2021年湖南省岳阳市中考数学试卷(附答案详解)

合集下载

数据的分析(共50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】

数据的分析(共50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】

专题28数据的分析(共50题)(无答案)一、单选题1.(2021·四川成都市·中考真题)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.402.(2021·浙江宁波市·中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁3.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h4.(2021·四川南充市·中考真题)据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7,下列说法错误的是()A.该组数据的中位数是6B.该组数据的众数是6C.该组数据的平均数是6D.该组数据的方差是65.(2021·四川资阳市·中考真题)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数6.(2021·四川凉山彝族自治州·中考真题)某校七年级1班50名同学在“森林草原防灭火”知识竞赛中的成绩如表所示:则这个班学生成绩的众数、中位数分别是()A.90,80B.16,85C.16,24.5D.90,857.(2021·四川自贡市·中考真题)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A.16,15B.11,15C.8,8.5D.8,98.(2021·四川遂宁市·中考真题)下列说法正确的是()A.角平分线上的点到角两边的距离相等B.平行四边形既是轴对称图形,又是中心对称图形C.在代数式1a,2x,xπ,985,42ba+,13y+中,1a,xπ,42ba+是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是49.(2021·山东枣庄市·中考真题)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.410.(2021·湖北十堰市·中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是()A.8,15B.8,14C.15,14D.15,1511.(2021·四川达州市·中考真题)以下命题是假命题的是()A的算术平方根是2B.有两边相等的三角形是等腰三角形C.一组数据:3,1 ,1,1,2,4的中位数是1.5D.过直线外一点有且只有一条直线与已知直线平行12.(2021·湖南长沙市·中考真题)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,2413.(2021·湖南岳阳市·中考真题)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是()A.9.0,8.9B.8.9,8.9C.9.0,9.0D.8.9,9.014.(2021·四川眉山市·中考真题)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是()A.80,90B.90,90C.86,90D.90,9415.(2021·湖南衡阳市·中考真题)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A.众数是82B.中位数是84C.方差是84D.平均数是8516.(2021·江苏苏州市·中考真题)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kgB .4.8kgC .4.6kgD .4.5kg17.(2021·浙江台州市·中考真题)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21s ,则下列结论一定成立的是( ) A . x x <1B . x x >1C .s 2>21s D .s 221<s18.(2021·浙江嘉兴市·中考真题)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A .中位数是33C ︒B .众数是33C ︒C .平均数是197C 7︒ D .4日至5日最高气温下降幅度较大19.(2021·福建中考真题)某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是( )A.甲B.乙C.丙D.丁20.(2021·广西柳州市·中考真题)某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分为S如右表所示,那么这三名同学数学成绩最稳定的是()及方差2A.甲B.乙C.丙D.无法确定21.(2021·广西玉林市·中考真题)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环22.(2021·四川广元市·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差23.(2021·江苏宿迁市·中考真题)已知一组数据:4,3,4,5,6,则这组数据的中位数是()A.3B.3.5C.4D.4.524.(2021·山西中考真题)每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()A.27点,21点B.21点,27点C.21点,21点D.24点,21点25.(2021·湖北随州市·中考真题)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8D.这组数据的中位数是36.626.(2021·山东菏泽市·中考真题)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A.中位数是10.5B.平均数是10.3C.众数是10D.方差是0.81二、填空题27.(2021·湖南株洲市·中考真题)中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如下表:则在这个时间段,该中药房的这三种中药的平均销售量为___________千克.28.(2021·浙江杭州市·中考真题)现有甲、乙两种糖果的单价与千克数如下表所示.将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为______元/千克.29.(2021·山东临沂市·中考真题)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是___.30.(2021·四川乐山市·中考真题)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)A B C D E F六省60岁及以上人口31.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东,,,,,占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.32.(2021·江苏扬州市·中考真题)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是__________.33.(2021·甘肃武威市·中考真题)开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如下表:这14天中,小芸体温的众数是____________℃.34.(2021·江苏连云港市·中考真题)一组数据2,1,3,1,2,4的中位数是______.35.(2021·四川自贡市·中考真题)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是_________.36.(2021·浙江衢州市·中考真题)为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为_________分.37.(2021·湖南常德市·中考真题)在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是__________班.38.(2021·湖南中考真题)为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4:3:3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为________分.39.(2021·湖南怀化市·中考真题)为庆祝中国共产党建党一百周年,某单位党支部开展“学史明理,学史增信,学史崇德,学史力行”读书活动,学习小组抽取了七名党员5天的学史的时间(单位:h)分别为:4,3,3,5,6,3,5,这组数据的中位数是________,众数是________.40.(2021·湖北黄冈市·中考真题)东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为:85,87,89,91,85,92,90.则这组数据的中位数为______.41.(2021·湖北武汉市·中考真题)我国是一个人口资源大国,第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是__________.三、解答题42.(2021·安徽中考真题)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如下:(1)求频数分布直方图中x的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民用户月平均用电量如表:根据上述信息,估计该市居民用户月用电量的平均数.43.(2021·四川乐山市·中考真题)某中学全校师生听取了“禁毒”宣传报告后,对禁毒人员肃然起敬.学校德育处随后决定在全校1000名学生中开展“我为禁毒献爱心”的捐款活动.张老师在周五随机调查了部分学生随身携带零花钱的情况,并将收集的数据进行整理,绘制了如图所示的条形统计图.(1)求这组数据的平均数和众数;(2)经调查,当学生身上的零花钱多于15元时,都到出零花钱的20%,其余学生不参加捐款.请你估计周五这一天该校可能收到学生自愿捐款多少元?(3)捐款最多的两人将和另一个学校选出的两人组成一个“禁毒”知识宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人来自不同学校的概率.44.(2021·重庆中考真题)2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分)6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.八年级教师竞赛成绩扇形统计图七、八年级教师竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a=__________,b=_________;(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.45.(2021·云南中考真题)垃圾的分类回收不仅能够减少环境污染,美化家园,甚至能够变废为宝,节约能源,为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分),该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本,其中抽取的样最具有代表性和广泛性的一种抽样调查方案是_______(填写“方案一”、“方案二”或“方案三”);(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)结合上述信息解答下列问题:℃样本数据的中位数所在分数段为__________;℃全校1565名学生,估计竞赛分数达到“优秀”的学生有________人.46.(2021·浙江金华市·中考真题)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如下测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为23S=小明(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.47.(2021·浙江温州市·中考真题)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)以下是两位同学关于抽样方案的对话:小红:“我想随机柚取七年级男、女生各60人的成绩.”小明:“我想随机柚取七、八、九年级男生各40人的成绩.”根据右侧学校信息,请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩,请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如下统计图,请求出这组数据的平均数、中位数和众数. 某校部分学生体质健康测试成绩统计图48.(2021·重庆中考真题)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg ),进行整理和分析(餐厨垃圾质量用x 表示,共分为四个等级:A .1x <,B . 1 1.5x ≤<,C . 1.52x ≤<,D . 2x ≥),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3. 八年级10个班的餐厨垃圾质量中B 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2. 七八年级抽取的班级餐厨垃圾质量统计表根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).49.(2021·四川泸州市·)某合作社为帮助农民增收致富,利用网络平台销售当地的一种农副产品.为了解该农副产品在一个季度内每天的销售额,从中随机抽取了20天的销售额(单位:万元)作为样本,数据如下:16,14,13,17,15,14,16,17,14,14,15,14,15,15,14,16,12,13,13,16(1)根据上述样本数据,补全条形统计图;(2)上述样本数据的众数是_____,中位数是_____;(3)根据样本数据,估计这种农副产品在该季度内平均每天的销售额.50.(2021·山东临沂市·中考真题)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69;0.73;0.74;0.80;0.81;0.98;0.93;0.81;0.89;0.69;0.74;0.99;0.98;0.78;0.80;0.89;0.83;0.89;0.94;0.89研究小组的同学对以上数据进行了整理分析,得到下表:(1)表格中:a=,b=,c=,d=;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.。

2023年湖南省岳阳市中考数学真题+答案解析

2023年湖南省岳阳市中考数学真题+答案解析

2023年湖南省岳阳市中考数学真题+答案解析(真题部分)一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,选出符合要求的一项)1.(3分)2023的相反数是()A.B.﹣2023 C.2023 D.2.(3分)下列运算结果正确的是()A.a2•a=a3B.a6÷a2=a3C.3a﹣a=3 D.(a﹣b)2=a2﹣b23.(3分)下列几何体的主视图是圆的是()A.B.C.D.4.(3分)已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()A.40°B.45°C.50°D.60°5.(3分)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A.180,182 B.178,182 C.180,180 D.178,1806.(3分)下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形是中心对称图形D.单项式5ab2的次数是47.(3分)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合如图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸.则BC的长是()A.寸B.25寸C.24寸D.7寸8.(3分)若一个点的坐标满足(k,2k),我们将这样的点定义为“倍值点”.若关于x的二次函数y =(t+1)x2+(t+2)x+s(s,t为常数,t≠﹣1)总有两个不同的倍值点,则s的取值范围是()A.s<﹣1 B.s<0 C.0<s<1 D.﹣1<s<0二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)函数y=中,自变量x的取值范围是.10.(4分)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为.11.(4分)有两个女生小合唱队,各由6名队员组成,甲队与乙队的平均身高均为=160mm,甲队身高方差s甲2=1.2,乙队身高方差s乙2=2.0,两队身高比较整齐的是队.(填“甲”或“乙”)12.(4分)如图,①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.若∠AOB=60°,则∠AOC =°.13.(4分)观察下列式子:12﹣1=1×0;22﹣2=2×1;32﹣3=3×2;42﹣4=4×3;52﹣5=5×4;…依此规律,则第n(n为正整数)个等式是.14.(4分)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根,且x1+x2+x1•x2=2,则实数m=.15.(4分)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E处的仰角为21.8°,仪器与气球的水平距离BC为20米,且距地面高度AB为 1.5米,则气球顶部离地面的高度EC是米(结果精确到0.1米,sin21.8°≈0.3714,cos21.8°≈0.9285,tan21.8°≈0.4000).16.(4分)如图,在⊙O中,AB为直径,BD为弦,点C为的中点,以点C为切点的切线与AB 的延长线交于点E.(1)若∠A=30°,AB=6,则的长是(结果保留π);(2)若=,则=.三、解答题(本大题共8小题,满分64分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.18.(6分)解不等式组:.19.(8分)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.20.(8分)为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A 包粽子,B腌咸蛋,C酿甜酒,D摘艾叶,每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了名学生;(2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A和C两个社团的概率.21.(8分)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM =DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是(填序号);(2)添加条件后,请证明▱ABCD为矩形.22.(8分)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.23.(10分)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=4,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.24.(10分)已知抛物线Q1:y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点,交y轴于点C(0,3).(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D(0,﹣1),点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.2023年湖南省岳阳市中考数学真题+答案解析(答案部分)一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,选出符合要求的一项)1.(3分)2023的相反数是()A.B.﹣2023 C.2023 D.【分析】利用相反数的定义判断即可.【解析】解:2023的相反数是﹣2023.故选:B.【点评】此题考查了相反数,熟练掌握相反数的定义是解本题的关键.2.(3分)下列运算结果正确的是()A.a2•a=a3B.a6÷a2=a3C.3a﹣a=3 D.(a﹣b)2=a2﹣b2【分析】先根据同底数幂的乘法,同底数幂的除法,合并同类项法则和完全平方公式进行计算,再根据求出的结果进行判断即可.【解析】解:A.a2•a=a3,故本选项符合题意;B.a6÷a2=a4,故本选项不符合题意;C.3a﹣a=2a,故本选项不符合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不符合题意;故选:A.【点评】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项法则和完全平方公式等知识点,能熟记同底数幂的乘法、同底数幂的除法、合并同类项法则和完全平方公式是解此题的关键.3.(3分)下列几何体的主视图是圆的是()A.B.C.D.【分析】根据球体、正方体、四棱锥、三棱柱的主视图的形状进行判断即可.【解析】解:球体的主视图是圆,正方体的主视图是正方形,四棱锥的主视图是三角形,三棱柱的主视图是矩形.故选:A.【点评】本题考查简单几何体的三视图,解题的关键是能够理解主视图的概念以及对常见的几何体的主视图有一定的空间想象能力.4.(3分)已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()A.40°B.45°C.50°D.60°【分析】由平角的定义可求得∠BEG=50°,再由平行线的性质即可求解.【解析】解:∵EG⊥EF,∴∠FEG=90°,∵∠AEF+∠FEG+∠BEG=180°,∠AEF=40°,∴∠BEF=180°﹣∠AEF﹣∠FEG=50°,∵AB∥CD,∴∠EGF=∠BEG=50°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.5.(3分)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A.180,182 B.178,182 C.180,180 D.178,180【分析】根据众数和中位数的定义求解即可.【解析】解:这组数据178出现2次,次数最多,所以这组数据的众数为178,这组数据的中位数为180,故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.6.(3分)下列命题是真命题的是()A.同位角相等B.菱形的四条边相等C.正五边形是中心对称图形D.单项式5ab2的次数是4【分析】利用平行线的性质、菱形的性质、正多边形的对称性及单项式的有关定义分别判断后即可确定正确的选项.【解析】解:A、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、菱形的四条边相等,正确,是真命题,符合题意;C、正五边形不是中心对称图形,故原命题错误,是假命题,不符合题意;D、单项式5ab2的次数是3,故原命题错误,是假命题,不符合题意.故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解有关的定义及定理,难度不大.7.(3分)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合如图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸.则BC的长是()A.寸B.25寸C.24寸D.7寸【分析】首先根据直径所对的圆周角是直角得∠BCD=90°,然后再Rt△BCD中利用勾股定理即可求出BC的长.【解析】解:依题意得:BD为⊙O的直径,∴∠BCD=90°,在Rt△BCD中,BD=25寸,CD=7寸,由勾股定理得:.∴CD的长为24寸.故选:C.【点评】此题主要考查了圆周角定理,勾股定理的应用,解答此题的关键是理解直径所对的圆周角是直角.8.(3分)若一个点的坐标满足(k,2k),我们将这样的点定义为“倍值点”.若关于x的二次函数y =(t+1)x2+(t+2)x+s(s,t为常数,t≠﹣1)总有两个不同的倍值点,则s的取值范围是()A.s<﹣1 B.s<0 C.0<s<1 D.﹣1<s<0【分析】根据根与系数的关系解答即可.【解析】解:将(k,2k)代入二次函数,得2k=(t+1)k2+(t+2)k+s,整理得(t+1)k2+tk+s=0.∵(t+1)k2+tk+s=0是关于k的二次方程,总有两个不同的实根,∴Δ=t2﹣4s(t+1)>0.令f(t)=t2﹣4s(t+1)=t2﹣4st﹣4s∵f(t)>0,∴Δ=(4s)2+16s=16s2+16s<0,即Δ=s(s+1)<0,解得0>s>﹣1.故选:D.【点评】本题主要考查二次函数图象上点的坐标特征.根与系数的关系是二次函数部分非常重要的关系式,这里进行了反复运用,一定要牢牢掌握并灵活运用.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)函数y=中,自变量x的取值范围是x≠2.【分析】根据分母不为0可得:x﹣2≠0,然后进行计算即可解答.【解析】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查了函数自变量的取值范围,熟练掌握分母不为0是解题的关键.10.(4分)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为3.783×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:将378300用科学记数法表示为3.783×105.故答案为:3.783×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)有两个女生小合唱队,各由6名队员组成,甲队与乙队的平均身高均为=160mm,甲队身高方差s甲2=1.2,乙队身高方差s乙2=2.0,两队身高比较整齐的是甲队.(填“甲”或“乙”)【分析】根据方差的意义求解即可.【解析】解:∵S甲2=1.2,S乙2=2.0,∴S甲2<S乙2,∴两队身高比较整齐的是甲队.故答案为:甲.【点评】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.(4分)如图,①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.若∠AOB=60°,则∠AOC =30°.【分析】直接根据角平分线的作法即可得出结论.【解析】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB==30°.故答案为:30.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.13.(4分)观察下列式子:12﹣1=1×0;22﹣2=2×1;32﹣3=3×2;42﹣4=4×3;52﹣5=5×4;…依此规律,则第n(n为正整数)个等式是n2﹣n=n(n﹣1).【分析】观察等式左边的特点,即第n个式子就是n的平方减去n;右边的特点是n与(n﹣1)的积.【解析】解:12﹣1=1×0;22﹣2=2×1;32﹣3=3×2;42﹣4=4×3;52﹣5=5×4;…;依此规律,则第n(n为正整数)个等式是:n2﹣n=n(n﹣1).故答案为:n2﹣n=n(n﹣1).【点评】此题考查数字的变化规律,通过观察,分析、归纳发现其中的规律是解本题的关键.14.(4分)已知关于x的一元二次方程x2+2mx+m2﹣m+2=0有两个不相等的实数根,且x1+x2+x1•x2=2,则实数m=3.【分析】根据方程的系数结合根的判别式Δ>0,可得出关于m的一元一次不等式,解之可得出m 的取值范围,由根与系数的关系,可得出x1+x2=﹣2m,x1•x2=m2﹣m+2,结合x1+x2+x1•x2=2,可得出关于m的一元二次方程,解之取其符合题意的值,即可得出结论.【解析】解:∵原方程有两个不相等的实数根,∴Δ=(2m)2﹣4×1×(m2﹣m+2)>0,∴m>2.∵x1,x2是关于x的一元二次方程x2+2mx+m2﹣m+2=0的两个实数根,∴x1+x2=﹣2m,x1•x2=m2﹣m+2,∵x1+x2+x1•x2=2,∴﹣2m+m2﹣m+2=2,解得:m1=0(不符合题意,舍去),m2=3,∴实数m的值为3.故答案为:3.【点评】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合x1+x2+x1•x2=2,找出关于m的一元二次方程是解题的关键.15.(4分)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E处的仰角为21.8°,仪器与气球的水平距离BC为20米,且距地面高度AB为1.5米,则气球顶部离地面的高度EC是9.5米(结果精确到0.1米,sin21.8°≈0.3714,cos21.8°≈0.9285,tan21.8°≈0.4000).【分析】由题意得,四边形ABCD是矩形,根据矩形的性质得到AB=CD=1.5m,AD=BC=20m,解直角三角形即可得到结论.【解析】解:由题意得,四边形ABCD是矩形,∴AB=CD=1.5m,AD=BC=20m,在Rt△ADE中,∵AD=BC=20m,∠EAD=21.8°,∴DE=AD•tan21.8°≈20×0.4000=8(m),∴CE=CD+DE=1.5+8=9.5(m),答:气球顶部离地面的高度EC是9.5m.故答案为:9.5.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,矩形的性质,正确地仰角的定义是解题的关键.16.(4分)如图,在⊙O中,AB为直径,BD为弦,点C为的中点,以点C为切点的切线与AB 的延长线交于点E.(1)若∠A=30°,AB=6,则的长是π(结果保留π);(2)若=,则=.【分析】(1)连接OC,根据圆周角定理可得∠BOC=60°,利用弧长公式即可求出的长;(2)连接OC,根据垂径定理得到OC⊥BD,再由切线得到EC∥BD,利用平行线分线段成比例得出,再根据勾股求出EC=2x,代入比例式即可解决问题.【解析】解:(1)如图,连接OC,∵∠A=30°,AB=6,∴∠BOC=60°,OB=3,∴的长==π;故答案为:π;(2)如图,连接OC,∵点C为的中点,∴=,∴OC⊥BD,又∵EC是⊙O的切线,∴OC⊥EC,∴EC∥BD,∵=,∴,设EB=x,则AB=3x,BO=OC=x,EO=x,AE=4x,∴EC===2x,∴==.故答案为:.【点评】本题考查的是平行线分线段成比例定理、圆周角定理、切线的判定与性质,勾股定理,弧长的计算,掌握圆周角定理、切线的判定与性质是关键.三、解答题(本大题共8小题,满分64分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.【分析】先化简特殊角的三角函数值,绝对值,零指数幂,再根据实数的运算法则计算即可.【解析】解:22﹣tan60°+|﹣1|﹣(3﹣π)0.=4﹣+﹣1﹣1=2.【点评】本题考查了实数的混合运算,掌握运算法则是解题的关键.18.(6分)解不等式组:.【分析】利用解一元一次不等式组的方法进行求解即可.【解析】解:,解不等式①得:x>2,解不等式②得:x<4,故不等式组的解集为:2<x<4.【点评】本题主要考查解一元一次不等式组,解答的关键是熟练掌握解一元一次不等式组的方法.19.(8分)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.【分析】(1)分别将点A(1,2)反比例函数和正比例函数的解析式即可得出答案;(2)先求出点B的坐标,过点A,B分别作y轴的垂线,垂足分别为E,F,然后根据点A、B、C 的坐标表示出AE,BF,OC,最后再根据S△ABC=S△AOC+S△BOC=4即可求出点C的坐标.【解析】解:(1)将点A(1,2)代入,得:k=2,∴反比例函数的解析式为:,将点A(1,2)代入y=mx,得:m=2,∴正比例函数的解析式为:y=2x.(2)解方程组,得:,,∴点B的坐标为(﹣1,﹣2),过点A,B分别作y轴的垂线,垂足分别为E,F,∵A(1,2),B(﹣1,﹣2),C(0,n),∴AE=BF=1,OC=|n|,∵S△ABC =S△AOC+S△BOC=4,∴,即:|n|×1+|n×1=8,∴|n|=4,∴n=±4,∴点C的坐标为(0,4)或(0,﹣4).【点评】此题主要考查了反比例函数与一次函数的图象,解答此题的关键是熟练掌握待定系数法求函数的解析式,难点是在解答(2)时,过点A,B向y轴作垂线,把△ABC的面积转化为△AOC 和△BOC的面积之和,漏解是解答此题的易错点.20.(8分)为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A 包粽子,B腌咸蛋,C酿甜酒,D摘艾叶,每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了100名学生;(2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A和C两个社团的概率.【分析】(1)根据C组人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出B组的人数,然后即可将条形统计图补充完整;(3)根据题意,可以画出相应的树状图,然后即可计算出同时选中A和C两个社团的概率.【解析】解:(1)25÷25%=100(名),即本次共调查了100名学生,故答案为:100;(2)选择B的学生有:100﹣40﹣25﹣15=20(名),补全的条形统计图如右图所示;(3)树状图如下所示,由上可得,一共有12种等可能性,其中同时选中A和C两个社团的可能性有2种,∴同时选中A和C两个社团的概率为=.【点评】本题考查列表法与树状图法、扇形统计图、条形统计图,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.21.(8分)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM =DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是①(填序号);(2)添加条件后,请证明▱ABCD为矩形.【分析】(1)根据矩形的判定定理选择条件即可;(2)根据平行四边形的性质得到AB∥DC,AB=DC,求得∠A+∠D=180°,根据全等三角形的性质得到∠A=∠D,根据矩形的判定定理即可得到结论.【解析】(1)解:当∠1=∠2时,▱ABCD为矩形.故答案为:①;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠A+∠D=180°,在△ABM和DCM中,,∴△ABM≌DCM(SAS),∴∠A=∠D,∴∠A=∠D=90°,∴▱ABCD为矩形.【点评】本题主要考查了平行四边形的性质,全等三角形的判定和性质,矩形的判定,由矩形的性质和全等三角形的判定证得△ABM≌DCM,并熟练掌握矩形的判定方法是解决问题的关键.22.(8分)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.【分析】设今年龙虾的平均亩产量为xkg,则去年龙虾的平均亩产量为(x﹣60)kg,利用养殖面积=总产量÷平均亩产量,结合去年与今年的养殖面积相同,可得出关于x的分式方程,解之经检验后,即可得出结论.【解析】解:设今年龙虾的平均亩产量为xkg,则去年龙虾的平均亩产量为(x﹣60)kg,根据题意得:=,解得:x=300,经检验,x=300是所列方程的解,且符合题意.答:今年龙虾的平均亩产量为300kg.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(10分)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是MN=AC,MN与AC的位置关系是MN∥AC.特例研讨:(2)如图2,若∠BAC=90°,BC=4,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.【分析】(1)AB=AC,点M,N分别为边AB,BC的中点,则MN是△ABC的中位线,即可得出结论;(2)特例研讨:①连接EM,MN,NF,证明△BME是等边三角形,△BNF是等边三角形,得出∠FCB=30°;②连接AN,证明△ADN∽△BDE,则,设DE=x,则,在Rt△ABE 中,BE=2,,则,在Rt△ADN中,AD2=DN2+AN2,勾股定理求得,则;(3)当点C,E,F在同一直线上时,且点E在FC上时,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,得出∠BEC+∠BAC=180°,则A.B,E,C在同一个圆上,进而根据圆周角定理得出∠EAC =∠EBC=α﹣θ,表示∠BAE与∠ABF,即可求解;当F在EC上时,可得A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,设∠NBF=β,则∠EBM=β,则α+β=360°,表示∠BAE与∠ABF,即可求解.【解析】解:(1)∵AB=AC,点M,N分别为边AB,BC的中点,∴MN是△ABC的中位线,∴,MN∥AC;故答案是:MN=AC,MN∥AC;(2)特例研讨:①如图所示,连接EM,MN,NF,∵MN是△BAC的中位线,∴MN∥AC,∴∠BMN=∠BAC=90°,∵将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,∴BE=BM,BF=BN;∠BEF=∠BMN=90°,∵点A,E,F在同一直线上,∴∠AEB=∠BEF=90°,在Rt△ABE中,M是斜边AB的中点,∴,∴BM=ME=BE,∴△BME是等边三角形,∴∠ABE=60°,即旋转角α=60°,∴∠NBF=60°,BN=BF,∴△BNF是等边三角形,又∵BN=NC,BN=NF,∴NF=NC,∴∠NCF=∠NFC,∴∠BNF=∠NCF+∠NFC=2∠NFC=60°,∴∠FCB=30°;(2)如图所示,连接AN,∵AB=AC,∠BAC=90°,∴,∠ACB=∠ABC=45°,∵∠ADN=∠BDE,∠ANB=∠BED=90°,∴△ADN∽△BDE,∴,设DE=x,则,在Rt△ABE中,,则,在Rt△ADN中,AD2=DN2+AN2,∴,解得:或(舍去),∴;(3)如图所示,当点C,E,F在同一直线上时,且点E在FC上时,∵AB=AC,∴∠ABC=∠ACB,设∠ABC=∠ACB=θ,则∠BAC=180°﹣2θ,∵MN是△ABC的中位线,∴MN∥AC,∴∠MNB=∠MBN=θ,∵将△BMN绕点B顺时针旋转α,得到△BEF,∴△EBF≌△MBN,∠MBE=∠NBF=α,∴∠EBF=∠EFB=θ,∴∠BEF=180°﹣2θ,∵点C,E,F在同一直线上,∴∠BEC=2θ,∴∠BEC+∠BAC=180°,∴A,B,E,C在同一个圆上,∴∠EAC=∠EBC=α﹣θ,∴∠BAE=∠BAC﹣∠EAC=(180°﹣2θ)﹣(α﹣θ)=180°﹣α﹣θ,∵∠ABF=α+θ,∴∠BAE+∠ABF=180°,如图所示,当F在EC上时,∵∠BEF=∠BAC,BC=BC,∴A,B,E,C在同一个圆上,设∠ABC=∠ACB=θ,则∠BAC=∠BEF=180°﹣2θ,将△BMN绕点B顺时针旋转α,得到△BEF,设∠NBF=β,则∠EBM=β,则α+β=360°,∴∠ABF=θ﹣β,∵∠BFE=∠EBF=θ,∠EFB=∠FBC+∠FCB,∴∠ECB=∠FCB=∠EFB﹣∠FBC=θ﹣β,∵,∴∠EAB=∠ECB=θ﹣β,∴∠BAE=∠ABF,综上所述,∠BAE=∠ABF或∠BAE+∠ABF=180°.【点评】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌以上知识是解题的关键.24.(10分)已知抛物线Q1:y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点,交y轴于点C(0,3).(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D(0,﹣1),点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)过点E作EG⊥x轴于点G,则∠AGE=90°=∠AOD,由正方形性质可得AE=AD=DF,∠DAE=∠ADF=90°,进而可证得△EAG≌△ADO(AAS),得出AG=OD=1,EG=OA=3,即E (﹣2,3),再证明点E在抛物线上,过点F作FL⊥y轴于点L,同理,△DFL≌△ADO(AAS),即可求得F(1,2).(3)先求得抛物线Q2的解析式为y=﹣(x+1﹣2)2+4=﹣(x﹣1)2+4,得出K(1,4),H(3,0),运用待定系数法可得直线BC的解析式为y=﹣x+3,过点K作KT⊥y轴于点T,连接BC,设KP交直线BC于M或N,如图2,过点C作PS⊥y轴交BK于点S,交抛物线Q1于点P,连接PK,利用等腰直角三角形性质和三角函数定义可得tan∠CHK===,进而可求得点P的坐标.【解析】解:(1)∵抛物线Q1:y=﹣x2+bx+c经过A(﹣3,0),C(0,3)两点,∴,解得:,∴抛物线Q1的表达式为y=﹣x2﹣2x+3.(2)存在点E,F使得四边形DAEF为正方形.理由:如图1,过点E作EG⊥x轴于点G,则∠AGE=90°=∠AOD,∵A(﹣3,0),D(0,﹣1),∴OA=3,OD=1,∵四边形DAEF是正方形,∴AE=AD=DF,∠DAE=∠ADF=90°,∵∠EAG+∠DAO=90°,∠DAO+∠ADO=90°,∴∠EAG=∠ADO,∴△EAG≌△ADO(AAS),∴AG=OD=1,EG=OA=3,∴E(﹣2,3),当x=﹣2时,y=﹣x2﹣2x+3=﹣(﹣2)2﹣2×(﹣2)+3=3,∴点E在抛物线上,过点F作FL⊥y轴于点L,同理,△DFL≌△ADO(AAS),∴FL=OD=1,DL=OA=3,∴OL=DL﹣OD=3﹣1=2,F(1,2).(3)抛物线Q1上存在点P,使得∠CPK=∠CHK.∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线Q1的顶点坐标为(﹣1,4),∵将抛物线Q1向右平移2个单位,得到抛物线Q2,∴抛物线Q2的解析式为y=﹣(x+1﹣2)2+4=﹣(x﹣1)2+4,∵抛物线Q2的顶点为K,与x轴正半轴交于点H,∴K(1,4),H(3,0),设直线BC的解析式为y=kx+n,把C(0,3),H(3,0)代入得,解得:,∴直线BC的解析式为y=﹣x+3,过点K作KT⊥y轴于点T,连接BC,设KP交直线BC于M或N,如图2,过点C作PS⊥y轴交BK于点S,交抛物线Q1于点P,连接PK,则T(0,4),M(m,﹣m+3),N(t,﹣t+3),∴KT=TC=1,∠KTC=90°,∴△CKT是等腰直角三角形,∴∠KCT=45°,CK=KT=,∵OH=OC=3,∠COH=90°,∴△COH是等腰直角三角形,∴∠HCO=45°,CH=OC=3,∴∠KCH=180°﹣∠KCT﹣∠HCO=90°,∴tan∠CHK===,∵∠CPK=∠CHK,∴tan∠CPK=tan∠CHK=,∵tan∠BCO==,∴∠BCO=∠CHK,∵BK∥OC,∴∠CBK=∠BCO,∴∠CBK=∠CHK,即点P与点B重合时,∠CPK=∠CHK,∴P1(1,0);∵SK=1,PS=3,∴tan∠CPK==,∴∠CPK=∠CHK,∵点P与点C关于直线x=﹣1对称,∴P(﹣2,3);综上所述,抛物线Q1上存在点P,使得∠CPK=∠CHK,点P的坐标为(1,0)或(﹣2,3).【点评】本题是二次函数综合题,考查了待定系数法,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角函数定义,抛物线的平移变换等,解题的关键是添加辅助线构造全等三角形.。

湖南省岳阳市中考数学试题(word版,含解析)

湖南省岳阳市中考数学试题(word版,含解析)

2018 年湖南省岳阳市中考数学试卷一、选择题(本大题共8 小题,每小题 3 分,满分24 分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3 分)2018 的倒数是()A.2018 B.C.﹣D.﹣20182.(3 分)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5 C.a3+a2=a5 D.a﹣2=﹣a23.(3 分)函数 y= 中自变量 x 的取值范围是()A.x>3 B.x≠3C.x≥3D.x≥04.(3 分)抛物线 y=3(x﹣2)2+5 的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)5.(3 分)已知不等式组,其解集在数轴上表示正确的是()A. B .C.D.6.(3 分)在“美丽乡村”评选活动中,某乡镇 7 个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,927.(3 分)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等8.(3 分)在同一直角坐标系中,二次函数 y=x2 与反比例函数 y= (x>0)的图象如图所示,若两个函数图象上有三个不同的点 A(x1,m),B(x2,m),C(x3,m),其中m 为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2 D.二、填空题(本大题共8 小题,每小题 4 分,满分32 分)9.(4 分)因式分解:x2﹣4= .10.(4 分)2018 年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金 120000000 元,用于改造农村义务教育薄弱学校 100 所,数据 120000000 科学记数法表示为.11.(4 分)关于 x 的一元二次方程 x2+2x+k=0 有两个不相等的实数根,则 k 的取值范围是.12.(4 分)已知 a2+2a=1,则 3(a2+2a)+2 的值为.13.(4 分)在﹣2,1,4,﹣3,0 这 5 个数字中,任取一个数是负数的概率是.14.(4 分)如图,直线 a∥b,∠l=60°,∠2=40°,则∠3= .15.(4 分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为 5 步,股(长直角边)长为 12 步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.16.(4 分)如图,以 AB 为直径的⊙O 与 CE 相切于点 C,CE 交 AB 的延长线于点E,直径 AB=18,∠A=30°,弦 CD⊥AB,垂足为点 F,连接 AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①= ;②扇形 OBC 的面积为π;③△OCF∽△OEC;④若点 P 为线段 OA 上一动点,则AP•OP有最大值 20.25.三、解答题(本大题共8 小题,满分64 分,解答应写出文字说明,证明过程或演算步骤)17.(6 分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|18.(6 分)如图,在平行四边形 ABCD 中,AE=CF,求证:四边形 BFDE 是平行四边形.19.(8 分)如图,某反比例函数图象的一支经过点 A(2,3)和点 B(点 B 在点A 的右侧),作 BC⊥y 轴,垂足为点 C,连结 AB,AC.(1)求该反比例函数的解析式;(2)若△ABC 的面积为 6,求直线 AB 的表达式.20.(8 分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.21.(8 分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为 33000 平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了 20%,结果提前 11 天完成任务,求实际平均每天施工多少平方米?22.(8 分)图 1 是某小区入口实景图,图 2 是该入口抽象成的平面示意图.已知入口 BC 宽 3.9 米,门卫室外墙 AB 上的 O 点处装有一盏路灯,点 O 与地面 BC 的距离为 3.3 米,灯臂 OM 长为 1.2 米(灯罩长度忽略不计),∠AOM=60°.(1)求点 M 到地面的距离;(2)某搬家公司一辆总宽 2.55 米,总高 3.5 米的货车从该入口进入时,货车需与护栏 CD 保持 0.65 米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到 0.01 米)23.(10 分)已知在 Rt△ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB沿 CD 所在的直线对折,使点 B 落在点B′处,连结 AB',BB',延长 CD 交 BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图 1,若 AB=AC,求证:CD=2BE;(2)如图 2,若 AB≠AC,试求 CD 与 BE 的数量关系(用含α的式子表示);(3)如图 3,将(2)中的线段 BC 绕点 C 逆时针旋转角(α+45°),得到线段 FC,连结 EF 交 BC 于点 O,设△COE 的面积为 S1,△COF 的面积为 S2,求(用含α的式子表示).24.(10 分)已知抛物线 F:y=x2+bx+c 的图象经过坐标原点 O,且与 x 轴另一交点为(﹣,0).(1)求抛物线 F 的解析式;(2)如图 1,直线 l:y= x+m(m>0)与抛物线 F 相交于点 A(x1,y1)和点B(x2,y2)(点 A 在第二象限),求 y2﹣y1的值(用含 m 的式子表示);(3)在(2)中,若 m= ,设点A′是点 A 关于原点 O 的对称点,如图 2.①判断△AA′B的形状,并说明理由;②平面内是否存在点 P,使得以点 A、B、A′、P 为顶点的四边形是菱形?若存在,求出点 P 的坐标;若不存在,请说明理由.2018 年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8 小题,每小题 3 分,满分24 分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3 分)2018 的倒数是()A.2018 B.C.﹣D.﹣2018【解答】解:2018 的倒数是,故选:B.2.(3 分)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5 C.a3+a2=a5 D.a﹣2=﹣a2【解答】解:A、a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2= ,故本选项不符合题意,故选:A.3.(3 分)函数 y= 中自变量 x 的取值范围是()A.x>3 B.x≠3C.x≥3D.x≥0【解答】解:函数 y= 中 x﹣3≥0,所以 x≥3,故选:C.4.(3 分)抛物线 y=3(x﹣2)2+5 的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)【解答】解:抛物线 y=3(x﹣2)2+5 的顶点坐标为(2,5),故选:C.5.(3 分)已知不等式组,其解集在数轴上表示正确的是()A. B .C.D.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.6.(3 分)在“美丽乡村”评选活动中,某乡镇 7 个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,92【解答】解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为 92,众数为 96.故选:B.7.(3 分)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等【解答】解:平行四边形的对角线互相平分,A 是假命题;三角形的重心是三条边的中线的交点,B 是假命题;五边形的内角和=(5﹣2)×180°=540°,C 是真命题; 圆内接四边形的对角互补,D 是假命题; 故选:C .8.(3 分)在同一直角坐标系中,二次函数 y=x 2 与反比例函数 y= (x >0)的图 象如图所示,若两个函数图象上有三个不同的点 A (x 1,m ),B (x 2,m ),C (x 3, m ),其中 m 为常数,令 ω=x 1+x 2+x 3,则 ω 的值为()A .1B .mC .m 2D .【解答】解:设点 A 、B 在二次函数 y=x 2 图象上,点 C 在反比例函数 y= (x >0) 的图象上.因为 AB 两点纵坐标相同,则 A 、B 关于 y 轴对称,则 x 1+x 2=0,因为 点 C (x 3,m )在反比例函数图象上,则 x 3= ∴ω=x 1+x 2+x 3=x 3= 故选:D .二、填空题(本大题共 8 小题,每小题 4 分,满分 32 分) 9.(4 分)因式分解:x 2﹣4= (x+2)(x ﹣2) . 【解答】解:x 2﹣4=(x+2)(x ﹣2). 故答案为:(x+2)(x ﹣2).10.(4 分 )2018 年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄” 专项资金 120000000 元,用于改造农村义务教育薄弱学校 100 所,数据 120000000 科学记数法表示为 1.2×108 . 【解答】解:120000000=1.2×108,故答案为:1.2×108.11.(4 分)关于 x 的一元二次方程 x2+2x+k=0 有两个不相等的实数根,则 k 的取值范围是k<1 .【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.12.(4 分)已知 a2+2a=1,则 3(a2+2a)+2 的值为 5 .【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为 5.13.(4 分)在﹣2,1,4,﹣3,0 这 5 个数字中,任取一个数是负数的概率是.【解答】解:任取一个数是负数的概率是:P= ,故答案为:.14.(4 分)如图,直线 a∥b,∠l=60°,∠2=40°,则∠3= 80°.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.15.(4 分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为 5 步,股(长直角边)长为 12 步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.【解答】解:∵四边形 CDEF 是正方形,∴CD=ED,DE∥CF,设 ED=x,则 CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x= ,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.16.(4 分)如图,以 AB 为直径的⊙O 与 CE 相切于点 C,CE 交 AB 的延长线于点E,直径 AB=18,∠A=30°,弦 CD⊥AB,垂足为点 F,连接 AC,OC,则下列结论正确的是①③.(写出所有正确结论的序号)①= ;②扇形 OBC 的面积为π;③△OCF∽△OEC;④若点 P 为线段 OA 上一动点,则AP•OP有最大值 20.25.【解答】解:∵弦 CD⊥AB,∴= ,所以①正确;∴∠BOC=2∠A=60°,∴扇形 OBC 的面积= = π,所以②错误;∵⊙O 与 CE 相切于点 C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP•OP=(9﹣OP)•OP=﹣(OP﹣3)2+9,当 OP=3 时,AP•OP的最大值为 9,所以④错误.故答案为①③.三、解答题(本大题共8 小题,满分64 分,解答应写出文字说明,证明过程或演算步骤)17.(6 分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|【解答】解:原式=1﹣2×+1+=1﹣+1+=2.18.(6 分)如图,在平行四边形 ABCD 中,AE=CF,求证:四边形 BFDE 是平行四边形.【解答】证明:∵四边形 ABCD 是平行四边形,∴AB∥CD,且 AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF 且 BE=DF,∴四边形 BFDE 是平行四边形.19.(8 分)如图,某反比例函数图象的一支经过点 A(2,3)和点 B(点 B 在点A 的右侧),作 BC⊥y 轴,垂足为点 C,连结 AB,AC.(1)求该反比例函数的解析式;(2)若△ABC 的面积为 6,求直线 AB 的表达式.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为 y= .(2)设 B 点坐标为(a,b),如图,作 AD⊥BC 于 D,则 D(2,b)∵反比例函数 y= 的图象经过点 B(a,b)∴b=∴AD=3﹣.= BC•AD∴S△ABC= a(3﹣)=6解得 a=6∴b= =1∴B(6,1).设 AB 的解析式为 y=kx+b,将 A(2,3),B(6,1)代入函数解析式,得,解得,直线 AB 的解析式为 y=﹣x+4.20.(8 分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为120 人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【解答】解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有 12 种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有 2 种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.21.(8 分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为 33000 平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了 20%,结果提前 11 天完成任务,求实际平均每天施工多少平方米?【解答】解:设原计划平均每天施工 x 平方米,则实际平均每天施工 1.2x 平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500 是原方程的解,∴1.2x=600.答:实际平均每天施工 600 平方米.22.(8 分)图 1 是某小区入口实景图,图 2 是该入口抽象成的平面示意图.已知入口 BC 宽 3.9 米,门卫室外墙 AB 上的 O 点处装有一盏路灯,点 O 与地面 BC 的距离为 3.3 米,灯臂 OM 长为 1.2 米(灯罩长度忽略不计),∠AOM=60°.(1)求点 M 到地面的距离;(2)某搬家公司一辆总宽 2.55 米,总高 3.5 米的货车从该入口进入时,货车需与护栏 CD 保持 0.65 米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到 0.01 米)【解答】解:(1)如图,过 M 作 MN⊥AB 于 N,交 BA 的延长线于 N,Rt△OMN 中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON= OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点 M 到地面的距离是 3.9 米;(2)取 CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过 H 作 GH⊥BC,交 OM 于 G,过 O 作 OP⊥GH 于 P,∵∠GOP=30°,∴tan30°== ,∴GP= OP= ≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.23.(10 分)已知在 Rt△ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB沿 CD 所在的直线对折,使点 B 落在点B′处,连结 AB',BB',延长 CD 交 BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图 1,若 AB=AC,求证:CD=2BE;(2)如图 2,若 AB≠AC,试求 CD 与 BE 的数量关系(用含α的式子表示);(3)如图 3,将(2)中的线段 BC 绕点 C 逆时针旋转角(α+45°),得到线段 FC,连结 EF 交 BC 于点 O,设△COE 的面积为 S1,△COF 的面积为 S2,求(用含α的式子表示).【解答】解:(1)如图 1 中,∵B、B′关于 EC 对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图 2 中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴= = ,∴= ,∴CD=2•BE•tan2α.(3)如图 3 中,在 Rt△ABC 中,∠ACB=90°﹣2α,∵EC 平分∠ACB,∴∠ECB= (90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴= = =sin(45°﹣α),∵= ,∴=sin(45°﹣α).24.(10 分)已知抛物线 F:y=x2+bx+c 的图象经过坐标原点 O,且与 x 轴另一交点为(﹣,0).(1)求抛物线 F 的解析式;(2)如图 1,直线 l:y= x+m(m>0)与抛物线 F 相交于点 A(x1,y1)和点B(x2,y2)(点 A 在第二象限),求 y2﹣y1的值(用含 m 的式子表示);(3)在(2)中,若 m= ,设点 A′是点 A 关于原点 O 的对称点,如图 2.①判断△AA′B的形状,并说明理由;②平面内是否存在点 P,使得以点 A、B、A′、P 为顶点的四边形是菱形?若存在,求出点 P 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线 y=x2+bx+c 的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线 F 的解析式为 y=x2+ x.(2)将 y= x+m 代入 y=x2+ x,得:x2=m,解得:x1=﹣,x2= ,∴y1=﹣+m,y2= +m,∴y2﹣y1=(+m)﹣(﹣+m)= (m>0).(3)∵m= ,∴点 A 的坐标为(﹣,),点 B 的坐标为(,2).∵点A′是点 A 关于原点 O 的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴AA′=,AB= ,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意得点 P,且以点 A、B、A′、P 为顶点的菱形分三种情况,设点 P 的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点 P 的坐标为(2 ,);(ii)当 AB 为对角线时,有,解得:,∴点 P 的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点 P 的坐标为(﹣,﹣2).综上所述:平面内存在点 P,使得以点 A、B、A′、P 为顶点的四边形是菱形,点P 的坐标为(2 ,)、(﹣,)和(﹣,﹣2).。

2021年中考数学真题分类汇编--四边形:命题、四边形中的计算与证明(压轴题)(学生版)

2021年中考数学真题分类汇编--四边形:命题、四边形中的计算与证明(压轴题)(学生版)

中考真题分类汇编(四边形)----命题、四边形中的计算与证明(压轴题)一、选择题1. (2021•湖南省衡阳市)下列命题是真命题的是( ) A .正六边形的外角和大于正五边形的外角和 B .正六边形的每一个内角为120°C .有一个角是60°的三角形是等边三角形D .对角线相等的四边形是矩形2. (2021•怀化市)以下说法错误的是( ) A .多边形的内角大于任何一个外角 B .任意多边形的外角和是360° C .正六边形是中心对称图形 D .圆内接四边形的对角互补3. (2021•岳阳市) 下列命题是真命题的是( ) A. 五边形内角和是720︒ B. 三角形的任意两边之和大于第三边 C. 内错角相等 D. 三角形的重心是这个三角形的三条角平分线的交点4. (2021•四川省达州市)以下命题是假命题的是( ) A .的算术平方根是2B .有两边相等的三角形是等腰三角形C .一组数据:3,﹣1,1,1,2,4的中位数是1.5D .过直线外一点有且只有一条直线与已知直线平行 5. (2021•四川省广元市)下列命题中,真命题是( ) A. 1122xx-=B. 对角线互相垂直的四边形是菱形C. 顺次连接矩形各边中点的四边形是正方形D. 已知抛物线245y x x =--,当15x -<<时,0y < 6. (2021•四川省凉山州)下列命题中,假命题是( ) A. 直角三角形斜边上的中线等于斜边的一半B. 等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C. 若AB BC =,则点B 是线段AC 的中点D. 三角形三条边的垂直平分线的交点叫做这个三角形的外心 7. (2021•泸州市)下列命题是真命题的是( ) A. 对角线相等的四边形是平行四边形 B. 对角线互相平分且相等的四边形是矩形 C. 对角线互相垂直的四边形是菱形 D. 对角线互相垂直平分的四边形是正方形 8. (2021•遂宁市)下列说法正确的是( ) A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式D. 若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4 9. (2021•绥化市)下列命题是假命题的是( ) A. 任意一个三角形中,三角形两边的差小于第三边B. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半C. 如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D. 一组对边平行且相等的四边形是平行四边形10. (2021•呼和浩特市)以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分②A ,B ,C ,D ,E ,F 六个足球队进行单循环赛,若A ,B ,C ,D ,E 分别赛了5,4,3,2,1场,则由此可知,还没有与B 队比赛的球队可能是D 队③两个正六边形一定位似④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有( ) A .1个B .2个C .3个D .4个11. (2021•内蒙古包头市)下列命题正确的是( ) A. 在函数12y x=-中,当0x >时,y 随x 的增大而减小 B. 若0a <,则11a a +>- C. 垂直于半径的直线是圆的切线 D. 各边相等的圆内接四边形是正方形12. (2021•黑龙江省龙东地区)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在BC 的延长线上,连接DE ,点F 是DE 的中点,连接OF 交CD 于点G ,连接CF ,若4CE =,6OF =.则下列结论:①2GF =;②2OD OG =;③1tan 2CDE ∠=;④90ODF OCF ∠=∠=︒;⑤点D 到CF 的距离为855.其中正确的结论是( )A. ①②③④B. ①③④C. ①②③⑤D. ①②④⑤13.(2021•山东省泰安市)如图,在矩形ABCD 中,AB =5,BC =5,点P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .B .C .D .314. (2021•四川省南充市)如图,在矩形ABCD 中,AB =15,BC =20,把边AB 沿对角线BD 平移,点A ′,B ′分别对应点A ,B 给出下列结论: ①顺次连接点A ′,B ′,C ,D 的图形是平行四边形; ②点C 到它关于直线AA ′的对称点的距离为48; ③A ′C ﹣B ′C 的最大值为15; ④A ′C +B ′C 的最小值为9.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二.填空题1. (2021•江苏省无锡市)下列命题中,正确命题的个数为 . ①所有的正方形都相似 ②所有的菱形都相似 ③边长相等的两个菱形都相似 ④对角线相等的两个矩形都相似2.(2021•四川省广元市)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:①AP PF =;②DE BF EF +=;③2PB PD BF -=;④AEFS为定值;⑤APGPEFG S S=四边形.以上结论正确的有________(填入正确的序号即可).3. (2021•遂宁市)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF DBE ∠=∠;②ABF DBE ∽;③AF BD ⊥;④22BG BH BD =;⑤若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)4. (2021•天津市)如图,正方形ABCD 的边长为4,对角线,AC BD 相交于点O ,点E ,F 分别在,BC CD 的延长线上,且2,1CE DF ==,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为________.5. (2021•湖南省张家界市) 如图,在正方形ABCD 外取一点E ,连接DE ,AE ,CE ,过点D 作DE 的垂线交AE 于点P ,若1==DP DE ,6=PC .下列结论:①CED APD ∆≅∆;②CE AE ⊥;③点C 到直线DE 的距离为3;④225ABCD +=正方形S ,其中正确结论的序号为 .6. (2021•福建省)如图,在矩形ABCD 中,AB =4,AD =5,点E ,F 分别是边AB ,BC 上的动点,点E 不与A ,B 重合,且EF =AB ,G 是五边形AEFCD 内满足GE =GF 且∠EGF =90°的点.现给出以下结论: ①∠GEB 与∠GFB 一定互补; ②点G 到边AB ,BC 的距离一定相等; ③点G 到边AD ,DC 的距离可能相等; ④点G 到边AB 的距离的最大值为2.其中正确的是 .(写出所有正确结论的序号)D AB CEF7. (2021•广西贺州市)如图.在边长为6的正方形ABCD 中,点E ,F 分别在BC ,CD 上,3BC BE =且BE CF =,AE BF ⊥,垂足为G ,O 是对角线BD 的中点,连接OG 、则OG 的长为________.8.(2021•湖北省黄石市) 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,AE 交BD 于M 点,AF 交BD 于N 点. (1)若正方形的边长为2,则CEF △的周长是______.(2)下列结论:①222BM DN MN +=;②若F 是CD 的中点,则tan 2AEF ∠=;③连接MF ,则AMF 为等腰直角三角形.其中正确结论的序号是______(把你认为所有正确的都填上).三、解答题1. (2021•辽宁省本溪市)在▱ABCD 中,=BAD α,DE 平分ADC ∠,交对角线AC 于点G ,交射线AB 于点E ,将线段EB 绕点E 顺时针旋转12α得线段EP .(1)如图1,当=120α︒时,连接AP ,请直接写出线段AP 和线段AC 的数量关系; (2)如图2,当=90α︒时,过点B 作BF EP ⊥于点,连接AF ,请写出线段AF ,AB ,AD 之间的数量关系,并说明理由;(3)当=120α︒时,连接AP ,若1=2BE AB ,请直接写出APE 与CDG 面积的比值.2. (2021•宿迁市)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周. (1)如图①,连接BG 、CF ,求CFBG的值; (2)当正方形AEFG 旋转至图②位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE =6,请直接写出线段QN 扫过的面积.3. (2021•山东省临沂市)如图,已知正方形ABCD ,点E 是BC 边上一点,将△ABE 沿直线AE 折叠,点B 落在F 处,连接BF 并延长,与∠DAF 的平分线相交于点H ,与AE ,CD 分别相交于点G ,M ,连接HC . (1)求证:AG =GH ;(2)若AB =3,BE =1,求点D 到直线BH 的距离;(3)当点E 在BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?4.(2021•陕西省)问题提出(1)如图1,在▱ABCD中,∠A=45°,AD=6,E是AD的中点,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,∠A=∠B=∠C=90°,AB=800m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离,请说明理由.5.(2021•湖北省宜昌市)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC 是正方形; (2)如图2,当点Q 和点D 重合时. ①求证:GC =DC ;②若OK =1,CO =2,求线段GP 的长;(3)如图3,若BM ∥F ′B ′交GP 于点M ,tan ∠G =,求的值.6. (2021•广东省)如题24图,在四边形ABCD 中,AB CD ∥,AB CD ≠,90ABC ∠=︒,点E 、F 分别在线段BC 、AD 上,且EF CD ∥,AB AF =,CD DE =. (1)求证:CF FB ⊥;(2)求证:以AD 为直径的圆与BC 相切;(3)若2EF =,120DFE ∠=︒,求ADE △的面积.7. (2021•四川省广元市)如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE∽;(2)如图2,连接AE,点P、M、N分别为线段AC、AE、EF的中点,连接PM、MN、PN.求PMN∠的度数及MNPM的值;(3)在(2)的条件下,若2BC=,直接写出PMN面积的最大值.8.(2021•浙江省嘉兴市)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.9.(2021•浙江省绍兴市)如图,矩形ABCD中,AB=4,点F是对角线BD上一动点,∠ADB=30°.连结EF(1)若EF⊥BD,求DF的长;(2)若PE⊥BD,求DF的长;(3)直线PE交BD于点Q,若△DEQ是锐角三角形,求DF长的取值范围.10.(2021•浙江省温州市)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧)(1)求证:四边形AECF是平行四边形;(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时11.(2021•湖北省荆门市)如图,点E是正方形ABCD的边BC上的动点,∠AEF=90°,且EF=AE,FH⊥BH.(1)求证:BE=CH;(2)若AB=3,BE=x,用x表示DF的长.12.(2021•海南省)如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF 于点G,连接HB,HC.①求证:HD=HB;②若DK•HC=,求HE的长.13.(2021•广西玉林市)如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF.(1)求证:四边形DEBF是菱形:(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.14. (2021•广西贺州市)如图,在四边形ABCD 中,//AD BC ,90C ∠=︒,12ADB ABD BDC ∠=∠=∠,DE 交BC 于点E ,过点E 作EF BD ⊥,垂足为F ,且EF EC =.(1)求证:四边形ABED 是菱形; (2)若4=AD ,求BED 的面积.15. (2021•江苏省无锡市)已知四边形ABCD 是边长为1的正方形,点E 是射线BC 上的动点,以AE 为直角边在直线BC 的上方作等腰直角三角形AEF ,∠AEF =90°,设BE =m .(1)如图,若点E 在线段BC 上运动,EF 交CD 于点P ,AF 交CD 于点Q ,连结CF , ①当m =时,求线段CF 的长;②在△PQE 中,设边QE 上的高为h ,请用含m 的代数式表示h ,并求h 的最大值;(2)设过BC 的中点且垂直于BC 的直线被等腰直角三角形AEF 截得的线段长为y ,请直接写出y 与m 的关系式.16. (2021•齐齐哈尔市)综合与实践数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD 折叠,使边AB 、AD 都落在对角线AC 上,展开得折痕AE 、AF ,连接EF ,如图1.(1)EAF ∠=_________︒,写出图中两个等腰三角形:_________(不需要添加字母); 转一转:将图1中的EAF ∠绕点A 旋转,使它的两边分别交边BC 、CD 于点P 、Q ,连接PQ ,如图2.(2)线段BP 、PQ 、DQ 之间的数量关系为_________;(3)连接正方形对角线BD ,若图2中的PAQ ∠的边AP 、AQ 分别交对角线BD 于点M 、点N .如图3,则CQ BM=________; 剪一剪:将图3中的正方形纸片沿对角线BD 剪开,如图4.(4)求证:222BM DN MN +=.17. (2021•深圳)在正方形ABCD 中,等腰直角AEF △,90AFE ∠=︒,连接CE ,H 为CE 中点,连接BH 、BF 、HF ,发现BF BH和HBF ∠为定值.(1)①BF BH =__________;②HBF ∠=__________. ③小明为了证明①②,连接AC 交BD 于O ,连接OH ,证明了OH AF 和BA BO的关系,请你按他的思路证明①②. (2)小明又用三个相似三角形(两个大三角形全等)摆出如图2,BD EA k AD FA ==,BDA EAF θ∠=∠=(090θ︒<<︒)求①FD HD=__________(用k 的代数式表示) ②FH HD=__________(用k 、θ的代数式表示) 18. (2021•浙江省衢州卷)【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).。

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.【详解】4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .2.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A【分析】由二次根式的性质,分别进行判断,即可得到答案. 【详解】2==,故A 正确,C 错误;2,故B 、D 错误;故选:A .3.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A2B3C 12为有理数D5故选:C4.(2021·江苏苏州市·中考真题)计算2的结果是()A B.3C.D.9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B.【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a=≥是解答此题的关键.5.(2021·甘肃武威市·中考真题)下列运算正确的是()A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.【详解】=A 错;=B 错;=C 正确;2=,故D 错.故选:C .6.(2021· )A .7B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;【详解】===故选:B .7.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.8.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2+=C =D 3= 【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C.=D. =故选:C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.9.(2021· )A .4B .4±C .D .±【分析】()0,0,a b a b=≥≥直接化简即可得到答案.【详解】==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.10.(2021·江苏苏州市·中考真题)已知点)A m,3,2B n⎛⎫⎪⎝⎭在一次函数21y x=+的图像上,则m与n 的大小关系是()A.m n>B.m n=C.m n<D.无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∵y随x的增大而增大.∵2<94,32<.∵m<n.故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.11.(2021·浙江台州市·之间的整数有()A.0个B.1个C.2个D.3个【分析】【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.13.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( ) A .2,1--B .1-,0C .0,1D .1,2 【答案】C【分析】1的范围即可得到答案.【详解】<<解:12,∴011,<-<∴==0,1,a b故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.二、填空题14.(2021·天津中考真题)计算1)的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】2=-=.1)19故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15.(2021·浙江丽水市·有意义,则x可取的一个数是__________.x≥)【答案】如4等(答案不唯一,3【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵有意义,∵x﹣3≥0,∵x≥3,∵x可取x≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.16.(2021·江苏连云港市·=__________. 【答案】5【分析】直接运用二次根式的性质解答即可.【详解】5.故填5.【点睛】()()00a a a a ⎧-⎪=⎨≥⎪⎩<成为解答本题的关键. 17.(2021·湖南衡阳市·有意义,则x 的取值范围是________.【答案】x ≥3【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,30x -≥,解得,x ≥3,故答案为:x ≥3.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18.(2021·浙江金华市·x 的取值范围是___.【答案】x 3≥.【详解】x 30x 3-≥⇒≥.19.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___. 【答案】1x 2≥【详解】 试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非在实数范围内有意义,必须12x 10x 2-≥⇒≥.20.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.三、解答题22.(2021·陕西中考真题)计算:0112⎛⎫-+ ⎪⎝⎭【答案】【分析】根据零次幂、算术平方根及二次根式的加减运算可直接进行求解.【详解】解:原式11=-=【点睛】本题主要考查零次幂、算术平方根及二次根式的加减运算,熟练掌握零次幂、算术平方根及二次根式的加减运算是解题的关键.23.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.【答案】﹣【分析】 根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.【详解】解:()020212tan 60π--︒=(12--=12-+=﹣.【点睛】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.24.(2021·四川眉山市·中考真题)计算:(10143tan 602-⎛⎫--︒--+ ⎪⎝⎭【答案】3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.【详解】解:原式=()132123--+=-+=【点睛】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.25.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+--,(112-⨯=31,=2.26.(2021·浙江台州市·中考真题)计算:|-2|【答案】【分析】先算绝对值,化简二次根式,再算加减法,即可求解.【详解】解:原式=2+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.27.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦=【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.28.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】 解:011(2021)()2cos 452π--+-︒,122=+-3=【点睛】 本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.29.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-. 【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.30.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221-- =3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.31.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x-⎛⎫+⋅ ⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解.【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.32.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=1142-+⨯=11-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.33.(2021·江苏苏州市·223--.【答案】-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.【详解】223-- 229=+-5=-.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.34.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭. 【答案】(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+⎪⎝⎭ =()a b a b ab++÷ =()ab a b a b+⨯+ =ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.35.(2021·四川自贡市·0|7|(2-+-.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.36.(2021·浙江丽水市·中考真题)计算:0|2021|(3)-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.。

湖南省岳阳市2021年中考数学试卷 (Word版,含答案与解析)

湖南省岳阳市2021年中考数学试卷 (Word版,含答案与解析)

湖南省岳阳市2021年中考数学试卷一、单选题1.(2021·岳阳)在实数 √3 ,-1,0,2中,为负数的是( )A. √3B. -1C. 0D. 2 【答案】 B 【考点】正数和负数的认识及应用【解析】【解答】解:A 、 √3 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故答案为:B【分析】负数小于0,据此判断即可.2.(2021·岳阳)下列品牌的标识中,是轴对称图形的是( )A. B. C. D.【答案】 A【考点】轴对称图形【解析】【解答】A. 是轴对称图形,符合题意;B. 不是轴对称图形,不符合题意;C. 不是轴对称图形,不符合题意;D. 不是轴对称图形,不符合题意;故答案为:A.【分析】轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此逐一判断即可.3.(2021·岳阳)下列运算结果正确的是( )A. 3a −a =2B. a 2⋅a 4=a 8C. (a +2)(a −2)=a 2−4D. (−a)2=−a 2【答案】 C【考点】同底数幂的乘法,平方差公式及应用,有理数的乘方,合并同类项法则及应用【解析】【解答】解:A 、3a −a =2a ,因此错误;B 、 a 2·a 4=a 6 ,因此错误;C 、 (a +2)(a −2)=a 2−4 ,因此正确;D 、 (−a)2=a 2 ,因此错误;故答案为:C.【分析】根据合并同类项、同底数幂的乘法、平方差公式及幂的乘方分别计算,然后判断即可.4.(2021·岳阳)已知不等式组 {x −1<02x ≥−4,其解集在数轴上表示正确的是( )A. B.C. D.【答案】 D【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【解答】解: {x −1<02x ≥−4①② ,解不等式①得: x <1 ,解不等式②得: x ≥−2 ,∴不等式组的解集为: −2≤x <1 ,在数轴上表示为:故答案为:D.【分析】先求出不等式组的解集,再在数轴上表示,然后判断即可.5.(2021·岳阳)将一副直角三角板按如图方式摆放,若直线 a//b ,则 ∠1 的大小为()A. 45°B. 60°C. 75°D. 105°【答案】 C【考点】平行线的性质【解析】【解答】∵a ∥b∴ ∠1+(45°+60°)=180° (两直线平行,同旁内角互补)∴ ∠1=75° .故答案为:C.【分析】根据两直线平行,同旁内角互补进行解答即可.6.(2021·岳阳)下列命题是真命题的是( )A. 五边形的内角和是 720°B. 三角形的任意两边之和大于第三边C. 内错角相等D. 三角形的重心是这个三角形的三条角平分线的交点【答案】 B【考点】平行线的性质,三角形三边关系,多边形内角与外角,三角形的重心及应用【解析】【解答】A 、五边形的内角和是 540° ,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故答案为:B.【分析】根据多边形的内角和公式、三角形三边关系、平行线的性质及三角形重心的性质分别进行判断即可.7.(2021·岳阳)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是()A. 9.0,8.9B. 8.9,8.9C. 9.0,9.0D. 8.9,9.0【答案】C【考点】平均数及其计算,众数【解析】【解答】解:该班最后得分为(9.0+9.2+9.0+8.8+9.0)÷5=9.0(分).故最后平均得分为9.0分.在五个有效评分中,9.0出现的次数最多,因此众数为:9.0故答案为:C.【分析】根据平均数的定义、众数的定义分别求解即可判断.8.(2021·岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x−m)2−m与正方形OABC有交点时m的最大值和最小值分别是()A. 4,-1B. 5−√172,-1 C. 4,0 D. 5+√172,-1【答案】 D【考点】二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的图象,二次函数y=ax^2+bx+c的性质【解析】【解答】解:由正方形的性质可知:B(2,2);若二次函数y=(x−m)2−m与正方形OABC有交点,则共有以下四种情况:当m≤0时,则当A点在抛物线上或上方时,它们有交点,此时有{m≤0m2−m≤2,解得:−1≤m<0;当0<m≤1时,则当C点在抛物线上或下方时,它们有交点,此时有{0<m≤1(2−m)2−m≥0,解得:0<m≤1;当1<m≤2时,则当O点位于抛物线上或下方时,它们有交点,此时有{1<m≤2m2−m>0,解得:1<m≤2;当m>2时,则当O点在抛物线上或下方且B点在抛物线上或上方时,它们才有交点,此时有{m>2m2−m≥0(2−m)2−m≤2,解得:2<m≤5+√172;综上可得:m的最大值和最小值分别是5+√172,−1.故答案为:D.【分析】先求出点B(2,2),分四种情况:①当m≤0时,则当A点在抛物线上或上方时,它们有交点;②当0<m≤1时,则当C点在抛物线上或下方时,它们有交点;③当1<m≤2时,则当O 点位于抛物线上或下方时,它们有交点;④当m>2时,则当O点在抛物线上或下方且B点在抛物线上或上方时,它们才有交点,据此分别列出不等式组,求解即可.二、填空题9.(2021·岳阳)因式分解:x2+2x+1=________.【答案】(x+1)2【考点】因式分解﹣运用公式法【解析】【解答】解:x2+2x+1=(x+1)2.故答案为:(x+1)2.【分析】利用完全平方公式分解即可.10.(2021·岳阳)2021年5月15日,“天问一号”探测器成功着陆火星,在火星上首次留下了中国印迹.据公开资料显示,地球到火星的最近距离约为55000000公里,数据55000000用科学记数法表示为________. 【答案】5.5×107【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:55000000=5.5×107.故答案为:5.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,据此解答即可.11.(2021·岳阳)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为________.【答案】35【考点】概率公式【解析】【解答】解:袋子中一共有5个球,从袋子中随机摸出一个小球,总的结果数是5个,其中,摸出的小球是白球的结果数为3个,因此,摸出的小球是白球的概率为35;故答案为:35.【分析】利用概率公式计算即可.12.(2021·岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则实数k的值为________.【答案】9【考点】一元二次方程根的判别式及应用【解析】【解答】解:由题可知:“△=0”,即62−4k=0;∴k=9;故答案为:9.【分析】由关于x的一元二次方程x2+6x+k=0有两个相等的实数根,可得△=0,据此解答即可.13.(2021·燕山模拟)要使分式5x−1有意义,则x的取值范围为________.【答案】x≠1【考点】分式有意义的条件【解析】【解答】解:由题意得x-1≠0,∴x≠1.故答案为x≠1.【分析】先求出x-1≠0,再求取值范围即可。

湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2021•岳阳)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.2.(2023•岳阳)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.二.代数式求值(共1小题)3.(2022•岳阳)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.三.分式方程的应用(共2小题)4.(2023•岳阳)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.5.(2021•岳阳)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.四.解一元一次不等式组(共1小题)6.(2023•岳阳)解不等式组:.五.反比例函数与一次函数的交点问题(共3小题)7.(2023•岳阳)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.8.(2022•岳阳)如图,反比例函数y=(k≠0)与正比例函数y=mx(m≠0)的图象交于点A(﹣1,2)和点B,点C是点A关于y轴的对称点,连接AC,BC.(1)求该反比例函数的解析式;(2)求△ABC的面积;(3)请结合函数图象,直接写出不等式<mx的解集.9.(2021•岳阳)如图,已知反比例函数y=(k≠0)与正比例函数y=2x的图象交于A (1,m),B两点.(1)求该反比例函数的表达式;(2)若点C在x轴上,且△BOC的面积为3,求点C的坐标.六.矩形的判定(共1小题)10.(2023•岳阳)如图,点M 在▱ABCD 的边AD 上,BM =CM ,请从以下三个选项中①∠1=∠2;②AM =DM ;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD 为矩形.(1)你添加的条件是 (填序号);(2)添加条件后,请证明▱ABCD 为矩形.七.特殊角的三角函数值(共1小题)11.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.八.扇形统计图(共1小题)12.(2021•岳阳)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间t (单位:h )进行了调查,将数据整理后得到下列不完整的统计图表:组别睡眠时间分组频数频率At <640.08B6≤t <780.16C7≤t <810a D8≤t <9210.42Et ≥9b 0.14请根据图表信息回答下列问题:(1)频数分布表中,a = ,b = ;(2)扇形统计图中,C 组所在扇形的圆心角的度数是  °;(3)请估算该校600名八年级学生中睡眠不足7小时的人数;(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.九.列表法与树状图法(共1小题)13.(2022•岳阳)守护好一江碧水,打造长江最美岸线.江豚,麋鹿,天鹅已成为岳阳“吉祥三宝”的新名片.某校生物兴趣小组设计了3张环保宣传卡片,正面图案如图所示,它们除此之外完全相同.(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为 ;(2)将这3张卡片背面朝上,洗匀,从中随机抽取一张,不放回,再从剩余的两张卡片中随机抽取一张,请用列表或画树状图的方法,求抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率.湖南省岳阳市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2021•岳阳)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【答案】2.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.2.(2023•岳阳)计算:22﹣tan60°+|﹣1|﹣(3﹣π)0.【答案】2.【解答】解:22﹣tan60°+|﹣1|﹣(3﹣π)0.=4﹣+﹣1﹣1=2.二.代数式求值(共1小题)3.(2022•岳阳)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.【答案】﹣2.【解答】解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.三.分式方程的应用(共2小题)4.(2023•岳阳)水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg,今年龙虾的总产量是6000kg,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg,求今年龙虾的平均亩产量.【答案】300kg.【解答】解:设今年龙虾的平均亩产量为xkg,则去年龙虾的平均亩产量为(x﹣60)kg,根据题意得:=,解得:x=300,经检验,x=300是所列方程的解,且符合题意.答:今年龙虾的平均亩产量为300kg.5.(2021•岳阳)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】见试题解答内容【解答】解:设小明骑自行车的平均速度为xkm/h,则妈妈开车的平均速度为4xkm/h,依题意得:﹣=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴4x=48.答:妈妈开车的平均速度为48km/h.四.解一元一次不等式组(共1小题)6.(2023•岳阳)解不等式组:.【答案】2<x<4.【解答】解:,解不等式①得:x>2,解不等式②得:x<4,故不等式组的解集为:2<x<4.五.反比例函数与一次函数的交点问题(共3小题)7.(2023•岳阳)如图,反比例函数y=(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图象交于A(1,2),B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的坐标.【答案】(1),y=2x;(2)(0,4)或(0,﹣4).【解答】解:(1)将点A(1,2)代入,得:k=2,∴反比例函数的解析式为:,将点A(1,2)代入y=mx,得:m=2,∴正比例函数的解析式为:y=2x.(2)解方程组,得:,,∴点B的坐标为(﹣1,﹣2),过点A,B分别作y轴的垂线,垂足分别为E,F,∵A(1,2),B(﹣1,﹣2),C(0,n),∴AE=BF=1,OC=|n|,∵S△ABC=S△AOC+S△BOC=4,∴,即:|n|×1+|n×1=8,∴|n|=4,∴n=±4,∴点C的坐标为(0,4)或(0,﹣4).8.(2022•岳阳)如图,反比例函数y=(k≠0)与正比例函数y=mx(m≠0)的图象交于点A(﹣1,2)和点B,点C是点A关于y轴的对称点,连接AC,BC.(1)求该反比例函数的解析式;(2)求△ABC的面积;(3)请结合函数图象,直接写出不等式<mx的解集.【答案】(1)反比例函数的解析式为y=﹣;(2)4;(3)x<﹣1或0<x<1.【解答】解:(1)把点A(﹣1,2)代入y=(k≠0)得:2=,∴k=﹣2,∴反比例函数的解析式为y=﹣;(2)∵反比例函数y=(k≠0)与正比例函数y=mx(m≠0)的图象交于点A(﹣1,2)和点B,∴B(1,﹣2),∵点C是点A关于y轴的对称点,∴C(1,2),∴AC=2,∴S△ABC==4.(3)根据图象得:不等式<mx的解集为x<﹣1或0<x<1.9.(2021•岳阳)如图,已知反比例函数y=(k≠0)与正比例函数y=2x的图象交于A (1,m),B两点.(1)求该反比例函数的表达式;(2)若点C在x轴上,且△BOC的面积为3,求点C的坐标.【答案】(1)y=;(2)点C的坐标为(3,0)或(﹣3,0).【解答】解:(1)把A(1,m)代入y=2x中,得m=2,∴点A的坐标为(1,2),把点A(1,2)代入y=中,得k=2,∴反比例函数的解析式为y=;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),∵点A与点B关于原点对称,∴点B的坐标为(﹣1,﹣2),∴BD=|﹣2|=2,OC=|a|,S△BOC==,解得:a=3或a=﹣3,∴点C的坐标为(3,0)或(﹣3,0).六.矩形的判定(共1小题)10.(2023•岳阳)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM=DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是 ①② (填序号);(2)添加条件后,请证明▱ABCD为矩形.【答案】(1)①②;(2)见解析.【解答】(1)解:①当∠1=∠2时,▱ABCD为矩形;②当AM=DM时,▱ABCD为矩形,故答案为:①②;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠A+∠D=180°,在△ABM和DCM中,,∴△ABM≌DCM(SAS),∴∠A=∠D,∴∠A=∠D=90°,∴▱ABCD为矩形,方法二:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠A+∠D=180°,∵BM=CM,∴∠3=∠4,∵∠1=∠2,∴∠ABC=∠DCB,∵∠ABC+∠DCB=180°,∴∠ABC=90°,∴▱ABCD为矩形.七.特殊角的三角函数值(共1小题)11.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.【答案】1.【解答】解:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0=3﹣2×1+1﹣1=3﹣2+1﹣1=1.八.扇形统计图(共1小题)12.(2021•岳阳)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间t(单位:h)进行了调查,将数据整理后得到下列不完整的统计图表:组别睡眠时间分组频数频率A t<640.08B6≤t<780.16C7≤t<810aD8≤t<9210.42E t≥9b0.14请根据图表信息回答下列问题:(1)频数分布表中,a= 0.2 ,b= 7 ;(2)扇形统计图中,C组所在扇形的圆心角的度数是 72 °;(3)请估算该校600名八年级学生中睡眠不足7小时的人数;(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.【答案】(1)0.2,7;(2)72;(3)估计该校600名八年级学生中睡眠不足7小时的人数有144人;(4)学校应要求学生按时入睡,保证睡眠时间.【解答】解:(1)本次调查的同学共有:8÷0.16=50(人),a=10÷50=0.2,b=50﹣4﹣8﹣10﹣21=7,故答案为:0.2,7;(2)扇形统计图中C组所在扇形的圆心角的大小是:360°×=72°,故答案为:72;(3)600×=144(人),答:估计该校600名八年级学生中睡眠不足7小时的人数有144人;(4)学校应要求学生按时入睡,保证睡眠时间.九.列表法与树状图法(共1小题)13.(2022•岳阳)守护好一江碧水,打造长江最美岸线.江豚,麋鹿,天鹅已成为岳阳“吉祥三宝”的新名片.某校生物兴趣小组设计了3张环保宣传卡片,正面图案如图所示,它们除此之外完全相同.(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为 ;(2)将这3张卡片背面朝上,洗匀,从中随机抽取一张,不放回,再从剩余的两张卡片中随机抽取一张,请用列表或画树状图的方法,求抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率.【答案】(1);(2).【解答】解:(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为,故答案为:;(2)将江豚,麋鹿,天鹅三张卡片分别记作①、②、③,列表如下:①②③①(②,①)(③,①)②(①,②)(③,②)③(①,③)(②,③)由表知,共有6种等可能结果,其中抽取的卡片正面图案恰好是“江豚”和“天鹅”的有2种结果,所以抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率为=.。

2021年中考数学真题分类汇编--函数:反比例函数(学生版)

2021年中考数学真题分类汇编--函数:反比例函数(学生版)

中考真题分类汇编(函数)----反比例函数一、选择题1. (2021•怀化市)如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,AE ⊥BC 于E 点,交BD 于M 点,反比例函数y =(x >0)的图象经过线段DC 的中点N ,若BD =4,则ME 的长为( )A .ME =B .ME =C .ME =1D .ME =2. (2021•宿迁市)已知双曲线k y (0)k x =<过点(3,1y )、(1,2 y )、(-2,3y ),则下列结论正确的是( )A. 312y y y >>B. 321y y y >>C. 213y y y >>D. 231y y y >> 3.(江苏省扬州)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCD k k S -=;③()21212DCP k k S k -=,其中正确的是( )A. ①②B. ①③C. ②③D. ① 4.(2021•山西)已知反比例函数6y x=,则下列描述不正确的是( ) A.图象位于第一、第三象限 B.图象必经过点(4,32)C.图象不可能与坐标轴相交D. y 随 x 的增大而减小5. (2021•湖北省宜昌市)某气球内充满了一定质量m 的气体,当温度不变时,气球内气体的气压p (单位:kPa )是气体体积V (单位:m 3)的反比例函数:p =,能够反映两个变量p 和V 函数关系的图象是( )A .B .C .D . 6.(2021•四川省达州市)在反比例函数y =(k 为常数)上有三点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 3<y 2<y 17. (2021•四川省乐山市)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A. 35-B. 3或32C. 35+或35-D. 38. (2021•天津市)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x =-的图象上,则123,,y y y 的大小关系是( )A. 123y y y <<B. 231y y y <<C. 132y y y <<D. 312y y y << 9. (2021•浙江省嘉兴市)已知三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)在反比例函数y =的图象上,其中x 1<x 2<0<x 3,下列结论中正确的是( )A .y 2<y 1<0<y 3B .y 1<y 2<0<y 3C .y 3<0<y 2<y 1D .y 3<0<y 1<y 210、(2021•浙江省温州市)如图,点A ,B 在反比例函数y =(k >0,x >0),AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连结AE .若OE =1,OC =,AC =AE ,则k 的值为( )A .2B .C .D .211. (2021•湖北省荆门市)在同一直角坐标系中,函数y =kx ﹣k 与y =(k ≠0)的大致图象是( )A .①②B .②③C .②④D .③④12. (2021•湖北省十堰市)如图,反比例函数()0k y x x=>的图象经过点(2,1)A ,过A 作AB y ⊥轴于点B ,连OA ,直线CD OA ⊥,交x 轴于点C ,交y 轴于点D ,若点B 关于直线CD 的对称点B '恰好落在该反比例函数图像上,则D 点纵坐标为( )551- B. 52 C. 73 551+ 13. (2021•重庆市A )如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0k y x x =>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOF S =,则k 的值为( )A. 73B. 214C. 7D. 21214. (2021•重庆市B )如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =(k >0,x >0)的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,△AEF 的面积为1,则k 的值为( )A .B .C .2D .315. (2021•黑龙江省龙东地区)如图,在平面直角坐标系中,菱形ABCD 的边AD y ⊥轴,垂足为E ,顶点A 在第二象限,顶点B 在y 轴正半轴上,反比例函数(0k y k x=≠,0)x >的图象同时经过顶点C D 、.若点C 的横坐标为5,2BE DE =,则k 的值为( )A. 403B. 52C. 54D. 20316. (2021•贵州省贵阳市)已知反比例函数y =(k ≠0)的图象与正比例函数y =ax (a≠0)的图象相交于A ,B 两点,若点A 的坐标是(1,2),则点B 的坐标是( )A .(﹣1,2)B .(1,﹣2)C .(﹣1,﹣2)D .(2,1)17. (2021•江苏省无锡市)8.一次函数y =x +n 的图象与x 轴交于点B ,与反比例函数y =(m >0)的图象交于点A (1,m ),且△AOB 的面积为1,则m 的值是( )A .1B .2C .3D .418 . (2021•内蒙古包头市)如图,在平面直角坐标系中,矩形OABC 的OA 边在x 轴的正半轴上,OC 边在y 轴的正半轴上,点B 的坐标为(4,2),反比例函数2(0)y x x=>的图象与BC 交于点D ,与对角线OB 交于点E ,与AB 交于点F ,连接OD ,DE ,EF ,DF .下列结论:①sin cos DOC BOC ∠=∠;②OE BE =;③DOE BEF S S =△△;④:2:3OD DF =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个二.填空题 1. (2021•甘肃省定西市)若点A (﹣3,y 1),B (﹣4,y 2)在反比例函数y =的图象上,则y 1 y 2.(填“>”或“<”或“=”)2. (2021•湖北省武汉市)已知点A (a ,y 1),B (a +1,y 2)在反比例函数y =(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是 .3. (2021•株洲市)点()11,A x y 、()121,B x y +是反比例函数k y x =图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________.4.(2021•江苏省南京市)如图,正比例函数y kx =与函数6y x=的图像交于A ,B 两点,//BC x 轴,//AC y 轴,则ABC S =________.5. (2021•宿迁市)如图,点A 、B 在反比例函数()k y 0x x=>的图像上,延长AB 交x 轴于C 点,若△AOC 的面积是12,且点B 是AC 的中点,则k =__________.6. (2021•四川省广元市)如图,点()2,2A -在反比例函数k y x=的图象上,点M 在x 轴的正半轴上,点N 在y 轴的负半轴上,且5OM ON ==.点(),P x y 是线段MN 上一动点,过点A 和P 分别作x 轴的垂线,垂足为点D 和E ,连接OA 、OP .当OAD OPE SS <时,x的取值范围是________.7. (2021•浙江省绍兴市)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,C 在第一象限,顶点D 的坐标(,2),反比例函数y =(常数k >0,x >0)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是 5或22.5 .8. (2021•湖北省荆门市)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB =30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y =(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为.9.2021•北京市)在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),则m的值为.10.(2021•福建省)若反比例函数y=的图象过点(1,1),则k的值等于.11.(2021•广西玉林市)如图,ABC是等腰三角形,AB过原点O,底边//BC x轴双曲线kyx=过A,B两点,过点C作//CD y轴交双曲线于点D,若8BCDS=△,则k的值是______.12. (2021•山东省威海市)已知点A 为直线2y x =-上一点,过点A 作//AB x 轴,交双曲线4y x =于点B .若点A 与点B 关于y 轴对称,则点A 的坐标为_____________. 13. (2021•呼和浩特市)正比例函数1y k x =与反比例函数2k y x =的图象交于A ,B 两点,若A 点坐标为(3,23)-,则12k k +=__________.14. (2021•齐齐哈尔市)如图,点A 是反比例函数1(0)k y x x =<图象上一点,AC x ⊥轴于点C 且与反比例函数2(0)k y x x=<的图象交于点B ,3AB BC = ,连接OA ,OB ,若OAB 的面积为6,则12k k +=_________.15. (2021•贵州省铜仁市)如图,矩形ABOC 的顶点A 在反比例函数k y x=的图象上,矩形ABOC 的面积为3,则k =______________;16. (2021•浙江省衢州卷) 将一副三角板如图放置在平面直角坐标系中,顶点A 与原点O 重合,AB 在x 轴正半轴上,且43AB =E 在AD 上,14DE AD =,将这副三角板整体向右平移_______个单位,C ,E 两点同时落在反比例函数k y x=的图象上.17. (2021•绥化市)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在(0,0)k y k x x=≠<的双曲线上.点O E 、的对应点分别是点C A 、.若点A 为OE 的中点,且1AEF S =△,则k 的值为____.18.(2021•深圳)如图,已知反比例函数过A ,B 两点,A 点坐标(2,3),直线AB 经过原点,将线段AB 绕点B 顺时针旋转90°得到线段BC ,则C 点坐标为________.三、解答题1. (2021•湖北省黄冈市)如图,反比例函数k y x =的图象与一次函数y =mx +n 的图象相交于A (a ,﹣1),B (﹣1,3)(1)求反比例函数和一次函数的解析式;(2)设直线AB 交y 轴于点C ,点N (t ,0)是x 轴正半轴上的一个动点的图象于点M ,连接CN 四边形COMN >3,求t 的取值范围.2. (2021•湖南省常德市)如图,在Rt AOB 中,AO BO ⊥.AB y ⊥轴,O 为坐标原点,A 的坐标为(),3n ,反比例函数11k y x=的图象的一支过A 点,反比例函数22k y x =的图象的一支过B 点,过A 作AH x ⊥轴于H ,若AOH △的面积为32.(1)求n 的值;(2)求反比例函数2y 的解析式.3. (2021•岳阳市) 如图,已知反比例函数()0k y k x=≠与正比例函数2y x =的图象交于()1,A m ,B 两点.(1)求该反比例函数的表达式;(2)若点C 在x 轴上,且BOC 的面积为3,求点C 的坐标.4. (2021•株洲市)如图所示,在平面直角坐标系Oxy 中,一次函数2y x =的图像l 与函数()0,0k y k x x=>>的图像(记为Γ)交于点A ,过点A 作AB y ⊥轴于点B ,且1AB =,点C 在线段OB 上(不含端点),且OC t =,过点C 作直线1//l x 轴,交l 于点D ,交图像Γ于点E .(1)求k 的值,并且用含t 的式子表示点D 的横坐标;(2)连接OE 、BE 、AE ,记OBE △、ADE 的面积分别为1S 、2S ,设12U S S =-,求U 的最大值.5. (2021•江西省)如图,正比例函数y =x 的图象与反比例函数y =(x >0)的图象交于点A (1,a )在△ABC 中,∠ACB =90°,CA =CB ,点C 坐标为(﹣2,0).(1)求k的值;(2)求AB所在直线的解析式.6.(2021•山东省聊城市)如图,过C点的直线y=﹣12x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=kx(x>0)的图象于点D,连接OD,△ODH的面积为6 (1)求k值和点D的坐标;(2)如图,连接BD,OC,点E在直线y=﹣12x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.7.(2021•山东省泰安市)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.(1)求m的值;(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M 的坐标.8. (2021•湖北省随州市)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2m y x=(0m >)的图象交于点()1,2C ,()2,D n .(1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积.(1)22y x =,13y x =-+;(2)39. (2021•山东省菏泽市)如图,在平面直角坐标系中,矩形OABC 的两边OC 、OA 分别在坐标轴上,且OA =2,OC =4,连接OB .反比例函数y =(x >0)的图象经过线段OB 的中点D ,并与AB 、BC 分别交于点E 、F .一次函数y =k 2x +b 的图象经过E 、F 两点.(1)分别求出一次函数和反比例函数的表达式;(2)点P 是x 轴上一动点,当PE +PF 的值最小时,点P 的坐标为 (,0) .10. (2021•四川省成都市)如图,在平面直角坐标系xOy 中,一次函数y =x +的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.11. (2021•广东省)在平面直角坐标系xOy 中,一次函数()0y kx b k =+>的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数4y x=图象的一个交点为()1,P m .(1)求m 的值;(2)若2PA AB =,求k 的值.12. (2021•四川省广元市)如图,直线2y kx =+与双曲线 1.5y x=相交于点A 、B ,已知点A 的横坐标为1,(1)求直线2y kx =+的解析式及点B 的坐标;(2)以线段AB 为斜边在直线AB 的上方作等腰直角三角形ABC .求经过点C 的双曲线的解析式.13. (2021•四川省乐山市) 如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x=≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.14. (2021•四川省凉山州)如图,AOB 中,90∠=︒ABO ,边OB 在x 轴上,反比例函数(0)k y x x =>的图象经过斜边OA 的中点M ,与AB 相交于点N ,912,2AOB S AN ==.(1)求k 的值;(2)求直线MN 的解析式.15. (2021•四川省南充市)如图,反比例函数的图象与过点A (0,﹣1),B (4,1)的直线交于点B 和C .(1)求直线AB 和反比例函数的解析式;(2)已知点D (﹣1,0),直线CD 与反比例函数图象在第一象限的交点为E ,直接写出点E 的坐标,并求△BCE 的面积.16. (2021•遂宁市)如图,一次函数1y =kx + b (k ≠0)与反比例函数2m y x=(m ≠0)的图象交于点A (1,2)和B (-2,a ),与y 轴交于点M .(1)求一次函数和反比例函数的解析式;(2)在y 轴上取一点N ,当△AMN 的面积为3时,求点N 的坐标;(3)将直线1y 向下平移2个单位后得到直线y 3,当函数值123y y y >>时,求x 的取值范围.17.(2021•湖北省恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.(1)求k;(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.18.(2021•浙江省湖州市)已知在平面直角坐标系xOy中,点A是反比例函数1yx=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数kyx=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴于点F,连结EF.①若k=1,求证:四边形AEFO 是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数kyx(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.19.(2021•山东省济宁市)如图,Rt△ABC中,∠ACB=90°,AC=BC,点C(2,0),点B(0,4),反比例函数y=(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)将直线OA向上平移m个单位后经过反比例函数y=(x>0)图象上的点(1,n),求m,n的值.。

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

专题06 不等式与不等式组一、单选题1.(2021·湖南常德市·中考真题)若a b >,下列不等式不一定成立的是( )A .55a b ->-B .55a b -<-C .a b c c >D .a c b c +>+ 【答案】C【分析】根据不等式的性质逐项进行判断即可得到答案.【详解】解:A .在不等式a b >两边同时减去5,不等式仍然成立,即55a b ->-,故选项A 不符合题意;B . 在不等式a b >两边同时除以-5,不等号方向改变,即55a b -<-,故选项B 不符合题意;C .当c ≤0时,不等得到a b c c>,故选项C 符合题意; D . 在不等式a b >两边同时加上c ,不等式仍然成立,即a c b c +>+,故选项D 不符合题意; 故选:C .【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键.2.(2021·湖南株洲市·中考真题)不等式组2010x x -≤⎧⎨-+>⎩的解集为( ) A .1x <B .2x ≤C .12x <≤D .无解 【答案】A【分析】先解不等式组中的每一个不等式,再利用不等式组解集的口诀“同小取小”得出解集.【详解】解:2010x x -≤⎧⎨-+>⎩①②由①,得:x ≤2,由②,得:x <1,则不等式组的解集为:x <1,故选:A .【点睛】本题主要考查了一元一次不等式组解集的求法,关键在于根据解集的特点确定解集:同大取大、同小取小、大小小大中间找、大大小小无解得到.3.(2021·湖南岳阳市·中考真题)已知不等式组1024x x -<⎧⎨≥-⎩,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】解不等式组要先求出两个不等式的解集,然后依据解集口诀:同大取大,同小取小,大小小大中间找,大大小小无处找,确定不等式组解集,在数轴上表示;注意带有等号的数在数轴上用实心表示,没有等号用空心圈表示,即可得出选项.【详解】解:1024x x -<⎧⎨≥-⎩①②, 解不等式①得:1x <,解不等式②得:2x ≥-,∴不等式组的解集为:21x -≤<,在数轴上表示为:故选:D .【点睛】题目主要考察求解不等式解集、不等式组解集以及解集在数轴上的表示,难点是对在数轴上表示实心点和空心圈的区分.4.(2021·湖南怀化市·中考真题)不等式组211112x x x +-⎧⎪⎨->-⎪⎩的解集表示在数轴上正确的是( ) A . B .C .D .【答案】C【分析】 分别解两个不等式,将它们的解集表示在同一数轴上即可求解;带等于号的用实心点,不带等于号的用空心点.【详解】解不等式211x x +-得:2x ≥-, 解不等式112x ->- 得:2x <,故不等式组的解集为:-2≤x <2,在数轴上表示为:故选C .【点睛】本题考查了一元一次不等式组的解法,一元一次不等式的解集在数轴上的表示方法;依次解不等式,注意空心点和实心点的区别是解题关键.5.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( ) A .B .C .D .【答案】A【分析】 根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1,解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示,故选:A .【点睛】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键.6.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-2【答案】A【分析】先求出不等式组的解集,再从中找出整数求和即可.【详解】51341233x x x x ->-⎧⎪⎨-≤-⎪⎩①②, 解①得32x >-, 解②得x≤1, ∴213x -<≤, ∴整数解有:0,1,∴0+1=1.故选A.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.7.(2021·湖南永州市·中考真题)一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是( ) A .4B .5C .6D .7 【答案】C【详解】∵解不等式210x +>得:12x >-, 解不等式50x -≤,得:x≤5, ∴不等式组的解集是152x -<≤, 整数解为0,1,2,3,4,5,共6个,故选C .考点:一元一次不等式组的整数解.二、填空题8.(2021·湖南常德市·中考真题)求不等式23x x ->的解集_________.【答案】3x >【分析】直接移项合并同类项即可得出.【详解】解:23x x ->,移项解得:3x >,故答案是:3x >.【点睛】本题考查了解一元一次不等式,解题的关键是:熟练掌握移项合并同类项等步骤.9.(2021·湖南中考真题)已知x 满足不等式组120x x >-⎧⎨-≤⎩,写出一个符合条件的x 的值________. 【答案】1(答案不唯一)【分析】求出不等式组的解集即可得.【详解】解:120x x >-⎧⎨-≤⎩①②, 解不等式②得:2x ≤,则不等式组的解集为12x -<≤,因此,一个符合条件的x 值是1,故答案为:1(答案不唯一).【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.10.(2021·湖南张家界市·中考真题)不等式2217x x >⎧⎨+≤⎩的正整数解为______. 【答案】3【分析】直接解出各个不等式的解集,再取公共部分,再找正整数解即可.【详解】解:由217x +≤,解得:3x ≤,由2x >,∴原不等式的解集是:23x <≤.故不等式2217x x >⎧⎨+≤⎩的正整数解为:3, 故答案是:3.【点睛】本题考查了解一元一次不等式组的解集和求不等式组的正整数解,解题的关键是:掌握解不等式组的基本运算法则,求出解集后,找出满足条件的正整数解即可.11.(2021·湖南常德市·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个. 【答案】21【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x 个, 蓝珠有y 个,根据题意得,1186450x x y x x ⎧+++=⎪⎨⎪≤⎩①②, 由①得,96127y x +=, 结合②得,9612507y +≤ 解得,1216y ≤ 所以,刘凯的蓝珠最多有21个.故答案为:21.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.三、解答题12.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的1330.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)0.85千米.【分析】(1)设开通后的长益高铁的平均速度为x 千米/分钟,从而可得某次长益城际列车的平均速度为1330x 千米/分钟,再根据“路程=速度⨯时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工y 千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得.【详解】解:(1)设开通后的长益高铁的平均速度为x 千米/分钟,则某次长益城际列车的平均速度为1330x 千米/分钟, 由题意得:1360164030x x ⨯-=, 解得4x =,则16464⨯=(千米),1313606041043030x ⨯=⨯⨯=(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为7647794010⨯=+(千米), 乙工程队每天对其施工的长度9649794010⨯=+(千米), 设甲工程队后期每天施工y 千米, 则979(4053)()64()5101010y --+≥-+⨯, 解得1720y ≥, 即0.85y ≥,答:甲工程队后期每天至少施工0.85千米.【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键. 13.(2021·湖南娄底市·中考真题)为了庆祝中国共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生.已知购买1个甲种纪念品和2个乙种纪念品共需20元,购买2个甲种纪念品和5个乙种纪念品共需45元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元;(2)若要购买这两种纪念品共100个,投入资金不少于766元又不多于800元,问有多少种购买方案?并求出所花资金的最小值.【答案】(1)购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)共有7种进货方案;所花资金的最小值为770元.【分析】(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据“购买1个甲种纪念品和2个乙种纪念品共需20元;购买2个甲种纪念品和5个乙种纪念品共需45元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,根据总价=单价×数量得到w 关于m 的函数解析式,结合进货资金不少于766元且不超过800元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再由m 为整数即可找出各进货方案,利用一次函数的性质从而得出答案.【详解】解:(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据题意得:2202545x y x y +=⎧⎨+=⎩, 解得:105x y =⎧⎨=⎩; 答:购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,∴()1051005500w m m m =+-=+,根据题意得:55007665500800m m +≥⎧⎨+≤⎩, 解得:53.2≤m ≤60.∵m 为整数,∴m =54、55、56、57、58、59或60.∴共有7种进货方案;∵5>0,∴w 随m 的增大而增大,∴m =54时,w 有最小值,最小值为770元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数量间的关系,正确列出w 关于m 的函数解析式和一元一次不等式组. 14.(2021·湖南常德市·中考真题)某汽车贸易公司销售A 、B 两种型号的新能源汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)求销售一台A 型、一台B 型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A 、B 两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?【答案】(1)销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)最少需要采购A 型新能源汽车10台.【分析】(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意中的数量关系列出二元一次方程组,解方程组即可;(2)先求出每台A 型车和每台B 型车的采购价,根据“用不超过300万元资金,采购A 、B 两种新能源汽车共22台”列出不等式求解即可.【详解】解:(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意得,25 3.12 1.3x y x y +=⎧⎨+=⎩ 解得,0.30.5x y =⎧⎨=⎩答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m )台,根据题意得,1215(22)300m m +⨯-≤330,m ∴-≤-解得,10m ≥∵m 是整数,∴m 的最小整数值为10,即,最少需要采购A 型新能源汽车10台.【点睛】本题主要考查了一元一次不等式的应用和二元一次方程组的应用,解答此题的关键是找出题中的数量关系.15.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元预算资金为1700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...预算资金且购买A 奖品的资金不少于...720元,A ,B 两种奖品共100件.求购买A ,B 两种奖品的数量,有哪几种方案?【答案】(1)A ,B 奖品的单价分别是40元,15元;(2)购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【分析】(1)设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元,根据“购买B 奖品的数量是A 奖品的3倍”,列出分式方程,即可求解;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,列出一元一次不等式组,即可求解.【详解】(1)解:设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元, 由题意得:8001700800325x x-⨯=+,解得:x =15, 经检验:x =15是方程的解,且符合题意,15+25=40,答:A ,B 奖品的单价分别是40元,15元;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,由题意得:400.8150.8(100)1700400.8720a a a ⨯+⨯-≤⎧⎨⨯≥⎩,解得:22.5≤a ≤25, ∵a 取正整数,∴a =23,24,25,答:购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【点睛】本题主要考查分式方程以及一元一次不等式组的实际应用,找准数量关系,列出方程和不等式组,是解题的关键.16.(2021·湖南长沙市·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题? (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了x 道题,从而可得该参赛同学一共答错了(251)x --道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,从而可得参赛者答错了(25)y -道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了x 道题,则该参赛同学一共答错了(251)x --道题,由题意得:4(251)86x x ---=,解得22x =,答:该参赛同学一共答对了22道题;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则参赛者答错了(25)y -道题,由题意得:4(25)90y y --≥,y ,解得23答:参赛者至少需答对23道题才能被评为“学党史小达人”.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,正确列出方程和不等式是解题关键.。

2021中考数学真题分类专题16 三角形及全等三角形(共40题含解析)

2021中考数学真题分类专题16 三角形及全等三角形(共40题含解析)

专题16三角形及全等三角形(共40题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点 2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理8.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinC a c b R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF 的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是413.(2021·湖南娄底市·中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m - B .102m - C .10 D .414.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A .80︒B .70︒C .60︒D .50︒16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD 为ABC 的角平分线的是( ) A . B .C .D .二、填空题18.(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.19.(2021·江苏苏州市·中考真题)如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.20.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.21.(2021·江苏连云港市·中考真题)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______.22.(2021·四川遂宁市·中考真题)如图,在∠ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则∠ABD 的周长是 _____ .23.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.24.(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)25.(2021·四川成都市·中考真题)如图,在Rt ABC 中,90,C AC BC ∠=︒=,按以下步骤作图:∠以点A 为圆心,以任意长为半径作弧,分别交,AC AB 于点M ,N ;∠分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠内交于点O ;∠作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则BC的长为_______.三、解答题26.(2021·陕西中考真题)如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.27.(2021·湖南衡阳市·中考真题)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.28.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.29.(2021·四川泸州市·中考真题)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE30.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.31.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.32.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B 为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4,当点E到达点B时,点F、G、H与点B 重合.则点H所经过的路径长为______,点G所经过的路径长为______.,点D是BC边上一点(不与点B、C重33.(2021·四川乐山市·中考真题)在等腰ABC中,AB AC合),连结AD.(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .∠在图2中补全图形;∠探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE ==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.34.(2021·安徽中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.35.(2021·重庆中考真题)如图,四边形ABCD 为平行四边形,连接AC ,且2AC AB =.请用尺规完成基本作图:作出BAC ∠的角平分线与BC 交于点E .连接BD 交AE 于点F ,交AC 于点O ,猜想线段BF 和线段DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)36.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.37.(2021·江苏无锡市·中考真题)已知:如图,AC ,DB 相交于点O ,AB DC =,ABO DCO ∠=∠.求证:(1)ABO DCO △≌△;(2)OBC OCB ∠=∠.38.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.39.(2021·四川南充市·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.40.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.2021年中考数学真题分项汇编【全国通用】专题16三角形及全等三角形 试题解析(共40题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 603c R C ===︒,∠3R =, ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加 AB DC =,在ABC 和DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。

湖南省岳阳市中考数学试卷(含答案)

湖南省岳阳市中考数学试卷(含答案)

湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2014•岳阳)实数2的倒数是()A.﹣B.±C.2D.考点:实数的性质.分析:根据乘积是1的两个数叫做互为倒数求解即可.解答:解:∵2×=1,∴实数2的倒数是.故选:D.点评:本题考查了实数的性质,主要利用了倒数的定义,熟记概念是解题的关键.2.(3分)(2014•岳阳)下列计算正确的是()A.2a+5a=7a B.2x﹣x=1 C.3+a=3a D.x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.3.(3分)(2014•岳阳)下列几何体中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到从正面看所得到的图形即可.解答:解:A、主视图为圆,故选项错误;B、主视图为正方形,故选项错误;C、主视图为三角形,故选项正确;D、主视图为长方形,故选项错误.故选:C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)(2014•岳阳)2014年“五一”小长假,岳阳楼、君山岛景区接待游客约120000人次,将120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.12万考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于120000有6位,所以可以确定n=6﹣1=5.解答:解:120 000=1.2×105.故选:B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(3分)(2014•岳阳)不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解考点:不等式的解集.分析:根据不等式组解集的四种情况,进行选择即可.解答:解:根据同大取较大的原则,不等式组的解集为x>2,故选:A.点评:本题考查了不等式的解集,是基础题比较简单.解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(3分)(2014•岳阳)已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A.B.πC.D.考点:弧长的计算.分析:利用弧长公式l=即可直接求解.解答:解:弧长是:=.故选:D.点评:本题考查了弧长公式,正确记忆公式是关键.7.(3分)(2014•岳阳)下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.x y﹣x=x(y﹣1)D.2x+y=2(x+y)考点:因式分解-运用公式法;因式分解-提公因式法.分析:分别利用公式法以及提取公因式法分解因式进而判断得出即可.解答:解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),正确;D、2x+y无法因式分解,故此选项错误;故选:C.点评:此题主要考查了公式法以及提取公因式法分解因式,熟练掌握乘法公式是解题关键.8.(3分)(2014•岳阳)如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:根据点P的位置,分①点P在OA上时,四边形OMPN为正方形;②点P在反比例函数图象AB段时,根据反比例函数系数的几何意义,四边形OMPN的面积不变;③点P在BC段,设点P运动到点C的总路程为a,然后表示出四边形OMPN的面积,最后判断出函数图象即可得解.解答:解:设点P的运动速度为v,①由于点A在直线y=x上,故点P在OA上时,四边形OMPN为正方形,四边形OMPN的面积S=(vt)2,②点P在反比例函数图象AB时,由反比例函数系数几何意义,四边形OMPN的面积S=k;③点P在BC段时,设点P运动到点C的总路程为a,则四边形OMPN的面积=OC•(a﹣vt)=﹣t+,纵观各选项,只有B选项图形符合.故选:B.点评:本题考查了动点问题函数图象,读懂题目信息,根据点P的运动位置的不同,分三段表示出函数解析式是解题的关键.二、填空题(本大题8道小题,每小题4分,满分32分)9.(4分)(2014•岳阳)计算:﹣=﹣3.考点:算术平方根.分析:根据算术平方根的定义计算即可得解.解答:解:﹣=﹣3.故答案为:﹣3.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.10.(4分)(2014•岳阳)方程x2﹣3x+2=0的根是1或2.考点:解一元二次方程-因式分解法.专题:因式分解.分析:由题已知的方程进行因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.解答:解:因式分解得,(x﹣1)(x﹣2)=0,解得x1=1,x2=2.故答案为:1或2点评:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.11.(4分)(2014•岳阳)体育测试中,某班某一小组1分钟跳绳成绩如下:176,176,168,150,190,185,180(单位:个),则这组数据的中位数是176.考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:先对这组数据按从小到大的顺序重新排序:150,168,176,176,180,185,190.位于最中间的数是176,所以这组数据的中位数是176.故答案为:176.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)(2014•岳阳)从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:∵从1到9这九个自然数中一共有5个奇数,∴任取一个,是奇数的概率是:,故答案为:.点评:本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(4分)(2014•岳阳)如图,在△ABC中,点E,F分别是AB,AC的中点且EF=1,则BC=2.考点:三角形中位线定理.分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC.解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=1,∴EF是△ABC的中位线,∴BC=2EF=2×1=2,故答案为:2.点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.14.(4分)(2014•岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF=70°.考点:平行线的性质.分析:由“两直线平行,内错角相等”、结合图形解题.解答:解:如图,∵AB∥CD∥EF,∴∠B=∠1,∠F=∠2.又∠B=40°,∠F=30°,∴∠BCF=∠1+∠2=70°.故答案是:70°.点评:本题考查了平行线的性质.平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.15.(4分)(2014•岳阳)观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n个数是.(n为正整数)考点:规律型:数字的变化类.分析:根据题中所给出的数据找出规律,根据此规律即可得出结论.解答:解:∵第一个数=;第一个数1=;第三个数=;第四个数=;第五个数=;…,∴第n个数为:.故答案为:.点评:本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.16.(4分)(2014•岳阳)如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P 作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.下列结论正确的是②③④(写出所有正确结论的序号)①△CPD∽△DPA;②若∠A=30°,则PC=BC;③若∠CPA=30°,则PB=OB;④无论点P在AB延长线上的位置如何变化,∠CDP为定值.考点:切线的性质;三角形的角平分线、中线和高;三角形的外角性质;相似三角形的判定与性质.分析:①只有一组对应边相等,所以错误;②根据切线的性质可得∠PCB=∠A=30°,在直角三角形ABC中∠ABC=60°得出OB=BC,∠BPC=30°,解直角三角形可得PB=OC=BC;③根据切线的性质和三角形的外角的性质即可求得∠A=∠PCB=30°,∠ABC=60°,进而求得PB=BC=OB;④连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.解答:解:①∵∠CPD=∠DPA,∠CDP=∠DAP+∠DPA≠∠DAP≠∠PDA,∴△CPD∽△DPA错误;②连接OC,∵AB是直径,∠A=30°∴∠ABC=60°,∴OB=OC=BC,∵PC是切线,∴∠PCB=∠A=30°,∠OGP=90°,∴∠APC=30°,∴在RT△POC中,cot∠APC=cot30°==,∴PC=BC,正确;③∵∠ABC=∠APC+∠PCB,∠PCB=∠A,∴∠ABC=∠APC+∠A,∵∠ABC+∠A=90°,∴∠APC+2∠A=90°,∵∠APC=30°,∴∠A=∠PCB=30°,∴PB=BC,∠ABC=60°,∴OB=BC=OC,∴PB=OB;正确;④解:如图,连接OC,∵OC=OA,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPO+∠COP=90°,∴(∠CPD+∠DPA)+(∠A+∠ACO)=90°,∴∠DPA+∠A=45°,即∠CDP=45°;正确;故答案为:②③④;点评:本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于作好辅助线构建直角三角形和等腰三角形.三、解答题(本大题共8道小题,满分64分)17.(6分)(2014•岳阳)计算:|﹣|+×+3﹣1﹣22.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用二次根式的乘法法则计算,第三项利用负指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果.解答:解:原式=+4+﹣4=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•岳阳)解分式方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)(2014•岳阳)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.考点:一次函数的应用.分析:(1)根据图象知,该函数是一次函数,且该函数图象经过点(0,24),(2,12).所以利用待定系数法进行解答即可;(2)由(1)中的函数解析式,令y=0,求得x的值即可.解答:解:(1)由于蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.故设y与x之间的函数关系式为y=kx+b(k≠0).由图示知,该函数图象经过点(0,24),(2,12),则,解得.故函数表达式是y=﹣6x+24.(2)当y=0时,﹣6x+24=0解得x=4,即蜡烛从点燃到燃尽所用的时间是4小时.点评:此题考查一次函数的实际运用,理解题意,结合图象,利用待定系数法求一次函数解析式是关键.20.(8分)(2014•岳阳)某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?考点:二元一次方程的应用.分析:设该队胜x场,负y场,就有x+y=16,2x+y=25两个方程,由两个方程建立方程组求出其解就可以了.解答:解:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.点评:本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,在解答时找到反映整个题意的等量关系建立方程时关键.21.(8分)(2014•岳阳)为了响应岳阳市政府“低碳出行、绿色出行”的号召,某中学数学兴趣小组在全校2000名学生中就上学方式随机抽取了400名学生进行抽样调查,经统计整理绘制出图a、图b两幅不完整的统计图:A:步行;B:骑自行车;C:乘公共交通工具;D:乘私家车;E:其他.请根据统计图提供的信息解答下列问题:(1)图a中“B”所在扇形的圆心角为90°;(2)请在图b中把条形统计图补充完整;(3)请根据样本数据估计全校骑自行车上学的学生人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)先求出“B”所在扇形的百分比,再乘360°就是“B”所在扇形的圆心角.(2)先求出C的学生数,再绘图.(3)用全校人数乘骑自行车上学的学生人数的百分比即可.解答:解:(1)图a中“B”所在扇形的百分比为:1﹣45%﹣10%﹣5%﹣15%=25%,图a中“B”所在扇形的圆心角为:25%×360°=90°.故答案为:90°.(2)C的学生数为:400×45%=180(人)(3)根据样本数据估计全校骑自行车上学的学生人数为:2000×25%=500(人).点评:本题主要考查了条形统计图,扇形统计图和用样本估计总体,解题的关键是把条形统计图和扇形统计图的数据相结合求解.22.(8分)(2014•岳阳)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.考点:相似三角形的应用.分析:(1)利用“两角法”证得这两个三角形相似;(2)由(1)中相似三角形的对应边成比例来求线段CF的长度.解答:(1)证明:如图,在矩形ABCD中,由对称性可得出:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;(2)解:∵由(1)知,△BEF∽△CDF.∴=,即=,解得:CF=169.即:CF的长度是169cm.点评:本题考查了相似三角形的应用.此题利用了“相似三角形的对应边成比例”推知所求线段CF与已知线段间的数量关系的.23.(10分)(2014•岳阳)数学活动﹣求重叠部分的面积(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P与等边△ABC的内心O重合,已知OA=2,则图中重叠部分△PAB的面积为.(2)探究1:在(1)的条件下,将纸片绕P点旋转至如图②所示位置,纸片两边分别与AC,AB交于点E,F,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD为∠CAB的角平分线,点P在射线AD上,且AP=2,以P为顶点的等腰三角形纸片(纸片足够大)与∠CAB的两边AC,AB分别交于点E、F,∠EPF=180°﹣α,求重叠部分的面积.(用α或的三角函数值表示)考点:几何变换综合题.专题:探究型.分析:(1)由点O是等边三角形ABC的内心可以得到∠OAB=∠OBA=30°,结合条件OA=2即可求出重叠部分的面积.(2)由旋转可得∠FOE=∠BOA,从而得到∠EOA=∠FOB,进而可以证到△EOA≌△FOB,因而重叠部分面积不变.(3)在射线AB上取一点G,使得PG=PA,过点P作PH⊥AF,垂足为H,方法同(2),可以证到重叠部分的面积等于△PAG的面积,只需求出△PAG的面积就可解决问题.解答:解:(1)过点O作ON⊥AB,垂足为N,如图①,∵△ABC为等边三角形,∴∠CAB=∠CBA=60°.∵点O为△ABC的内心∴∠OAB=∠CAB,∠OBA=∠CBA.∴∠OAB=∠OBA=30°.∴OB=OA=2.∵ON⊥AB,∴AN=NB,PN=1.∴AN=∴AB=2AN=2.∴S△OAB=AB•PN=.故答案为:.(2)图②中重叠部分的面积与图①重叠部分的面积相等.证明:连接AO、BO,如图②,由旋转可得:∠EOF=∠AOB,则∠EOA=∠FOB.在△EOA和△FOB中,∴△EOA≌△FOB.∴S四边形AEOF=S△OAB.∴图②中重叠部分的面积与图①重叠部分的面积相等.(3)在射线AB上取一点G,使得PG=PA,过点P作PH⊥AF,垂足为H,如图③,则有AH=GH=AG.∵∠CAB=α,AD为∠CAB的角平分线,∴∠PAE=∠PAF=∠CAB=.∵PG=PA,∴∠PGA=∠PAG=.∴∠APG=180°﹣α.∵∠EPF=180°﹣α,∴∠EPF=∠APG.同理可得:S四边形AEPF=S△PAG.∵AP=2,∴PH=2sin,AH=2cos.∴AG=2AH=4cos.∴S△PAG=AG•PH=4sin cos.∴重叠部分得面积为:S面积=4sin cos.点评:本题属于探究性试题,考查了旋转的性质、等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理、勾股定理等知识,有一定的综合性.另外,在解决问题的过程中,常常可以借鉴已证的结论和已有的解题经验来解决新的问题.24.(10分)(2014•岳阳)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)由抛物线经过点A(1,0),B(5,0),C(0,)三点,利用待定系数法求二次函数的解析式;(2)由点E(x,y)是抛物线上一动点,且位于第四象限,可得y<0,即﹣y>0,﹣y表示点E到OA的距离,又由S=2S△OBE=2××OB•|y|,即可求得平行四边形OEAF 的面积S与x之间的函数关系式,结合图象,求得自变量x的取值范围;(3)由当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形,可得此时点E坐标只能(2.5,﹣2.5),而坐标为(2.5,﹣2.5)点在抛物线上,故可判定存在点E,使平行四边形OEBF为正方形.解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c,∵抛物线经过点A(1,0),B(5,0),C(0,)三点,则由题意可得:,解得.∴所求抛物线的解析式为:y=x2﹣4x+.(2)∵点E(x,y)是抛物线上一动点,且在x轴下方,∴y<0,即﹣y>0,﹣y表示点E到OA的距离.∵OB是平行四边形OEBF的对角线,∴S=2S△OBE=2××OB•|y|=﹣5y=﹣5(x2﹣4x+)=﹣x2+20x﹣,∵S=﹣(x﹣3)2+∴S与x之间的函数关系式为:S=﹣x2+20x﹣(1<x<5),S的最大值为.(3)∵当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形,∴此时点E坐标只能(,﹣),而坐标为(,﹣)点在抛物线上,∴存在点E(,﹣),使平行四边形OEBF为正方形,此时点F坐标为(,).点评:此题属于二次函数综合题,考查了待定系数法求二次函数的解析式、配方法、平行四边形的性质以及正方形的判定等知识.此题综合性很强,难度较大,注意数形结合思想、方程思想与函数思想的应用.。

2021年中考数学真题 图形的旋转(共50题)-(原卷版)

2021年中考数学真题 图形的旋转(共50题)-(原卷版)

21图形的旋转(共50题)一、单选题1.(2021·湖南永州市·中考真题)如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是()A.B.C.D.2.(2021·四川广安市·中考真题)如图,将ABC绕点A逆时针旋转55︒得到ADE,若70∠=︒且AD BCE⊥于点F,则BAC∠的度数为()A.65︒B.70︒C.75︒D.80︒3.(2021·江苏苏州市·中考真题)如图,在方格纸中,将Rt AOB△绕点B按顺时针方向旋转90°后得到Rt A O B''△,则下列四个图形中正确的是()A.B.C.D.4.(2021·天津中考真题)如图,在ABC中,120BAC∠=︒,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.ABC ADC+==C.DE DC BC ∠=∠B.CB CDD.AB CD∥5.(2021·湖南邵阳市·中考真题)如图,在AOB 中,1AO =,32BO AB ==.将AOB 绕点O 逆时针方向旋转90︒,得到A OB ''△,连接AA '.则线段AA '的长为( )A .1 BC .32D 6.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2-B .()202120212,2C .()202020202,2D .()201120212,2-7.(2021·浙江衢州市·中考真题)如图.将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''ABC D ,B β∠=∠.当AC 平分''B AC ∠时,α∠与β∠满足的数量关系是( )A .2αβ∠=∠B .23αβ∠=∠C .4180αβ∠+∠=︒D .32180αβ∠+∠=︒8.(2021·山东聊城市·中考真题)如图,在直角坐标系中,点A ,B 的坐标为A (0,2),B (﹣1,0),将△ABO 绕点O 按顺时针旋转得到△A 1B 1O ,若AB △OB 1,则点A 1的坐标为( )A .(55)B .(55) C .(24,33)D .(48,55)9.(2021·河南中考真题)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .0) B . C .1,0)+ D .1,0)+10.(2021·黑龙江大庆市·中考真题)如图,F 是线段CD 上除端点外的一点,将ADF 绕正方形ABCD 的顶点A 顺时针旋转90︒,得到ABE △.连接EF 交AB 于点H .下列结论正确的是( )A .120EAF ∠=︒B .:AE EF =C .2AF EH EF =⋅D .::EB AD EH HF =11.(2021·湖北黄石市·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C的坐标是( )A .()2,3-B .()2,3-C .()2,2-D .()3,2-12.(2021·山东泰安市·中考真题)如图,在矩形ABCD 中,5AB =,BC =P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .C .3D .313.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABCS =;△当点D 与点C重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A .△△△B .△△△C .△△△△D .△△△二、填空题14.(2021·贵州铜仁市·中考真题)如图,将边长为1的正方形ABCD 绕点A 顺时针旋转30到111AB C D 的位置,则阴影部分的面积是______________;15.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A 的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.16.(2021·湖南中考真题)如图,RtABC 中,390,tan 2BAC ABC ∠=︒∠=,将ABC 绕A 点顺时针方向旋转角9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.17.(2021·江苏苏州市·中考真题)如图,射线OM、ON互相垂直,8OA=,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,5AB=.将线段AB绕点O按逆时针方向旋转得到对应线段A B'',若点B'恰好落在射线ON上,则点A'到射线ON的距离d≈______.18.(2021·广西玉林市·中考真题)如图、在正六边形ABCDEF中,连接线AD,AE,AC,DF,DB,AC与BD交于点M,AE与DF交于点为N,MN与AD交于点O,分别延长△AB,DC于点G,设3AB=.有以下结论:△MN AD⊥;△MN=△DAG 的重心、内心及外心均是点M;△四边形FACD绕点O逆时针旋转30与四边形ABDE重合.则所有正确结论的序号是______.19.(2021·上海中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O ,在正方形外有一点,2P OP =,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的取值范围为__________.20.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.21.(2021·新疆中考真题)如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE △按逆时针方向旋转得DCF ,连接EF ,分別交BD ,CD于点M ,N .若25AE DN =,则sin EDM ∠=__________.22.(2021·湖北随州市·中考真题)如图,在RtABC 中,90C ∠=︒,30ABC ∠=︒,BC =将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)23.(2021·湖南怀化市·中考真题)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC 先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.24.(2021·浙江温州市·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.25.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐..标.为______.26.(2021·青海中考真题)如图所示的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合,若每个叶片的面积为4cm 2,△AOB =120°,则图中阴影部分的面积为__________.27.(2021·山东枣庄市·中考真题)如图,在平面直角坐标系xOy 中,△A′B′C′由△ABC 绕点P 旋转得到,则点P 的坐标为_______.三、解答题28.(2021·四川成都市·中考真题)在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.29.(2021·广西贵港市·中考真题)已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.30.(2021·黑龙江鹤岗市·中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O ,并写出点1A 的坐标; (2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).31.(2021·内蒙古通辽市·中考真题)已知AOB和MON△都是等腰直角三角形2OA OM OA⎛⎫<<⎪ ⎪⎝⎭,90AOB MON∠=∠=︒.(1)如图1,连接AM,BN,求证:AM BN=;(2)将MON△绕点O顺时针旋转.△如图2,当点M恰好在AB边上时,求证:2222AM BM OM+=;△当点A,M,N在同一条直线上时,若4OA=,3OM=,请直接写出线段AM的长.32.(2021·辽宁本溪市·中考真题)在△ABCD中,=BADα,DE平分ADC∠,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转12α得线段EP.(1)如图1,当=120α︒时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当=90α︒时,过点B作BF EP⊥于点,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当=120α︒时,连接AP,若1=2BE AB,请直接写出APE与CDG面积的比值.33.(2021·黑龙江齐齐哈尔市·中考真题)综合与实践数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)EAF∠=_________︒,写出图中两个等腰三角形:_________(不需要添加字母);转一转:将图1中的EAF∠绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.(2)线段BP、PQ、DQ之间的数量关系为_________;(3)连接正方形对角线BD ,若图2中的PAQ ∠的边AP 、AQ 分别交对角线BD 于点M 、点N .如图3,则CQ BM=________; 剪一剪:将图3中的正方形纸片沿对角线BD 剪开,如图4.(4)求证:222BM DN MN +=.34.(2021·湖北宜昌市·中考真题)如图,在矩形ABCD 中,E 是边AB 上一点,BE BC =,EF CD ⊥,垂足为F .将四边形CBEF 绕点C 顺时针旋转()090αα︒<<︒,得到四边形CB E F '''.B E ''所在的直线分别交直线BC 于点G ,交直线AD 于点P ,交CD 于点K .E F ''所在的直线分别交直线BC 于点H ,交直线AD 于点Q ,连接B F ''交CD 于点O .(1)如图1,求证:四边形BEFC 是正方形;(2)如图2,当点Q 和点D 重合时.△求证:GC DC =;△若1OK =,2CO =,求线段GP 的长;(3)如图3,若//BM F B ''交GP 于点M ,1tan 2G ∠=,求'GMB CF H S S △△的值.35.(2021·湖南娄底市·中考真题)如图△,E F 、是等腰Rt ABC 的斜边BC 上的两动点,45,EAF CD BC ∠=︒⊥且CD BE =.(1)求证:ABE ACD △≌△;(2)求证:222EF BE CF =+;(3)如图△,作AH BC ⊥,垂足为H ,设,EAH FAH αβ∠=∠=,不妨设AB =,请利用(2)的结论证明:当45αβ+=︒时,tan tan tan()1tan tan αβαβαβ++=-⋅成立. 36.(2021·江苏盐城市·中考真题)学习了图形的旋转之后,小明知道,将点P 绕着某定点A 顺时针旋转一定的角度α,能得到一个新的点P '.经过进一步探究,小明发现,当上述点P 在某函数图像上运动时,点P '也随之运动,并且点P '的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A 的坐标和角度α的大小来解决相关问题.(初步感知)如图1,设(1,1)A ,90α=︒,点P 是一次函数y kx b =+图像上的动点,已知该一次函数的图像经过点1(1,1)P -.(1)点1P 旋转后,得到的点1P '的坐标为________;(2)若点P '的运动轨迹经过点2(2,1)P ',求原一次函数的表达式.(深入感悟)(3)如图2,设(0,0)A ,45α=︒,点P 反比例函数1(0)y x x =-<的图像上的动点,过点P '作二、四象限角平分线的垂线,垂足为M ,求OMP '的面积.(灵活运用)(4)如图3,设A (1,,60α=︒,点P 是二次函数2172y x =++图像上的动点,已知点(2,0)B 、(3,0)C ,试探究BCP '△的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.37.(2021·江苏常州市·中考真题)在平面直角坐标系xOy 中,对于A 、A '两点,若在y 轴上存在点T ,使得90ATA '∠=︒,且TA TA '=,则称A 、A '两点互相关联,把其中一个点叫做另一个点的关联点.已知点()2,0M -、()1,0N -,点(),Q m n 在一次函数21y x =-+的图像上.(1)△如图,在点()2,0B 、()0,1C -、()22D ,--中,点M 的关联点是_______(填“B ”、“C ”或“D ”);△若在线段MN 上存在点()1,1P 的关联点P ',则点P '的坐标是_______; (2)若在线段MN 上存在点Q 的关联点Q ',求实数m 的取值范围; (3)分别以点()4,2E 、Q 为圆心,1为半径作E 、Q .若对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,请直接写出点Q 的坐标.38.(2021·黑龙江中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO ∆的三个顶点分别为()()1,3,4,3,A B O --()0,0.(1)画出ABO ∆关于x 轴对称的11A B O ∆,并写出点1B 的坐标;(2)画出ABO ∆绕点O 顺时针旋转90︒后得到的22B O ∆A ,并写出点2B 的坐标; (3)在(2)的条件下,求点B 旋转到点2B 所经过的路径长(结果保留π). 39.(2021·黑龙江绥化市·中考真题)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O 为平面直角坐标系的原点,矩形OABC 的4个顶点均在格点上,连接对角线OB .(1)在平面直角坐标系内,以原点O 为位似中心,把OAB 缩小,作出它的位似图形,并且使所作的位似图形与OAB 的相似比等于12; (2)将OAB 以O 为旋转中心,逆时针旋转90 ,得到11OA B ,作出11OA B ,并求出线段OB 旋转过程中所形成扇形的周长.40.(2021·江苏宿迁市·中考真题)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)如图△,连接BG 、CF ,求CFBG 的值;(2)当正方形AEFG 旋转至图△位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE =6,请直接写出线段QN 扫过的面积.41.(2021·湖南中考真题)如图1,在等腰直角三角形ABC 中,90BAC ∠=︒.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90︒得到AG ,连接GC ,HB .(1)证明:AHB AGC ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .△证明:在点H 的运动过程中,总有90HFG ∠=︒;△若4AB AC ==,当EH 的长度为多少时,AQG 为等腰三角形?42.(2021·湖南岳阳市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,60A ∠=︒,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转()60120αα︒<<︒得到线段ED ,且ED 交线段BC 于点G ,CDE ∠的平分线DM 交BC 于点H .(1)如图1,若90α=︒,则线段ED 与BD 的数量关系是________,GD CD=________; (2)如图2,在(1)的条件下,过点C 作//CF DE 交DM 于点F ,连接EF ,BE .△试判断四边形CDEF 的形状,并说明理由;△求证:3BE FH =; (3)如图3,若2AC =,()tan 60m α-︒=,过点C 作//CF DE 交DM 于点F ,连接EF ,BE ,请直接写出BEFH 的值(用含m 的式子表示).43.(2021·湖南衡阳市·中考真题)如图,点E 为正方形ABCD 外一点,90AEB =︒∠,将Rt ABE △绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由;(2)已知7,13BH BC ==,求DH 的长.44.(2021·四川达州市·中考真题)如图,在平面直角坐标中,ABC ∆的顶点坐标分别是()0,4A ,()0,2B ,()3,2C .(1)将ABC ∆以О为旋转中心旋转180︒,画出旋转后对应的111A B C ∆; (2)将ABC ∆平移后得到222A B C ∆,若点A 的对应点2A 的坐标为()2,2,求112AC C ∆的面积45.(2021·北京中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.46.(2021·北京中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于点A和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.47.(2021·四川资阳市·中考真题)已知,在ABC 中,90,BAC AB AC ∠=︒=.(1)如图1,已知点D 在BC 边上,90,DAE AD AE ∠=︒=,连结CE .试探究BD 与CE 的关系;(2)如图2,已知点D 在BC 下方,90,DAE AD AE ∠=︒=,连结CE .若BD AD ⊥,AB =,2CE =,AD 交BC 于点F ,求AF 的长;(3)如图3,已知点D 在BC 下方,连结AD 、BD 、CD .若30CBD ∠=︒,15BAD ∠>︒,26AB =,24AD =+sin BCD ∠的值.48.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.49.(2021·四川眉山市·中考真题)如图,在等腰直角三角形ABC中,90∠=︒,ACB==边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.AC BC(1)求证:≌ACD BCE;(2)当点D在ABC内部,且90∠=︒时,设AC与DG相交于点M,求AM的ADC长;(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.50.(2021·重庆中考真题)在ABC中,AB AC=,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得180∠+∠=︒.DAE BAC(1)如图1,当90BAC∠=︒时,连接BE,交AC于点F.若BE平分ABC∠,2BD=,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若120BAC∠=︒,当BD CD>,150AEC∠=︒时,请直接写出BD DGCE-的值.。

湖南省岳阳市2020年中考数学试题(Word版,含答案与解析)

湖南省岳阳市2020年中考数学试题(Word版,含答案与解析)

湖南省岳阳市2020年中考数学试卷一、单选题(共8题;共16分)1.-2020的相反数是()A. 2020B. -2020C. 12020D. -12020【答案】A【考点】相反数及有理数的相反数【解析】【解答】-2020的相反数是2020,故答案为:A.【分析】根据相反数直接得出即可.2.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为()A. 0.1109×108B. 11.09×106C. 1.109×108D. 1.109×107【答案】 D【考点】科学记数法—表示绝对值较大的数【解析】【解答】科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法则11090000=1.109×107故答案为:D.【分析】根据科学记数法的定义即可得.3.如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:故答案为:A.【分析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.4.下列运算结果正确的是()A. (−a)3=a3B. a9÷a3=a3C. a+2a=3aD. a⋅a2=a2【答案】C【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、(−a)3=−a3,故不符合题意;B、a9÷a3=a6,故不符合题意;C、a+2a=3a,故符合题意;D、a⋅a2=a3故不符合题意;故答案为:C【分析】根据幂的乘方、同底数幂的乘法和除法及合并同类项的计算法则分别计算即可得解.5.如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A. 154°B. 144°C. 134°D. 124°【答案】 D【考点】平行线的判定与性质【解析】【解答】解:∵DA⊥AB,CD⊥DA,∴AB//CD,∴∠C+∠B=180°,∵∠B=56°,∴∠C=124°;故答案为:D.【分析】先证出AB∥CD,再根据平行线的性质得出∠C+∠B=180°,即可求出∠C的度数.6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.7【答案】B【考点】中位数,众数【解析】【解答】解:将这7名学生的体温按从小到大的顺序排列如下:36.3,36.3,36.5,36.5,36.5,36.7,36.8则中位数就是第4个数:36.5;出现次数最多的数是36.5,则众数为:36.5;故答案为:B【分析】根据众数、中位数的概念求出众数和中位数即可判断.7.下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小【答案】B【考点】真命题与假命题【解析】【解答】解:A、一个角的补角不一定大于这个角,故A不符合题意;B、平行于同一条直线的两条直线平行,故B符合题意;C、等边三角形是轴对称图形,不是中心对称图形,故C不符合题意;D、旋转不改变图形的形状和大小,故D不符合题意;故答案为:B.【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.8.对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=−x2−10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是()A. 0<x1x3<1 B. x1x3>1 C. 0<x2x4<1 D. x2x4>1【答案】B【考点】一元二次方程的根与系数的关系,二次函数图象与一元二次方程的综合应用【解析】【解答】解:∵x1,x2是y=−x2−10x+m(m≠0)的两个不相等的零点即x1,x2是−x2−10x+m=0的两个不相等的实数根∴{x1+x2=−5x1x2=−m∵x1<x2解得x1=−5−√25+4m2,x2=−5+√25+4m2∵方程x2+10x−m−2=0有两个不相等的非零实数根x3,x4∴{x3+x4=−5x3x4=−m−2∵x3<x4解得x3=−5−√13+4m2,x4=−5+√13+4m2∴x1−x3=−5−√25+4m−(−5−√13+4m)2=−√25+4m+√13+4m2<0∴x1<x3∵ x 1=−5−√25+4m 2<0 , x 3=−5−√13+4m 2<0 ∴ x1x 3>1 ∴ x 2−x 4=−5+√25+4m−(−5+√13+4m)2=√25+4m−√13+4m 2>0 ∴ x 2>x 4而由题意知 {100+4m >0100+4(m +2)>0解得 m >−25当 −25<m <0 时, x 2<0,x 4<0 , x2x 4>1 ; 当 0<m <3 时, x 2>0,x 4<0 , x 2x 4<0 ;当m=3时, x 2x 4 无意义;当 m >3 时, x2x 4>1 , ∴ x 2x 4 取值范围不确定, 故答案为:B .【分析】根据根与系数的关系可以求出 x 1,x 2 , x 3,x 4 的值,用作差法比较 x 1,x 3 的大小关系, x 2,x 4 的大小关系,根据 Δ 可求出m 的取值范围,结合 x 1,x 3 的大小关系, x 2,x 4 的大小关系从而得出选项.二、填空题(共8题;共11分)9.因式分解: a 2−9= ________.【答案】 (a +3)(a −3)【考点】因式分解﹣运用公式法【解析】【解答】a 2-9=(a+3)(a-3)。

2021年湖南省岳阳市中考数学试卷

2021年湖南省岳阳市中考数学试卷

精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最|新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最|正确选择 .2021年湖南省岳阳市中|考数学试卷一、选择题(本大题共8小题,每题3分,共24分)1.(3分)6的相反数是()A.﹣6 B.C.6 D.±62.(3分)以下运算正确的选项是()A.(x3 )2 =x5B.(﹣x )5 =﹣x5C.x3•x2 =x6 D.3x2 +2x3 =5x53.(3分)据国土资源部数据显示,我国是全球"可燃冰〞资源储量最|多的国|家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()×1010×109×1011D.39×1094.(3分)以下四个立体图形中,主视图、左视图、俯视图都相同的是()A. B.C.D.5.(3分)从,0 ,π ,3.14 ,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.6.(3分)解分式方程﹣=1 ,可知方程的解为()A.x =1 B.x =3 C.x =D.无解7.(3分)观察以下等式:21 =2 ,22 =4 ,23 =8 ,24 =16 ,25 =32 ,26=64 ,… ,根据这个规律,那么21 +22 +23 +24 +… +22021的末位数字是()A.0 B.2 C.4 D.68.(3分)点A在函数y1 =﹣(x>0 )的图象上,点B在直线y2 =kx +1 +k (k为常数,且k≥0 )上.假设A ,B两点关于原点对称,那么称点A ,B为函数y1 ,y2图象上的一对"友好点〞.请问这两个函数图象上的"友好点〞对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对二、填空题(本大题共8小题,每题4分,共32分)9.(4分)函数y =中自变量x的取值范围是.10.(4分)因式分解:x2﹣6x +9 =.11.(4分)在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95 ,85 ,83 ,95 ,92 ,90 ,96 ,那么这组数据的中位数是,众数是.12.(4分)如图,点P是∠NOM的边OM上一点,PD⊥ON于点D ,∠OPD =30° ,PQ ∥ON ,那么∠MPQ的度数是.13.(4分)不等式组的解集是.14.(4分)在△ABC中BC =2 ,AB =2,AC =b ,且关于x的方程x2﹣4x +b =0有两个相等的实数根,那么AC边上的中线长为.15.(4分)我国魏晋时期的数学家刘徽创立了"割圆术〞,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L ,圆的直径为d ,如下图,当n =6时,π≈==3 ,那么当n =12时,π≈=.(结果精确到0.01 ,参考数据:sin15°=cos75°≈0.259 )16.(4分)如图,⊙O为等腰△ABC的外接圆,直径AB =12 ,P为弧上任意一点(不与B ,C重合) ,直线CP交AB延长线于点Q ,⊙O在点P处切线PD交BQ于点D ,以下结论正确的选项是.(写出所有正确结论的序号)①假设∠PAB =30° ,那么弧的长为π;②假设PD∥BC ,那么AP平分∠CAB;③假设PB =BD ,那么PD =6;④无论点P在弧上的位置如何变化,CP•CQ为定值.三、解答题(本大题共8小题,共64分)17.(6分)计算:2sin60° +|3﹣| +(π﹣2 )0﹣()﹣1.18.(6分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了和求证的一局部,请你补全和求证,并写出证明过程.:如图,在▱ABCD中,对角线AC ,BD交于点O ,.求证:.19.(8分)如图,直线y =x +b与双曲线y =(k为常数,k≠0 )在第|一象限内交于点A (1 ,2 ) ,且与x轴、y轴分别交于B ,C两点.(1 )求直线和双曲线的解析式;(2 )点P在x轴上,且△BCP的面积等于2 ,求P点的坐标.20.(8分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第|一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第|一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?21.(8分)为了加强学生课外阅读,开阔视野,某校开展了"书香校园,从我做起〞的主题活动,学校随机抽取了局部学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一局部如下:频率课外阅读时间(单位:小时)频数(人数)0<t≤222<t≤434<t≤6156<t≤8at>85b请根据图表信息答复以下问题:(1 )频数分布表中的a =,b =;(2 )将频数分布直方图补充完整;(3 )学校将每周课外阅读时间在8小时以上的学生评为"阅读之星〞,请你估计该校2000名学生中评为"阅读之星〞的有多少人?22.(8分)某太阳能热水器的横截面示意图如下图,真空热水管AB与支架CD 所在直线相交于点O ,且OB =OD ,支架CD与水平线AE垂直,∠BAC =∠CDE =30° ,DE =80cm ,AC =165cm.(1 )求支架CD的长;(2 )求真空热水管AB的长.(结果保存根号)23.(10分)问题背景:∠EDF的顶点D在△ABC的边AB所在直线上(不与A ,B 重合) ,DE交AC所在直线于点M ,DF交BC所在直线于点N ,记△ADM的面积为S1 ,△BND的面积为S2.(1 )初步尝试:如图①,当△ABC是等边三角形,AB =6 ,∠EDF =∠A ,且DE∥BC ,AD =2时,那么S1•S2 =;(2 )类比探究:在(1 )的条件下,先将点D沿AB平移,使AD =4 ,再将∠EDF绕点D旋转至|如图②所示位置,求S1•S2的值;(3 )延伸拓展:当△ABC是等腰三角形时,设∠B =∠A =∠EDF =α.(Ⅰ )如图③,当点D在线段AB上运动时,设AD =a ,BD =b ,求S1•S2的表达式(结果用a ,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD =a ,BD =b ,直接写出S1•S2的表达式,不必写出解答过程.24.(10分)如图,抛物线y =x2 +bx +c经过点B (3 ,0 ) ,C (0 ,﹣2 ) ,直线l:y =﹣x﹣交y轴于点E ,且与抛物线交于A ,D两点,P为抛物线上一动点(不与A ,D重合).(1 )求抛物线的解析式;(2 )当点P在直线l下方时,过点P作PM∥x轴交l于点M ,PN∥y轴交l于点N ,求PM +PN的最|大值.(3 )设F为直线l上的点,以E ,C ,P ,F为顶点的四边形能否构成平行四边形?假设能,求出点F的坐标;假设不能,请说明理由.2021年湖南省岳阳市中|考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分)1.(3分) (2021•岳阳)6的相反数是()A.﹣6 B.C.6 D.±6【分析】根据相反数的定义求解即可.【解答】解:6的相反数是﹣6 ,应选A.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.2.(3分) (2021•岳阳)以下运算正确的选项是()A.(x3 )2 =x5B.(﹣x )5 =﹣x5C.x3•x2 =x6 D.3x2 +2x3 =5x5【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法那么进行解答.【解答】解:A、原式=x6 ,故本选项错误;B、原式=﹣x5 ,故本选项正确;C、原式=x5 ,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;应选:B.【点评】此题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法那么是解题的关键.3.(3分) (2021•岳阳)据国土资源部数据显示,我国是全球"可燃冰〞资源储量最|多的国|家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()×1010×109×1011D.39×109【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10 ,n 为整数,据此判断即可.【解答】×1010.应选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10 ,确定a与n的值是解题的关键.4.(3分) (2021•岳阳)以下四个立体图形中,主视图、左视图、俯视图都相同的是()A. B.C.D.【分析】分别分析圆锥、圆柱、球体、三棱柱的主视图、左视图、俯视图,从而得出结论.【解答】解:∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B ,应选B.【点评】此题考查三视图,熟练掌握常见几何体的三视图,是解决问题的关键.5.(3分) (2021•岳阳)从,0 ,π ,3.14 ,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【分析】根据有理数的定义可找出在,0 ,π ,3.14 ,6这5个数中只有0、3.14和6为有理数,再根据概率公式即可求出抽到有理数的概率.【解答】解:∵在,0 ,π ,3.14 ,6这5个数中只有0、3.14和6为有理数,∴从,0 ,π ,3.14 ,6这5个数中随机抽取一个数,抽到有理数的概率是.应选C.【点评】此题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.6.(3分) (2021•岳阳)解分式方程﹣=1 ,可知方程的解为() A.x =1 B.x =3 C.x =D.无解【分析】直接利用分式方程的解法,首|先去分母,进而解方程得出答案.【解答】解:去分母得:2﹣2x =x﹣1 ,解得:x =1 ,检验:当x =1时,x﹣1 =0 ,故此方程无解.应选:D.【点评】此题主要考查了解分式方程,正确掌握解题步骤是解题关键.7.(3分) (2021•岳阳)观察以下等式:21 =2 ,22 =4 ,23 =8 ,24 =16 ,25 =32 ,26=64 ,… ,根据这个规律,那么21 +22 +23 +24 +… +22021的末位数字是()A.0 B.2 C.4 D.6【分析】根据题目中的式子可以知道,末尾数字出现的2、4、8、6的顺序出现,从而可以求得21 +22 +23 +24 +… +22021的末位数字.此题得以解决.【解答】解:∵21 =2 ,22 =4 ,23 =8 ,24 =16 ,25 =32 ,26=64 ,… ,∴2021÷4 =506…1 ,∵(2 +4 +8 +6 )×506 +2 =10122 ,∴21 +22 +23 +24 +… +22021的末位数字是2 ,应选B.【点评】此题考查尾数特征,解答此题的关键是发现题目中的尾数的变化规律,求出相应的式子的末位数字.8.(3分) (2021•岳阳)点A在函数y1 =﹣(x>0 )的图象上,点B在直线y2 =kx +1 +k (k为常数,且k≥0 )上.假设A ,B两点关于原点对称,那么称点A ,B为函数y1,y2图象上的一对"友好点〞.请问这两个函数图象上的"友好点〞对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【分析】根据"友好点〞的定义知,函数y1图象上点A (a ,﹣)关于原点的对称点B (﹣a ,)一定位于直线y2上,即方程ka2﹣(k +1 )a +1 =0 有解,整理方程得(a﹣1 ) (ka﹣1 ) =0 ,据此可得答案.【解答】解:设A (a ,﹣) ,由题意知,点A关于原点的对称点B (﹣a ,)在直线y2 =kx +1 +k上,那么=﹣ak +1 +k ,整理,得:ka2﹣(k +1 )a +1 =0 ①,即(a﹣1 ) (ka﹣1 ) =0 ,∴a﹣1 =0或ka﹣1 =0 ,那么a =1或ka﹣1 =0 ,假设k =0 ,那么a =1 ,此时方程①只有1个实数根,即两个函数图象上的"友好点〞只有1对;假设k≠0 ,那么a =1或a =,此时方程①有2个实数根,即两个函数图象上的"友好点〞有2对,综上,这两个函数图象上的"友好点〞对数情况为1对或2对,应选:A.【点评】此题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将"友好点〞的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.二、填空题(本大题共8小题,每题4分,共32分)9.(4分) (2021•岳阳)函数y =中自变量x的取值范围是x≠7.【分析】根据分母不为零,即可解决问题.【解答】解:函数y =中自变量x的范围是x≠7.故答案为x≠7【点评】此题考查函数自变量的取值范围,知道分母不能为零是解题的关键.10.(4分) (2021•岳阳)因式分解:x2﹣6x +9 =(x﹣3 )2.【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x2﹣6x +9 = (x﹣3 )2.【点评】此题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.11.(4分) (2021•岳阳)在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95 ,85 ,83 ,95 ,92 ,90 ,96 ,那么这组数据的中位数是92,众数是95.【分析】环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95 ,85 ,83 ,95 ,92 ,90 ,96 ,那么这组数据的中位数.【解答】解:这组数据从小到大排列为:83 ,85 ,90 ,92 ,95 ,95 ,96.那么中位数是:92;众数是95.故答案是:92 ,95.【点评】此题考查了众数、中位数的定义,注意中位数是大小处于中间未知的数,首|先把数从小到大排列.12.(4分) (2021•岳阳)如图,点P是∠NOM的边OM上一点,PD⊥ON于点D ,∠OPD =30° ,PQ∥ON ,那么∠MPQ的度数是60°.【分析】根据直角三角形的内角和,求得∠O ,再根据平行线的性质,即可得到∠MPQ.【解答】解:∵PD⊥ON于点D ,∠OPD =30° ,∴Rt△OPD中,∠O =60° ,又∵PQ∥ON ,∴∠MPQ =∠O =60° ,故答案为:60°.【点评】此题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,同位角相等.13.(4分) (2021•岳阳)不等式组的解集是x<﹣3.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤3 ,解不等式②得:x<﹣3 ,∴不等式组的解集为x<﹣3 ,故答案为:x<﹣3.【点评】此题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.14.(4分) (2021•岳阳)在△ABC中BC =2 ,AB =2,AC =b ,且关于x的方程x2﹣4x +b =0有两个相等的实数根,那么AC边上的中线长为2.【分析】由根的判别式求出AC =b =4 ,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x +b =0有两个相等的实数根,∴△=16﹣4b =0 ,∴AC =b =4 ,∵BC =2 ,AB =2,∴BC2 +AB2 =AC2 ,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC =2;故答案为:2.【点评】此题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC是直角三角形是解决问题的关键.15.(4分) (2021•岳阳)我国魏晋时期的数学家刘徽创立了"割圆术〞,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L ,圆的直径为d ,如下图,当n =6时,π≈==3 ,那么当n =12时,π≈= 3.11.(结果精确到0.01 ,参考数据:sin15° =cos75°≈0.259 )【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中|心角的度数以及半径的大小,求得L =24r•sin15° ,d =2r ,进而得到π≈≈3.11.【解答】解:如图,圆的内接正十二边形被半径分成12个如下图的等腰三角形,其顶角为30° ,即∠AOB =30° ,作OH⊥AB于点H ,那么∠AOH =15° ,∵AO =BO =r ,∵Rt△AOH中,sin∠AOH =,即sin15° =,∴AH =r×sin15° ,AB =2AH =2r×sin15° ,∴L =12×2r×sin15° =24r×sin15° ,又∵d =2r ,∴π≈=≈3.11 ,【点评】此题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n (n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.16.(4分) (2021•岳阳)如图,⊙O为等腰△ABC的外接圆,直径AB =12 ,P为弧上任意一点(不与B ,C重合) ,直线CP交AB延长线于点Q ,⊙O在点P处切线PD交BQ于点D ,以下结论正确的选项是②③④.(写出所有正确结论的序号)①假设∠PAB =30° ,那么弧的长为π;②假设PD∥BC ,那么AP平分∠CAB;③假设PB =BD ,那么PD =6;④无论点P在弧上的位置如何变化,CP•CQ为定值.【分析】①根据∠POB =60° ,OB =6 ,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP =BO =PO =6 ,可得△BOP是等边三角形,据此即可得出PD =6;④判定△ACP∽△QCA ,即可得到=,即CP•CQ =CA2 ,据此可得CP•CQ为定值.【解答】解:如图,连接OP ,∵AO =OP ,∠PAB =30° ,∴∠POB =60° ,∵AB =12 ,∴OB =6 ,∴弧的长为=2π ,故①错误;∵PD是⊙O的切线,∴OP⊥PD ,∵PD∥BC ,∴OP⊥BC ,∴=,∴∠PAC =∠PAB ,∴AP平分∠CAB ,故②正确;假设PB =BD ,那么∠BPD =∠BDP ,∵OP⊥PD ,∴∠BPD +∠BPO =∠BDP +∠BOP ,∴∠BOP =∠BPO ,∴BP =BO =PO =6 ,即△BOP是等边三角形,∴PD =OP =6,故③正确;∵AC =BC ,∴∠BAC =∠ABC ,又∵∠ABC =∠APC ,∴∠APC =∠BAC ,又∵∠ACP =∠QCA ,∴△ACP∽△QCA ,∴=,即CP•CQ =CA2 (定值) ,故④正确;故答案为:②③④.【点评】此题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧.三、解答题(本大题共8小题,共64分)17.(6分) (2021•岳阳)计算:2sin60° +|3﹣| +(π﹣2 )0﹣()﹣1.【分析】根据特殊角的三角函数值、零指数幂的运算法那么、负整数指数幂的运算法那么、绝|对值的性质进行化简,计算即可.【解答】解:原式=2× +3﹣ +1﹣2=2.【点评】此题考查的是实数的混合运算,掌握特殊角的三角函数值、零指数幂的运算法那么、负整数指数幂的运算法那么、绝|对值的性质是解题的关键.18.(6分) (2021•岳阳)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了和求证的一局部,请你补全和求证,并写出证明过程.:如图,在▱ABCD中,对角线AC ,BD交于点O ,AC⊥BD.求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB =AD ,可得四边形ABCD是菱形.【解答】:如图,在▱ABCD中,对角线AC ,BD交于点O ,AC⊥BD ,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO =DO ,∵AC⊥BD ,∴AC垂直平分BD ,∴AB =AD ,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】此题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB =AD是解题的关键.19.(8分) (2021•岳阳)如图,直线y =x +b与双曲线y =(k为常数,k≠0 )在第|一象限内交于点A (1 ,2 ) ,且与x轴、y轴分别交于B ,C两点.(1 )求直线和双曲线的解析式;(2 )点P在x轴上,且△BCP的面积等于2 ,求P点的坐标.【分析】(1 )把A (1 ,2 )代入双曲线以及直线y =x +b ,分别可得k ,b的值;(2 )先根据直线解析式得到BO =CO =1 ,再根据△BCP的面积等于2 ,即可得到P 的坐标.【解答】解:(1 )把A (1 ,2 )代入双曲线y =,可得k =2 ,∴双曲线的解析式为y =;把A (1 ,2 )代入直线y =x +b ,可得b =1 ,∴直线的解析式为y =x +1;(2 )设P点的坐标为(x ,0 ) ,在y =x +1中,令y =0 ,那么x =﹣1;令x =0 ,那么y =1 ,∴B (﹣1 ,0 ) ,C (0 ,1 ) ,即BO =1 =CO ,∵△BCP的面积等于2 ,∴BP×CO =2 ,即|x﹣(﹣1 )|×1 =2 ,解得x =3或﹣5 ,∴P点的坐标为(3 ,0 )或(﹣5 ,0 ).【点评】此题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.20.(8分) (2021•岳阳)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第|一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第|一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【分析】设这批书共有3x本,根据每包书的数目相等.即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这批书共有3x本,根据题意得:=,解得:x =500 ,∴3x =1500.答:这批书共有1500本.【点评】此题考查了一元一次方程的应用,根据每包书的数目相等.列出关于x 的一元一次方程是解题的关键.21.(8分) (2021•岳阳)为了加强学生课外阅读,开阔视野,某校开展了"书香校园,从我做起〞的主题活动,学校随机抽取了局部学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一局部如下:频率课外阅读时间(单位:小时)频数(人数)0<t≤222<t≤434<t≤6156<t≤8at>85b请根据图表信息答复以下问题:(1 )频数分布表中的a =25,b =0.10;(2 )将频数分布直方图补充完整;(3 )学校将每周课外阅读时间在8小时以上的学生评为"阅读之星〞,请你估计该校2000名学生中评为"阅读之星〞的有多少人?【分析】(1 )由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b 的值即可;(2 )补全条形统计图即可;(3 )由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1 )根据题意得:2÷0.04 =50 (人) ,那么a =50﹣(2 +3 +15 +5 ) =25;b =5÷50 =0.10;故答案为:25;0.10;(2 )阅读时间为6<t≤8的学生有25人,补全条形统计图,如下图:(3 )根据题意得:2000×0.10 =200 (人) ,那么该校2000名学生中评为"阅读之星〞的有200人.【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解此题的关键.22.(8分) (2021•岳阳)某太阳能热水器的横截面示意图如下图,真空热水管AB与支架CD所在直线相交于点O ,且OB =OD ,支架CD与水平线AE垂直,∠BAC =∠CDE =30° ,DE =80cm ,AC =165cm.(1 )求支架CD的长;(2 )求真空热水管AB的长.(结果保存根号)【分析】(1 )在Rt△CDE中,根据∠CDE =30° ,DE =80cm ,求出支架CD的长是多少即可.(2 )首|先在Rt△OAC中,根据∠BAC =30° ,AC =165cm ,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长是多少.【解答】解:(1 )在Rt△CDE中,∠CDE =30° ,DE =80cm ,∴CD =80×cos30° =80×=40(cm ).(2 )在Rt△OAC中,∠BAC =30° ,AC =165cm ,∴OC =AC×tan30° =165×=55(cm ) ,∴OD =OC﹣CD =55﹣40=15(cm ) ,∴AB =AO﹣OB =AO﹣OD =55×2﹣15=95(cm ).【点评】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).23.(10分) (2021•岳阳)问题背景:∠EDF的顶点D在△ABC的边AB所在直线上(不与A ,B重合) ,DE交AC所在直线于点M ,DF交BC所在直线于点N ,记△ADM的面积为S1 ,△BND的面积为S2.(1 )初步尝试:如图①,当△ABC是等边三角形,AB =6 ,∠EDF =∠A ,且DE∥BC ,AD =2时,那么S1•S2 =12;(2 )类比探究:在(1 )的条件下,先将点D沿AB平移,使AD =4 ,再将∠EDF绕点D旋转至|如图②所示位置,求S1•S2的值;(3 )延伸拓展:当△ABC是等腰三角形时,设∠B =∠A =∠EDF =α.(Ⅰ )如图③,当点D在线段AB上运动时,设AD =a ,BD =b ,求S1•S2的表达式(结果用a ,b和α的三角函数表示).(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD =a ,BD =b ,直接写出S1•S2的表达式,不必写出解答过程.【分析】(1 )首|先证明△ADM ,△BDN都是等边三角形,可得S1 =•22 =,S2 =• (4 )2 =4,由此即可解决问题;(2 )如图2中,设AM =x ,BN =y.首|先证明△AMD∽△BDN ,可得=,推出=,推出xy =8 ,由S1 =•AD•AM•sin60° =x ,S2 =DB•sin60° =y ,可得S1•S2 =x•y =xy =12;(3 )Ⅰ如图3中,设AM =x ,BN =y ,同法可证△AMD∽△BDN ,可得xy =ab ,由S1 =•AD•AM•sinα =axsinα ,S2=DB•BN•sinα =bysinα ,可得S1•S2= (ab )2sin2α.(Ⅱ )结论不变,证明方法类似;【解答】解:(1 )如图1中,∵△ABC是等边三角形,∴AB =CB =AC =6 ,∠A =∠B =60° ,∵DE∥BC ,∠EDF =60° ,∴∠BND =∠EDF =60° ,∴∠BDN =∠ADM =60° ,∴△ADM ,△BDN都是等边三角形,∴S1 =•22 =,S2 =• (4 )2 =4,∴S1•S2 =12 ,故答案为12.(2 )如图2中,设AM =x ,BN =y.∵∠MDB =∠MDN +∠NDB =∠A +∠AMD ,∠MDN =∠A ,∴∠AMD =∠NDB ,∵∠A =∠B ,∴△AMD∽△BDN ,∴=,∴=,∴xy =8 ,∵S1 =•AD•AM•sin60° =x ,S2 =DB•sin60° =y ,∴S1•S2 =x•y =xy =12.(3 )Ⅰ如图3中,设AM =x ,BN =y ,同法可证△AMD∽△BDN ,可得xy =ab ,∵S1 =•AD•AM•sinα =axsinα ,S2 =DB•BN•sinα =bysinα ,∴S1•S2 =(ab )2sin2α.Ⅱ如图4中,设AM =x ,BN =y ,同法可证△AMD∽△BDN ,可得xy =ab ,∵S1 =•AD•AM•sinα =axsinα ,S2 =DB•BN•sinα =bysinα ,∴S1•S2 =(ab )2sin2α.【点评】此题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中|考压轴题.24.(10分) (2021•岳阳)如图,抛物线y =x2+bx+c经过点B (3 ,0 ) ,C (0 ,﹣2 ) ,直线l:y =﹣x﹣交y轴于点E ,且与抛物线交于A ,D两点,P为抛物线上一动点(不与A ,D重合).(1 )求抛物线的解析式;(2 )当点P在直线l下方时,过点P作PM∥x轴交l于点M ,PN∥y轴交l于点N ,求PM +PN的最|大值.(3 )设F为直线l上的点,以E ,C ,P ,F为顶点的四边形能否构成平行四边形?假设能,求出点F的坐标;假设不能,请说明理由.【分析】(1 )把B (3 ,0 ) ,C (0 ,﹣2 )代入y =x2 +bx +c解方程组即可得到结论;(2 )设P (m ,m2﹣m﹣2 ) ,得到N (m ,﹣m﹣) ,M (﹣m2+2m+2 ,m2﹣m ﹣2 ) ,根据二次函数的性质即可得到结论;(3 )求得E (0 ,﹣) ,得到CE =,设P (m ,m2﹣m﹣2 ) ,①以CE为边,根据CE =PF ,列方程得到m =1 ,m =0 (舍去) ,②以CE为对角线,连接PF交CE于G ,CG =GE ,PG =FG ,得到G (0 ,﹣) ,设P (m ,m2﹣m﹣2 ) ,那么F (﹣m ,m﹣) ,列方程得到此方程无实数根,于是得到结论.【解答】解:(1 )把B (3 ,0 ) ,C (0 ,﹣2 )代入y =x2+bx+c得,,∴∴抛物线的解析式为:y =x2﹣x﹣2;(2 )设P (m ,m2﹣m﹣2 ) ,∵PM∥x轴,PN∥y轴,M ,N在直线AD上,∴N (m ,﹣m﹣) ,M (﹣m2 +2m +2 ,m2﹣m﹣2 ) ,∴PM +PN =﹣m2 +2m +2﹣m﹣m﹣﹣m2 +m +2 =﹣m2 +m +=﹣(m﹣)2 +,∴当m =时,PM +PN的最|大值是;(3 )能,理由:∵y =﹣x﹣交y轴于点E ,∴E (0 ,﹣) ,∴CE =,设P (m ,m2﹣m﹣2 ) ,假设以E ,C ,P ,F为顶点的四边形能构成平行四边形,①以CE为边,∴CE∥PF ,CE =PF ,∴F (m ,﹣m﹣) ,∴﹣m﹣﹣m2 +m +2 =,或m2﹣m﹣2 +m +=,∴m1 =1 ,m2 =0 (舍去) ,m3 =,m4 =,②以CE为对角线,连接PF交CE于G ,∴CG =GE ,PG =FG ,∴G (0 ,﹣) ,设P (m ,m2﹣m﹣2 ) ,那么F (﹣m ,m﹣) ,∴×(m2﹣m﹣2﹣m﹣) =﹣,∴m =,m =0 (舍去) ,综上所述,F (1 ,﹣) , (,) , (,) , (,﹣) ,以E ,C ,P ,F为顶点的四边形能构成平行四边形.【点评】此题考查了待定系数法求函数的解析式,平行四边形的性质,二次函数的性质,正确的理解题意是解题的关键.2021年浙江省台州市中|考数学试卷一、选择题(本大题共10小题,每题4分,共40分)1.(4分)5的相反数是()A.5 B.﹣5 C.D.﹣2.(4分)如下图的工件是由两个长方体构成的组合体,那么它的主视图是()A.B.C.D.3.(4分)人教版初中数学教科书共六册,总字数是978000 ,用科学记数法可将978000表示为()A.978×103B.×104C.×105D.×1064.(4分)有五名射击运发动,教练为了分析他们成绩的波动程度,应选择以下统计量中的()A.方差B.中位数C.众数D.平均数5.(4分)如图,点P是∠AOB平分线OC上一点,PD⊥OB ,垂足为D ,假设PD =2 ,那么点P到边OA的距离是()A.1 B.2 C.D.46.(4分)电流I (安培)、电压U (伏特)、电阻R (欧姆)之间的关系为I =,当电压为定值时,I关于R的函数图象是()A.B.C.D.7.(4分)以下计算正确的选项是()A.(a +2 ) (a﹣2 ) =a2﹣2 B.(a +1 ) (a﹣2 ) =a2 +a﹣2C.(a +b )2 =a2 +b2 D.(a﹣b )2 =a2﹣2ab +b28.(4分)如图,等腰三角形ABC ,AB =AC ,假设以点B为圆心,BC长为半径画弧,交腰AC于点E ,那么以下结论一定正确的选项是()A.AE =EC B.AE =BE C.∠EBC =∠BAC D.∠EBC =∠ABE9.(4分)滴滴快车是一种便捷的出行工具,计价规那么如下表:计费工程里程费时长费远途费单价元/公里元/分钟元/公里注:车费由里程费、时长费、远途费三局部构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出局部每公里收元.小|王与小张各自乘坐滴滴快车,行车里程分别为6公里与公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟10.(4分)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE =BF ,将△AEH ,△CFG分别沿边EH ,FG折叠,当重叠局部为菱形且面积是菱形ABCD面积的时,那么为()A.B.2 C.D.4二、填空题(本大题共6小题,每题5分,共30分)11.(5分)因式分解:x2 +6x =.12.(5分)如图,直线a∥b ,∠1 =70° ,那么∠2 =.13.(5分)如图,扇形纸扇完全翻开后,外侧两竹条AB ,AC的夹角为120°,AB 长为30厘米,那么的长为厘米.(结果保存π )14.(5分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了防止亏本,售价至|少应定为元/千克.15.(5分)三名运发动参加定点投篮比赛,原定出场顺序是:甲第|一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运发动用抽签方式重新确定出场顺序,那么抽签后每个运发动的出场顺序都发生变化的概率为.16.(5分)如图,有一个边长不定的正方形ABCD ,它的两个相对的顶点A ,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B ,D在正六边形内部(包括边界) ,那么正方形边长a的取值范围是.三、解答题(本大题共8小题,共80分)17.(8分)计算: + (﹣1 )0﹣|﹣3|.18.(8分)先化简,再求值:(1﹣)•,其中x =2021.19.(8分)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为米,小汽车车门宽AO为米,当车门翻开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈;cos40°≈;tan40°≈)20.(8分)如图,直线l1:y =2x +1与直线l2:y =mx +4相交于点P (1 ,b ).(1 )求b ,m的值;(2 )垂直于x轴的直线x =a与直线l1 ,l2分别交于点C ,D ,假设线段CD长为2 ,求a 的值.21.(10分)家庭过期药品属于"国|家危险废物〞,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1 )以下选取样本的方法最|合理的一种是.(只需填上正确答案的序号)①在市中|心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2 )本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:。

2021-2022学年岳阳市中考数学模拟试题含解析

2021-2022学年岳阳市中考数学模拟试题含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.按如下方法,将△ABC 的三边缩小的原来的12,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .42.实数﹣5.22的绝对值是( )A .5.22B .﹣5.22C .±5.22D 5.223.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x +21x 的值是( ) A .1 B .2 C .﹣34 D .﹣434.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则K 的值不可能是( )A .-5B .-2C .3D .55.如图,ABCD 中,E 是BC 的中点,设AB a,AD b ==,那么向量AE 用向量a b 、表示为( )A .12a bB .12a b -C .12a b -+D .12a b -- 6.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H,下列结论:①△AED ≌△DFB ;②S 四边形 BCDG =CG 2;③若AF=2DF ,则BG=6GF,其中正确的结论A .只有①②.B .只有①③.C .只有②③.D .①②③.8.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为()A.4633π-B.8933π-C.33223π-D.8633π-9.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-810.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数46 487 2506 5008 24996 50007根据列表,可以估计出m 的值是()A.5 B.10 C.15 D.20二、填空题(共7小题,每小题3分,满分21分)11.分解因式:8a3﹣8a2+2a=_____.12.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).13.分解因式:x3y﹣2x2y+xy=______.14.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.15.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB 于点P,若CD=3,AB=8,PM=l,则l的最大值是16.要使式子2x有意义,则x的取值范围是__________.17.已知a+1a=2,求a2+21a=_____.三、解答题(共7小题,满分69分)18.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.19.(5分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?20.(8分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.21.(10分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.22.(10分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.23.(12分)如图1,已知扇形MON的半径为2,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.24.(14分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF 是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC 与△DEF 的面积比为4:1.故选C .【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.2、A【解析】根据绝对值的性质进行解答即可.【详解】实数﹣5.1的绝对值是5.1.故选A .【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.3、C【解析】试题分析:找出一元二次方程的系数a ,b 及c 的值,利用根与系数的关系求出两根之和12b x x a+=-与两根之积12c x x a⋅=,然后利用异分母分式的变形,将求出的两根之和x 1+x 2=3与两根之积x 1•x 2=﹣4代入,即可求出12121211x x x x x x ++=⋅=3344=--. 故选C .考点:根与系数的关系4、B【解析】当直线y=kx-2与线段AB 的交点为A 点时,把A (-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB 有交点;当直线y=kx-2与线段AB 的交点为B 点时,把B (4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k ≥1时直线y=kx-2与线段AB 有交点,从而能得到正确选项.【详解】把A (-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB 有交点,且过第二、四象限时,k 满足的条件为k≤-3;把B (4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB 有交点,且过第一、三象限时,k 满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.5、A【解析】根据AE AB BE=+,只要求出BE即可解决问题.【详解】解:四边形ABCD是平行四边形,∴∥,=,AD BC AD BC∴==,BC AD bBE CE=,1∴=,BE b2=+=,AE AB BE,AB a1∴=+,AE a b2故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.6、B【解析】试题解析:A. 是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形;C.是中心对称图形,但不是轴对称图形;D.是轴对称图形不是中心对称图形;故选B.7、D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.8、D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵BD的长为43π,∴604 1803Rππ=解得:R=4,∴AB=AD cos30°=3,∴BC=12AB=3∴AC3BC=6,∴S△ABC=12×BC×AC=12×36=3∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=26048 63633603ππ⨯-=-故选:D.【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.9、D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10、B【解析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.二、填空题(共7小题,每小题3分,满分21分)11、2a(2a﹣1)2【解析】提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【详解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【点睛】本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.12、303【解析】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60×32=303(m).故答案是:303.13、xy(x﹣1)1【解析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x1-1x+1)=xy(x-1)1.故答案为:xy(x-1)1【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14、2【解析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.15、4【解析】当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【详解】当CD ∥AB 时,PM 长最大,连接OM ,OC ,∵CD ∥AB ,CP ⊥CD ,∴CP ⊥AB ,∵M 为CD 中点,OM 过O ,∴OM ⊥CD ,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM 是矩形,∴PM=OC ,∵⊙O 直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.16、x 2≤【解析】根据二次根式被开方数必须是非负数的条件可得关于x 的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.17、1【解析】 试题分析:∵21()a a +=2212a a ++=4,∴221a a +=4-1=1.故答案为1. 考点:完全平方公式.三、解答题(共7小题,满分69分)18、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.【解析】(1)根据图形平移的性质画出平移后的△DEC即可;(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED是菱形.理由:∵△DEC由△AOB平移而成,∴AC∥DE,BD∥CE,OA=DE,OB=CE,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OA=OB,∴DE=CE,∴四边形OCED是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.19、(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图20、(1)y =x ﹣2,y =12-x 2+32+1;(2)a <12;(3)m <﹣2或m >1. 【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n =−2m ,利用m 与n 的关系能求出二次函数对称轴x =1,由一次函数经过一、三象限可得m >1,确定二次函数开口向上,此时当 y 1>y 2,只需让a 到对称轴的距离比a +1到对称轴的距离大即可求a 的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n 2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围. 【详解】(1)将点(2,1),(3,1),代入一次函数y =mx +n 中,0213m n m n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩, ∴一次函数的解析式是y =x ﹣2,再将点(2,1),(3,1),代入二次函数y =mx 2+nx +1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx +n 经过点(2,1),∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =n 2m -, ∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限,∴m >1,∵y 1>y 2,∴1﹣a >1+a ﹣1,∴a <12. (3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ),∴k =mh 2+nh +1,且h =n 2m-, 又∵二次函数y =x 2+x +1也经过A 点,∴k =h 2+h +1,∴mh 2+nh +1=h 2+h +1, ∴11h m =-+, 又∵﹣1<h <1,∴m <﹣2或m >1.【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.21、(1)x=-1;(2)﹣6≤y≤1;【解析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【详解】(1)把点(1,﹣2)代入y=x 2﹣2mx+5m 中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x 2﹣2mx+5m 的对称轴是x=212-=-, (2)∵y=x 2+2x ﹣5=(x+1)2﹣6,∴当x=﹣1时,y 取得最小值﹣6,由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤1. 【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.22、(1)画图见解析;(2)画图见解析;(3)5.【解析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得5【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.23、(1)证明见解析;(2) 2=+y x 02<≤x 1422=x . 【解析】分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论;(2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122x -(),再判断出2OA OC DM OE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°.∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM ,∴AC =AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E .∵OB =OM ,OD ⊥BM ,∴BD =DM .∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM =2,∴AE =122x -(). ∵DE ∥AB ,∴2OA OC DM OE OD OD ==, ∴22DM OA x y OD OE x =∴=+,.(02x ≤<) (3)(i )当OA =OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224x DM x y OD x x =∴=+-,.解得1422x -=,或1422x --=(舍). (ii )当AO =AC 时,则∠AOC =∠ACO .∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO =CA 时,则∠COA =∠CAO =α.∵∠CAO >∠M ,∠M =90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA =2α>90°.∵∠BOA ≤90°,∴此种情况不存在.即:当△OAC 为等腰三角形时,x 的值为1422-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y 关于x 的函数关系式是解答本题的关键.24、(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩, 解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h.点M到直线AB.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键。

2023年湖南省岳阳市中考数学真题(解析版)

2023年湖南省岳阳市中考数学真题(解析版)

2023年岳阳市初中学业水平考试试卷数学温馨提示:1.本试卷共三大题,24小题,满分120分,考试时量90分钟;2.本试卷分为试题卷和答题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区域内;3,考试结束后,考生不得将试题卷、答题卡、草稿纸带出考场.一、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,选出符合要求的一项)1. 2023的相反数是( ) A. 12023 B. 2023− C. 2023 D. 12023− 【答案】B【解析】【分析】根据只有符号不同两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023−,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2. 下列运算结果正确的是( )A. 23a a a ⋅=B. 623a a a ÷=C. 33a a −=D. 222()a b a b −=−【答案】A【解析】【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A � 23a a a ⋅=,故该选项正确,符合题意;B � 624a a a ÷=,故该选项不正确,不符合题意;C � 32a a a −=,故该选项不正确,不符合题意;D �222()2a b a ab b −=−+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键. 的3. 下列几何体的主视图是圆的是( )A. B. C. D.【答案】A【解析】【分析】根据主视图的概念找出各种几何体的主视图即可.【详解】解:A 、主视图为圆,符合题意;B 、主视图为正方形,不符合题意;C 、主视图为三角形,不符合题意;D 、主视图为并排的两个长方形,不符合题意.故选:A .【点睛】本题考查简单几何体的三视图,解题的关键是能够理解主视图的概念以及对常见的几何体的主视图有一定的空间想象能力.4. 已知AB CD ,点E 在直线AB 上,点,F G 在直线CD 上,EG EF ⊥于点,40E AEF ∠=°,则EGF ∠的度数是( )A. 40°B. 45°C. 50°D. 60°【答案】C【解析】 【分析】根据平行线的性质和直角三角形两锐角互余分析计算求解.【详解】解:∵AB CD ,∴40AEF EFG °∠=∠=,∵EG EF ⊥,∴9050EGF EFG ∠=°−∠=°,故选:C .【点睛】本题考查平行线的性质和直角三角形两锐角互余,掌握两直线平行,内错角相等以及直角三角形两锐角互余是解题关键.5. 在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A. 180,182B. 178,182C. 180,180D. 178,180【答案】D【解析】【分析】根据众数和中位数的定义即可得到答案.【详解】解:数据从小到大排列为176,178,178,180,182,185,189,出现次数最多的是178,共出现2次,众数是178,中位数为180.故选:D【点睛】此题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数,一组数据按照大小顺序排列后,处在中间位置或中间两个数的平均数叫做中位数,熟练掌握定义是解题的关键.6. 下列命题是真命题的是()A. 同位角相等B. 菱形的四条边相等C. 正五边形是中心对称图形D. 单项式25ab次数是4的【答案】B【解析】【分析】根据平行线的性质,菱形的性质,正五边形定义,中心对称图形的定义,单项式次数的定义求解.【详解】A. 两平行线被第三条直线所截,同位角相等,故此命题为假命题;B. 根据菱形的性质,菱形的四条边相等,故此命题为真命题;C. 正五边形不符合中心对称图形的定义,不是中心对称图形,故此命题为假命题;D. 单项式25ab的次数是3,故此命题是假命题;故选:B.【点睛】本题考查平行线的性质,菱形的性质,正五边形定义,中心对称图形的定义,单项式次数的定义,熟练掌握上述知识是关键.7. 我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合右图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸.则BC的长是()A.寸 B. 25寸 C. 24寸 D. 7寸【答案】C【解析】【分析】根据矩形的性质,勾股定理求解.【详解】由题意知,四边形ABCD 是矩形,BC CD ∴⊥∴在Rt BCD 中,24BC =故选:C .【点睛】本题考查矩形的性质,勾股定理;由矩形的性质得出直角三角形是解题的关键.8. 若一个点的坐标满足(),2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠−)总有两个不同的倍值点,则s 的取值范围是( )A. 1s <−B. 0s <C. 01s <<D. 10s −<<【答案】D【解析】 【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s −−>,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++, 整理得,()210t x tx s +++= ∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠−)总有两个不同的倍值点, ∴()22=41440,t t s t ts s ∆−+=−−> ∵对于任意实数s 总成立,∴()()24440,s s −−×−<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s < +>,或010s s > +< , 当010s s < +> 时,解得10s −<<, 当010s s > +<时,此不等式组无解, ∴10s −<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.二、填空题(本大题共8小题,每小题4分,满分32分)9. 函数1y=x 2−中,自变量x 的取值范围是____. 【答案】x 2≠【解析】【详解】解:由题意知:x -2≠0,解得x ≠2;故答案x ≠2.10. 近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为_________.【答案】53.78310×【解析】【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中1||10a ≤<,n 为整数.【详解】解:53.78378300310=×.故答案为:53.78310×.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确为定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键. 11. 有两个女生小合唱队,各由6名队员组成,甲队与乙队的平均身高均为160cm x =,甲队身高方差2 1.2s =甲,乙队身高方差2 2.0s =乙,两队身高比较整齐的是_________队.(填“甲”或“乙”)【答案】甲【解析】【分析】根据方差越小,波动越小,越稳定判断即可.【详解】∵2 1.2s =甲,2 2.0s =乙,且22s s 甲乙<∴甲队稳定,故答案为:甲.【点睛】本题考查了方差的决策性,熟练掌握方差的意义是解题的关键.12. 如图,①在,OA OB 上分别截取线段,OD OE ,使OD OE =;②分别以,D E 为圆心,以大于12DE 的长为半径画弧,在AOB ∠内两弧交于点C ;③作射线OC .若60AOB ∠=°,则AOC ∠=_________°.【答案】30【解析】【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线, ∴11603022AOC AOB ∠=∠=×°=°. 故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键. 13. 观察下列式子:21110−=×;22221−=×;23332−=×;24443−=×;25554−=×;…依此规律,则第n (n 为正整数)个等式是_________.【答案】()21n n n n −=− 【解析】【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110−=×;22221−=×;23332−=×;24443−=×;25554−=×;…∴第n (n 为正整数)个等式是()21n n n n −=−, 故答案为:()21n n n n −=−. 【点睛】本题考查了数字类规律,找到规律是解题的关键.14. 已知关于x 的一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根,且12122x x x x ++⋅=,则实数m =_________.【答案】3【解析】【分析】利用一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根求出m 的取值范围,由根与系数关系得到212122,2x x m x x m m +=−=−+,代入12122x x x x ++⋅=,解得m 的值,根据求得的m 的取值范围,确定m 的值即可.【详解】解:∵关于x 的一元二次方程22220x mx m m ++−+=有两个不相等.....的实数根, ∴()()22242480m m m m ∆=−−+=−>,解得m>2,∵212122,2x x m x x m m +=−=−+,12122x x x x ++⋅=, ∴2222m m m −+−+=,解得123,0m m ==(不合题意,舍去),∴3m = 故答案为:3【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.15. 2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A 处用仪器测得赛场一宣传气球顶部E 处的仰角为21.8°,仪器与气球的水平距离BC 为20米,且距地面高度AB 为1.5米,则气球顶部离地面的高度EC 是_________米(结果精确到0.1米,sin 21.80.3714,cos21.80.9285,tan 21.80.4000°≈°≈°≈).【答案】9.5【解析】【分析】通过解直角三角形ADE ,求出DE ,再根据EC ED DC =+求出结论即可.【详解】解:根据题意得,四边形ABCD 是矩形,∴20m, 1.5m,ADBC DC AB ==== 在Rt ADE △中,tan ,DE DAE AD∠=∴tan 200.4008.0m DE AD DAE =∠≈×=,∴8.0 1.59.5m EC ED DC =+=+=故答案为:9.5【点睛】此题考查了解直角三角形的应用-仰角俯角问题.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键. 16. 如图,在O 中,AB 为直径,BD 为弦,点C 为 BD的中点,以点C 为切点的切线与AB 的延长线交于点E .(1)若30,6A AB ∠=°=,则 BD的长是_________(结果保留π); (2)若13CF AF =,则CE AE =_________. 【答案】 �. 2π �.12【解析】【分析】(1)连接,OC OD ,根据点C 为 BD 的中点,根据已知条件得出120BOD ∠=°,然后根据弧长公式即可求解;(2)连接OC ,根据垂径定理的推论得出OC BD ⊥,EC 是O 的切线,则OC EC ⊥,得出EC BD ∥,根据平行线分线段成比例得出13EB AB =,设2EB a =,则6AB a =,勾股定理求得EC ,J 进而即可求解.【详解】解:(1)如图,连接,OC OD ,∵点C 为 BD 的中点,∴ BC CD =,又∵30A ∠=°,∴260BOC COD A ∠=∠=∠=°,∴120BOD ∠=°,∵6AB =, ∴132OB AB ==,∴ 120π32π180BD l =××=,故答案为:2π.(2)解:如图,连接OC ,∵点C 为 BD 的中点,∴ BC CD =,∴OC BD ⊥,�EC 是O 的切线,∴OC EC ⊥,∴EC BD ∥ ∴CF EB AF AB =, ∵13CF AF =, �13EB AB =, 设2EB a =,则6AB a =,3,5BO a EO EB BO a ==+=,∴4EC a ===,268AE a a a =+=, ∴4182CEa AE a ==. 故答案为:12.【点睛】本题考查了垂径定理,圆周角定理,切线的性质,弧长公式,平行线分线段成比例定理等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(本大题共8小题,满分24分.解答应写出必要的文字说明、证明过程或演算步骤)17.计算:202tan 601(3)π−°−−−. 【答案】2【解析】【分析】根据幂的运算,特殊角的函数值,零指数幂的运算,绝对值的化简计算即可.【详解】202tan 601(3)π−°−−−4112=−−=.【点睛】本题考查了幂的运算,特殊角的函数值,零指数幂的运算,绝对值的化简,熟练掌握运算的法则是解题的关键.18. 解不等式组:213,24.x x x x +>+ −<①② 【答案】24x <<【解析】【分析】按照解不等式组的基本步骤求解即可.【详解】∵213,24.x x x x +>+ −< ①②,解①的解集为2x >; 解②的解集为4x <,∴原不等式组的解集为24x <<.【点睛】本题考查了不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键. 19. 如图,反比例函数ky x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点.(1)求反比例函数和正比例函数的表达式;(2)若y .轴.上有一点()0,,C n ABC △的面积为4,求点C 的坐标. 【答案】(1)2y x=;2y x = (2)()0,4C或()0,4C −【解析】【分析】(1)把()1,2A 分别代入函数的解析式,计算即可.(2)根据反比例函数的中对称性质,得到()1,2B −−,设()0,C n ,根据()12ABC A B S n x x =− ,列式计算即可. 【小问1详解】 ∵反比例函数ky x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点,∴2,211km ==×, 解得2,2k m ==, 故反比例函数的表达式为2y x=,正比例函数的表达式2y x =. 【小问2详解】 ∵反比例函数ky x=(k 为常数,0k ≠)与正比例函数y mx =(m 为常数,0m ≠)的图像交于()1,2,A B 两点,根据反比例函数图象的中心对称性质, ∴()1,2B −−,设()0,C n ,根据题意,得()12ABC A B S n x x =− , ∴1242n ×=, 解得4n =或n =−4,故点C 的坐标为()0,4C或()0,4C −.【点睛】本题考查了反比例函数与正比例函数的综合,反比例函数的中心对称性,三角形面积的特殊坐标表示法,熟练掌握反比例函数与正比例函数的综合,反比例函数的中心对称性是解题的关键.20. 为落实中共中央办公厅、国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》,深入开展“我们的节日”主题活动,某校七年级在端午节来临之际,成立了四个社团:A 包粽子,B 腌咸蛋,C 酿甜酒,D 摘艾叶.每人只参加一个社团的情况下,随机调查了部分学生,根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了_________名学生; (2)请补全条形统计图;(3)学校计划从四个社团中任选两个社团进行成果展示,请用列表或画树状图的方法,求同时选中A 和C 两个社团的概率.【答案】(1)100 (2)见解析 (3)16【解析】【分析】(1)根据样本容量=频数÷所占百分数,计算即可. (2)先计算B 的人数,再完善统计图即可. (3)利用画树状图计算即可. 【小问1详解】∵2525%100÷=(人), 故答案为:100. 【小问2详解】B 的人数:10040251520−−−=(人), 补全统计图如下:.【小问3详解】根据题意,画树状图如下:一共有12种等可能性,选中A ,C 等可能性有2种, 故同时选中A 和C 两个社团的概率为21126=. 【点睛】本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.21. 如图,点M 在ABCD Y 的边AD 上,BM CM =,请从以下三个选项中①12∠=∠;②AM DM =;的③34∠∠=,选择一个合适的选项作为已知条件,使ABCD Y 为矩形.(1)你添加的条件是_________(填序号); (2)添加条件后,请证明ABCD Y 为矩形. 【答案】(1)答案不唯一,①或② (2)见解析 【解析】【分析】(1)根据有一个角是直角的平行四边形是矩形进行选取;(2)通过证明ABM DCM △≌△可得A D ∠=∠,然后结合平行线的性质求得90A ∠=°,从而得出ABCD Y 为矩形.【小问1详解】 解:①或② 【小问2详解】添加条件①,ABCD Y 为矩形,理由如下: 在ABCD Y 中AB CD =,AB CD ,在ABM 和DCM △中12AB CDBM CM =∠=∠ =,∴ABM DCM △≌△ ∴A D ∠=∠, 又∵AB CD , ∴180A D ∠+∠=°, ∴90A D ∠=∠=°, ∴ABCD Y 为矩形;添加条件②,ABCD Y 为矩形,理由如下: 在ABCD Y 中AB CD =,AB CD ,在ABM 和DCM △中AB CD AM DM BM CM == =,∴ABM DCM △≌△ ∴A D ∠=∠, 又∵AB CD , ∴180A D ∠+∠=°, ∴90A D ∠=∠=°, ∴ABCD Y 为矩形【点睛】本题考查矩形的判定,全等三角形的判定和性质,掌握平行四边形的性质和矩形的判定方法(有一个角是直角的平行四边形是矩形)是解题关键.22. 水碧万物生,岳阳龙虾好.小龙虾产业已经成为岳阳乡村振兴的“闪亮名片”.已知翠翠家去年龙虾的总产量是4800kg ,今年龙虾的总产量是6000kg ,且去年与今年的养殖面积相同,平均亩产量去年比今年少60kg ,求今年龙虾的平均亩产量. 【答案】今年龙虾的平均亩产量300kg . 【解析】【分析】设今年龙虾的平均亩产量是x kg ,则去年龙虾的平均亩产量是()60x −kg ,根据去年与今年的养殖面积相同列出分式方程,解方程并检验即可.【详解】解:设今年龙虾的平均亩产量是x kg ,则去年龙虾的平均亩产量是()60x −kg , 由题意得,6000480060x x =−, 解得300x =,经检验,300x =是分式方程的解且符合题意, 答:今年龙虾的平均亩产量300kg .【点睛】此题考查了分式方程的实际应用,读懂题意,正确列出方程是解题的关键. 23. 如图1,在ABC 中,AB AC =,点,M N 分别为边,AB BC 的中点,连接MN . 初步尝试:(1)MN 与AC 的数量关系是_________,MN 与AC 的位置关系是_________.特例研讨:(2)如图2,若90,BAC BC ∠=°,先将BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,当点,,A E F 在同一直线上时,AE 与BC 相交于点D ,连接CF .(1)求BCF ∠的度数; (2)求CD 的长.深入探究:(3)若90BAC ∠<°,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF .当旋转角α满足0360α°<<°,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.【答案】初步尝试:(1)12MN AC =;MN AC ∥;(2)特例研讨:(1)30BCF ∠=°;(2)CD =;(3)BAE ABF ∠=∠或180BAE ABF ∠∠=+° 【解析】【分析】(1)AB AC =,点,M N 分别为边,AB BC 的中点,则MN 是ABC 的中位线,即可得出结论; (2)特例研讨:(1)连接EM ,,MN NF ,证明BME 是等边三角形,BNF 是等边三角形,得出30FCB ∠=°;(2)连接AN ,证明ADN BDE ∽,则DN AN DE BE ==,设DE x =,则DN =,在Rt ABE △中,2,BE AE ==,则AD x =,在Rt ADN △中,222AD DN AN =+,勾股定理求得4x =−CD DN CN =+=+=;(3)当点,,C E F 在同一直线上时,且点E 在FC 上时,设ABC ACB θ∠=∠=,则1802BAC θ∠=°−,得出180BEC BAC∠+∠=°,则,,,A B E C 在同一个圆上,进而根据圆周角定理得出EAC EBC αθ∠=∠=−,表示BAE ∠与ABF ∠,即可求解;当F 在EC 上时,可得,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=°−,设NBF β∠=,则EBM β∠=,则360αβ+°,表示BAE ∠与ABF ∠,即可求解.【详解】初步尝试:(1)∵AB AC =,点,M N 分别为边,AB BC 的中点, ∴MN 是ABC 的中位线,∴12MN AC =;MN AC ∥; 故答案是:12MN AC MN AC = ;;(2)特例研讨:(1)如图所示,连接EM ,,MN NF ,∵MN 是BAC 的中位线, ∴MN AC ∥,∴90BMN BAC ∠=∠=°∵将BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,∴,BE BM BF BN ==;90BEF BMN ∠=∠=°∵点,,A E F 在同一直线上时, ∴90AEB BEF ∠=∠=°又∵在Rt ABE △中,M 是斜边AB 的中点,∴12ME AB MB == ∴BM ME BE == ∴BME 是等边三角形,�60ABE ∠=°,即旋转角60α=° �60,NBF BN BF ∠=°= ∴BNF 是等边三角形,又∵,BN NC BN NF ==, ∴NF NC =, ∴∠=∠NCF NFC ,∴260BNF NCF NFC NFC ∠=∠+∠=∠=°, ∴30FCB ∠=°,(2)如图所示,连接AN ,∵AB AC =,90,BAC BC ∠=°∴4AB =,45ACB ABC ∠=∠=°,�,90ADN BDE ANB BED ∠=∠∠=∠=°, ∴ADN BDE ∽,∴DNAN DE BE ==,设DE x =,则DN =,在Rt ABE △中,2,BE AE ==,则AD x =−,在Rt ADN △中,222AD DN AN =+,∴())(222x −=+,解得:4x =−或4x −(舍去)∴CD DN CN =+=+=−,(3)如图所示,当点,,C E F 在同一直线上时,且点E 在FC 上时,�AB AC =,�A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=°−, �MN 是ABC 的中位线, �MN AC ∥∴MNB MBN θ∠=∠=, ∵将BMN 绕点B 顺时针旋转α,得到BEF △, ∴EBF MBN ≌,MBE NBF α∠=∠=, ∴EBF EFB θ∠=∠= ∴1802BEF θ∠=°−, ∵点,,C E F 在同一直线上, ∴2BEC θ∠=∴180BEC BAC ∠+∠=°, ∴,,,A B E C 在同一个圆上,∴EAC EBC αθ∠=∠=−∴()()1802BAE BAC EAC θαθ∠=∠−∠=°−−−180αθ=°−−∵ABF αθ∠=+, ∴180BAE ABF ∠∠=+°; 如图所示,当F 在EC 上时,�,BEF BAC BC BC ∠=∠= ∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=°−, 将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+°, ∴ABF θβ∠=−, ∵BFE EBF θ∠=∠=,EFB FBC FCB ∠=∠+∠∴ECB FCB EFB FBC θβ∠=∠=∠−∠=−, ∵ EBEB = ∴EAB ECB θβ∠=∠=− ∴BAE∠ABF =∠综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+° 【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.24. 已知抛物线21:Q y x bx c =−++与x 轴交于()3,0,A B −两点,交y 轴于点()0,3C .(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D −,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点,E F 使得四边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 顶点为K ,与x 轴正半轴交于点H ,抛物线1Q 上是否存在点P ,使得CPK CHK ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)223y x x =−−+ (2)()2,3E −;()1,2F(3)点P 的坐标为(1,0)或(2,3)−【解析】【分析】(1)把()()300,3A C −,,代入21:Q y x bx c =−++,求出2,3b c =−=即可; (2)假设存在这样的正方形,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,证明,EAR AOD FID DOA ≅≅ ,可得3,1,1,2,ER AR FI IO ====故可得()2,3E −,()1,2F ; (3)先求得抛物线2Q 的解析式为22(12)4(1)4y x x =−+−+=−−+,得出(1,4)K ,()3,0H ,运用待定系数法可得直线BC 的解析式为3y x =−+,过点K 作KT y ⊥轴于点T ,连接BC ,设KP 交直线BC 于M 或N ,如图2,过点C 作PS y ⊥轴交BK 于点S ,交抛物线1Q 于点P ,连接PK ,利用等腰直角三角形性质和三角函数定义可得1tan 3CK CHK CH ∠==,进而可求得点P 的坐标. 【小问1详解】 ∵抛物线21:Q y x bx c =−++与x 轴交于()3,0,A −两点,交y 轴于点()0,3C , ∴把()()300,3A C −,,代入21:Q y x bx c =−++,得, 930,3b c c −−+= =解得,2,3b c =− = ∴解析式为:223y x x =−−+; 的【小问2详解】假设存在这样的正方形DAEF ,如图,过点E 作ER x ⊥于点R ,过点F 作FI y ⊥轴于点I ,∴90,AER EAR ∠+∠=°∵四边形DAEF 是正方形,∴,90,AE AD EAD =∠=°∴90,EAR DAR ∠+∠=°∴,AER DAO ∠=∠又90,ERA AOD ∠=∠=°∴AER DAO ≅ ,∴,,AR DO ER AO ==∵()()3,0,0,1,A D −−∴3,1,OA OD ==1,3,AR ER ∴==∴312,OR OA AR =−=−=∴()2,3E −;同理可证明:FID DOA ≅ ,∴1,3,FI DO DI AO ====∴312,IO DI DO =−=−=∴()1,2F ;【小问3详解】解:抛物线1Q 上存在点P ,使得CPK CHK ∠=∠.2223(1)4y x x x =−−+=−++ ,∴抛物线1Q 的顶点坐标为(1,4)−,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,∴抛物线2Q 的解析式为22(12)4(1)4y x x =−+−+=−−+,抛物线2Q 的顶点为K ,与x 轴正半轴交于点H ,(1,4)K ∴,()3,0H ,设直线BC 的解析式为y kx n =+,把(0,3)C ,()3,0H 代入得330n k n = +=, 解得:13k n =− =, ∴直线BC 的解析式为3y x =−+,过点K 作KT y ⊥轴于点T ,连接BC ,设KP 交直线BC 于M 或N ,如图2,过点C 作PS y ⊥轴交BK 于点S ,交抛物线1Q 于点P ,连接PK ,则(0,4)T ,(,3)M m m −+,(,3)N t t −+,1KT TC ∴==,90KTC ∠=°, CKT ∴△是等腰直角三角形,45KCT ∴∠=°,CK =,3OH OC == ,90COH ∠=°,COH ∴△是等腰直角三角形,45HCO ∴∠=°,CH =,18090KCH KCT HCO ∴∠=°−∠−∠=°,1tan 3CK CHK CH ∴∠==, CPK CHK ∠=∠ , 1tan tan 3CPK CHK ∴∠=∠=, 1tan 3OB BCO OC ∠== , BCO CHK ∴∠=∠,∵BK OC ∥,CBK BCO ∴∠=∠,CBK CHK ∴∠=∠,即点P 与点B 重合时,CPK CHK ∠=∠,1)0(1,P ∴;1SK = ,3PS =,1tan 3SK CPK PS ∴∠==, CPK CHK ∴∠=∠,点P 与点C 关于直线=1x −对称,(2,3)P ∴−;综上所述,抛物线1Q 上存在点P ,使得CPK CHK ∠=∠,点P 的坐标为(1,0)或(2,3)−.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,正方形的性质等知识,运用数形结合思想解决问题是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.(2021·湖南省岳阳市·历年真题)在实数√3,−1,0,2中,为负数的是()A. √3B. −1C. 0D. 22.(2021·湖南省岳阳市·历年真题)下列品牌的标识中,是轴对称图形的是()A. B. C. D.3.(2021·湖南省岳阳市·历年真题)下列运算结果正确的是()A. 3a−a=2B. a2⋅a4=a8C. (a+2)(a−2)=a2−4D. (−a)2=−a24.(2021·湖南省岳阳市·历年真题)已知不等式组{x−1<02x≥−4,其解集在数轴上表示正确的是()A. B. C. D.5.(2021·湖南省岳阳市·历年真题)将一副直角三角板按如图方式摆放,若直线a//b,则∠1的大小为()A. 45°B. 60°C. 75°D. 105°6.(2021·湖南省岳阳市·历年真题)下列命题是真命题的是()A. 五边形的内角和是720°B. 三角形的任意两边之和大于第三边C. 内错角相等D. 三角形的重心是这个三角形的三条角平分线的交点7.(2021·湖南省岳阳市·历年真题)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是()A. 9.0,8.9B. 8.9,8.9C. 9.0,9.0D. 8.9,9.08.(2021·湖南省岳阳市·历年真题)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x−m)2−m与正方形OABC有交点时m的最大值和最小值分别是()A. 4,−1B. 5−√172,−1C. 4,0D. 5+√172,−1二、填空题(本大题共8小题,共32.0分)9.(2021·湖南省岳阳市·历年真题)因式分解:x2+2x+1=______ .10.(2021·湖南省岳阳市·历年真题)2021年5月15日,“天问一号”探测器成功着陆火星,在火星上首次留下了中国印迹.据公开资料显示,地球到火星的最近距离约为55000000公里,数据55000000用科学记数法表示为______ .11.(2021·湖南省岳阳市·历年真题)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为______ .12.(2021·湖南省岳阳市·历年真题)已知关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则实数k的值为______ .13.(2021·北京市·模拟题)要使分式5x−1有意义,则x的取值范围为______.14.(2021·湖南省岳阳市·历年真题)已知x+1x =√2,则代数式x+1x−√2=______ .15.(2021·湖南省岳阳市·历年真题)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为______ .16.(2021·湖南省岳阳市·历年真题)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,BE=8,⊙O为△BCE的外接圆,过点E作⊙O的切线EF交AB于点F,则下列结论正确的是______ .(写出所有正确结论的序号)①AE=BC;②∠AED=∠CBD;③若∠DBE=40°,则DE⏜的长为8π9;④DFEF =EFBF;⑤若EF=6,则CE=2.24.三、解答题(本大题共8小题,共64.0分)17.(2021·湖南省岳阳市·历年真题)计算:(−1)2021+|−2|+4sin30°−(√83−π)0.18.(2021·湖南省岳阳市·历年真题)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是______ ;(2)添加了条件后,证明四边形AECF为平行四边形.19.(2021·湖南省岳阳市·历年真题)如图,已知反比例函数(k≠0)与正比例函数y=2x的图象交于A(1,m),y=kxB两点.(1)求该反比例函数的表达式;(2)若点C在x轴上,且△BOC的面积为3,求点C的坐标.20.(2021·湖南省岳阳市·历年真题)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了八年级部分学生,对他们一周内平均每天的睡眠时间t(单位:ℎ)进行了调查,将数据整理后得到下列不完整的统计图表:组别睡眠时间分组频数频率A t<640.08B6≤t<780.16C7≤t<810aD8≤t<9210.42E t≥9b0.14请根据图表信息回答下列问题:(1)频数分布表中,a=______ ,b=______ ;(2)扇形统计图中,C组所在扇形的圆心角的度数是______ °;(3)请估算该校600名八年级学生中睡眠不足7小时的人数;(4)研究表明,初中生每天睡眠时长低于7小时,会严重影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.21.(2021·湖南省岳阳市·历年真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.22.(2021·湖南省岳阳市·历年真题)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,该河旁有一座小山,山高BC=80m,坡面AB的坡度i=1:0.7(注:坡度i是指坡面的铅直高度与水平宽度的比),点C、A 与河岸E、F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角分别为∠DBE= 45°,∠DBF=31°.(1)求山脚A到河岸E的距离;(2)若在此处建桥,试求河宽EF的长度.(结果精确到0.1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)23.(2021·湖南省岳阳市·历年真题)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB的中点,连接CD,将线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,且ED交线段BC于点G,∠CDE的平分线DM交BC于点H.=______ ;(1)如图1,若α=90°,则线段ED与BD的数量关系是______ ,GDCD(2)如图2,在(1)的条件下,过点C作CF//DE交DM于点F,连接EF,BE.①试判断四边形CDEF的形状,并说明理由;②求证:BEFH =√33;(3)如图3,若AC=2,tan(α−60°)=m,过点C作CF//DE交DM于点F,连接EF,BE,请直接写出BEFH的值(用含m的式子表示).24.(2021·湖南省岳阳市·历年真题)如图,抛物线y=ax2+bx+2经过A(−1,0),B(4,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)如图2,直线l:y=kx+3经过点A,点P为直线l上的一个动点,且位于x轴的上方,点Q为抛物线上的一个动点,当PQ//y轴时,作QM⊥PQ,交抛物线于点M(点M在点Q的右侧),以PQ,QM为邻边构造矩形PQMN,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D,在(2)的条件下,当矩形PQMN的周长取最小值时,抛物线上是否存在点F,使得∠CBF=∠DQM?若存在,请求出点F的坐标;若不存在,请说明理由.答案和解析1.【答案】B【知识点】实数的概念【解析】解:在√3,−1,0,2这四个数中,负数是−1,故选:B.根据负数的定义,可以判断题目中的哪个数是负数.本题考查正数和负数,解题的关键是明确负数的定义.2.【答案】A【知识点】轴对称图形【解析】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.3.【答案】C【知识点】同底数幂的乘法、平方差公式、合并同类项【解析】解:3a和a属于同类项,所以3a−a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2⋅a4=a6,故B项不符合题意,根据平方差公式(a+2)(a−2)=a2−4,故C项符合题意,(−a)2=a2,故D项不符合题意,故选:C.根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.4.【答案】D【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法【解析】解:解不等式x−1<0,得:x<1,解不等式2x≥−4,得:x≥−2,则不等式组的解集为−2≤x<1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.【答案】C【知识点】平行线的性质【解析】解:由题意知,∠ABC=45°+60°=105°,∵a//b,∴∠1+∠ABC=180°,∴∠1=180°−∠ABC=180°−105°=75°,故选:C.根据平行线的性质可得∠1+∠ABC=180°,进而可求出∠1.本题主要考查了平行线的性质,熟记两直线平行,同旁内角互补是解决问题的关键.6.【答案】B【知识点】证明与定理【解析】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、三角形的重心是这个三角形的三条边上的中线的交点,故原命题错误,是假命题,不符合题意,故选:B.利用多边形的内角和公式、三角形的三边关系、平行线的性质及三角形的重心的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及三角形的重心的定义等知识,难度不大.7.【答案】C【知识点】算术平均数、众数【解析】解:x −=9.0+9.2+9.0+8.8+9.05=9.0,该组数众数为:9.0,∴这五个有效评分的平均数和众数分别为9.0,9.0,故选:C .根据平均数的计算方法对这组数先求和再除以5即可,众数即出现次数最多的数,便可选出正确答案.本题考查算术平均数以及众数,熟练掌握平均数的求法以及众数的求法是解题的关键. 8.【答案】D【知识点】二次函数的性质、正方形的性质【解析】解:如图,由题意可得,互异二次函数y =(x −m)2−m 的顶点(m,−m)在直线y =−x 上运动,在正方形OABC 中,点A(0,2),点C(2,0),∴B(2,2),从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,∴只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值. 当互异二次函数y =(x −m)2−m 经过点A(0,2)时,m =0,或m =−1;当互异二次函数y =(x −m)2−m 经过点B(2,2)时,m =5−√172或m =5+√172.∴互异二次函数y =(x −m)2−m 与正方形OABC 有交点时m 的最大值和最小值分别是5+√172,−1.故选:D .画出图象,从图象可以看出,当函数从左上向右下运动时,当跟正方形有交点时,先经过点A ,再逐渐经过点O ,点B ,点C ,最后再经过点B ,且在运动的过程中,两次经过点A ,两次经过点O ,点B 和点C ,只需算出当函数经过点A 及点B 时m 的值,即可求出m 的最大值及最小值.本题为二次函数综合题,考查了二次函数图象性质.解答关键是研究动点到达临界点时图形的变化,从而得到临界值.9.【答案】(x +1)2【知识点】因式分解-运用公式法【解析】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.本题运用完全平方公式进行因式分解即可.本题考查运用公式法进行因式分解,掌握公式法的基本形式并能熟练应用是解题的关键. 10.【答案】5.5×107【知识点】科学记数法-绝对值较大的数【解析】解:55000000=5.5×107,故答案为:5.5×107.根据科学记数法的方法对55000000进行科学记数即可.本题考查用科学记数法表示较大的数,掌握科学记数法的基本方法是解题的关键. 11.【答案】35【知识点】概率公式【解析】解:∵从袋子中随机摸出一个小球共有5种等可能结果,摸出的小球是白球的结果数为3,∴摸出的小球是红球的概率为35,故答案为:3.5用白球的个数除以球的总个数即可.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12.【答案】9【知识点】根的判别式【解析】解:根据题意,△=62−4k=0,解得k=9,故答案为9.利用判别式的意义得到△=62−4k=0,然后解关于k的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根.13.【答案】x≠1【知识点】分式有意义的条件有意义,【解析】解:∵分式5x−1∴x−1≠0,解得x≠1.故答案为:x≠1.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14.【答案】0【知识点】分式的化简求值、二次根式的化简求值、完全平方公式=√2,【解析】解:∵x+1x∴x+1−√2=√2−√2=0,x故答案为:0.把x+1的值代入计算即可.x本题考查的是二次根式的计算,掌握二次根式的减法法则是解题的关键.15.【答案】(x−6.8)2+x2=102【知识点】勾股定理的应用【解析】解:设门高AB为x尺,则门的宽为(x−6.8)尺,AC=1丈=10尺,依题意得:AB2+BC2=AC2,即(x−6.8)2+x2=102.故答案为:(x−6.8)2+x2=102.设门高AB为x尺,则门的宽为(x−6.8)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.【答案】②④⑤【知识点】弧长的计算、线段垂直平分线的概念及其性质、圆周角定理、切线的性质、相似三角形的判定与性质【解析】解:①∵DE垂直平分AB,∴AE=BE,又在Rt△ABC中,∠C=90°,∴BE>BC,∴AE>BC,故①错误;②由题可知,四边形DBCE是⊙O的内接四边形,∴∠AED=∠CBD,故②正确;③连接OD,若∠DBE=40°,则∠DOE=80°,∴DE⏜的长为80°⋅π⋅4180∘=16π9,故③错误;④∵EF是⊙O的切线,∴∠BEF=90°,又DE⊥AB,∴∠EDF=∠BEF=90°,∴△EDF∽△BEF,∴DFEF =EFBF,故④正确;⑤在Rt△BEF中,EF=6,BE=8,∴BF=10,由①AE=BE=8,∴∠A=∠ABE,又∠C=∠BEF=90°,∴△BEF∽△ACB,∴BE:AC=EF:BC=6:8,设BE=6m,则AC=8m,则CE=8m−8,在Rt△BCE中,由勾股定理可得,EC2+BC2=BE2,即(8m−8)2+(6m)2=82,解得m=1.28,∴CE=8m−8=2.24.故⑤正确.故答案为:②④⑤.①DE垂直平分AB,AE=BE,BE>BC,则AE>BC,故①错误;②由题可知,四边形DBCE是⊙O的内接四边形,则∠AED=∠CBD,故②正确;③连接OD,若∠DBE=40°,则∠DOE=80°,则DE⏜的长为80°⋅π⋅4180∘=16π9,故③错误;④易得△EDF∽△BEF,则DFEF =EFBF,故④正确;⑤在Rt△BEF中,EF=6,BE=8,BF=10,又△BEF∽△ACB,则BE:AC=EF:BC=6:8,设BE=6m,则AC=8m,则CE=8m−8,由勾股定理可得,EC2+BC2= BE2,即(8m−8)2+(6m)2=82,解得m=1.28,则CE=8m−8=2.24.故⑤正确.本题主要考查相似三角形的性质与判定,切线的性质,弧长的计算等内容,熟知相关性质及定理是解题关键.17.【答案】解:原式=−1+2+4×12−1=−1+2+2−1=2.【知识点】绝对值、特殊角的三角函数值、零指数幂、实数的运算【解析】按照实数的运算法则依次展开计算即可得出答案.本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.【答案】AE=CF【知识点】平行四边形的判定【解析】解:(1)添加条件为:AE=CF,故答案为:AE=CF;(2)证明:∵AE⊥BD,CF⊥BD,∴AE//CF,∵AE=CF,∴四边形AECF为平行四边形.(1)由题意添加条件即可;(2)证AE//CF,再由AE=CF,即可得出结论.本题考查了平行四边形的判定、平行线的判定等知识;熟练掌握平行四边形的判定是解题的关键.19.【答案】解:(1)把A(1,m)代入y=2x中,得m=2,∴点A的坐标为(1,2),把点A(1,2)代入y=kx中,得k=2,∴反比例函数得解析式为y=2x;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),∵点A与点B关于原点对称,∴点B的坐标为(−1,−2),∴BD=|−2|=2,OC=|a|,S△BOC=12BD⋅OC=12×2×|a|=3,解得:a=3或a=−3,∴点C的坐标为(3,0)或(−3,0).【知识点】一次函数与反比例函数综合【解析】(1)先把A(1,m)代入y=2x中,即可算出点A的坐标,再把点A的坐标代入反比例函数解析式中即可得出答案;(2)过点B作BD垂直与x轴,垂足为D,设点C的坐标为(a,0),根据反比例函数与正比例函数的性质可得点B的坐标,由题意可得BD=|−2|=2,OC=|a|,再根据三角形面积计算方法即可算出a的值,即可得出答案.本题主要考查了反比例函数与一次函数的交点问题,熟练掌握相关知识进行求解是解决本题的关键.20.【答案】0.27 72【知识点】扇形统计图、用样本估计总体、频数(率)分布表【解析】解:(1)本次调查的同学共有:8÷0.16=50(人),a=10÷50=0.2,b=50--8−10−21=7,故答案为:0.2,7;(2)扇形统计图中C组所在扇形的圆心角的大小是:360°×1050=72°,故答案为:72;(3)600×4+850=144(人),答:该校600名八年级学生中睡眠不足7小时的人数有144人;(4)按时入睡,保证睡眠时间.(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据频数分布表中的数据,即可计算出a、b的值;(2)根据C组的频率可计算出扇形统计图中C组所在扇形的圆心角的大小;(3)根据每天睡眠时长低于7小时的人数所占比例可以计算出该校学生每天睡眠时长低于7小时的人数.(4)根据调查统计结果,向学校提出一条合理化的建议即可.本题考查扇形统计图、频数分布表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:设小明骑自行车的平均速度为x km/ℎ,则妈妈开车的平均速度为4x km/ℎ,依题意得:16x −164x=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴4x=48.答:妈妈开车的平均速度为48km/ℎ.【知识点】分式方程的应用【解析】设小明骑自行车的平均速度为x km/ℎ,则妈妈开车的平均速度为4x km/ℎ,根据时间=路程÷速度,结合小明比妈妈多用1h,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【答案】解:(1)在RtABC中,BC=80,∵AB的坡度i=1:0.7,∴BCAC =10.7,∴80AC =10.7,∴AC=56,在RtBCE中,BC=80,∠BEC=∠DBE=45°,∴∠CBE=90°−∠BEC=90°−45°=45°,∴∠BEC=∠CBE,∴CE=BC=80,∴AE=CE−AC=80−56=24(m),答:山脚A到河岸E的距离为24m;(2)在RtBCF中,BC=80,∠BFC=∠DBF=31°,tan∠BFC=BCCF,∴80CF≈0.6,∴CF≈133.33,∴EF=CF−CE=133.33−80=53.33≈53.3(m),答:河宽EF的长度约53.3m.【知识点】解直角三角形的应用【解析】(1)在RtABC中,根据AB的坡度求出AC,在RtBCE中,根据等腰直角三角形的性质可得CE=BC,由线段的和差即可求得AE;(2)在RtBCF中,由三角函数的定义求出,根据线段的和差即可求出.本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是23.【答案】ED=BD√33【知识点】四边形综合【解析】解:(1)在Rt△ABC中,∠ACB=90°,点D为AB的中点,∴AD=CD=BD,∵∠A=60°,∴∠B=30°,△ABD是等边三角形,∴∠DCB=30°,∵∠CDE=α=90°,∴tan∠CGD=tan60°=CDDG=√3,∴GDCD =√33.∵线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,∴ED=CD=BD,故答案为:ED=BD;√33.(2)①四边形CDEF是正方形,理由如下,∵DM平分∠CDE,∠CDE=90°,∴∠CDM=∠EDM=45°,∵CF//DE,∴∠CFD=∠EDM=45°,∴∠CFD=∠EDM=∠CDM,∴CF=CD=ED,∴四边形CDEF是菱形,∵∠CDE=90°,∴菱形CDEF是正方形.②由(1)可知,∠ADC=60°,∠CGD=60°,BD=DE,∴∠BDE=30°,∠EGB=60°,∴∠DBE=∠DEB=75°,∴∠EBG=45°,∵∠GDB=90°−∠ADE=30°,∠ABC=30°,∴∠GDB=∠ABC,由①知∠CFD=∠CDF=45°,∠DCF=90°,∴∠FCH=60°,∴∠EGB=∠FCH,∠EBG=∠CFD,∴△BEG∽△FHC,∴BEFH =BGFC,∵DG=BG,CD=CF,∴BEFH =BGFC=GDCD=√33.(3)如图3,过点D作DN⊥BC于点N,∴AC//DN,∴∠ACD=∠CDN,∵△ACD是等边三角形,AC=2,∴CD=AC=2,∠CDN=∠ACD=60°,∴∠NDG=α−60°,DN=1,∴tan∠NDG=tan(α−60°)=NGDN=m,∴NG=m,∴DG=√DN2+NG2=√1+m2,∵∠ADC=60°,∠ADG=α,∴∠BDE=120°−α,∴∠BEG=∠EBG=30°+α2,∴∠EBG=α2,∴∠BGE=150°−α,∵DM平分∠CDE,∠CDE=α,∴∠CDM=∠EDM=α2,∵CF//DE,∴∠CFD=∠EDM=α2,∠DCF+∠CDE=180°,∴∠DCF=180°−α,∴∠FCG=150°−α,∴∠EGB=∠FCG,∠EBG=∠CFD,∴△BEG∽△FHC,∴BEFH =BGFC,∵DG=BG,CD=CF,∴BEFH =BGFC=GDCD=√m2+12.(1)根据直角三角形斜边中线等于斜边的一半可以得到AC=CD=BD,根据旋转的性质可以得到CD=DE,则DE=BD;又在Rt△CGD中,含30°的直角三角形边之间的关系可得结论;(2)①由∠CFD=∠EDM=∠CDM,得CF=CD=ED,又CF//DE,则四边形CDEF是菱形,又∠CDE=90°,可得结论:菱形CDEF是正方形.②由题意可得,∠EGB=∠FCH,∠EBG=∠CFD,则△BEG∽△FHC,又DG=BG,CD=CF,所以BEFH =BGFC=GDCD=√33.(3)过点D作DN⊥BC于点N,由tan∠NDG=tan(α−60°)=NGDN=m,得NG=m,所以DG=√DN2+NG2=√1+m2,又△BEG∽△FHC,DG=BG,CD=CF,所以BEFH=BG FC =GDCD=√m2+12.本题主要考查相似三角形的性质与判定,等腰三角形的性质与判定,含30°的直角三角形的边角关系,正方形的性质与判定,旋转的性质,三角形内角和等内容,得到△BEG∽△FHC是解题关键.24.【答案】解:(1)设抛物线的表达式为y=a(x−x1)(x−x2),即y=a(x+1)(x−4)=a(x2−3x−4)=ax2−3ax−4a,即−4a=2,解得a=−12,故抛物线的表达式为y=−12x2+32x+2;(2)将点A的坐标代入直线l的表达式得:0=−k+3,解得k=3,故直线l 的表达式为y =3x +3,设点Q 的坐标为(x,−12x 2+32x +2),则点P 的坐标为(x,3x +3),由题意得,点Q 、M 关于抛物线对称轴对称,而抛物线的对称轴为直线x =32, 故点M 的横坐标为3−x ,则QM =3−x −x =3−2x ,设矩形周长为C ,则C =2(PQ +QM)=2[3−2x +3x +3−(−12x 2+32x +2)]=x 2−x +8,∵1<0,故C 有最小值, 当x =12时,矩形周长最小值为314;(3)当x =12时,y =−12x 2+32x +2=218,即点Q 的坐标为(12,218), 由抛物线的表达式知,点D 的坐标为(32,258),过点D 作DK ⊥QM 于点K , 则DK =y D −y Q =258−218=12,同理可得,QK =1, 则tan∠DQM =DKQK =12, ∵∠CBF =∠DQM ,故tan∠CBF =tan∠DQM =12, 在△BOC 中,tan∠CBO =COOB =24=12, 故BF 和BO 重合, 故点F 和点A 重合, 即点F 的坐标为(−1,0).【知识点】二次函数综合【解析】(1)用待定系数法即可求解;(2)设点Q的坐标为(x,−12x2+32x+2),则点P的坐标为(x,3x+3),设矩形周长为C,则C=2(PQ+QM)=2[3−2x+3x+3−(−12x2+32x+2)]=x2−x+8,即可求解;(3)过点D作DK⊥QM于点K,则DK=y D−y Q=258−218=12,同理可得,QK=1,则tan∠DQM=DKQK =12,在△BOC中,tan∠CBO=COOB=24=12,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

相关文档
最新文档