小学奥数知识点总汇

合集下载

小学奥数所有知识点总结

小学奥数所有知识点总结

1-6 年级奥数所有知识点总结一、鸡兔同笼①:壮壮数他家的鸡和兔,有头共 16 个,有脚共 44 只。

问:壮壮家的鸡和兔共有多少只?二、火车问题②两列火车同向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车车身长 250米,乙车车身长 200 米,从乙车车头追上甲车车尾到乙车车尾离开甲车车头需要多少时间?③两辆火车相向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车长 250米,乙车长200 米,从两车车头到两车车尾离开,需要多少时间?三、流水问题(即流水行船问题)④一条船行驶在甲、乙两地之间,顺流速度为 42km/h,逆流速度为30km/h,求水流的速度?船在静水中的速度?四、植树问题⑤一个圆形池塘,它的周长是 150 米,每隔3米种一棵树,共需要树苗多少株?五、列车过桥问题⑥一列火车长 150 米,每秒钟行 19 米。

全车通过长 800 米的大桥,需要多少时间?六、剪绳问题⑦一根绳子对折 10次,用剪刀从中间剪了1刀,问:此绳子剪成了多少段?七、年龄问题⑧妈妈说:我在你这个年龄时,你才 2 岁;你到我这个年龄时我就77岁了。

问:现在女儿几岁了?八、盈亏问题⑨小朋友分包子,每人分9个要少8个,每人分7个要多6 个,一共有几人?九、和、差、倍问题⑩小明和妈妈年龄之和为 40 岁,妈妈的年龄是小明的3 倍,问小明多少岁?十、方阵问题11 .运动会开幕式上,三一班的同学排成一个实心方阵入场,最外层每边有 6人,三一班有多少个同学?十一、握手问题12 .6个人,每2人握一次手,一共要握多少次?十二、等差数列13.求自然数中所有三位数的和?一、鸡兔同笼公式:鸡数=(兔脚数X总头数-总脚数)(兔脚数-鸡脚数)兔数= (总脚数-鸡脚数X总头数)(兔脚数鸡脚数)①解:依据公式: 有兔=(44-2X16) (4-2)=12÷2=6 (只)有鸡=16-6=10 (只)答:壮壮家有兔6只有鸡10只二、火车问题基本数量关系:火车速度X时间=车长+桥长1、超车问题(同向运动、追击问题)路程差=车身长的和超车时间 =车身长的和速度差2、错车问题(反向运动、相遇问题)路程和=车身长的和错车时间=车身长的和速度和3、过人(将人看成是车身长度是0的火车)②解题思路:此类问题相当于追击问题,利用公式得(250+200)六(25-20)=90(秒)答:需要90秒。

奥数知识点总结(非常全面)

奥数知识点总结(非常全面)

小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

}关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):!②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!\6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差\③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数公式大全

小学奥数公式大全

小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.二进制及其应用 514.加法乘法原理和几何计数15.质数与合数 616.约数与倍数17.数的整除718.余数及其应用19.余数、同余与周期20.分数与百分数的应用821.分数大小的比较922.分数拆分23.完全平方数24.比和比例1025.综合行程26.工程问题27.逻辑推理1128.几何面积29.立体图形30.时钟问题—快慢表问题1231.时钟问题—钟面追及32.浓度与配比33.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题2①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

奥数知识点总结

奥数知识点总结

奥数知识点总结一、整数与分数1.1 奇数与偶数•奇数是指不能被2整除的数,如1、3、5等。

•偶数是指能被2整除的数,如2、4、6等。

1.2 质数与合数•质数是指除了1和自身外没有其他因数的数,如2、3、5等。

•合数是指除了1和自身外还有其他因数的数,如4、6、8等。

1.3 最大公约数与最小公倍数•最大公约数是指两个或多个数的公共因数中最大的一个数,常用符号为gcd。

•最小公倍数是指两个或多个数的公共倍数中最小的一个数,常用符号为lcm。

二、代数与方程2.1 代数运算•加法是指两个或多个数相加,常用符号为+。

•减法是指一个数减去另一个数,常用符号为-。

•乘法是指两个或多个数相乘,常用符号为*。

•除法是指一个数除以另一个数,常用符号为/。

2.2 一元一次方程•一元一次方程是指只含有一个未知数的一次方程,如2x+3=7。

•解一元一次方程的步骤:1.将方程中的常数项移到等式的右边。

2.将未知数的系数移到等式的左边。

3.化简方程,求得未知数的值。

2.3 二元一次方程•二元一次方程是指含有两个未知数的一次方程,如2x+3y=7。

•解二元一次方程的步骤:1.选择一种方法消去其中一个未知数,得到一个只含有一个未知数的一次方程。

2.解这个一次方程,得到一个未知数的值。

3.将得到的未知数的值代入原方程中,求得另一个未知数的值。

三、几何与概率3.1 直线与角•直线是指在平面上无限延伸的一条线段。

•角是指由两条线段共享一个端点所形成的图形。

3.2 三角形与四边形•三角形是指由三条线段所围成的图形。

•四边形是指由四条线段所围成的图形。

3.3 圆与圆周角•圆是指平面上一组离一个固定点相等距离的点的集合。

•圆周角是指以圆心为顶点的角。

3.4 概率与统计•概率是指事件发生的可能性大小。

•统计是指对数据进行收集、整理、分析和解释的过程。

四、数论与逻辑4.1 数列与递推•数列是指按照一定规律排列的一组数。

•递推是指根据数列中前一项或前几项推导出后一项的方法。

小学奥数知识总结

小学奥数知识总结

小学(数学)奥数知识总结1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数数论知识点

小学奥数数论知识点

小学奥数数论知识点一、数的认识1. 自然数:用于计数和排序的数,包括0和正整数。

2. 奇数与偶数:奇数是不能被2整除的整数,偶数是能被2整除的整数。

3. 质数与合数:质数是只有1和本身两个因数的大于1的自然数,合数是除了1和本身外还有其他因数的自然数。

4. 因数与倍数:如果整数a能被整数b整除,a是b的倍数,b是a的因数。

二、数的运算1. 加法与减法:加法是将两个或多个数合并成一个数的运算,减法是从一个数中去掉另一个数的运算。

2. 乘法与除法:乘法是重复加法的简化,除法是将一个数分成几个相等部分的运算。

3. 余数:在除法中,被除数除以除数后剩下的数称为余数。

三、数的性质1. 唯一分解定理:每个大于1的整数都可以唯一地表示为质数的乘积。

2. 最大公约数和最小公倍数:最大公约数是两个或多个整数共有的最大的因数,最小公倍数是这些整数的最小公共倍数。

3. 奇偶性:奇数加奇数得偶数,偶数加偶数得偶数,奇数加偶数得奇数。

四、数的应用1. 约数倍数问题:涉及找出一个数的约数或倍数的问题。

2. 质数问题:涉及质数的分布、判断和性质的问题。

3. 分数的拆分与比较:涉及将分数拆分为不同单位的和,以及比较分数大小的问题。

五、解题技巧1. 枚举法:通过列举所有可能的情况来找到答案。

2. 反证法:假设某个结论是错误的,通过推理得出矛盾,从而证明原结论是正确的。

3. 归纳法:通过观察一系列特殊情况,找出一般规律。

六、例题解析1. 例题一:找出20以内的所有质数。

- 解析:20以内的质数有2, 3, 5, 7, 11, 13, 17, 19。

2. 例题二:求36和54的最大公约数。

- 解析:通过辗转相除法,可以求得36和54的最大公约数是18。

七、总结数论是数学的基础分支之一,对于培养逻辑思维和解决问题的能力具有重要作用。

小学奥数数论涉及的知识点广泛,包括数的认识、数的运算、数的性质、数的应用以及解题技巧等。

掌握这些知识点,对于提高学生的数学素养和解决复杂问题的能力至关重要。

小学奥数重点归纳(史上最全)

小学奥数重点归纳(史上最全)
等;
表面积:S=2(ab+ah+bh)
合理利用行程问题中的比例关系。
2、在直线或者不封闭的曲线上 植树,两端都不植树
3、在直线或者不封闭的曲线上 植树,只有一端植树
4、封闭曲线上植树
基本公式:
棵数=段数+1
基本公式:
①平均数=总数量÷总份数
基本概念:
首项:等差数列的第一个数,一 般用a1表示;
基本公式:
通项公式:an = a1+(n-1)d;
再求它们的差,再找不大于这个 差的2的n次方,依此方法一直找 到差为0,按照二进制展开式特
②两个人的年龄是同时增加或者 同时减少的;
③两个人的年龄的倍数是发生变 化的;
3.归一问题的基个“单一量”,题目一般用 “照这样的速度”……等词语来
表示。
关键问题:根据题目中的条件确 定并求出单一量; 4.植树问题
基本类型:
1、 在直线或者不封闭的曲线上 植树,两端都植树
点即可写出。
基本特征:每一种方法都可完成 任务。
基本特征:每一步只能完成任务 的一部分。
直线特点:没有端点,没有长度。
线段特点:有两个端点,有长度。
射线特点:只有一个端点;没有 长度。
几何计数规律:
3、辗转相除法:每一次都用除 数和余数相除,能够整除的那个 余数,就是所求的最大公约数。
先找出不大于该数的2的n次方再求它们的差再找不大于这个差的2的n次方依此方法一直找到差为0按照二进制展开式特点即可写出
£®和差倍问题和差问题、和倍问 题、差倍问题
已知条件: 几个数的和与差、和 与倍数、差与倍数
公式适用范围: 已知两个数的和, 差,倍数关系
公式:
①(和-差)÷2=较小数

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.抽屉原理 410.定义新运算11.数列求和12.加法乘法原理和几何计数13.质数与合数 614.约数与倍数15.数的整除716.余数及其应用17.余数、同余与周期18.分数与百分数的应用819.分数大小的比较920.分数拆分21.完全平方数22.比和比例1023.综合行程24.工程问题25.逻辑推理1126.几何面积27.立体图形28.时钟问题—快慢表问题1229.时钟问题—钟面追及30.浓度与配比31.经济问题1332.经济问题33.循环小数142①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)6.盈亏问题.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数知识点(30个)

小学奥数知识点(30个)

小学奥数知识点(30个)1、和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的: 和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数30个知识点大汇总

小学奥数30个知识点大汇总

小学奥数30个知识点大汇总1.和差倍问题2.年龄问题的三个基本特征:3.归一问题4.植树问题5.鸡兔同笼问题6.盈亏问题7.牛吃草问题8.周期循环与数表逻辑9.平均数10.抽屉原理11.定义新运算12.数列求和13.二进制及其应用14.加法乘法原理和几何计数15.质数与合数16.约数与倍数17.数的整除18.余数及其应用19.余数、同余与周期20.分数与百分数的应用21.分数大小的比较22.分数拆分23.彻低平方数24.比和比例25.综合行程26.工程问题27.逻辑推理28.几何面积29.立体图形30.时钟问题—快慢表问题1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很容易,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增强或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题基本特点:问题中有一个不变的量,普通是那个“单一量”,题目普通用“照这样的速度”……等词语来表示。

关键问题:按照题目中的条件决定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,惟独一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题决定所属类型,从而决定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出浮上这个差的缘故;④再按照这两个差作适当的调节,消去浮上的差。

小学奥数的所有知识点总结

小学奥数的所有知识点总结

小学奥数的所有知识点总结第一章数学基础知识一、数字的认识1.自然数、整数、有理数、小数、分数2.有关数的表示和认识3.大小比较二、数的四则运算1.加法、减法、乘法、除法2.运算规律3.运算技巧三、数的倍数和约数1.倍数的概念和判断2.约数的概念和判断3.倍数和约数的性质四、数的整除1.整除的概念和性质2.质数和合数3.分解质因数4.最小公倍数和最大公约数五、分数1.分数的概念和表示2.化简、通分3.分数的加减乘除4.分数的比较5.带分数第二章几何基础知识一、点、线、面1.点的概念2.直线和线段的概念3.射线和角的概念4.平行线和垂直线的关系二、线段和角1.线段的长度2.角的度量3.相交线的性质三、三角形1.三角形的分类2.三角形的性质3.三角形的周长和面积四、四边形1.四边形的分类2.四边形的性质3.四边形的周长和面积五、多边形1.多边形的分类和性质2.多边形的内角和外角和3.多边形的周长和面积六、相似和全等1.相似和全等的概念2.相似和全等的判断3.相似和全等的性质第三章综合应用一、尺规作图1.用图形工具画简单图形2.用尺规作出平行线、垂直线等二、平面图形的变化1.旋转和平移2.镜面反射3.放大、缩小三、数学应用题1.通过故事和实际问题引出运算2.建立方程和不等式3.奥数问题解题技巧四、数学启发题1.奇妙的数学问题2.趣味的数学游戏3.数学思维培养第四章奥数竞赛技巧一、备战奥数竞赛1.理解奥数竞赛2.奥数竞赛的特点3.比赛常见题型二、解题技巧1.快速计算技巧2.巧妙应用数学知识解题3.发散性思维和逻辑推理三、比赛心态1.放松心态2.临场发挥3.全面准备总结:小学奥数的知识点总结包括了数学基础知识、几何基础知识、综合应用和奥数竞赛技巧四个部分。

在数学基础知识中,包括了数字的认识、数的四则运算、数的倍数和约数、数的整除和分数等内容。

在几何基础知识中,包括了点、线、面、线段和角、三角形、四边形、多边形、相似和全等等内容。

小学奥数奥数知识点汇总(全)

小学奥数奥数知识点汇总(全)

小学奥数重要知识点整理汇总资料目录数论知识点…………………………………………2~6计算知识点…………………………………………7~14应用题知识点…………………………………………15~23几何知识点…………………………………………24~27组合专题…………………………………………28~35数论知识点整除,奇数偶数,质数,合数,分解质因数,约数,倍数。

\r\n余数问题:完全平方数,数的进制,数的综合,周期性问题,数的拆分。

数的整除性1、整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a。

2、整除的性质:性质1.如果c|a,c|b,则c|(a±b)。

性质2.如果bc|a,则b|a,c|a。

性质3.如果c|b,b|a,则c|a。

3、整除问题的解决方法:整除特征法;补9、补0试除法。

4、涉及极值的整除问题:逐步调整法。

5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。

小学奥数必须掌握的30个知识模块汇总(详细版)

小学奥数必须掌握的30个知识模块汇总(详细版)

小学奥数知识点回顾1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数全部知识点梳理

小学奥数全部知识点梳理

小学奥数全部知识点梳理(30个)1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)
a a 通项公式: n = 1+(n-1)d;
通项=首项+(项数一 1) ×公差;
s a a 数列和公式: n,= ( 1+ n)×n÷2;
数列和=(首项+末项)×项数÷2;
a a 项数公式:n= ( n+ 1)÷d+1;
项数=(末项-首项)÷公差+1;
a a 公差公式:d =( n- 1))÷(n-1);
②每个新定义的运算符号只能在本题中使用。 12.
4
数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的 一列数,就叫做等差数列。
基本概念: 首项:等差数列的第一个数,一般用 a1 表示; 项数:等差数列的所有数的个数,一般用 n 表示; 公差:数列中任意相邻两个数的差,一般用 d 表示; 通项:表示数列中每一个数的公式,一般用 an 表示; 数列的和:这一数列全部数字的和,一般用 Sn 表示. 基本思路:等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公 式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中 涉及四个量,如果己知其中三个,就可以求这第四个。 基本公式:
6
16.约数与倍数
17.数的整除
7
18.余数及其应用
19.余数、同余与周期
20.分数与百分数的应用
8
21.分数大小的比较
9
22.分数拆分
23.完全平方数
24.比和比例
10
25.综合行程
26.工程问题
27.逻辑推理
11
28.几何面积
29.立体图形
30.时钟问题—快慢表问题
12
31.时钟问题—钟面追及
32.浓度与配比
3.归一问题的基本特点: 问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等 词语来表示。 关键问题:根据题目中的条件确定并求出单一量; 4.植树问题

小学奥数知识点汇总

小学奥数知识点汇总

小学奥数知识点汇总# 小学奥数知识点汇总一、数论# 1. 质数与合数- 质数:大于1的自然数,只能被1和自身整除。

- 合数:除了1和自身外,还有其他因数的自然数。

# 2. 因数分解- 将合数分解成质因数的乘积。

# 3. 最大公约数和最小公倍数- 最大公约数(GCD):两个或多个整数共有的最大的一个因数。

- 最小公倍数(LCM):两个或多个整数的最小公共倍数。

# 4. 整除规则- 偶数与奇数:整数除以2的余数。

- 5的倍数:以0或5结尾的数。

- 3的倍数:若一个数的各位数字之和是3的倍数,则该数是3的倍数。

# 5. 同余- 两个整数a和b,如果它们除以某个正整数m的余数相同,则称a和b对于m同余。

二、代数# 1. 代数表达式- 用字母表示数的表达式,如:\( a + b = c \)。

# 2. 方程与不等式- 方程:含有未知数的等式,如 \( x + 2 = 5 \)。

- 不等式:表示不等关系的式子,如 \( x < 3 \)。

# 3. 代数式的简化与变形- 合并同类项、分配律、提公因式等。

# 4. 多项式- 多项式是几个单项式的和或差,如 \( ax^2 + bx + c \)。

三、几何# 1. 基本图形- 点、线、面的基本性质。

# 2. 角- 角的定义、分类(锐角、直角、钝角)、角的计算。

# 3. 三角形- 三角形的性质、分类(等边、等腰、直角三角形)。

- 海伦公式:计算三角形面积的公式。

# 4. 四边形- 四边形的性质、分类(正方形、长方形、菱形、梯形)。

# 5. 圆- 圆的性质、圆周角定理、扇形面积计算。

四、组合数学# 1. 排列与组合- 排列:从n个不同元素中取出m个元素的所有可能的顺序。

- 组合:从n个不同元素中取出m个元素的所有可能的组合。

# 2. 二项式定理- 二项式定理是代数中的一个重要定理,描述了二项式的幂的展开。

# 3. 概率- 概率的基本概念、计算方法、条件概率、独立事件的概率。

奥数知识点总结(非常全面)

奥数知识点总结(非常全面)

小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数知识点回顾1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

11.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13.二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。

所以234=200+30+4=2×102+3×10+4。

=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7 +……+A3×22+A2×21+A1×20注意:An不是0就是1。

十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

14.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn 种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数15.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。

通常用短除法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

16.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

相关文档
最新文档