材料力学第二章 轴向拉压

合集下载

材料力学第2章 轴向拉伸和压缩

材料力学第2章 轴向拉伸和压缩

18
为研究轴向拉(压)杆沿轴线方向的线应变, 可沿轴线方向在x截面处任取微段Δx(见图2.13), 微段变形后其长度的改变量为Δu,比值Δu/Δx为微 段Δx的平均线应变。当Δx无限缩短而趋于零时, 其极限值
图2.13
19
拉(压)杆的变形与材料的性能有关,只能通 过试验来获得。试验表明,在弹性变形范围内,杆 件的变形Δl与轴力FN及杆长l成正比,与横截面面 积A成反比,即
1
概 述
图2.1
图2.2
2
第二节 轴力 轴力图 无论对受力杆件作强度或刚度计算时,都需首 先求出杆件的内力。关于内力的概念及计算方法, 已在上一章中阐述。
3
第三节 拉(压)杆截面上的应力 内力是由外力引起的,仅表示某截面上分布内 力向截面形心简化的结果。而构件的变形和强度不 仅取决于内力,还取决于构件截面的形状和大小以 及内力在截面上的分布情况。为此,需引入应力 (stress)的概念。
图2.11
13
设产生应力集中现象的截面上最大应力为ζ max,同一截面视作均匀分布按净面积A0计算的名 义应力为ζ0,即ζ0=FN/A0,则比值
14
第四节 拉(压)杆的变形 胡克定律 泊松比 工程构件受力后,其几何形状和几何尺寸都要 发生改变,这种改变称为变形(deformation)。 当荷载不超过一定的范围时,构件在卸去荷载后可 以恢复原状。但当荷载过大时,则在荷载卸去后只 能部分地复原,而残留一部分不能消失的变形。在 卸去荷载后能完全消失的那一部分变形称为弹性变 形(elastic deformation),不能消失而残留下来 的那一部分变形称为塑性变形(ductile deformatio n)。
15
现以图2.12所示等截面杆为例来研究轴向拉 (压)杆的变形。在轴向外力F的作用下,杆件的 轴向、横向的尺寸均会发生改变。设杆件变形前原 长为l,横向尺寸为d,变形后长度为l′,横向尺寸 为d′,称 为轴向变形,称

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

《材料力学》第二章

《材料力学》第二章

F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee

材料力学 第2章轴向拉伸与压缩

材料力学 第2章轴向拉伸与压缩
15mm×15mm的方截面杆。
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB

FN 1 A1

28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC

FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40

材料力学第2章

材料力学第2章

2-2截面,即BC段:
BC
FN 2 30 103 N 100MPa 6 2 A2 300 10 m
FN 4 20 103 N 100MPa 6 2 A3 200 10 m
(压应力)
3-3截面,即DE段:
DE
(压应力)
23
材料力学
出版社
科技分社
2.3.3 拉压杆斜截面上的应力
4
材料力学
出版社
科技分社
由上可知苹果把中的内力和外力(重力)是有关 系的,它随外力作用而产生,是由于外力的作用而 引起的“附加内力”,有别于物体中微观粒子间的 作用力,这就是材料力学中的内力。 2.2.2 轴力、截面法、轴力图 当直杆轴向拉伸或压缩时,所产生的内力是沿杆 件轴线的,故称为轴力。由于内力是受力物体内相邻 部分的相互作用力,可用截面法来分析内力 。
32
材料力学
出版社
科技分社
例题 2.5
解: 由于杆的轴力FN沿杆长是变化的,材料有两种 ,截面为变截面,所以在运用式(2-10)计算 杆长度改变量时,应按FN 、E、A的变化情况, 分别计算每段长度的改变量,最后的代数和即 为杆纵向总变形量Δl 。
先画出杆的轴力图, 见(b)图。各段的纵向 伸长或缩短量分别为:
5
材料力学
出版社
科技分社
截面法的基本步骤如下:
1)截开: 2)代替: 3)平衡:
F
x
0 : FN F 0, FN F
轴力的正负号规定: a.拉杆的变形是沿纵向伸长, 其轴力规定为正,称为拉力; b.压杆的变形是沿纵向缩短,其轴力规定为负,称 为压力。
6
材料力学
出版社
科技分社
为了表示轴力随横截面位臵而变化的情况,可选 取一定的比例,用平行于杆轴线的坐标表示横截面 的位臵,用垂直于杆轴线的坐标表示横截面上轴力 的数值,从而绘出表示轴力与截面位臵关系的图线 ,称为轴力图。习惯上将正值的轴力画在坐标轴的 上侧,负值的轴力画在下侧。轴力图上可以确定最 大轴力的数值及其所在横截面的位臵。

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

材料力学(赵振伟)第二章 轴向拉压与压缩

材料力学(赵振伟)第二章 轴向拉压与压缩

正应变——微小线段单位长度的变形。
2021/7/13
45
x
[例] 已知:杆件的 E、A、F、a 。
F
求:△LAC、δB(B 截面位移)
A
εAB (AB 段的正应变)。
a
2F
F
解:1、画FN 图: 2、计算:
B
a
3F
C
FN
( 1 ) L F E N A L L A C L A B L B C E F A a E 3 F A a E 4 F A a
②材料承受荷载的能力。
2021/7/13
17
一、应力的概念
截面某点处内力分布的集度 在大多数情形下,工程构件的内力并非均匀分布,集度
的定义不仅准确而且重要,因为“破坏”或“失效”往往从 内力集度最大处开始。
2021/7/13
18
1、一般受力杆: F1
m
F3
F2
F1 F2
F4
m
△FT △F
c
△A
△FN
2、轴向拉压杆:
m
FN
F
——ΔA上的平均正应力
limFN dFN
F
0 dA
——C点处的正应力
ΔA △FN
C
σ
二、轴向拉压杆横截面上正应力的确定
推导的思路:实验→变形规律→应力的分布规律→应力的
计算公式
2021/7/13
21
1、实验: 变形前
受力后
F
F
2021/7/13
22
2、变形规律: 横向线——仍为平行的直线,且间距减小。
(2)B
LBC
3Fa EA
(3)2021A /7B /13 L L A A B BF a aE A E F A

材料力学第二章 轴向拉伸和压缩

材料力学第二章 轴向拉伸和压缩
伸长 l2 0.24mm 缩短
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆

材料力学第2章

材料力学第2章
第二章
轴向拉伸和压缩
1
§2.1 轴向拉伸和压缩的概念
当作用于杆上的外力合力的作用线与直杆的轴线 重合时,杆的主要变形是纵向伸长或缩短,这类 构件称为拉杆或压杆。 如图 所示三 角架中的AC 杆为拉杆, BC杆为压杆 。
2
右图所示的桁架 中的杆也是主要 承受拉伸或压缩 变形的。
轴向拉力和轴向压力的 概念可由右图给出,上 图为轴向拉力;下图为 轴向压力。
若设BC段内立柱的单位长度自重为q2、横截面面 积为A2,则:
q2 γ A2 19kN/m 0.37m 0.37m 2.6kN/m
3
15
例题 2.2
(b)图:这是在集中荷载单 独作用下,柱的轴力图。图 中的负号表示轴力为压力。
(c)图:这是在自重荷载单 独作用下,柱的轴力图。即 在B处的轴力为:
①画一条与杆的轴线平行且与杆等长的直线作基 线; ②将杆分段,凡集中力作用点处均应取作分段点; ③用截面法,通过平衡方程求出每段杆的轴力; 画轴力图时,截面轴力一般先假设为正的,这样 ,计算结果是正的,则就表示为拉力,计算结果 是负的,就表示为压力。 ④按大小比例和正负号,将各段杆的轴力画在基 线两侧,并在图上表示出数值和正负号。
7
例题 2.1
图a所示等直杆,求各段内截面上的轴力并作出 轴力图的轴力图。
8
例题 2.1
解: (1) 求约束反力
由平衡方程求出约束力 FR=10 kN。 (2)求各杆段截面轴力 杆件中AB段、BC段、CD段、DE段的轴力是不 同的。分别用四个横截面:1-1、2-2、3-3、4-4 ,截杆并取四个部分为研究对象。
25kN
(e)
20kNFxFra bibliotek 0 : FN 3 F3 F4 0

材料力学第二章+拉压

材料力学第二章+拉压

FN4
20kN
第二章 轴向拉伸和压缩
§2.2 内力计算
40kN A B 300 50
55kN 25kN C 500 D 400
20kN E
FN
(kN) 10
FN1=10kN (拉力) FN2=50kN (拉力) FN3= - 5kN (压力) FN4=20kN (拉力)
+
20
+
5
FNmax 50( kN ) 发生在BC段内任一横截面上
寸。)
第二章 轴向拉伸和压缩 圣维南原理:
§2.3 拉压杆的应力
在静力等效条件下,不同的加载方式只对加载处附近区 域的应力分布有影响,离开加载处较远的部分,其应力分布 并没有显著的差别。
第二章 轴向拉伸和压缩
§2.3 拉压杆的应力
例题2-3 试求此正方 形砖柱由于荷载引起的横 截面上的最大工作应力。 已知F = 50 kN。
FN
O
x
第二章 轴向拉伸和压缩
§2.2 内力计算
例题1
一等直杆其受力情况如图所示, 作杆的轴力图.
40kN A 600 B 300
55kN 25kN C 500 D 400
20kN E
第二章 轴向拉伸和压缩
40kN
§2.2 内力计算
55kN 25kN
300
20kN D 400
E
A
600
B
C
500
§2.2 内力计算
1、截面法
截开 在求内力的截面m-m 处, 假想地将杆截为两部分. 代替 取左部分为研究对象。弃去 右部分。弃去部分对研究对 象的作用,以截开面上的内 m F m FN m
F
m

第2章轴向拉压

第2章轴向拉压

第二章轴向拉伸和压缩§2-1 引言此类受轴向外力作用的等截面直杆称为拉杆或压杆。

受力特点:直杆受到一对大小相等,作用线与其轴线重合的外力F 作用。

变形特点:杆件发生纵向伸长或缩短。

F F F F 一、轴向拉压杆的受力特点、变形特点二、轴力及轴力图Ⅰ、内力内力——由于物体受外力作用而引起的其内部各质点间相互作用的力的改变量。

F F F F根据可变形固体的连续性假设可知,物体内部相邻部分之间的作用力是一个连续分布的内力系,我们所说的内力是该内力系的合成(力或力偶)求内力的一般方法——截面法(1)截开;(2)代替;(3)平衡。

步骤: FFmm (c) F N (a) FF m m (b) m m F N x 二、轴力及轴力图Ⅰ、内力---轴力可看出:杆件任一横截面上的内力,其作用线均与杆件的轴线重合,因而称之为轴力,用记号F N 表示。

F F +=N FF mm (c)F N (a) FF m m (b) m m F N x引起伸长变形的轴力为正——拉力(背离截面);引起压缩变形的轴力为负——压力(指向截面)。

轴力的符号规定:F F +=N FF mm (c)F N (a) FF m m (b) m m F N xFF -=N F N mm(c) F N (a) FF m m (b) mm F x F若用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上轴力的数值,所绘出的图线可以表明轴力与截面位置的关系,称为轴力图。

FF F N 图F F FF N 图F注意:用截面法法求内力的过程中,在截面取分离体前,作用于物体上的外力(荷载)不能任意移动或用静力等效的相当力系替代。

F F(a)F F(b)F N =Fmmnn (a)FCB Am mFA(b)F N =Fnn B FA(c)n n mmF N =0(e)mmAF N =Fn n B(f)AFCB(d)F A例试作图示杆的轴力图。

材料力学课件第二章 轴向拉压应力与材料的力学性能-圣维南原理

材料力学课件第二章  轴向拉压应力与材料的力学性能-圣维南原理

§2-3 拉压杆的应力与圣维南原理
思考: 杆、 杆材料相同, 杆截面面积大于 杆,
3. 什么量适合量度安全程度?
横截面正应力 ?
1.若 , 哪根杆危险?
哪根杆危险?
2. 若
一、拉压杆横截面上的应力
1.实验观测(见动画)
实验观测
谢谢Βιβλιοθήκη 房屋支撑结构桥梁§2-1 引言
拉压杆工程实例
连杆
曲柄滑块结构
飞机起落架
高压电线塔
外力特点:外力或其合力的作用线沿杆件轴线。
变形特点:轴向伸长或缩短为主要变形。
拉压杆:外力或其合力的作用线沿杆件轴线的杆件。
拉压杆定义与力学特征
思考:下列杆件是不是拉压杆?为什么?
D
A
B
C
轴力定义:合力作用线通过截面形心且沿杆轴线的内力。 符号规定:拉力为正,压力为负。
基本假设:连续、均匀、各向同性
内力计算:截面法(截、取、代、平)
应力( s, t),应变(e, g ),胡克定律(剪切胡 克定律)
第二章 轴向拉压应力与材料的力学性能
§2-1 引言
§2-3 拉压杆的应力与圣维南原理
§2-4 材料拉伸时的力学性能
§2-5 材料拉压力学性能的进一步研究
(1)
(2)
合力
合力
(1)解: 计算内力(轴力)
计算应力
(2)解:
二、拉压杆斜截面上的应力
问题:斜截面上有何应力?如何分析?
横截面上正应力分布均匀
横截面间的纤维变形相同
斜截面间的纤维变形相同
斜截面上应力均匀 分布
分析:
应力最大值:
求斜截面正应力与切应力分量
;
三、圣维南原理

材料力学 第二章 轴向拉压应力PPT课件

材料力学 第二章 轴向拉压应力PPT课件
第二章 轴向拉伸和压缩
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N

×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0

x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有

材料力学轴向拉伸与压缩

材料力学轴向拉伸与压缩
轴向拉压变形
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。

材料力学02(第二章 轴向拉压应力与材料的力学性能)

材料力学02(第二章 轴向拉压应力与材料的力学性能)
F 1= A1 sin F 2=A2 tan
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin

A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。

材料力学 第2章

材料力学 第2章

第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。

二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。

轴力符号:拉伸为正,压缩为负。

∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。

2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。

正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。

注意:轴力图与基线形成一闭合曲线。

轴力图必须与杆件对齐。

在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。

例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。

剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。

ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。

外力偶矩矢量指向该截面的取负,离开该截面的取正。

四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。

外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。

材料力学第2章 轴向拉伸和压缩

材料力学第2章 轴向拉伸和压缩

(b),由静力平衡条件:
∑X = 0
N AB + N BC cos30 = 0

…(1) NBC …(2) NAB 30
y
Y =0 ∑ N BC sin 30 - P = 0

B P
x
(b)
由(2)式可得
N BC
P 2 = = = 4kN (拉) sin 30 0.5
将NBC的值代入(1),可得
6
40 106 Pa 40 MPa

杆端加载方式对正应力分布的影响
圣维南原理:若用与外力系静力等效的合力代替原力 系,则这种代替对构件内应力与应变的影响只限于原 力系作用区域附近很小的范围内。
对于杆件, 此范围相 当于横向 尺寸的 1~1.5倍。
圣维南原理:“ 力作用于杆端方式
不同,只会使与杆端距离不大于杆 的横向尺寸的范围内受影响。”
用径向截面将薄壁圆环截开,取其上半部分为分离 体,如图b所示。分布力的合力为
d FR ( pb d )sin pbd 0 2
π
FR pba 由SFy=0,得 FN 2 2
径向截面上的拉应力为
FN 1 pbd pd ( 2 10 Pa)(0.2 m) s ( ) A bd 2 2d 2(5 10-3 m)
符号规定:
正号轴力-- N的方向与截面外法线方向一致。
负号轴力-- N的方向与截面外法线方向相反。
也即:拉伸为正、压缩为负。
3.轴力图 例1:一直杆受力如图所示。试求各段中横截面上的 轴力。
6kN
A
I I I I
II B 10kN II
III D C 4kN 8kN III
6kN

大学课程材料力学第二章_轴向拉压(中)课件

大学课程材料力学第二章_轴向拉压(中)课件


解:
L
对节点A进行受力分析:
1
F sin
FN1 sin cos cos sin
F sin
2
FN 2 sin cos cos sin
FN1
A
A
FN 2 F
F
当两杆应力均达到许用值时,横截面积分别为:
A1
FN1
[ ]
A2
FN 2
[ ]
结构的总体积:
10
材料力学 第二章 轴向拉伸与压缩
套管
F
D
d
F
解:
内管
内管和套管截面应力分别为:
F
A
F
A
依据等强原则(内管和套管应力均达到许用应力):
F s An
于是
F
s
A n
n 是安全系数
A s
A
s
n
n
D2 d2 s
D2 D2
s
4n
4n
D 39m m
11
材料力学 第二章 轴向拉伸与压缩
V
A1l1
A2l2
Fl
[ ]
sin(
1
) sin
sin
若V 有最小值,可令: V 0 V 0
即有:
3
13
材料力学 第二章 轴向拉伸与压缩
§2-7 胡克定律与拉压杆的变形
一、拉压杆的胡克定律
F
b
b1
F
l
l1
•轴向变形 l l1 -l (伸长为正)
胡克定律 试验表明:比例极限内,正应力与正应变成正比
工作应力:构件实际承载所引起的应力。
2
材料力学 第二章 轴向拉伸与压缩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


jx
n
(其中 n 为安全系数,值 > 1)
⑶、安全系数取值考虑的因素:
(a)给构件足够的安全储备。
(b)理论与实际的差异。
20
2、强度条件:最大工作应力小于等于许用应力
max ≤
等直杆: max 变直杆: max
FN max A
FN A max
FN2
FN 2 FB FC FD 0
FN2= –3F,
求BC段内力:
X 0 FN 3 FC FD 0
FN3= 5F,
求CD段内力:
X 0
FN 4 FD 0
FN4= F
FN1 2F ,
FN2= –3F, FN3= 5F, FN4= F
FN1 2F , FN2= –3F, FN3= 5F, FN4= F
解: 求OA段内力FN1:设截面如图
X 0
FD FC FB FA FN1 0
FN1 2F
9
F 4F 8F 5F FN1 0
O
A
FA
B
FB B FB FN3
C
FC C FC C FC FN4
D
FD D FD D FD D FD
10
求AB 段内力:
X 0
21
3、强度条件的应用: (解决三类问题):
(1)、校核强度——已知:F、A、[ζ ]。求: max ≤
8、公式的使用条件
(1) 轴向拉压杆 (2) 除外力作用点附近以外其它各点处。 (范围:不超过杆的横向尺寸)
16
三、轴向拉压杆任意斜面上应力的计算
1、斜截面上应力确定
(1) 内力确定:
FN= F (2)应力确定: ①应力分布——均布 F F F
F


FN
x
p
②应力公式—— FN F F p cos cos A A A cos
+
x
② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
8

图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8
F、 FC = 4 F、 FD= F 的力,方向如图,试求各段内力并画出杆
的轴力图。
O A FA FN1 A FA B FB B FB C FC C FC D FD D FD
面沿杆轴线作相对平移
12
横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。
13
横向线——仍为平行的直线,且间距减小大。 纵向线——仍为平行的直线,且间距增大。
14
4、应力的分布规律——内力沿横截面均匀分布
5、应力的计算公式:
F

FN
A FN
FN A
or A N

由 x 轴逆时针转到斜截面外法线——“” 为正值;
⑵、σ:同“σ”的符号规定
⑶、τ:在保留段内任取一点,如果“τ”对该点之矩为 18 顺时针方向,则规定为正值,反之为负值。
3、斜截面上最大应力值的确定
F


FN
x
cos ,
2

2
sin 2
( 1 ) max :
FN
17
FN F F p cos cos A A A cos
p cos cos2
p sin
2 sin 2
F


p
2、符号规定 ⑴、:斜截面外法线与 x 轴的夹角。
由 x 轴顺时针转到斜截面外法线——“”为负值
轴力图如下图示
O
A
FA
B
FB 5F 3F
C
FC F
D FD
FN
2F
x
11
二、轴向拉压杆横截面的应力
推导思路:实验→变ຫໍສະໝຸດ 规律→应力的分布规律→应力的计算公式
1、实验:
变形前
受力后
F F
2、变形规律: 横向线——仍为平行的直线,且间距增大。
纵向线——仍为平行的直线,且间距减小。
3、平面假设:变形前的横截面,变形后仍为平面且各横截
1.内力
——
轴力(用FN 表示)
X 0,
FN P 0
FN P
5
例:已知外力 F,求:1-1截面的内力FN 。 解: (截面法确定) 1—1 F ①截开。
②代替,FN 代替。 ③平衡, ∑X=0, FN - F = 0, FN = F。 以1-1截面的右段为研究对象: FN
F
2
活塞杆
厂房的立柱 F
F
3
二、轴向拉压的概念:
外力合力作用线与杆轴线重合。 (1)受力特点:
(2)变形特点:杆沿轴线方向伸长或缩短。 FN1
B
A C
F FN2 FN1 FN2
以轴向拉压为主要变形的杆件,称为拉压杆或轴向承载杆。
4
§2-2 轴向拉压杆横截面的内力、应力及强度条件 一、轴向拉压杆横截面的内力
N or A
N MPa 2 mm
15
——轴向拉压杆横截面上正应力的计算公式
N Pa 2 m
6、拉压杆内最大的正应力:
等直杆: max
FN max A
变直杆: max
FN A
max
7、正应力的符号规定——同内力
拉应力为正值,方向背离所在截面。 压应力为负值,方向指向所在截面。
0,
max
( 0)
max
(
0
,横截面上。
(2) max :
45

2
,450斜截面上。
19

2
)
四、拉压杆的强度计算
1、极限应力、许用应力
⑴、极限应力(危险应力、失效应力):材料发生破坏或产生 过大变形而不能安全工作时的最小应力值。“ζ jx”(ζ u、ζ 0) ⑵、许用应力:构件安全工作时的最大应力。“[ζ ]”
第二章 轴向拉伸和压缩
§2-1 轴向拉伸与压缩概念与实例 §2-2 轴向拉压杆横截面的内力、应力及强度条件
§2-3 应力集中概念 §2-4 轴向拉压杆的变形 节点的位移
§2-5 材料在拉压时的力学性质
§2-6 轴向拉压杆系的超静定问题
1
§2-1 轴向拉伸与压缩概念与实例
一、轴向拉压的工程实例:
工程桁架
F
FN
F
内力 FN 沿轴线方向,所以称为轴力。
6
2、轴力的符号规定:
拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。 F FN (+)FN F
F
FN (-)FN
F
7
3、轴力图: 轴力沿轴线变化的图形
F FN F
4、轴力图的意义
① 直观反映轴力与截面位置变化关系;
相关文档
最新文档