【K12学习】中考数学实数的运算复习教案
初中实数复习课教案
初中实数复习课教案1. 理解实数的意义,掌握实数的分类,了解实数与数轴的关系。
2. 掌握有理数、无理数的概念,理解有理数与无理数的区别。
3. 理解相反数、绝对值的概念,掌握相反数和绝对值的性质。
4. 掌握实数的四则运算,包括加、减、乘、除、乘方及开方运算。
5. 能运用实数的概念和性质解决实际问题。
二、教学重难点1. 实数的分类和实数与数轴的关系。
2. 相反数和绝对值的性质。
3. 实数的四则运算。
三、教学方法采用讲解、示范、练习、讨论、小组合作等教学方法,引导学生通过自主学习、合作交流,掌握实数的知识和技能。
四、教学过程1. 导入新课通过数轴引入实数的概念,引导学生回顾数轴上的点与实数的关系,为新课的学习打下基础。
2. 知识讲解(1)实数的分类讲解实数的分类,包括有理数和无理数。
通过实例让学生了解有理数和无理数的特点,引导学生掌握有理数与无理数的区别。
(2)实数与数轴讲解实数与数轴的关系,引导学生理解每一个实数都在数轴上有一个对应的点,反之亦然。
(3)相反数和绝对值讲解相反数和绝对值的概念,引导学生掌握相反数和绝对值的性质。
3. 课堂练习布置一些有关实数的分类、实数与数轴、相反数和绝对值等方面的练习题,让学生在课堂上完成,及时巩固所学知识。
4. 小组合作组织学生进行小组合作,探讨实数的四则运算,引导学生掌握实数的运算规律。
5. 课堂小结对本节课的内容进行课堂小结,帮助学生梳理实数的知识和技能。
五、课后作业布置一些有关实数的练习题,让学生课后巩固所学知识,提高解题能力。
六、教学反思在课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,为下一步的教学做好准备。
通过以上教学设计,希望能帮助学生全面掌握实数的知识和技能,提高他们的数学素养。
初中实数的运算教案
初中实数的运算教案教学目标:1. 理解实数的定义和性质;2. 掌握实数的运算规则;3. 能够熟练地进行实数运算。
教学内容:1. 实数的定义和性质;2. 实数的运算规则;3. 实数的运算练习。
教学过程:一、导入(5分钟)1. 引入实数的概念,让学生回顾实数的基本定义和性质;2. 提问学生实数的运算规则,引导学生思考实数运算的重要性。
二、讲解实数的运算规则(15分钟)1. 讲解实数的加法运算规则,举例说明加法的交换律、结合律和单位元的概念;2. 讲解实数的减法运算规则,举例说明减法的性质和相反数的概念;3. 讲解实数的乘法运算规则,举例说明乘法的交换律、结合律和零元的概念;4. 讲解实数的除法运算规则,举例说明除法的性质和倒数的概念。
三、实数的运算练习(15分钟)1. 给出一些实数的运算题目,让学生独立完成;2. 引导学生思考运算的顺序和简化方法,提高运算效率;3. 解答学生的问题,给予指导和帮助。
四、巩固和拓展(15分钟)1. 给出一些实数的综合运算题目,让学生独立完成;2. 引导学生思考运算的策略和技巧,提高运算水平;3. 解答学生的问题,给予指导和帮助。
五、总结和反思(5分钟)1. 让学生回顾本节课所学的内容,总结实数的运算规则;2. 提问学生实数运算在实际中的应用,引导学生思考实数运算的重要性;3. 鼓励学生积极参与实数运算的练习,提高运算能力。
教学评价:1. 课后作业:布置一些实数的运算题目,检查学生对实数运算规则的理解和掌握程度;2. 课堂练习:学生在课堂上独立完成一些实数的运算题目,评估学生的运算能力和思维能力;3. 学生反馈:听取学生的反馈意见,了解学生在实数运算中的困难和问题,及时进行教学调整。
教学资源:1. 实数的运算规则PPT;2. 实数的运算题目和答案;3. 实数的运算练习纸。
教学反思:本节课通过讲解实数的运算规则和进行实数的运算练习,使学生掌握了实数的基本运算方法。
在教学过程中,要注意引导学生思考运算的顺序和简化方法,提高运算效率。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
实数复习教案
实数复习教案教案标题:实数复习教案教学目标:1. 复习实数的基本概念和性质;2. 强化学生对实数运算规则的理解和应用能力;3. 提高学生解决实际问题时运用实数的能力。
教学内容:1. 实数的基本概念回顾:a. 整数、有理数和无理数的定义;b. 实数的分类和表示方法;c. 实数在数轴上的位置表示。
2. 实数的性质复习:a. 实数的比较和大小关系;b. 实数的加法、减法、乘法和除法规则;c. 实数的绝对值和相反数的性质;d. 实数的乘方和开方运算。
3. 实数运算的应用:a. 实际问题的建模和解决方法;b. 利用实数进行计算和推理;c. 实数在几何问题中的应用。
教学步骤:Step 1: 概念回顾和讲解(约10分钟)a. 复习整数、有理数和无理数的定义;b. 引导学生回顾实数的分类和表示方法;c. 通过示例,帮助学生理解实数在数轴上的位置表示。
Step 2: 性质复习和讲解(约15分钟)a. 复习实数的比较和大小关系,引导学生掌握比较运算的规则;b. 强化实数的加法、减法、乘法和除法规则,通过练习题提高学生的运算能力;c. 复习实数的绝对值和相反数的性质,帮助学生理解和应用;d. 复习实数的乘方和开方运算,解释运算规则和性质。
Step 3: 实数运算的应用(约20分钟)a. 引导学生分析实际问题,建立数学模型;b. 通过例题和练习题,让学生应用实数进行计算和推理;c. 引导学生将实数运用于几何问题,加深对实数在几何中的理解。
Step 4: 练习与巩固(约15分钟)a. 给学生一些练习题,巩固所学的实数知识和运算规则;b. 鼓励学生解答问题时进行思考和讨论;c. 对学生的答案进行讲解和指导。
Step 5: 总结与反思(约5分钟)a. 总结本节课的重点内容和要点;b. 鼓励学生提出问题和疑惑;c. 引导学生思考如何将实数知识应用到实际生活中。
教学资源:1. 实数的定义和性质的讲解材料;2. 数轴和实数的图示工具;3. 实际问题的应用练习题。
实数及其运算教案
实数及其运算教案一、教学目标知识与技能:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的四则运算规则,能够熟练进行实数的加、减、乘、除运算。
3. 能够运用实数及其运算解决实际问题。
过程与方法:1. 通过实例和问题,培养学生的观察、分析、归纳能力。
2. 运用小组合作、讨论等方法,提高学生解决问题的能力。
情感态度与价值观:1. 培养学生的逻辑思维能力,提高对数学学科的兴趣。
2. 培养学生团队协作、积极参与的精神。
二、教学内容第一节:实数的定义及分类1. 实数的定义:实数是包含有理数和无理数的数集。
2. 实数的分类:有理数和无理数。
第二节:实数的四则运算1. 实数的加法:同号相加,异号相减。
2. 实数的减法:减去一个数等于加上这个数的相反数。
3. 实数的乘法:符号相同,积为正;符号不同,积为负。
4. 实数的除法:除以一个不等于0的数,等于乘这个数的倒数。
三、教学重点与难点重点:1. 实数的定义及分类。
2. 实数的四则运算规则。
难点:1. 实数的乘除运算。
2. 运用实数及其运算解决实际问题。
四、教学方法与手段1. 采用讲授法、问答法、实例分析法进行教学。
2. 使用多媒体课件、黑板、实物等教学手段,辅助学生理解实数及其运算。
五、教学过程1. 引入新课:通过生活实例,引导学生认识实数及其重要性。
2. 讲解实数的定义及分类,让学生通过实例理解有理数和无理数的特点。
3. 讲解实数的四则运算规则,并通过例题演示运算过程。
4. 组织学生进行小组讨论,运用实数及其运算解决实际问题。
5. 总结本节课的重点内容,布置课后作业。
六、教学评价1. 课堂讲解:评价学生对实数定义、分类和四则运算规则的理解程度。
2. 课堂练习:评价学生运用实数及其运算解决实际问题的能力。
3. 课后作业:评价学生对课堂所学知识的掌握情况。
七、教学拓展1. 介绍实数在数学中的应用,如坐标系、函数等。
2. 探讨实数运算在科学研究和实际生活中的意义。
中考数学复习第1课时《实数及其运算》说课稿
中考数学复习第1课时《实数及其运算》说课稿一. 教材分析《实数及其运算》是中考数学复习的第1课时,主要内容包括实数的定义、分类、性质以及实数的运算规则。
这部分内容是初中数学的基础,对于学生后续的学习具有重要意义。
在教材中,实数分为有理数和无理数两大类,有理数包括整数和分数,无理数主要包括π和开方开不尽的数。
实数的运算包括加减乘除和乘方等,运算规则遵循数学的基本规律。
二. 学情分析学生在学习《实数及其运算》时,已经掌握了有理数的运算规则,对无理数的概念和性质有一定的了解。
但部分学生对无理数的理解不够深入,容易与有理数混淆。
此外,学生在实数的运算方面容易出错,如不熟悉运算顺序、忽视运算律等。
因此,在教学过程中,需要帮助学生巩固实数的定义和性质,提高运算能力,培养学生严谨的数学思维。
三. 说教学目标1.知识与技能:使学生掌握实数的定义、分类和性质,了解实数的运算规则,提高实数运算能力。
2.过程与方法:通过自主学习、合作探讨和教师引导,培养学生独立解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气,使学生认识到数学在生活中的重要性。
四. 说教学重难点1.教学重点:实数的定义、分类、性质和运算规则。
2.教学难点:无理数的概念和性质,实数的运算顺序和运算律的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨和教师引导相结合的方法,充分发挥学生的主体作用,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、黑板和教学道具等,直观展示实数及其运算的过程,帮助学生形象地理解实数的概念和性质。
六. 说教学过程1.导入新课:通过复习有理数的运算规则,引出实数的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究实数的定义、分类和性质,培养学生独立解决问题的能力。
3.合作探讨:分组讨论实数的运算规则,让学生在合作中思考,提高学生的团队协作能力。
数学中考实数的教案
数学中考实数的教案教案标题:数学中考实数的教案教学目标:1. 理解实数的概念及其性质。
2. 掌握实数的四则运算规则。
3. 能够运用实数的性质和运算规则解决实际问题。
教学重点:1. 实数的概念及性质。
2. 实数的四则运算规则。
教学难点:1. 实数的概念及性质的理解和应用。
2. 实数的四则运算规则的掌握和灵活运用。
教学准备:1. 教学课件和教学素材。
2. 学生练习册和试题。
教学过程:一、导入(5分钟)1. 引入实数的概念,通过举例子让学生了解实数的定义和范围。
2. 提问学生:你们知道实数与有理数和无理数的关系吗?请举例说明。
二、讲解实数的性质(15分钟)1. 通过教学课件,讲解实数的有序性、稠密性、无限性等性质,并与学生进行互动讨论。
2. 引导学生思考实数的性质与实际生活中的应用,如温度、距离等。
三、实数的四则运算规则(20分钟)1. 讲解实数的加法、减法、乘法和除法的运算规则,包括同号相加为正、异号相加为负等。
2. 通过示例和练习,引导学生掌握实数的四则运算规则,并注意运算顺序和运算法则。
3. 提供一些实际问题,让学生运用实数的四则运算解决问题。
四、练习与巩固(15分钟)1. 学生个人或小组完成练习册上的相关练习题,巩固实数的概念和四则运算规则。
2. 教师巡回指导,解答学生的问题,纠正他们的错误。
五、拓展与应用(10分钟)1. 提供一些拓展题目,让学生运用实数的性质和四则运算解决更复杂的问题。
2. 引导学生思考实数在日常生活和其他学科中的应用,如经济学、物理学等。
六、总结与反思(5分钟)1. 教师对本节课的内容进行总结,并强调实数的重要性和应用。
2. 学生对本节课的学习进行反思,提出问题和意见。
教学延伸:1. 学生可以通过自主学习和实践探究,进一步了解实数的性质和应用。
2. 教师可以组织实数的游戏或竞赛,增加学生的兴趣和参与度。
教学评估:1. 教师观察学生在课堂上的表现和参与度。
2. 批改学生练习册上的作业,评价他们对实数概念和四则运算规则的掌握程度。
初三数学中考复习教案(实数运算部分)
第2课时 实数的运算教学目标:(1)熟练掌握实数的运算,(2)会用各种方法比较两个实数的大小. (3)能初步掌握与实数有关的探索规律题重点、难点:重点是实数的运算,难点是与实数有关的探索规律题 教学过程一、考点梳理:【考点1】零指数幂和负整数指数幂 1.知识点(1)零指数幂的意义为:a 0=1(a ≠0);(2)负整数指数幂的意义为:a -p=1ap (a ≠0,p 为整数).2.例题【例1】(1)=--2)3( (2) =-0)14.3π(3.练习(1)=2-41)( ;(2)=-00)245sin (【考点2】实数的运算1.知识点:(1)运算法则 (2)运算律 (3)运算顺序 2.例题【例2】 计算:(1)4cos 30°sin 60°+(-2)-1-( 2 009-2 008)0;(2)⎝ ⎛⎭⎪⎫13-1-|-2+3tan 45°|+(2-1.41)0.3.练习: (1)(52-1)0+⎝ ⎛⎭⎪⎫12-1+33×3-|-2|-tan 60°.(2)-22×5-(-2)3÷4+(-3)2+8sin 45°.【考点3】 实数的大小比较1.知识点:(1)差值法:a -b >0a >b ;a -b =0a =b ;a -b <0a <b .(2)倒数法:若1a >1b,a >0,b >0,则a <b .(3)平方法:若a >b >0,则22b a > 2.例题:【例3】比较大小(1)62+与63+的大小(2)72与33大小(3)57-与35-【例4】 比较20082007与2211120081112007)()(++的大小。
【例5】若10<<x 时,则x xx ,1,2的大小顺序是____________。
3.练习 (1)实数a 在数轴上的位置如图1-1所示,则关于a ,-a ,1的大小关系表示正确的是( ) A .a <1<-a B .a <-a <1C .1<-a <aD .-a <a <1(2)如图1-2,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个 (3)比较的大小。
中考数学实数的概念复习优秀教案
中考数学实数的概念复习优秀教案教学难点:绝对值。
教学过程:一、复习:1、实数分类:方法(1),方法(2)注:有限小数、无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1)两有理数的和、差、积、商是有理数;(2)有理数与无理数的积是无理数;(3)有理数与无理数的和、差是无理数;(4)小数都是有理数;(5)零是整数,是有理数,是实数,是自然数;(6)任何数的平方是正数;(7)实数与数轴上的点一一对应;(8)两无理数的和是无理数。
例2下列各数中:-1,0,,,1.101001,,,-,,2,.有理数*{…};正数*{…};整数*{…};自然数*{…};分数*{…};无理数*{…};绝对值最小的数的*{…};2、绝对值:=(1)有条件化简例3、①当1<a<2时,化简;②a,b,c为三角形三边,化简;③如图,化简+。
(2)无条件化简例4、化简解:步骤①找零点;②分段;③讨论。
例5、①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3<a<-1时,化简:|a+1|-|3-2a|-|3+a|例6、阅读下面材料并完成填空你能比较两个数20042005和20052004的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,。
这些简单的情况入手,从中发现规律,经过规纳,猜想出结论。
(1)通过计算,比较下列①——⑦各组中两个数的大小(在横线上填“>、=、<”号”)①1221;②2332;③3443;④4554;⑤5665;⑥6776⑦7887(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是:2004200520052004练习:(1)若a<-6,化简;(2)若a<0,化简;(3)若;(4)若=;(5)解方程;(6)化简:。
初中数学实数复习课教案
一、教学目标1. 理解实数的定义及分类,掌握有理数、无理数和实数之间的关系。
2. 掌握相反数、绝对值的概念及求法,能够运用数轴理解其意义。
3. 了解平方根、立方根的定义及求法,能够熟练运用根号表示数的平方根、立方根。
4. 掌握科学记数法、近似数与有效数字的概念,并能进行相关计算。
二、教学内容1. 实数的定义及分类2. 相反数、绝对值的概念及求法3. 平方根、立方根的定义及求法4. 科学记数法、近似数与有效数字的概念及应用三、教学重点和难点1. 教学重点:实数的定义及分类,相反数、绝对值的概念及求法,平方根、立方根的定义及求法,科学记数法、近似数与有效数字的概念及应用。
2. 教学难点:平方根、立方根的求法,科学记数法、近似数与有效数字的运用。
四、教学方法启发式教学法、讲练结合法。
通过提问、讨论、练习等方式,激发学生的学习兴趣,引导学生主动探索、积极思考,提高学生的数学素养。
五、教学过程1. 导入新课通过复习小学学过的加减乘除等运算,引导学生思考:这些运算都是在处理哪些数?(有理数)那么,有没有一种运算可以处理无理数呢?从而引出实数的概念。
2. 教学实数的定义及分类(1)实数的定义:实数是包括有理数和无理数的所有数。
(2)实数的分类:有理数和无理数。
3. 教学相反数、绝对值的概念及求法(1)相反数的定义:一个数的相反数是与它的数值相等,但符号相反的数。
(2)绝对值的定义:一个数的绝对值是它到原点的距离。
(3)相反数、绝对值的求法:通过数轴理解相反数、绝对值的概念,并能熟练求出相反数和绝对值。
4. 教学平方根、立方根的定义及求法(1)平方根的定义:一个数的平方根是它的二次方等于这个数的数。
(2)立方根的定义:一个数的立方根是它的三次方等于这个数的数。
(3)平方根、立方根的求法:通过实例讲解平方根、立方根的求法,让学生熟练掌握。
5. 教学科学记数法、近似数与有效数字的概念及应用(1)科学记数法的定义:将一个数表示成a×10^n的形式,其中1≤|a|<10,n为整数。
中考数学实数的运算复习教案
中考数学实数的运算复习教案【教学目标】1.复习实数的概念和特性。
2.复习实数的四则运算。
3.复习实数的混合运算。
4.加强解决实际问题的能力。
【教学重点】1.实数的概念和特性。
2.实数的四则运算。
3.实数的混合运算。
【教学难点】实数的混合运算和实际问题的解决。
【教学方法】知识点讲解、示例分析、学生练习、解题讲评。
【教学准备】教材、黑板、白板、教学投影仪。
【教学过程】Step 1 知识点讲解(8分钟)1.复习实数的概念和基本性质,引出实数的运算。
2.讲解实数的四则运算规则:加法、减法、乘法和除法。
3.引导学生讨论混合运算的步骤和技巧。
Step 2 示例分析(10分钟)1.以例子讲解实数的四则运算步骤和规则。
2.分析典型实例,引导学生找出解题的关键点。
Step 3 学生练习(20分钟)1.学生在课本上独立完成练习题。
2.教师巡视指导,发现问题及时纠正。
3.鼓励学生与同桌合作,共同解决难点问题。
Step 4 解题讲评(15分钟)1.教师选取几道典型题目进行讲解。
2.鼓励学生上台讲解解题思路和步骤。
3.全班讨论解题过程和答案的准确性。
Step 5 实际问题解决(15分钟)1.提供几个实际问题,要求学生用实数的四则运算解答。
2.鼓励学生分组讨论,并找出问题的关键信息。
3.鼓励学生提出解决问题的方法和步骤。
Step 6 总结讲评(10分钟)1.教师总结实数的运算规则和解题技巧。
2.引导学生总结实数的四则运算步骤。
【教学反思】通过这堂数学复习课,学生对实数的概念和运算规则有了更深入的理解。
同时,学生通过实际问题的解答,提高了解决实际问题的能力。
但是,在学生练习环节,部分学生的注意力稍有不集中,需要教师在课堂上更加精心地引导和激发学生的学习兴趣。
为了更好地提高课程效果,可以在教学中增加一些游戏化的活动,让学生在实际操作中体会实数的运算规律。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
中考数学《实数的运算》复习教案
设计意图
教师活动/方法
学生活动/方法
时间
一
二
三
概念讲解
重难点选讲
随堂练习
第一部分:知识梳理
一、实数的大小比较
(1)对于数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数_____;
(2)正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的_______;
二、实数的运算(必考)
1、常见运算
课 时 教 案
第4周 星期二第2课时2022年3月15日
课题
实数的运算
课型
复习
教材分析
教学目标
1、进一步理解无理数与实数的概念,会求一个实数的相反数、倒数和绝对值
2、能进行简单的实数运算
教学重点
会求实数的相反数、倒数和绝对值及简单的实数运算
教学难点
理解有理数的运算法则在实数范围内同样适用
教法学法
讲授法、讨论法、练习法
教学反思
本节课的教学内容是有理数扩充到实数以后的第二节,主要的内容是实数的相反数、绝对值的意义以及实数的运算中的运算法则及运算性质。
本人通过用类比的方法,让学生从有理数的相关知识迁移到实数中了,突出重点,突破难点。整节课能够关注学生的思维发展,调动学生学习气氛,效果活跃,并使学生积极参与双边活动。对于学生及时的给予表扬与鼓励,对于学生出现的问题和错误及时的给予解决。
2、运算律
3、实数的混合运算顺序
三、实数非负性的应用
第二部分:重难点选讲
变式训练
第三部分:深圳年中考
学生跟着老师思路复习旧知识,并提出自己的疑问。
学生思考问题,完成后进行讨论
学生独立完成习题。
8min
4min
实数(单元复习)标准教案
实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。
二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。
三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。
四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。
五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。
第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。
二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。
三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。
四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。
五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。
第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。
二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。
初三数学实数复习教案
初三数学实数复习教案【篇一:初中数学复习实数的运算教案】第二课实数的运算知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字。
大纲要求:1.了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。
考查重点:1.2.考查近似数、有效数字、科学计算法;考查实数的运算;实数的运算(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。
(2)减法a-b=a+(-b)(3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即|a||b|(a,b同号)ab|a|?|b|(a,b异号)0(a或b为零)?(4)除法?a?(b?0)(5)乘方 an?aa?an个ab1b(6)开方如果x2=a且x≥0,那么a=x;如果x3=a,那么a?x 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律(1)加法交换律 a+b=b+a(2)加法结合律 (a+b)+c=a+(b+c)(3)乘法交换律 ab=ba.(4)乘法结合律 (ab)c=a(bc)(5)分配律 a(b+c)=ab+ac其中a、b、c表示任意实数.运用运算律有时可使运算简便.典型题型与习题一、填空题:2.1.5972精确到百分位的近似数是;我国的国土面积约为9600000平方干米,用科学计数法表示为平方干米。
初中中考复习实数教案
初中中考复习实数教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数、无理数和实数之间的关系;(2)掌握实数的性质,如相反数、倒数、绝对值等;(3)了解平方根、算术平方根、立方根的概念及求法;(4)学会运用科学记数法表示较大的数,并能进行相关计算。
2. 过程与方法:(1)通过数轴理解实数与数轴上的点一一对应的关系;(2)运用实数的性质解决实际问题;(3)运用平方根、算术平方根、立方根解决相关问题。
3. 情感态度价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力,培养学生的团队协作精神。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称,包括正整数、负整数、正分数、负分数;(2)无理数:不能表示为两个整数比的数,如π、√2等;(3)实数:包括有理数和无理数,是数的全体。
2. 实数的性质(1)相反数:一个数与它的相反数相加等于0;(2)倒数:一个数与它的倒数相乘等于1;(3)绝对值:一个数的绝对值表示它在数轴上的距离,总是非负的。
3. 平方根、算术平方根、立方根(1)平方根:一个数的平方根是另一个数的平方等于这个数的正数;(2)算术平方根:一个非负数的算术平方根是它的非负平方根;(3)立方根:一个数的立方根是另一个数的立方等于这个数的正数。
4. 科学记数法(1)科学记数法的表示形式:a×10^n,其中1≤|a|<10,n为整数;(2)科学记数法的转换:将一个数转换为科学记数法,就是将小数点移动到第一个非零数字的右边,并记录小数点移动的位数作为指数n。
三、教学过程1. 导入:复习实数的定义及分类,引导学生回顾实数之间的关系。
2. 新课导入:(1)实数的性质:相反数、倒数、绝对值;(2)平方根、算术平方根、立方根的概念及求法;(3)科学记数法的表示方法及转换。
3. 实例讲解:(1)运用实数的性质解决实际问题;(2)运用平方根、算术平方根、立方根解决相关问题;(3)运用科学记数法表示较大的数,并进行相关计算。
复习教案 实数的运算
第二课时 实数的运算一、复习目标:1.了解有理数的加、减、乘、除、乘方、和开方的概念,掌握实数运算法则、运算律和运算顺序,灵活运用运算律简化实数的运算过程,能熟练地进行实数加、减、乘、除、乘方、开方的混合运算。
2.理解平方根、算术平方根、立方根定义;3、能比较实数的大小;4、能用归纳法探索有规律性的计算问题;二、复习重点和难点:(一)复习重点:1、掌握有理数运算法则、运算律和运算顺序;2、能熟练地进行有理数加、减、乘、除、乘方、开方的混合运算;3、能用归纳法探索有规律性的计算问题;4、能比较实数的大小;(二)复习难点:1、理解乘方的运算法则,特别是进行负数的乘方运算时,不要出现符号问题;2、灵活运用运算律简化运算,能正确进行实数的加、减、乘、除、乘方混合运算;3、能用归纳法探索有规律性的计算问题;三、复习过程:(一)知识梳理:1、实数的运算(1)加法法则: 同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。
(2)减法法则:减去一个数等于加上这个数的相反数,即: a-b=a+(-b)(3)乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即:⎪⎩⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab (4)除法法则:除以一个数等于场上这个数的倒数,即: )0(1≠⋅=b ba b a(5)乘方法则: 求相同因数的积的运算叫乘方,乘方运算的结果叫幂. 正数的n 次方是正数,负数的偶数次方是正数,负数的奇数次方是负数。
(6)零指数幂:)0(10≠=a a(7)负整数指数幂:),0()1(1为整数n a aa a n n n ≠==- (8) 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(9)算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,0的算术平方根是0.(10)立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 如果x 2=a 且x ≥0,那么a =x ; 如果x 3=a ,那么x a =3 2、实数的运算顺序先算乘方、开方,再算乘、除,最后算加、减,有括号的要先算括号内的,若没有括号,在同一级运算中,要从左至右依次进行运算。
中考数学实数的运算复习教案
中考数学实数的运算复习教案中考数学实数的运算复习教案教学目标(知识、能力、教育)1.理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3.会用电子计算器进行四则运算。
教学重点实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。
教学过程一:【前预习】(一):【知识梳理】1. 有理数加、减、乘、除、幂及其混合运算的运算法则(1)有理数加法法则:①同号两数相加,取________的符号,并把__________②绝对值不相等的异号两数相加,取________________的符号,并用____________________。
互为相反数的两个数相加得____。
③一个数同0相加,__________________。
(2)有理数减法法则:减去一个数,等于加上____________。
(3)有理数法则:①两数相乘,同号_____,异号_____,并把_________。
任何数同0相乘,都得________。
②几个不等于0的数相乘,积的符号由____________决定。
当______________,积为负,当_____________,积为正。
③几个数相乘,有一个因数为0,积就为__________.(4)有理数除法法则:①除以一个数,等于_______________________.__________不能作除数。
②两数相除,同号_____,异号_____,并把_________。
0除以任何一个____________________的数,都得0(5)幂的运算法则:正数的任何次幂都是___________;负数的__________是负数,负数的__________是正数(6)有理数混合运算法则:先算________ ,再算__________,最后算___________。
【配套K12】实数教案教学设计精选3篇
实数教案教学设计精选3篇实数教案:初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。
也是后继资料学习的基础。
资料定位:了解无理数、实数概念,了解平方根的概念;会用根号表示数的平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算。
二、设计思路[由整理]整体设计思路:无理数的引入----无理数的表示----实数及其相关概念,实数的应用贯穿于资料的始终。
学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的潜力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学实数的运算复习教案
教学内容:
一.典型例题
例1.
解疑:本题主要综合运用方根的概念,零指数幂,负整数指数幂等知识。
例2.阅读下列一道题的解答过程,判断是否正确,如若不正确,请写出正确的解答过程。
化简:
解疑:这道题隐含着a<0是解此题的关键,而a<0时,|a|=-a,这一点是该题错误的根本原因,另外,在化简时,注意计算步骤要严谨。
例3.若|a|=3,,ab<0,则a—b=
剖析:本题主要是运用绝对值的意义、二次根式成立的条件等数学知识。
拓展:此类命题拓展的思路是将绝对值、方根、代数式的化简综合构建考题。
如计算:
.当。
.若互为相反数,则=。
例4.计算
剖析:本题运用的概念或知识如下:零指数幂的法则,负
整数指数幂的法则,特殊三角函数值,分母有理化等。
例5.已知:。
例6.给出下列算式:
-12=8=8×1
2-32=16=8×2
2-52=24=8×3
2-72=32=8×4
……
观察上面一系列等式,你能发现什么规律?用代数式来表示这个规律。
预测:本题以列代数式为载体,体现了用字母表示数的简明性和普遍性,蕴含着一种数学简洁的美。
同时可考查观察能力和抽象概括能力,渗透着从特殊到一般的辩证关系。
该题是通过观察给出的运算,找到反应其规律的表达式。
这是中考中的一热点问题,此类问题不仅考查对知识的掌握,同时考查观察分析的能力。
二.小结
三.同步练习:
.下列说法中,正确的是
A.||与—互为相反数B.互为倒数
c.1998.8用科学计数法表示为1.9988×102
D.0.4949用四舍五入法保留两个有效数字的近似值为
0.50
.下列说法中正确的是
A.相反数等于本身的数是0B.绝对值等于本身的数是正数
c.倒数等于本身的数是±1和0D.平方等于本身的数是±1和0
.在实数中,无理数的个数是
A.1个B.2个c.3个D.4个
.在函数中,自变量x的取值范围是
A.x>1B.x<1c.x≤1D.x≥1
.若实数a、b满足|3a-1|+b2=0,则ab的值为。
.二oo四年底国家统计局公布我国总人口129999万人,如果以亿为单位保留两位小数,可以写成约为亿人。
.已知:,求
.已知x、y是实数,
.若x+2,则x的值是。
0.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……
这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出。