0x x --=(21)(21)0x x x x -+--=(31)(1)0x x --=113x =21x =-11.已知线段a 、b 、c ,且.(1)求的值;(2)若线段a 、b 、c 满足a +b +c =60,求a 、b 、c 的值.【分析】设a =3k ,b =4k ,c =5k .(1)代入计算即可;(2)构建方程求出k 即可.【解答】解:设===k ,则a =3k ,b =4k ,c =5k ,(1)==;(2)∵a +b +c =60,∴3k +4k +5k =60,∴k =5,∴a =15,b =20,c =25.【点评】此题主要考查了比例的性质,根据已知得出a =3k ,b =4k ,c =5k 进而得出k 的值是解题关键.12.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有 400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在 组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?A B C D E x A 90100x ……B 8090x <…C 7080x <…D 6070x <…E 60)x <【分析】(1)根据组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得组和组所占的百分比.根据本次调查的总人数和组所占的百分比可以求得组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:(人,故答案为:400;所占的百分比为:,所占的百分比为:,组的人数为:,补全的统计图如图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在组内,故答案为:;(3)(人,答:估计该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.13.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,BE ⊥EF .求证:(1)△ABE ∽△DEF ;(2)若AB =6,AE =9,DE =2,求EF的长.E B C B B 4010%400÷=)A 100400100%25%÷⨯=C 80400100%20%÷⨯=B 40030%120⨯=B B 1200(25%30%)660⨯+=)【分析】(1)先判断出∠A=∠D=90°,进而得出∠ABE+∠AEB=90°,再判断出∠AEB+∠DEF=90°,得出∠ABE=∠DEF,即可得出结论;(2)先根据相似三角形的性质求出DF的长,再由勾股定理即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵BE⊥EF∴∠BEF=90°,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,∵∠A=∠D,∴△ABE∽△DEF;(2)解:∵△ABE∽△DEF,AB=6,AE=9,DE=2,∴=,即=,解得DF=3,∵四边形ABCD为矩形,∴∠D=90°,由勾股定理得:EF===.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.14.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【分析】(1)设每次下降的百分率为,根据相等关系列出方程,可求每次下降的百分率;x(2)设涨价元,根据总盈余每千克盈余数量,可列方程,可求解.【解答】解:(1)设每次下降的百分率为根据题意得:解得:,(不合题意舍去)答:每次下降(2)设涨价元解得:,(不合题意舍去)答:每千克应涨价5元.【点评】本题考查了一元二次方程的应用,找到题目中的相等关系,列出方程是本题的关键.15.【教材呈现】下面是华师版教材九年级上册52页的部分内容:我们可以发现,当两条直线与一组平行践相交时,所截得的线段存在一定的比例关系:.这就是如下的基本事实:两条直线被一组平行线所截,所傅的对应线段成比例,(简称“平行钱分线段成比例“【问题原型】如图①,中,点为边上的点,过点作交为边于点,点在边上,直线交于点,交于点.若,,,则 2.7 .【结论应用】(1)如图②,中,点在的延长线上,直线交于点交于点.求证:;(2)如图③,中,,,,若、分别是边、的中点,连接,点是边上任意一点,连结、分别交于点、,则周长的最小值y (08)y <…=⨯x250(1)32x -=10.2x =2 1.8x =20%y (08)y <…6000(10)(50020)y y =+-15y =210y =AD FE AB EC=)ABCD Y E AB E //EF AD CD F G AD GH BC H EF O 2AE =3EB = 1.8GO =OH =ABCD Y G DA GC AB E BD O GO CO CO EO=ABCD Y 4AB =6BC =60ABC ∠=︒E F AB CD EF G AD GB GC EF M N GMN ∆是 .【分析】(1),,,,,即可求得;(2),,,,同理,,即可证明;(3)过点作以所在直线为对称轴的对称点,交于点,易得,,且、分别是边,的中点,为的中位线,,连接,此时与的交点,此时周长最小,根据勾股定理即可求出进而求出作答.【解答】(1)解:,,又,,,即,,故答案为:2.7;(2)证明:,,,,,,同理,,ABCD Y //AD BC //EF AD ////AD EF BC AE GO EB OH =OH ABCD Y //AD BC ODG OBC ∆∆∽OD GO OB CO =OBE ODC ∆∆∽OD OC OB OE=GO OC CO OE =C AD C 'AD M GC GC '=//EF BC E F AB CD MN GBC ∆12MNG BCG C C ∆∆=BC 'AD G BCG ∆BCC '∆MNG C ∆ABCD QY //AD BC ∴//EF AD Q ////AD EF BC ∴∴AE GO EB OH=2 1.83OH = 2.7OH ∴=ABCD QY //AD BC ∴ADB CBD ∴∠=∠DGO OCB ∠=∠ODG OBC ∴∆∆∽∴OD GO OB CO=OBE ODC ∆∆∽∴OD OC OB OE=;(3)解:过点作以所在直线为对称轴的对称点,交于点,易得,如图,,且、分别是边,的中点,为的中位线,,连接,此时与的交点,此时周长最小,,,,,,在中,,,.【点评】本题考查平行四边形的性质,中位线,平行线的性质,三角形等综合问题,解题的关键是对将军饮马问题的灵活运用.∴GO OC CO OE=C AD C 'AD M GC GC '=//EF BC Q E F AB CD MN ∴GBC ∆11()22MNG BCG C MN MG GN BC BG GC C ∆∆∴=++=++=BC 'AD G BCG ∆60ABC ∠=︒Q 90BCC '∠=︒30DCM ∴∠=︒cos304CM CD =⋅︒==2CC CM '∴==Rt BCC '∆BC '===111()6)3222MNG BCG C C BC BC ∆∆'∴==+=+=+3+。

部编人教版九年级阶段性测试数学试卷含答案

部编人教版九年级阶段性测试数学试卷含答案
21 (本题 15 分)沃尔玛在汉第五家门店安家黄陂广场,已于 10 月 16 开业.店内有一种新 品牌的书包,已知其进价为每个 30 元,售价为每个 40 元时,平均每月能售出 600 个.调查 表明:这种书包的售价每上涨 1 元(售价不高于 75 元),其销售量就减少 10 个.设每月售 出书包的利润为(元),每个书包售价为 x(元). (1)求出 y 与 x 之间的函数关系式;(3 分) (2)每个书包的售价定为多少元时,每月利润最大?最大利润是多少? (4 分) (3)若商家想要获得 10000 元的月利润,则每个书包的售价定为多少元?(3 分)
22.(本题 18 分)已知,如图,抛物线 y=ax2+3ax+c(a>0)与 y 轴交于点 C,与 x 轴交于 A, B 两点,点 A 在点 B 左侧.点 B 的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式; (2)若点 D 是线段 AC 下方抛物线上的动点,求四边形 ABCD 面积的最大值; (3)若点 E 在 x 轴上,点 P 在抛物线上.是否存在以 A,C,E,P 为顶点且以 AC 为一 边的平行四边形?若存在,求点 P 的坐标;若不存在,请说明理由.
(2)如图 1.过点 D 作 DM∥y 轴分别交线段 AC 和 x 轴于点 M,N.
S 四边形 ABCD=S△ABC+S△ACD
=15+1×DM×(AN+ON) 22
=15+2DM, 2
∵A(-4,0),C(0,-3),
设直线 AC 的解析式为 y=kx+b,
代入,求得 y=-3x-3. 4
x,3x2+9x-3
∵40<65≤75 且 65 为整数 ∴当 x=65 时,y 有最大值是 12250 元. ∴当售价定为每件 65 元时,每个月的利润最大为 12250 元.……10 分 (3)依题意有:

2024年6月山西省长治市多校中考模拟九年级数学试卷(PDF版,含答案)

2024年6月山西省长治市多校中考模拟九年级数学试卷(PDF版,含答案)

2023—2024学年初三年级阶段性测试试卷数学模拟演练说明:本试卷全卷共8页,满分120分,考试时间120分钟。

第I 卷选择题(共30分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.2-的绝对值是()A .2B .2-C .12D .12-2.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.下列运算正确的是()A =B (35=-C .23356a a a +=D .()32439a a -=-4.瓦楞纸箱具有较高抗压强度及防震性能,能够抵挡搬运过程中的碰撞、冲击和摔跌,在商业包装中有着举足轻重的作用.如图所示,是一件正六棱柱瓦楞纸箱,则该几何体的主视图是()A .B .C .D .5.如图,点E ,F 分别在直线AB ,CD 上,AB CD ,G 是直线AB 上方一点,76FEG ∠=︒,56CFE ∠=︒,若EH 平分FEG ∠,则BEH ∠的度数为()A .14°B .16°C .18°D .28°6.如图,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B .点C 为y 轴上一点,连接AC ,BC .若ABC △的面积为3,则k 的值是()A .3B .6-C .6D .3-7.如图,四边形ABCD 内接于O ,直线EF 与O 相切于点A ,且AB AD =.若35BAE ∠=︒,则BCD ∠的度数为()A .35°B .55°C .70°D .80°8.化简2110525x x +--的结果为()A .5x +B .5x -C .15x -+D .15x +9.杆秤是人类发明的各种衡器中历史最悠久的一种,是利用杠杆原理来测定物体质量的简易衡器.如图1所示是兴趣小组自制的一个无刻度简易杆秤,其使用原理:将待测物挂于秤钩A 处,提起提纽B ,在秤杆上移动金属秤锤C (质量为1.5kg ),当秤杆水平时,金属秤锤C 所在的位置对应的刻度就是待测物的质量(量程范围内).为了给秤杆标上刻度,兴趣小组做了如下试验,用m (单位:kg )表示待测物的质量,l (单位:cm )表示秤杆水平时秤锤C 与提纽B 之间的水平距离,则水平距离l 与待测物质量m 之间的关系如图2所示.根据以上信息,下列说法正确的是()A .待测物的质量越大(量程范围内),秤杆水平时秤锤C 与提纽B 之间的水平距离越小B .当待测物的质量m 为3kg 时,测得水平距离l 为8cmC .若秤锤C 在水平距离l 为15cm 的位置,则秤杆在此处的刻度应为5kgD .若秤杆长为80cm ,则杆秤的最大称重质量为40kg10.如图,在Rt ABC △中,90C ∠=︒,12AC =cm ,16BC =cm ,点P ,Q 分别从A ,B 两点出发沿AC ,BC 方向向终点C 匀速运动,其速度均为2cm/s.设运动时间为t s ,则当PCQ △的面积是ABC △的面积的一半时,t 的值为()A .1B .2C .3D .4二、填空题(本题共有5个小题,每小题3分,共15分)11a =___________.12.黄河流域两岸地带培育的大红枣,学名“木枣”,自古以来就被列为“五果”(桃、李、梅、杏、枣)之一“家家利”超市购进一批大红枣,一箱的进价为18元,标价为21元,在春节期间,该超市准备打折销售,但要保证利润率不低于5%,则至多可以打___________折.13.如图,在ABCD 中,对角线AC ,BD 相交于点O ,过点D 作DH AB ⊥于点H ,连接OH .若5OB =,则OH 的长为___________.14.苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒.……按此规律,第n 个图形需要__________根小木棒.(用含n 的代数式表示)15.如图,在正方形ABCD 中,F 是AB 边上一点,连接CF ,过点B 作BE CF ⊥于点E ,连接AE 并延长,交BC 边于点G .若1AF =,4BC =,则线段CG 的长为___________.三、解答题(本题共有8个小题,共75分。

九年级阶段二考试数学试题及答案

九年级阶段二考试数学试题及答案

九年级阶段二考试数学试题及答案一、选择题(每题3分,共30分)1. 若a+b=5,ab=6,则a²+b²的值为:A. 13B. 25C. 37D. 49答案:B2. 以下哪个选项不是二次函数的图像?A. 抛物线B. 直线C. 双曲线D. 椭圆答案:B3. 计算下列表达式的值:(2x+3)(x-1)-(3x-2)(x+2)的结果是:A. 5x-5B. 5x+5C. -5x+5D. -5x-5答案:A4. 若一个数的平方根是±2,则这个数是:A. 4B. -4C. 2D. -2答案:A5. 一个圆的半径为3cm,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C6. 下列哪个选项是不等式2x-3>5的解?A. x>4B. x<4C. x>1D. x<1答案:A7. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是多少?A. 16cmB. 21cmC. 26cmD. 31cm答案:B8. 计算下列表达式的值:(3x-2)(2x+1)+(2x+1)(x-3)的结果是:A. 5x²-5x+1B. 5x²+5x+1C. 5x²-5x-1D. 5x²+5x-1答案:B9. 一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A10. 计算下列表达式的值:(a+b)²-2ab的结果是:A. a²+2ab+b²B. a²-2ab+b²C. a²+b²D. a²-b²答案:C二、填空题(每题3分,共15分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个圆的直径为10cm,那么它的半径是_______cm。

部编人教版九年级阶段性测试数学试卷含答案

部编人教版九年级阶段性测试数学试卷含答案

九年级阶段性测试数学试卷含答案(检测时间:120分钟 满分:150分)一、选择题(4分×10=40分)1.下列方程,是一元二次方程的是( )①2032=+x x ,②04322=+-xy x ,③412=-x x ,④22=x ,⑤0332=+-xx A .①② B .①②④⑤ C .①③④ D .①④⑤2.如图,下列图形中,既是轴对称图形又是中心对称图形的有( )个A .1B .2C .3D .43.某校生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一本,全组共互赠了182本,如果全组有x 名同学,则根据题意列出的方程是( ) A .(1)182x x += B .(1)182x x -= C .2(1)182x x += D .(1)1822x x -=⨯4.三角形两边长分别是8和6,第三边长是一元二次方程0342=+-x x 一个实数根,则该三角形的周长是( )A .17B .15C .17或15D .165.对抛物线y =-x 2+2x -3而言,下列结论正确的是( )A .与x 轴有两个交点B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1,-2)6. 抛物线2x y =向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( ) A. 2)3(2--=x y B. 2)3(2+-=x y C. 2)3(2-+=x y D. 2)3(2++=x y 7.已知关于x 的方程()04422=+--x x k 有两个不相等的实数根,则k 的最大整数值是( )A .4B .3C .2D .18. 二次函数822+-=mx x y 的图象如图,则m 的值是( )A .-8B .8C .±8 D.6…………………………………………………………………………………………………………………………………………密封线内不要答题考场号_________________ 座位号__________________ 班级___________________ 姓名___________________9.如图,抛物线c bx x y ++=2与x 轴交于A ,B 两点,与y 轴交于点C ,∠OBC =45°,则下列各式成立的是( )A .b -c -1=0B .b +c -1=0C .b -c +1=0D .b +c +1=0 10.在同一平面直角坐标系内,一次函数b ax y +=与二次函数b x ax y ++=82的图象可能是( )第8题第9题A B C D二、填空题(5分×6=30分)11.点P 关于原点对称的点Q 的坐标是(-1,3),则P 的坐标是 12.如图是香港特别行政区区徽中的紫荆花图案,该图案绕 中心旋转_______度(填最小度数)和原来图案互相重合. 13.若关于x 的一元二次方程0325)3(22=-++++m m x x m有一个根为0,则m=______,•另一根为________.14.新美蔬菜有限公司2013年蔬菜的产值是64万元,2015年产值达到100万元。

2019-2020年九年级上册人教版数学阶段性检测试卷及答案

2019-2020年九年级上册人教版数学阶段性检测试卷及答案

2019-2020年九年级上册人教版数学阶段性检测试卷及答案1 2、在函数 中,自变量x 的取值范围是 A 、x ≥3 B 、x ≤3 C 、x >3 D 、x <3 3、下列方程中属于一元二次方程是A 、2x 2+y=0B 、3x 2- =0 C 、a(a -3)=0 D 、(2x -1)2 =(x -1)(4x -5)4、有三个连续整数,已知最大数与最小数的积比中间数的5倍小1,若设中间数为x ,则所列方程为A 、(x +1)(x -1)=5x +1B 、(x +1)(x -1)=5x -1C 、(x +1)(x -1)=5xD 、 (x -1)2 =5x -15、在方程ax 2+bx +c=0(a ≠0)中,若有a -b +c=0,则方程必有一根为 A 、1 B 、0 C 、1或-1 D 、-16、若 ,则x 的取值范围是 A 、x ≤3 B 、x <3 C 、x ≥3 D 、x >37、已知a <b ,则化简二次根式 的正确结果是A 、B 、C 、D 、 8、若( )2+ =3,则x +y 的值为A 、1B 、9C 、9或1D 、无法确定9、如图,赵、钱、孙、李四家的承包田都是形状、面积相同的矩形,四家用不同方式修路,以便施肥喷药之用,但各家的路有一个共同特点,即A 1B 1=A 2B 2=A 3B 3=A 4B 4,且路两侧都是平行的,那么占地面积A 、赵家最少B 、李家最少C 、赵、钱、孙、李四家一家比一家多D 、四家相等10、一架长10m 的梯子AB 斜靠在墙上,梯子的顶端A 距地面的垂直距离为8m ,如果梯子顶端A 下滑1m ,那么它的底端B 在地上滑动的距离为 A 、小于1m B 、等于1m C 、大于1m D 、不能确定 2 则方程x +px +q =0的正数解是 A 、整数部分是1,十分位是2 B 、整数部分是1,十分位是1C 、整数部分是0,十分位是5D 、整数部分是0,十分位是831-=x y x 2x x -=-332)(b a 3-ab a -ab a --ab a ab a -y x +y x +2赵 钱 孙 李12、如图,它是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形较长直角边为a ,较短的直角边为b ,则a 3+b 4的值为 A 、35 B 、43 C 、89 D 、97二、填空题(3分×6=18分) 13、比较大小: ____ 14、在实数范围内分解因式:m 4-25=_______15、若一个三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为____16、线段AB =1,C 是线段AB 的黄金分割点,则AC =___________(保留三位小数)17、已知实数m 满足(m 2-m)2―4(m 2―m)-21=0,则代数式m 2-m 的值为____18、一个小球以10m/s 的速度在平坦的地面上开始滚动,并且均匀减速,滚运20m 后小球停下来,则小球流动了_____s ,平均每秒小球的运动速度减少了_____m/s ;小球滚动到5m 时约用了_____s (精确到0.1s ) 19、用适当的方法解下列方程(4分×4=16分) (1)3x 2-5x -2=0 (2)x 2-6x +1=0(3) (4)(x -3)2+2x(x -3)=020、计算(4分×2=8分)(1) (2) (a >0 b >0)34-53-27322=+)(x 216)26)(232()12218(÷++---)93(44233ab b a ab ba bb a a+-+21、先化简,再求值。

初三考试数学试题及答案

初三考试数学试题及答案

初三考试数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 22/7B. πC. 0.33333...D. √4答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14答案:B3. 如果一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 函数y=2x+3的图象与x轴的交点坐标是?A. (0,3)B. (3,0)C. (-3/2,0)D. (0,-3)答案:C5. 下列哪个选项不是单项式?A. 3x^2B. -5yC. 7D. x^2y答案:D6. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 一个长方体的长、宽、高分别为2、3、4,那么这个长方体的体积是多少?A. 24B. 12C. 8D. 6答案:A8. 一个二次函数的图象开口向上,且顶点坐标为(1, -4),那么这个二次函数的一般形式是什么?A. y = a(x-1)^2 - 4B. y = a(x+1)^2 - 4C. y = a(x-1)^2 + 4D. y = a(x+1)^2 + 4答案:A9. 一个数的立方根是2,那么这个数是多少?A. 8B. 2C. 4D. 1/8答案:A10. 一个角的补角是120°,那么这个角是多少度?A. 60°B. 30°C. 120°D. 180°答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 如果一个角的余角是30°,那么这个角是______。

答案:60°13. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。

答案:1714. 一个二次函数y=ax^2+bx+c的顶点坐标是(2,1),那么b的值是______。

初三数学考试试题及答案

初三数学考试试题及答案

初三数学考试试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 9的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:C2. 圆的面积公式是:A. πrB. πr²C. πr³D. 2πr答案:B3. 函数y = 2x + 1的图像经过的象限是:A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:A4. 一个数的相反数是它本身的是:A. 0B. 1C. -1D. 2答案:A5. 以下哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x > 1D. x < 1答案:A6. 一个三角形的内角和是:A. 90°B. 180°C. 360°D. 720°答案:B7. 一个数的绝对值是它本身或它的相反数,这个数是:A. 正数B. 负数C. 非负数D. 非正数答案:C8. 以下哪个选项是方程3x - 2 = 7的解?A. x = 3B. x = 2C. x = 1D. x = 4答案:A9. 一个长方体的体积公式是:A. 长× 宽B. 长× 高C. 长× 宽× 高D. 长 + 宽 + 高答案:C10. 以下哪个选项是不等式x + 2 > 5的解集?A. x > 3B. x < 3C. x > 2D. x < 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。

答案:±52. 一个数的立方是-8,这个数是______。

答案:-23. 一个正数的倒数是______。

答案:1/x4. 一个数的绝对值是它本身,这个数是______。

答案:非负数5. 一个数的相反数是-3,这个数是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二00八学年第二学期九年级数学阶段性考试试卷 2019.3命题人:沈惠琴 审核人:王君丽 (洪兴实验学校)得分_______ 考生须知:全卷满分150分,考试时间120分钟 卷Ⅰ一、选择题(本题有10小题,每题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列计算过程中,结果是 -3的是 ( ) A .()13-- B .()03- C .()3-- D .3--2. 2008年1月10日起中国四川、贵州、湖南、湖北、江西、江苏等19个省级行政区均受到低温、雨雪、冰冻灾害影响,直接经济损失537.9亿元,用科学记数法表示是( ) A. 537.9×108元 B. 5.379×1010元C. 5.379×109元D. 53.79×1010元 3.下列运算中正确的是( ) A. 242-=- B.235()a a = C. 333235x x x += D. x x x 842÷=4. 如图是由5个大小相同的正方体摆成的立方体图形,它的左视图是( )A B C D 5. 抛物线23(2)32y x =---的顶点坐标是 ( )A (-2,-3 )B (2,3 )C (-2, 3 )D (2, -3 )6.已知圆锥的侧面积为10πcm 2,底面半径为1,则该圆锥的母线长为( ) A .100cmB .10cm C7、已知⊙O 1与⊙O 2相切,它们的半径分别为2和5,则O 1O 2的长是( )A. 5B. 3C.3或5D.3或78.小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,已知她的击球高度是2.4米,则她应站在离网的 ( ) A .7.5米处 B . 8米处C . 10米处D .15米处学校 班级 姓名 …………………………………………………………………………..装订线……………………………………………………………………..E C′D CB A9.如图,PA 切⊙O 于点A ,PC 与⊙O 相交于B 、C ,若30P ∠=︒,则弧AB 的度数为( ). (A)30︒ (B)60︒ (C)90︒ (D)120︒1A第8题10.如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( ) A .7π3- B .4π3 C .πD .4π3+卷Ⅱ二、填空题(本题有6小题,每题5分,共30分) 11._______= .12.不等式932>+x 的解集是_______13.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,AB =16cm ,OC =6cm ,那么⊙O 的半径是__________cm .14.函数2y x bx c =+-的图象经过点(12),,则b c -的值为 。

15.如图,△ABC 中,∠B=90°,AB=6,BC=8,将△ABC 沿DE 折叠,使点C 落在AB 边上的C '处,并且D C '∥BC ,则CD 的长是16.如图所示,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,….观察图中的规律,求出第10个黑色梯形的面积S 10= .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题第9题5 0.8 2.4 第10题 A H B O C 1O 1H 1CFE C B A 每题12分,第24题14分,共80分)17. 计算: 2sin60°-︳3 ︱+(13)-1+(-1)200818. 已知:如图,AB ∥ED ,点F 、点C 在AD 上, AB=DE ,AF=DC . 求证:BC=EF19.有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张. ⑴用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示); ⑵求摸出两张牌面图形都是中心对称图形的纸牌的概率.20.如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案绕原点O 旋转180°后得到的图案;(4分)(2)在同一方格纸中,并在轴的右侧,将原小金鱼图案以原点O 为位似中心放大,使它们的位似比为1:2,画出放大后小金鱼的图案.(4分)y x21.为了帮助贫困失学儿童重返学校,某校发起参加“爱心储蓄”活动,鼓励学生将自己的压岁钱、零用钱存入银行,定期一年,到期后可取回本金,而把利息捐给贫困儿童。

该校共有学生1200人,下列两个图为该校各年级学生人数比例分布情况图和学生人均存款情况图。

(1)该校九年级学生存款总数为_________元; (2)该校学生的人均存款额为多少元?(3)已知银行一年期定期存款的年利率为2.25%(“爱心储蓄”免征利息税),且每35l元能够提供一位失学儿童一学年的基本费用。

那么该校一年能够帮助多少名贫困失学儿童?22.某工厂计划为汶川地震灾区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套型桌椅(一桌三椅)需木料,工厂现有库存木料.(1)有多少种生产方案? (2)现要把生产的全部桌椅运往震区,已知每套型桌椅的生产成本为100元,运费2元;每套型桌椅的生产成本为120元,运费4元,求总费用(元)与生产型桌椅(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.A B ,A 30.5m B 30.7m 3302m A B y A x =+ 班级 姓 …..装订线……………………………………………………………………..23.已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,.(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明BM DN MN +=. (2)当M A N ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明. (3)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.B B M BC N CNMC NM 图1 图2 图3 A A A D D D24.如图,已知半径为1的⊙O 1与x 轴交于A B ,两点,OM 为⊙O 1的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点. (1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.九年级数学试卷参考答案及评分标准一、选择题答案:1.D 2.B 3.C 4.B 5.D 6.B 7.D 8.C 9.B 10.c 二、填空题:11.3 ;12. 3>x ; 13 . 10 ; 14. 1 ;15.940; 16. 76 三、解答题17. 4 (每步2分,共8分) 18. 证⊿ABC ≌⊿DEF (8分)ME BE BM DN BM=+=+19.(1)共16种结果(图略)(4分); (2)81(4分) 20. 略 (每小题4分,共8分)21.(1)72000 (3分 ) (2)325(3分) (3)1136 (4分) 22.解:(1)设生产型桌椅套,则生产型桌椅套,由题意得……(2分) 解得……(1分)因为是整数,所以有11种生产方案.……(1分)(2)……(4分) ∵,随的增大而减少. ∴当时,有最小值.……(1分)∴当生产型桌椅250套、型桌椅250套时,总费用最少. 此时(元)……(1分)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.……(2分)23.解:(1)略……(4分) (2)成立如图,把绕点顺时针,得到, 则可证得三点共线(图形画正确) 证明过程中,证得: 证得:∴∵ ∴……(6分) (2)……(2分)24.解:(1)∵圆心1O 的坐标为(20),,⊙O 1半径为1,(10)A ∴,,(30)B ,……1分 ∵二次函数2y x bx c =-++的图象经过点A B ,,A xB (500)x -0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥240250x ≤≤x (1002)(1204)(500)2262000y x x x =+++⨯-=-+220-<y x 250x =y A B min 222506200056500y =-⨯+=BM DN MN +=AND △A 90ABE △E B M ,,EAM NAM ∠=∠AEM ANM △≌△ME MN ∴=DN BM MN ∴+=DN BM MN -= EACND∴可得方程组10930b c b c -++=⎧⎨-++=⎩解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ……2分(2)过点M 作MF x ⊥轴,垂足为F .∵OQ 是⊙O 1的切线,M 为切点,∴1O M OM ∴⊥. 在1Rt OO M △中,1111sin 2O M O OM OO ∠== ∵∠O 1OM 为锐角,∴130O OM ∴∠=∴1cos302OM OO ∴===在Rt MOF △中,3cos3032OF OM ===.1sin 30322MF OM ===. ∴点M 坐标为322⎛ ⎝⎭, ……3分设切线OM 的函数解析式为(0)ykx k =≠32k =,k ∴=∴切线OM 的函数解析式为y x =……2分 (3)存在.……1分①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APOMOO △∽△ 113tan tan 303P A OAAOP =∠==,11P ⎛∴ ⎝⎭……2分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt APO O MO △∽△ 在2Rt OP A △中,1OA =,23cos30OP OA ∴==,在2Rt OP H △中,223cos 224OH OPAOP =∠==,2221sin 2P H OP AOP =∠==,2344P ⎛∴ ⎝⎭,……3分∴符合条件的P 点坐标有1⎛ ⎝⎭,34⎛ ⎝⎭。

相关文档
最新文档