线性规划约束矩阵的灵敏度分析

合集下载

MATLAB的线性规划问题的敏感性分析

MATLAB的线性规划问题的敏感性分析

MATLAB的线性规划问题的敏感性分析一.问题的提出在现在的日常生活中,我们常会遇到这样的问题,在不同的约束条件下找出最优点值或算出最佳的数值,以提高总产量或经济效益。

那么我们就需要假设一个模型出来,作为基本模型求解。

并找出其内在的规律以方便我们的生产生活的需要。

若约束条件改变,那么总产值是否也会有很大变化呢?让我们一起来研究。

二.具体案例如下:以某农场A,B ,C 等级耕地的面积分别为1002hm,计hm,3002hm,和2002划种植水稻,大豆和玉米,要求三种农作物最低收获量分别为190000kg,130000kg和350000kg。

农场kg kg kg,。

那么,(1)如何制定种植计划才能使总产量最大?(2)如何制定种植计划才能使总产值最大?表一:不同等级种植不同农作物的单产量(单位:2kg)/hm三.问题假设x,表示不同的农作物在根据题意,可以建立线性规划模型,假设决策变量为ij第j等级耕地上种植的面积。

hm)表2 作物计划种植面积(单位:2四.模型建立与分析1.模型:min z=cX S.t. AX b ≤命令:x=linprog(c,A,b) 2.模型:min z=cX S.t. AX b ≤ Aeq.X=beq命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:AX b ≤存在,则令A=[],b=[].3. [x,fval]=linprog(.....)左端fval 返回解X 处的目标函数值。

4.思路分析:找出约束条件——列出目标函数——作出可行域——求出最优解——敏感性分析——回答实际问题。

5.约束方程如下:耕地面积的约束:⎪⎩⎪⎨⎧≤++≤++≤++200300100332313322212312111x x x x x x x x x最低收获量的约束:⎪⎩⎪⎨⎧-≤----≤----≤---3500001000012000140001300006000680080001900009000950011000333231232221131211x x x x x x x x x并且注意:0≥ij x)3,2,13,2,1i ==j ;( 则(1)追求总产量最大时,目标函数为:3332312322211312111000012000140006000680080009000950011000max x x x x x x x x x Z ---------=(2)追求总产值最大的目标函数为:)10001200014000(08.0)600068008000(5.1)900095001000(2.1max 333231232221131211x x x x x x x x x Z ++⨯-++⨯-++⨯-=可化简为333231232221131211800096001120090001020012000108001140013200max x x x x x x x x x Z ---------=五.模型建立与求解:1.对(1)求解,追求总产量最大时,MATLAB 程序如下:f=[-11000 -9500 -9000 -8000 -6800 -6000 -14000 -12000 -10000];A=[1 0 0 1 0 0 1 0 0 ;0 1 0 0 1 0 0 1 0;0 0 1 0 0 1 0 0 1;-11000 0 0 -9500 0 0 -9000 0 0; 0 -8000 0 0 -6800 0 0 -6000 0; 0 0 -14000 0 0 -12000 0 0-10000];b=[100 300 200 -190000 -130000 -350000];lb=[0 0 0 0 0 0 0 0 0];[xopt fxopt]=linprog(f,A,b,[],[],lb,[])Optimization terminated successfully.xopt =fxopt =-7000000键入S=-Z得到原问题的目标函数最大值为S=70000002.运行后敏感性分析后的MATLAB程序如下:从a=0开始,以步长01∆a对下列模型求解;=.0a=0;while(1.1-a)>1c=[-11000 -9500 -9000 -8000 -6800 -6000 -14000 -12000 -10000];A=[1 0 0 1 0 0 1 0 0 ;0 1 0 0 1 0 0 1 0;0 0 1 0 0 1 0 0 1;-11000 0 0 -9500 0 0 -9000 0 0; 0 -8000 0 0 -6800 0 0 -6000 0; 0 0 -14000 0 0 -12000 0 0 -10000];b=[100+a ;300+a; 200+a ;-190000+a ;-130000+a;-350000+a];Aeq=[]; beq=[];vlb=[0,0,0,0,0,0,0,0,0];vub=[];[x,val]=linprog(c,A,b,Aeq,beq,vlb,vub);ax=x'Q=-valplot(a,Q,'.'),hold ona=a+0.01;endxlabel('a'),ylabel('Q')gridOptimization terminated successfully.a =0 x = 0 0 0 0 0 0 100 300 200Q =7000000分析整理后结果对比如下:a =0 x = 0 0 0 0 0 0 100 300 200 Q = 7000000x =0 0 0 0 0 0 Q =7000360x =0 0 0 0 0 0 Q =7000720x =0 0 0 0 0 0 Q =7.0011e+006x =0 0 0 0 0 0 Q =7.0014e+006x = 0 0 0 0 0 0 Q =7.0018e+006x =0 0 0 0 0 0 100.06 Q =7.0022e+006x = 0 0 0 0 0 0 Q =7.0025e+006x =0 0 0 0 0 0 100.08 Q =7002880x =0 0 0 0 0 0 Q =7.0032e+006如果不好观测,还可以将a细分为0001∆a,程序基本不变,只需改变a.0=的步长即可,则运行后图像如下:观察图像后,最优值随a的参加变化不明显,但总在6.88e+6到6.9e+6与7e+6到7.02e+6两个区间内缓慢增长。

第4章线性规划灵敏度分析

第4章线性规划灵敏度分析

-2 x1 1
0
σj
0
0
-4 0 0 B-1b
x3 x4 x5 -1/5 -2/5 1/5 2/5 7/5 -1/5 -2/5 11/5 -9/5 -8/5 -1/5 -28/5
从表中看到 c3= -4, σ3= -9/5 可得到Δc3 ≤-σ3 = 9/5 时,即 c’3≤-4 + 9/5 = -11/5 时原最优解不变。
(1)参数在什么范围内变化时,原最优解或最优基不变—— 数据的稳定区间;
(2)当参数超出(1)的变化范围时,最优解或最优基有何变 化——如何求出新的最优解和最优基。
当模型的参数发生变化后,可以不必对线性规划问题重新 求解,而用灵敏度分析方法直接在原线性规划取得的最优结果 的基础上进行分析或求解,既可减少计算量,又可事先知道参 数的变化范围,及时对原决策作出调整和修正。
xk为换入变量
对 所 有 aik>0 计 算 θi=bi/aik 令θl=min{θi} 第l个基变量为换出变
量,alk为主元素
令 bl/alk→bl; alj/alk→ajl 对主元素列(第k列)令1→alk; 0→其它 元素表中其它行列元素 令 aij-ali/alk·aik→aij
bi-bl/alk·aik→bi бj- alj/alk· бk → бj
4
3+Δc2 x2 0 1
1/2
-1/8
0
2
σj
0 0 -3/2-Δc2 /2 -1/8+ Δc2 /8 0 14+2Δc2
17
Ci
2 3+Δc2
0
0
0
B-1b
CB XB x1 x2
x3
x4

用excel进行线性规划的灵敏度分析

用excel进行线性规划的灵敏度分析
选择“线性规划”作为求解类型,并设置其他参数,如最大/最小值、精 确度等。
求解线性规划问题
01
点击“规划求解”对话框中的“求解”按钮,Excel将开始求 解线性规划问题。
02
Excel将显示求解结果,包括最优解、目标函数的值、可变单 元格的值等。
03
可以根据需要调整参数或约束条件,重新进行求解,以获得 更优的解或更全面的灵敏度分析。
03 灵敏度分析
灵敏度分析的定义
01
灵敏度分析是评估线性规划模型中参数变化对最优解
的影响程度的过程。
02
它有助于理解模型的最优解对各个参数的敏感程度,
从而更好地理解模型的行为。
03
通过灵敏度分析,可以确定哪些参数对模型的影响最
大,从而在实际情况中更好地调整这些参数。
灵敏度分析的步骤
2. 运行模型
案例二:运输问题优化
约束条件
车辆载重、运输时间、运输路线等。
目标函数
最小化运输成本,同时满足各分区的需求。
灵敏度分析
分析需求量、运输成本、运输时间等参数变 化对最优解的影响。
案例三:资源分配问题优化
01
目标函数
最大化资源利用效率,同时满足 生产需求。
约束条件
02
03
灵敏度分析
资源总量、生产能力、产品质量 等。
THANKS FOR WATCHING
感谢您的观看
分析资源价格、生产能力、产品 质量等参数变化对最优解的影响。
05 结论与展望
线性规划与灵敏度分析的意义
线性规划是一种数学优化技术,用于 在有限资源约束下实现特定目标。灵 敏度分析是线性规划的一个重要组成 部分,用于评估模型参数变化对最优 解的影响。

灵敏度分析(第三章线性规划4)

灵敏度分析(第三章线性规划4)

初始单纯形表 x1 x2 1 2 8 x3 1 2 6 x4 1 0 0 x5 0 1 0 bi
12 12
b2 20
0
0
x4 x5 f
1 1 5
0
最优单纯形表 x1 x2 0 1 0 x3 0 1 2 x4 2 1 2 x5 1 1 3 bi 424-b
2
5 x1 8 x2
f
1 0 0
实例1
产品 资源 原料甲 原料乙 A 1 1 5 B 1 2 8 C 1 2 6 资源拥 有量 12kg 20kg
利润 (元/kg)
在实例1中,假设产品C 的资源消耗量由 试分析最优解的变化情况。
1 2
2 变为 1

x4 x5 f
x1 1 1 5
•设XB=B1b是最优解,则有XB=B1b 0
•b的变化不会影响检验数 •b的变化量b可能导致原最优解变为非基可行解 设b’=b+ b 为保证最优基不变,必须满足XB=B-1b’ 0
1. 分析b1=16和b2=20时,最优基和最优解的变化
初始单纯形表 x1 x4 x5 f 1 1 5 x2 1 2 8 x3 1 2 6 x4 1 0 0 x5 0 1 0 bi
5 x1 8 x2
f
1 0 0
保持b1=12,分析b2在什么范围内 变化时,最优基不变?
2 B b' 1
1
1 12 1 b2
24 b 2 12 b 2
0
解之得:12≤b2≤24
即:当12≤b2≤24时,最优基不变
3.2 增加新约束条件的分析
产品 资源 原料甲 原料乙 原料丙 利润 (元/kg)

线性规划增减约束条件的灵敏度分析

线性规划增减约束条件的灵敏度分析

线性规划增减约束条件的灵敏度分析设线性规划问题min f=CXAX=bX≥0(1)的最优单纯形表为它为实际操作提供最优方案。

由于现实世界是不断发展变化的,体现在约束条件上,增加或减少约束条件则是随时可能发生的。

这将导致最优方案的变化,如不与时俱进,及时做相应调整,必将造成经济损失。

本文在灵敏度分析的基础上,面对增减约束条件的情形,给出新最优方案的获得方法。

1 增加约束条件设增加的一个约束条件为则应在原问题的最优表1中按(2)提供的数据,增加一行,然后用消去法,把这行中基变量的系数消为0,这显然对检验数没有影响,从而可化为仅缺少一个基变量且的问题,故可沿用对偶单纯形法<sup>[1]</sup>或联合算法<sup>[2]</sup>的规则,于新增之行确定主元,实行Gauss消元,便得一正则解,继之用对偶单纯形法迭代求优。

如果增加的约束不止一个,可一并处理。

由于比较简单这里不详述,参见文献[3]。

2 减少约束条件对于减少约束条件的问题,大多的教材<sup>[4][5]</sup>和其它文献[6]都没有涉及。

事实上它和增加约束一样重要。

减少约束条件还有特殊的经济意义。

对于资源利用问题,它意味着解除对某些资源的限制;而在工厂里又相当于去掉一道工序;这些都为创新增值提供途径或指示方向<sup>[7]</sup>;故值得详细讨论之。

当需要减少一个约束时,并不是将最优表中,与该约束相应的行去掉就可以的,因为此约束的影响已通过Gauss消元施加在其它各行里了。

那么,如不重新求解,应如何利用最优表而达到去掉某些约束的目的呢?设初始单纯形表中含有一个单位矩阵,不妨假定它是由辅助变量(松弛变量,剩余变量或人工变量等)形成,而最优单纯形表为:表2 初始单纯形表中含有单位矩阵的最优表现在要去掉原约束条件AX=b中的一个约束,不妨设为第t个约束,则对上表应采取如下步骤:考虑原第t个约束所加辅助变量这一列,即(n+t)列,若为基变量,则去掉最优表中第t个约束行和(n+t)列即可(此时最优解与最优值均不变)。

第三章 线性规划的灵敏度分析和最优解的解释

第三章 线性规划的灵敏度分析和最优解的解释
3
3.1 灵敏度分析简介
灵敏度分析是研究线性规划的参数(非可控输入)发生 变化对最优解的影响程度
线性规划的参数包括:
• 目标函数系数 • 约束条件右侧值 • 约束条件系数矩阵
最优解中包含的信息:
• 目标函数值 • 决策变量值 • 递减成本(reduced cost) • 松弛/剩余变量
4
3.1 灵敏度分析简介
利用Lingo 软件做灵敏度分析
16
17
利用Excel做灵敏度分析
Microsoft Excel 16.0 敏感性报告 工作表: [数据模型与决策第3章例题.xlsx]第三章例题1 报告的建立: 2021/5/29 10:48:56
可变单元格
单元格 $B$15 $C$15
名称 决策变量值 x1 决策变量值 x2
作者
John Loucks
St. Edward’s University
1
第三章 线性规划的灵敏度分析和最优解的解释
3.1 灵敏度分析简介 3.2 目标函数系数变化的分析 3.3 约束条件右端值变化的分析 3.4 传统灵敏度分析的局限性
2
第三章 线性规划的灵敏度分析和最优解的解释
3.1 灵敏度分析简介 3.2 目标函数系数变化的分析 3.3 约束条件右端值变化的分析 3.4 传统灵敏度分析的局限性
6
x1 < 6
2x1 + 3x2 < 19 x1 + x2 < 8
x1, x2 > 0
固定x2的系数7,改变x1 的系数
5
最优解:
Max 14/3x1 + 7x2
4
x1 = 5, x2 = 3
3
Max 7x1 + 7x2

线性规划的灵敏度分析

线性规划的灵敏度分析
23
,
b3
33
5
1
,
5 1
,
15
1
5,5,15
故有 15 b3 5,b3 在[0,20]上变化时最优基不变。
若线性规划模型是一个生产计划模型,当求出cj或bi 的最大允许变化范围时,就可随时根据市场的变化来掌握 生产计划的调整。
灵敏度分析方法还可以分析工艺系数aij的变化对最优解 的影响,对增加约束、变量或减少约束、变量等情形的分 析,下面以一个例子来说明这些分析方法。
(8)增加新约束 5x1 x2 2x3 10
§2.4 灵敏度分析
Ch2 Dual Problem
Sensitivity Analysis
2023年2月1日星期三 Page 19 of 34
【解】加入松弛变量x4、x5、x6,用单纯形法计算,最优表如2-7所 示。
表2-7
Cj
2 -1
4
0
0
0
b
CB XB x1
x2
x3
x4
x5
x6
4 x3 0 5/7
1
1/7 3/7
0
2
2 x1 1 2/7
0 -1/7 4/7
0
1
0 x6 0 -2
0
0
-1
1
1
λj
0 -31/7 0 -2/7 -20/7 0
§2.4 灵敏度分析 Sensitivity Analysis
Ch2 Dual Problem
2023年2月1日星期三 Page 20 of 34
§2.4 灵敏度分析 Sensitivity Analysis
cj
-2 1
-4
0

【精品】LINGO软件灵敏度分析

【精品】LINGO软件灵敏度分析

【精品】LINGO软件灵敏度分析LINGO是一种非常实用的数学建模软件,可用于线性规划、非线性规划、整数规划、混合整数规划、二次规划、非线性二次规划、全局优化、动态规划等方面。

在LINGO中,灵敏度分析可以帮助用户更好地理解线性规划问题的解,并探究约束、变量、最优值等因素的变化对于优化结果的影响。

下面将详细介绍LINGO软件的灵敏度分析功能。

一、约束灵敏度分析在LINGO中,可以通过在“呼出”窗口中选择“求解”菜单,再选中“灵敏度分析”,来进行约束灵敏度分析。

当我们需要对某一约束条件进行灵敏度分析时,可以在“PSens”一栏中选中要进行分析的约束条件,并选择需要分析的灵敏度类型:1. 左侧界(Lower Bound)灵敏度分析:在该约束条件的左侧界上下浮动,观察最优解随着左侧界的变化而产生的变化情况。

进行变量灵敏度分析时,LINGO会输出一个名为“Variable Sensitivity”的窗口,其中包含了与所选中变量相关的数据,如灵敏度系数、上/下限边界、最小可行解等。

另外,该窗口还提供了一个“Graph”选项卡,可以展示出灵敏度分析的图表,帮助用户更直观地理解灵敏度的变化情况。

在LINGO中,最优解灵敏度分析可以探究最优解随着目标函数系数的变化而产生的变化情况。

用户可以在“呼出”窗口中选择“求解”菜单,再选中“灵敏度分析”,然后在“Objective Sensitivity”选项卡中选中需要进行分析的目标函数变量。

总之,LINGO软件的灵敏度分析功能可以在优化过程中帮助用户更好地了解问题的解,探究约束、变量、目标函数系数等因素对应问题的影响,帮助用户优化模型,从而达到更好的优化效果。

第3章线性规划的灵敏度分析

第3章线性规划的灵敏度分析

又获得了10个小时的切割与印染时间,我 们可以扩展问题的可行域,如图3-3所示。可 行域变大了,现在我们考虑是否有新的解会使
目标函数值更大。运用图解法可以看出,极点 S=527.5,D=270.5是最优解点。新的目标函数 值为10×527.5 + 9×270.5=7711.75美元,比原 来利润增加了7711.75 – 7688.00=43.75美元。 因此,利润的增加率为43.75/10=4.375美元/小 时。
在式(3-2)中,我们计算出只要满足 下列条件,极点③仍然是最优点
如果CS升高到13美元,同时使CD降低到8美 元,新的目标函数斜率将变成
由于这个值要小于下限,因此当前的解 S=540,D=252不再是最优的。把CS=13,CD =8代入,可得出极点②是新的最优解。
观察最优范围,我们得出结论,无论是
(3-2) 为了计算标准袋利润最优的范围,我们 假设高级袋的利润CD=9,代入式(3-2), 我们得到: 从左边的不等式,我们得到
因此
从右边的不等式,我们得到
因此, 综合标准袋利润CS的极限,标准袋利润最优 范围为:
6.3≤CS≤13.5
在最初Par公司的问题中,标准袋的利润 是10美元。最优解是540个标准袋和252个高级 袋。标准袋利润CS的最优范围告诉Par公司的 管理者:在其他系数不变的情况下,只要标准 袋的利润在6.3美元与13.5美元之间,540个标 准袋和252个高级袋总是最优产量。然而值得 注意的是,即使产量不变,总的利润也可能由 于每一个标准袋利润的变化而变化。
灵敏度分析还可以用来分析模型中的系
数哪个更能左右最优解。比如,管理层认为 高级袋的利润9美元只是一个估计量。如果 通过灵敏度分析得到,当高级袋的利润在 6.67美元与14.29美元之间变化时,模型的最 优解都是540个标准袋和252个高级袋,那么 管理层就必须思考每个高级袋获利9美元这 个估计量的可信程度有多大了。管理层希望 知道如果高级袋的利润下降,最优产量会怎 样变化。

线性规划灵敏度分析

线性规划灵敏度分析

淮北师范大学2011届学士学位论文线性规划灵敏度分析学院、专业数学科学学院数学与应用数学研究方向运筹学学生姓名陈红学号20071101008指导教师姓名张发明指导教师职称副教授2011年4月10日线性规划的灵敏度分析陈 红(淮北师范大学数学科学学院,淮北,235000)摘 要本文主要从价值系数j c 的变化,技术系数ij a 的变化,右端常数i b 的变化以及增加新的约束条件和增加一个新变量的灵敏度这几个方面来进行研究;资源条件是线性规划灵敏度分析中的主要应用内容,而对于资源条件b 的一个重要应用是:“影子价格问题”的实际应用,最后简述了线性规划在经济及管理问题上的典型应用和从求解例题的图解法揭示了最优解的一些重要特征。

关键词 单纯形法,灵敏度分析,最优解,资源条件,价值系数Sensitivity Analysis of Linear ProgrammingChen Hong(School of Mathematical Science,Huaibei Normal University ,Huaibei,235000)AbstractThis thesis is mainly from the variety of the cost coefficient ‘j c ’, the variety of technology coefficient ‘ij a ’, the var iety of the resources condition‘i b ’and increase the new restraint and new variable to analytical linear programming of sensitivity analysis 。

This thesis is mainly based on the simplex method and dual simplex method of linear programming to system analytical the influence of the variety upon the optical solution of the coefficient of the simplex table 。

浅谈线性规划问题的灵敏度分析

浅谈线性规划问题的灵敏度分析

浅谈线性规划问题的灵敏度分析符龙飞2016年5月15日摘要线性规划是运筹学的一个重要的分支,本文主要讨论有关线性规划问题的灵敏度分析,灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析,在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.因此本文讨论在实际问题中当技术系数、资源系数、价值系数以及增加一个变量和增加一个约束条件时,原问题最优解的变化,对原线性规划问题进行灵敏度分析.关键词:线性规划;灵敏度;最优解AbstractLinear programming is an important branch of operational research, this paper mainly discusses the sensitivity analysis of linear programming, sensitivity analysis of the definition refers to the analysis of the sensitivity of its own because of changes in ambient conditions and displayed on things or to make the whole system of linear programming problems, we assume that the technology of data resources the data value and data vector or matrix elements in the known constant, but in the actual problems in these data are just some forecast data and estimates, the establishment of a linear programming model to deal with practical problems, will not change the data, is not very accurate, may be modified in this paper.When discussing technical factors, in the actual problem of resource factor, value factor and add a variable and add a constraint condition, the original problem of optimal solution Sensitivity analysis of the original linear programming problem.Keywords: Linear programming; sensitivity; optimal solution目录第一章前言 (1)1.1 线性规划问题及线性规划发展史 (1)1.2 灵敏度分析的概念 (1)1.3线性规划模型 (1)1.4灵敏度分析的方法及步骤 (2)1.5 符号说明 (2)第二章技术系数a的变化分析 (3)ij2.1 非基变量系数列向量发生变化 (3)2.2 基变量系数列向量发生变化 (4)第三章资源系数b的变化分析 (7)ic的变化分析 (10)第四章价值系数i4.1 非基变量价值系数变化 (10)4.2基变量价值系数变化 (11)第五章增加新的变量的变化分析 (13)第六章增加新约束条件的变化分析 (16)总结 (18)[参考文献] (19)第一章前言1.1 线性规划问题及线性规划发展史线性规划是我们研究运筹学最基本的也是最重要的问题之一,是运筹学中相对比较成熟的一个重要分支.线性规划是近几十年发展起来的一种数学规划的方法,它主要研究在给定的线性不等式或者线性方程约束条件下,对所求的目标函数在一定意义下的极值问题,使其线性指标最优.它广泛应用于工、商、农、军事、交通运输、经济管理以及计划等各个领域.具有应用广泛、适应性强、计算技术比较简单等特点,线性规划在理论上已经也来越成熟,其应用也越来越广泛和深入[1].线性规划的发展是运筹学史上几代人智慧的结晶.1939年,原苏联数学家康托洛维奇发表了《生产组织与计划中的数学方法》学术报告,首次提出了线性规划问题,但是他没有找到一个统一的求解这类问题的方法,1941年美国学者希奇柯克独立的提出了运输问题这样一类特殊的线性规划问题,1947年,美国学者丹捷格提出求解线性规划的单纯形法和许多相关的理论,为线性规划奠定了理论基础,推动了线性规划的发展.自此以后线性规划在计算上趋向成熟,应用也更加广泛深入[2].1.2 灵敏度分析的概念灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析.在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.如果市场条件发生了变动,价值系数的值就会发生变化,技术系数会随着工艺技术条件的变化而变化,同样,在资源投入量发生变化时,资源系数也会随之发生变化,它的值会根据资源投入后能产出多大经济效果来决定的一种决策选择.因此,当这些数据发生变化时,线性规划的最优目标值或者最优解会发生怎样的变化?或者是不是这些参数在一定的范围内其线性规划问题的最优解不会发生变化?这就是本文我们研究线性规划问题的灵敏度分析所要解决的问题.1.3线性规划模型线性规划模型的标准形式如下:max z CX(0)0AX b b X =≥⎧⎨≥⎩我们在求解线性规划问题时首先就应该把数学模型转化成标准形式.1.4灵敏度分析的方法及步骤要进行灵敏度分析,首先要弄明白的就是上述问题:①当系数发生变化时,最优解或者最优目标值发生变化,我们如何简便地求出新的最优目标值和最优解;②当系数在什么一定范围内,线性规划的最优解是不变的.我们可以将灵敏度度分析归纳为:(1)将参数的改变计算反映到最终单纯形表上来,具体的计算方法是按下列公式计算出由技术参数、资源参数和价值参数的变化引起的最终单纯形表上有关数字的变化,即*1b B b -∆=∆*1j j P B P -∆=∆()()*1mj j j j ij i i c z c z a y =∆-=∆--∑(2)检查原问题是否仍为可行解; (3)检查对偶问题是否仍为可行解.(4)我们可以按照下表1-1所列出的情况得出结论或者得出继续计算的步骤[3].表1-1原问题 对偶问题 结论或者继续计算的步骤 可行解 可行解 表中的解仍为最优解 可行解 非可行解 用单纯法继续迭代求最优解 非可行解 可行解 用对偶单纯形法继续迭代求最优解 非可行解非可行解引入人工变量,编制新的的单纯形表,求最优解1.5 符号说明①ij a 技术数据; ②i b 资源数据; ③j c 价值数据; ④B 最优基; ⑤s .t . 约束条件.第二章 技术系数ij a 的变化分析2.1 非基变量系数列向量发生变化如果我们用最优基B 来说,当非基变量j x 的系数列向量j A 改变为'j j jA A A =+∆就会有变化后的检验数为()'1j j B j j j j c C B A A Y A σσ-=-++∆=+∆ ()1,2,,j n =[4]在这里,对偶可行解为1B Y C B -=,我们要使原来的线性规划最优基B 仍然保持不变的话,必须有'0j σ≥,即j j Y A σ∆≥- ()1,2,,j n =而当()0,,,,0Tj ij P a ∆=∆时,则由上式可得()10,,0im i ij j ij y y y y a a σ⎡⎤⎢⎥⎢⎥⎢⎥=∆≥-∆⎢⎥⎢⎥⎢⎥⎣⎦我们可以导出 当0i y >时,有jij ja y σ∆≥-;当0i y <时,有jij ja y σ∆≤-.例1已知线性规划问题12345max 2300Z x x x x x =---++s .t .()12341234347901,2,3,4,5j x x x x x x x x x j ⎧+++=⎪⎪+++=⎨⎪≥=⎪⎩ 23a 怎样变化时最优解保持不变?解:最终单纯形表如下表2-1j c2- 3- 1-0 0bB C B X 1x2x3x 4x5x2-1x 1 0 1-43 13- 1 3-2x0 1 2 13- 13 2j σ353138Z =-由此表可得[]133323234113312,311331233B cC B p a a σ-⎡⎤-⎢⎥⎡⎤=-=----⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦=+ 32323120233a a σ=+≥⇒≥-所以[232,)a ∈-+∞原最优解保持不变.2.2 基变量系数列向量发生变化仍然对于最优基B 来说,当基变量j x 的系数列向量j A 发生变化的时候,对于基向量B 和它的逆矩阵1B -都会有一定的影响,则线性规划的解的可行性、最优性以及它的最优目标值都会随之发生变化.我们要求出一个一般公式是很难的,因此,我们会用单纯形法重新求解变化后的线性规划问题.对于重新的求解可以在原来的单纯形终表上变换数据后进行迭代[5].例2已知线性规划问题1234max 534Z x x x x =+++s .t .()123412341234232800543412003453100001,2,3,4jx x x x x x x x x x x x x j +++≤⎧⎪+++≤⎪⎨+++≤⎪⎪≥=⎩如果非基变量3x 的系数由135⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦变为141⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,那么原线性规划的最优解是否还是最优?如果不是求出最优.解:由3110431154A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则330115110,,114444Y A σ⎡⎤⎛⎫⎢⎥∆==-<-=- ⎪⎢⎥⎝⎭⎢⎥-⎣⎦因此不满足j j Y A σ∆≥-,那么原线性规划的最优解就不再是最优解了,根据灵敏度分析的步骤,求新的最优解我们应该先求出新的检验数'1'3330130,,111044B c C B A σ-⎡⎤⎛⎫⎢⎥=-+=-+=-< ⎪⎢⎥⎝⎭⎢⎥-⎣⎦所以可以取3x 为进基变量,然后计算1'311111401143312014B A -⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦-⎢⎥⎣⎦用它去替换原线性规划最优单纯形表表2-1的第3列,从而得到表2-2,继续迭代可以得到表2-3,如下表2-1 原线性规划最优单纯形表15341x2x3x4x5x6x7x5x 100 140 134- 0 1 141- 4x20022-111-2x100 34-1 114 0 0 34-1 1300134114141表2-2 改变后的单纯形表15341x2x3x4x5x6x7x5x 100 140 1 0 1 141- 4x 200 20 31 0 11-2x100 34-1 2- 0 0 34-1 13001341-141表2-3 迭代后的单形表15341x2x3x4x5x6x7x5x 1003 512- 0 0 13- 1 112-23- 4x 2003 23 0 1 13 0 13 13- 2x7003 712 1 0 23 0 112- 13 41003471213712 23我们由上表就可以看得出来,求得的最优解*7002001000,,,0,,0,0333X ⎛⎫= ⎪⎝⎭以及改变后的最优值*41003z =.第三章 资源系数i b 的变化分析我们知道,资源系数发生变化的问题关键就是怎样把i b 的变化直接的反映到原来线性规划问题的最终单纯形表,对于单纯形法的迭代过程,其实就是矩阵的初等变换过程,用所学的知识我们知道,对于分块矩阵[]BI我们进行初等变换时,把矩阵B 变成单位矩阵I ,会有单位矩阵I 变成矩阵1B -,即1IB -⎡⎤⎣⎦因此我们可以知道,若在已知的最终单纯形表中基可行解所对应的基“B ”(最终单纯形表中的基变量在初始单纯形表中的列向量所构成的矩阵),即可在最终单纯形表中找到“1B -”(初始单纯形表中的单位矩阵I 在最终单纯形表中所对应的矩阵),我们可以有'1b B b -=[6].例3对于线性规划问题12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 如果把第二个约束条件的右端项增大到32,那么分析一下最优解如何让变化.解:由最终单纯形表表3-1表3-1 最终单纯形表1x2x3x4x5x3x 152 0 0 1 54 152- 1x 72 1 0 0 14 12- 2x32114- 32i i z c -0 0 014 12因为003224880b ⎡⎤⎡⎤⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,由*1b B b -∆=∆,得*51514201011082420213042b ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦将其加到表3-1一列数字上的最终单纯形表的基变量解,得表3-2.表3-21x2x3x4x5x3x 352 0 0 1 54 152- 1x 112 1 0 0 14 12- 2x12- 0 1 0 14- 32 i i z c -1412又因为上表中原问题是非可行解,因此我们需继续计算,采用对偶单纯形法可以得到表3-3表3-31x2x3x4x5x3x 15 0 5 1 0 0 1x 5 1 10 0 12x20 4-0 1 6-i i z c -12从表中我们可以看出新的最优解15x =,*2510z =⨯=.第四章 价值系数i c 的变化分析4.1 非基变量价值系数变化假设()12n A p p p =.若j j j c c c =+∆,j N ∈,则1T j j B j j j c c B p c σσ-=-=+∆如果使最优基不变,则必须有0j σ≤,因此非基变量价值系数j c ,j N ∈的变动范围应该满足j j c σ∆≤-例4已知线性规划问题123max 234Z x x x =---s .t .123412341234523234,,,,0x x x x x x x x x x x x x ---+=-⎧⎪-+-+=-⎨⎪≥⎩求解价值系数在什么范围变化时,最优解不变.解:表4-1是最终单纯形表表4-1j c →2-3- 4- 0 0b cB X b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x1151 0 75 15- 25- j σ95- 85- 15- 由单纯形法计算可得表4-2表4-2j c →2-3-34c -+∆0 0b cb x b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x115175 15- 25- j σ0 0395c -+∆85- 15- 从表4-2中我们可以看出当395c ∆≤时,最优解不变. 4.2基变量价值系数变化如果B B B c c c =+∆,则对于j N ∀∈,11TT B j j j j B j c c B p c B p σσ--=-=-∆这时,若保持最优基不变,一定要使得0j σ≥,j N ∀∈.所以基变量价值系数Bc 满足不等式组的取值范围为1T B j jc B p j N σ-∆≤∀∈例5已知线性规划问题123max 2z x x x =-++s .t .1231241234624,,,0x x x x x x x x x x ++=⎧⎪-+=⎨⎪≥⎩当1c 变为4时,求新问题的最优解.解:这个线性规划模型的最终单纯形表为表4-3 .表4-31x2x3x4x2x 6 1 1 1 0 4x1030 11 i i 1c 是非基变量的系数,则()1133,132c c ∆≤--=≤-+=所以,1c 在12c ≤的范围内变化时,最优解不变.当1c 变为4时,超出范围,则重新计算()()1'1241144,42,003TB j c B p c c p σ-⎛⎫=-=-=-> ⎪⎝⎭把表4-3中13σ=-变为2,选择1x 为入基变量,4x 为出基变量,进行迭代,得到的最终单纯形表,表4-4表4-41x2x3x 4x2x83 0123 13- 4x 1031 013 13 i i c z - 0 053- 23- 新的最优解为:1234108,,033x x x x ====;最优值:*563z =.第五章 增加新的变量的变化分析增加一个新的变量实际上就是在单纯形表中增加一列,假如增加一个新的变量1n x +,1n c +是它所对应的价值系数,()111211,,,Tn n n mn A a a a ++++=是它在约束矩阵中的对应系数列向量,则增加一列'11'''2111'1n n n n mn a a A B A a +++++⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其检验数1111n n B n c C B A σ-+++=-+那么就得到了新问题的单纯形表,如果10n σ+≥,则原线性规划问题的最优解不变.我们通过具体例题来讨论增加新的约束条件.例6某生产加工厂计划用两种不同的原料生产四种商品,四种商品的收益和消耗的原料数以及消耗的原料定量如表5-1表5-1产品(万件)/原料(kg )甲 乙 丙 丁 提供量 第一种原料3 2 104 18 第二种原料 0 0 2 1/2 3 求:如果增加第一种原料,增加多少原最优基不变?解:设生产甲、乙、丙、丁四种产品各1x ,2x ,3x ,4x 万件,则线性规划模型为1234max 985019Z x x x x =+++s .t .()1234343210418123201,2,3,4j x x x x x x x j ⎧+++≤⎪⎪+≤⎨⎪⎪≥=⎩增加第一种原料时,1b 就会发生变化,设1118b b =+∆,1(18,3)b b =+∆,则1111210221833314311636b b B b b -⎡⎤⎡⎤-+∆⎢⎥⎢⎥+∆⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--∆⎢⎥⎢⎥⎣⎦⎣⎦则需满足12203b +∆≥,11106b -∆≥原最优基不变,得136b -≤∆≤,即11524b ≤≤.函数1112(0,0,1,2)63t X b b =-∆+∆,113883Z b =+∆是1b ∆最优值和最优解,当16b ∆>,13b ∆<-时,原来的最优基就会改变,原问题的最优基如下表表5-2.表5-2j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-2 503x12- 13- 1 0 16- 43 1j σ4- 23- 0133- 103- 88Z =当16b ∆>时,情形如下,常数项用111223116b B b b -⎡⎤+∆⎢⎥=⎢⎥⎢⎥-∆⎢⎥⎣⎦代替,用对偶单纯法得表5-3.表5-3j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-1223b +∆503x12- 13- 116- 43 1116b -∆j σ4-23- 0 0133- 103-113883Z b =+∆用对偶单纯形法求解,第二行需乘以3-,第一行加上第二行乘以43-,可以得到单纯形表表5-4.表5-4j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 00 41 02683x321 3-0 124-1132b ∆- j σ3- 02- 04-6-1904Z b =+∆当11302b ∆-≥,即16b ∆>,新的最优基42(,)B P P =,最优解为11(0,3,0,6)2b ∆-,最大收益为1904b +∆万元.第六章 增加新约束条件的变化分析我们在处理实际问题时,往往会遇到在其问题的基础上增加新的约束条件,如果新添加的约束条件能够使原来的最优解得到满足,那么它的最优解一定不变,反之,则需对问题继续进行分析.例7对于线性规划问题 12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩增加一个新的约束条件123212x x +≤,分析最优解的变化.解:把原来线性规划问题最优解带入新的约束条件中,因为 73273212222⨯+⨯=> 则约束条件可以写成1263212x x x ++=,6x 为基变量,反映到表3-1中得表6-1.表6-11x2x 3x 4x5x6x 0 3x 152 0 0 1 54 152- 0 2 1x 72 1 0 0 14 12- 0 1 2x 320 1 0 14- 320 06x12 3 2 0 01 i i c z -14121将1x ,2x 列系数变为单位向量,用对偶单纯法进行迭代,得最终单纯形表,表6-2.表6-21x2x 3x 4x5x 6x0 3x 15 0 0 1 52 0 5-2 1x 4 1 0 0 13 0 13-1 2x 0 0 1 0 12- 0 16x13 2 0 16 1 23- i i c z -16- 013-则新的最优解为*124,0,8x x z ===.总结从本文中讨论我们可以看出,在线性规划问题中,一些数据发生变化时,特别是当数据变化的幅度较小时,用灵敏度分析新的问题要比从头求解新问题简便的多,因此我们要学会掌握线性规划问题的灵敏度分析并加以推广.[参考文献][1] 李小光.线性规划中的灵敏度分析[J].2000,20(3),15-20.[2] 张伯声.运筹学[M].北京:科学出版社,2008,65-75.[3] 党耀国,李邦义.运筹学[M].北京:科学出版社,2009,61-73.[4] 施泉生.运筹学[M].北京:中国电力出版社,2004,44-50.[5] 孙麟平.运筹学[M].北京:科学出版社,2005,32-38.[6] 吕蓬,潘志.运筹学数学规划篇[M].北京:清华大学出版社,2011,32-40.。

线性规划模型的应用与灵敏度分析(DOC)

线性规划模型的应用与灵敏度分析(DOC)

摘要线性规划是解决稀缺资源最优分配的有效方法,使付出的费用最少或获得的利益最大。

它的研究对象是有一定的人力、财力、资源条件下,如何合理安排使用,效益最高;某项任务确定后,如何安排人、财、物,使之最省。

它要解决的问题的目标可以用数值指标反映,对于要实现的目标有多种方案可以选择,有影响决策的若干约束条件。

本文主要介绍了线性规划模型在实际生活中的应用,其中包括解线性方程组的各种方法,如图解法、单纯形法、以及对偶单纯形法等等,以及简单介绍了有关灵敏度分析的方法。

由于许多问题仅仅利用线性规划的方法还不足以解决,因此用到了对偶理论,也因此引出了对偶单纯形法。

对偶规划是线性规划问题从另一个角度进行研究,是线性规划理论的进一步深化,也是线性规划理论整体的一个不可分割的组成部分。

灵敏度分析是对线性规划结果的再发掘,是对线性规划理论的充要应用,本文以实例验证灵敏度分析的实际应用。

关键词:线性规划;单纯形法;对偶单纯形法ABSTRCTLinear programming is an effective method to solve the optimal allocation of scarce resources, make the cost of pay or receive at least the interests of the largest. Its object of study is the human and financial resources, resource conditions, how to reasonably arrange to use, benefit is supreme; A task is determined, how to arrange people, goods, and make it the most provinces. It to the target can be used to solve the problem of the numerical indicators, to achieve a variety of solutions to choose from, have an impact on the decision of some constraint conditions. Through the subject design, can deepen the operations research, optimization method, linear programming, nonlinear programming, to improve the integrated use of knowledge, improve the ability of using the sensitivity analysis to solve various practical problems. This article mainly introduces the application of linear programming model in real life, including the various methods of solving linear equations, as shown in figure method, simplex method and dual simplex method, etc., and simply introduces the method of sensitivity analysis. Due to many problems just by using the method of linear programming is not enough to solve, so use the duality theory, thus raises the dual simplex method. The dual programming is linear programming problem from another Angle, is the further deepening of linear programming theory, linear planning theory as a whole is also an integral part of. Sensitivity analysis is to discover, the result of the linear programming is the charge to application of linear programming theory. Keywords: linear programming;Simplex method;The dual simplex method目录前言线性规划模型的应用与灵敏度分析 (1)第一章线性规划问题 (1)1. 线性规划及灵敏度分析简介 (1)2. 线性规划模型应用的发展 (1)3. 线性规划模型研究的问题 (2)4. 线性规划模型的应用 (2)4.1问题 (2)4.2线性规划方法的特点及局限性 (2)4.3线性规划模型的基本结构 (3)4.4线性规划模型的一般形式 (3)4.4线性规划的性质…………………………………………………………………………………5第二章求解线性规划的方法 (6)1. 图解法 (6)2. 单纯行法 (7)2.1 单纯行法的基本思路 (7)2.2 单纯形法的求解步骤 (11)2.3 单纯形法的求解过程小结 (12)2.3.1人造基、初始基本可行解 (12)2.3.2最优解判别定理: (14)2.3.3单纯行过程的两种方法 (14)3. 单纯行法 (14)3.1对偶问题的提出 (14)3.2线性规划的对偶理论 (15)3.3对偶单纯形法的步骤 (15)4. 单纯行表......................................................................................................错误!未定义书签。

第二讲线性规划与灵敏度分析

第二讲线性规划与灵敏度分析

2.9 影子价格
例2.3 某文教用品厂利用原材料白坯纸生产原稿纸、 日记本和练习本三种产品。该厂现有工人100人,每 天白坯纸的供应量为30000千克。如果单独生产各种 产品时,每个工人每天可生产原稿纸30捆、或日记 本30打,或练习本30箱。已知原材料消耗为:每捆 原稿纸用白坯纸10/3千克、每打日记本用白坯纸 40/3千克,每箱练习本用白坯纸80/3千克。已知生 产各种产品的盈利为:每捆原稿纸1元、每打日记本 2元,每箱练习本3元。试讨论在现有生产条件下使 该厂盈利最大的方案。 如白坯纸供应量不变,而工人数量不足时,可从市 场上招收临时工,临时工费用为每人每天15元,问 该厂是否招临时工及招收多少人为宜。
2.4 单个约束右端值变动
图解法(直观)
可以看到, 6 b2 18 在这个范围内,每 次车间的约束右端 值增加(或减少)1, 交点的移动就使利 润增长(或减少) 影子价格的数量 (150元)
2.5 多个约束右端值同时变动
多个约束右端值同时变动对目标值的 影响 将1个小时的工时从车间3移到车间2, 对总利润所产生的影响 方法1:使用电子表格进行分析(重 新运行“规划求解”工具) 方法2:运用“敏感性报告”进行分 析(百分之百法则)
2.1 线性规划灵敏度分析 在第1章的讨论中,假定以下的线性规划 模型中的各个系数cj、bi、aij是确定的常数, 并根据这些数据,求得最优解。
Max(Min) z c j x j
j 1
n
n aij x j (, ) bi ( i 1, 2, L , m) s.t. j 1 x 0 ( j 1, 2, L , n) j
4 x1 2 x2 12 s.t. 3 x1 2 x2 18 x1 , x2 0

线性规划中的对偶问题与灵敏度分析

线性规划中的对偶问题与灵敏度分析

线性规划中的对偶问题与灵敏度分析线性规划是一种优化方法,广泛应用于各个领域的决策问题。

在线性规划中,对偶问题与灵敏度分析是两个重要的概念和工具,可以帮助我们更好地理解和解决实际问题。

1. 对偶问题在线性规划中,对偶问题是指与原始问题相对应的一个问题。

它通过转换原始问题并构造一个新的问题,以便从不同的角度来解释和解决原始问题。

对偶问题能够提供原始问题的一些有用信息,并且在某些情况下,对偶问题的解与原始问题的解是相等的。

对偶问题的构造可以通过拉格朗日对偶性理论来完成。

该理论通过构造一个拉格朗日函数,将原始问题中的约束条件转化为拉格朗日乘子,从而得到对偶问题。

对偶问题的目标函数是原始问题的约束条件的线性组合。

解决对偶问题可以通过求解拉格朗日函数的最优化问题来实现。

对于线性规划问题,对偶问题的解可以通过求解一组线性方程或线性不等式来获得。

对偶问题的解不仅可以提供原始问题的一些信息,还可以用于检验原始问题的解的可行性和最优性。

2. 灵敏度分析灵敏度分析是在线性规划中评估解决方案对问题参数变化的响应程度的方法。

它可以帮助我们了解如果问题的参数发生变化,对解决方案的影响有多大,并做出相应的调整和决策。

灵敏度分析可以通过改变单个参数或多个参数来进行。

其中,常见的灵敏度分析包括目标函数系数的变化、约束条件右侧常量的变化和新增或取消约束条件。

这些变化可以用来模拟实际情况中可能发生的条件变化,以及评估解决方案的稳定性和可行性。

在进行灵敏度分析时,我们可以通过计算变动参数对解决方案的影响程度来得到一些关键指标。

例如,参数的变化导致目标函数值的变化量称为“影子价格”,而约束条件右侧常量的变化导致解决方案中相应决策变量的变化量,则称为“机会成本”。

灵敏度分析的结果可以帮助我们确定参数的重要性,判断解决方案的可行性和稳定性,以及找到最佳的决策方案。

在实际应用中,灵敏度分析可以帮助我们应对不确定性和风险,做出更加准确和可靠的决策。

线性规划问题的对偶与灵敏度分析

线性规划问题的对偶与灵敏度分析
线性规划问题的对偶与灵敏 度分析
最大化的线性规划问题
某企业有A B C 三种资源,用来生产甲 乙两种 产品,产品的生产成本与利润如下表:

A B C 单位产品利


1 2 0
50
资源限制 (公斤)
1
300
1
400
1
250
100
• 问题:如何安排生产可使企业获得最大利润?
分析:目标函数最大化的问题
( y3 , y4 , y5 )(x1 , x2 , x3 )T 0
( y1 , y2 )(x4 , x5 )T 0
A=(B,N),X=(XB,XN)T,C=(CB,CN)
• AX + IXs =(B, N, I)(XB, XN, Xs)T=BXB +NXN +IXs
因为AX + IXs =b,所以BXB +NXN +IXs=b 即 XB=B-1b - B-1NXN - B-1Xs(用松弛变量与非
基变量表示基变量)
意义:如果原问题是极大化问题,那么它的可行解对应的目 标函数值不大于其对偶问题的任意可行解对应的目标函数 值。
证明:∵ X(0)、 Y(0)分别是原问题和对偶问题的可行解,∴ AX(0) ≤b, X(0) ≥0; Y(0) A≥C, Y(0) ≥0
∴ Y(0) A X(0) ≤ Y(0) b, Y(0) A X(0) ≥C X(0) 有C X(0) ≤ Y(0) b 证毕。
第二节 对偶理论
• 对于线性规划问题:max z =CX AX ≤b X≥0,插 入松弛变量Xs=(xn+1,xn+2,…,xn+m)T,将其标准 化为:
Max z =CX+0Xs AX+IXs =b X ≥0, Xs ≥0 其中I为m×m阶的单位阵。

第2章线性规划灵敏度分析

第2章线性规划灵敏度分析

X’B=B-1b’
• 如果b1’=2200
cj
4300 0
CB XB b
x1 x2 x3 x4 x5
0 x5 500 0 0 0.5 -0.4 1 3 x2 1200 0 1 1 -0.4 0 4 x1 -100 1 0 -0.5 0.4 0
zj zj-cj
3200
43
1 0.4 0
00
1
0.4 0
价值系数c的变化
• 对于LP:max Z=CTX S.t. AX=b,X 0
• 当从最终的单纯形表上得到最优基B时,其 最优结果为: (XBT,XRT)=(B-1bT,0T) Max Z=CBTB-1b
• 相应的检验数为: =(z-c)=CBTB-1A-C 其中:
– 基变量的检验数为0,
– 非基变量的检验数为:
用对偶单纯形法求解得
cj CB XB b
4 3 00 0 x1 x2 x3 x4 x5
0 x5 400 1 0 0 0 1 3 x2 1000 2 1 0 0.4 0 0 x3 200 -2 0 1 -0.8 0
zj zj-cj
3000
6 3 0 1.2 0 2 0 0 1.2 0
技术系数变化的影响
43 0 0
x1 x2 x3 x4 100 0 1.5 1 0.5 0 1.25 0 -1.25 1 4.5 3 1.5 0 0.5 0 1.5 0
0
x5 1 0 0 0 0
新的最优解是: X=(0, 800, 0, 500, 400)T Zmax=2400
• 问题:在前例中,要求保持最优解不变的 技术消耗系数的变化范围?
cj
4 3+c2 0 0
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的应 量 的灵敏度 分析 及基 本算 法
增 加一 个 变 量 ++ 实 际 问题 中反 映为 增 加 在

种 新 的产品 , 际上 是求 它的取值 范 围 , 实 使 +
表 l 四种 产 品 的 利 润 、 现 有 原 料 数 及 消 耗 原 料
Ab t a t n t i a e ,we su y t e s n i v t f ln a r g a mi g b o s r c :I h s p p r t d h e s t i o i e rp o r m i y n y c mbi i g a ay i l o i m t n n n l s s a g rt h wi h s me e a l s f o t e a p c f c a g n e ta n ma rx o x mp e r m h s e to h n i g r sr i ti ,wh c s i c e sn r d c e s n a i b e a d a i h i n r a i g o e r a i g a v ra l n r sr i o d to .W e a s i c s t mp c s o h p i a e ii n f r t i c a g n p l a i n i h e ta n c n i n i lo d s u s is i a t n t e o t m l d c so o h s h n e a d a p i to n t e c e o o c fe d c n mi i l .
的 ,特 定数 学模 型 的最 优解 一般是 针对 这一 特定模 型的 。除找 到最优 解之外 ,管 理层 还希望 知道 各种假 设
条件变 化可 能产生 的结果 ,并通 过分 析变 化 的结 果 ,指导 决策 。如 由于市场 条件 的变化 ,价值 系数 C 会 发 生变化 ;为 了充分 利用 资源 ,增加 生产项 目,会增 加 变量个 数 ;为提 高产 品质量 ,增 加资源种 类或 生产 工 艺 ,会增 加约 束条件 个数 ,由于生产 工艺 的改进 ,单 耗( 约束 条件 系数或 叫技术 系数 ) , a 会发 生变 化[ ] 。 , 等 由此 可 见 ,线性 规 划 中的约束 矩阵对 规划 结果 有着 重要 的影 响 ,因此 ,运用 线性 规划方 法要 分析约 束 矩 阵的灵 敏度 。本 文通 过增加 或减 少变量 个数 、约 束条件 个 数 ,分 析线性 规 划 的灵 敏度 ,研究 当参 数发 生 变 化或 波动 时 ,问题最 优解 的变化 ;或这 些参 数在 什 么变化 范 围内波 动时 ,最优解 不变 ,从 而为线 性规 划
2 1 年 4月 O1
Ap . 01 r2 1
线性规划 约束矩 阵的灵敏度分析
曾祥 中
( 盐城 师 范学院 数 学科 学学 院 ,江苏 盐城 ,2 4 0 2 0 2)
摘 要 :从 约 束矩 阵的 改 变,即增 加或 减 少一 个 变量 ,增加 或减 少一 个约 束条件 ,结合 实例 分析 算法 ,研 究其灵敏 度 ,讨论 这种 改 变对最优 决 策带 来的影 响 以及 在 经济领域 里 的应 用。 关键 词 :运筹 学 ;变量 ;约束条 件 ;灵敏 度 ;最优决 策 中图分 类 号 :02 11 l. 文献 标 志码 :A 文 章 编号 :1 7 — 3 62 l ) 2 0 1一 4 6 4 3 2 (0 10 — 13 O
Ke r s o e a i n e e r h v ra l ; e ta n c n i o s s n i v t ; p i a e i i n y wo d : p r to sr s a c ; a i b e r sr i o d t n ; e st i o t i i y m l cso d
第 2 卷 第 2期 8
V 1 2 No 2 b.8 .
新 乡学院学报 : 自然科学版
J u a fXi x a g Un v r i : t r l c e c i o o r l n in i e s y Nau a S i n eEd t n n o t i
0 引 言
线 性规 划 的应用极 其广 泛 ,大至 国家 的生 产布 局 、物资 调运 ;小 至工 厂或 车 间的生 产安排 ,都 可 以用 线性 规划 来计 算 。鉴 于此 ,许 多学 者对 它进 行 了广泛 、深 入 的研 究【 3。在 实际 问题 中 ,我们需 要首 先 收 l】 - 集有关 数据 ,建 立线性 规 划模 型 ;然后 ,用 单纯 形表 法求解 。线 性规 划模 型是在 一定 假设 条件下 建立起 来
S nstv t e ii iy Ana y i o ne rPr g a m i n t sr i a rx l ss f Li a o r m ng o heRe t a n M t i
ZENG a - ho Xi ng z ng
(c o l f te t sYa c e gT a h r C l g , a c e g2 4 0 , hn ) S h o h mai , nh n e c es ol e Y n h n 2 0 2 C ia o Ma c e
Ta . Pr f s e it g n mb ra d c n u b 1 o i , x si u t n e n o s mp i n t o
成 为 基 变 量 。 对 此 分 析 如 下 : 1 计 算 检 验 数 )
相关文档
最新文档