高中数学课时跟踪检测二集合的表示方法新人教B版必修1
2020学年新教材高中数学课时素养评价二集合的表示方法新人教B版必修第一册(最新整理)
2019-2020学年新教材高中数学课时素养评价二集合的表示方法新人教B 版必修第一册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年新教材高中数学课时素养评价二集合的表示方法新人教B版必修第一册)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年新教材高中数学课时素养评价二集合的表示方法新人教B版必修第一册的全部内容。
课时素养评价二集合的表示方法(20分钟·50分)一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全对的得2分,有选错的得0分)1.把集合{x|x2-4x-5=0}用列举法表示为( )A.{x=-1,x=5}B.{x|x=-1或x=5}C。
{x2-4x—5=0}D。
{-1,5}【解析】选D.根据题意,解x2—4x-5=0可得x=-1或5,用列举法表示可得{—1,5}。
2.集合A={y|y=x2+1},集合B={(x,y)|y=x2+1}(A,B中x∈R,y∈R)。
关于元素与集合关系的判断都正确的是()A.2∈A,且2∈BB.(1,2)∈A,且(1,2)∈BC。
2∈A,且(3,10)∈BD。
(3,10)∈A,且2∈B【解析】选C。
集合A中元素y是实数,不是点,故选项B,D不对。
集合B的元素(x,y)是点而不是实数,2∈B不正确,所以选项A错。
选项C经验证正确。
【加练·固】下列集合的表示,正确的是()A.{2,3}≠{3,2}B。
{(x,y)|x+y=1}={y|x+y=1}C。
{x|x〉1}={y|y>1}D。
{(1,2)}={(2,1)}【解析】选C。
人教版高中必修1(B版)1.1.2集合的表示方法教学设计
人教版高中必修1(B版)1.1.2集合的表示方法教学设计一、教学目标通过本节课的学习,学生应当具备如下的能力和知识:1.掌握集合的基本概念和基本操作;2.能够使用列举法、描述法、符号法等方法表示集合;3.能够通过集合的表示方法求出集合的元素个数;4.能够应用集合的表示方法解决实际问题;5.培养学生的逻辑思维能力和解决问题的能力。
二、教学重点1.集合的基本概念和基本操作;2.集合的表示方法;3.根据集合的表示方法求出集合的元素个数。
三、教学内容和方法1. 教学内容1.集合的基本概念和基本操作;2.集合的表示方法;3.根据集合的表示方法求出集合的元素个数;4.应用题。
2. 教学方法1.探究式教学方法;2.演示法;3.群体讨论法;4.板书法。
四、教学过程1. 引入本节课的引入部分应该围绕一个问题展开,例如:在小学数学中,我们已经学过了集合的概念。
那么,在你们看来,什么是集合?在学生回答完之后,可以通过一个演示来说明集合的概念:比如,我们可以放一堆东西在桌子上,然后将其中同属性的东西放在一起,比如一堆苹果,一堆香蕉,一堆葡萄等等。
这些被放在一起的对象就组成了一个集合。
2. 学习集合的基本概念接下来,可以通过上述的东西组成的集合为例,让学生深入理解什么是元素和集合,什么是空集合,什么是全集合,以及集合之间的包含关系等等。
3. 学习集合的表示方法在学习了集合的基本概念之后,接下来就是学习集合的表示方法,包括列举法、描述法、符号法等等。
在学习的过程中,可以通过一些实例来进行演示,并要求学生互相交流,分享彼此的思考。
4. 学习如何求出集合的元素个数在学习了集合的表示方法之后,为了更好地掌握集合的知识,我们需要学习如何求出一个集合中元素的个数。
这一部分教学可以通过数学公式引入,并让学生自行分析,理解和掌握。
5. 应用题练习最后,为了巩固学生所学的知识和能力,我们可以通过一些集合相关的实际问题来进行练习,在解决问题的过程中复习和应用所学的知识。
人教B版高中数学必修一1.1.2集合的表示方法.doc
1.1.2集合的表示方法【目标要求】1.会用列举法表示集合。
2.理解集合的特征性质。
3.会用特征性描述法表示集合。
【巩固教材——稳扎马步】1.已知集合{}M =大于-2而小于1的实数,则下列关系正确的是 ( )M B.0M ∉ C.1M ∈ D.2M π-∈2.若集合{}|121x m x m +≤≤-表示空集,则实数m 的取值集合是 ( ) A.{}|2m m ≥ B.{}|2y y < C.{}|2m m > D.{}|2t t ≥- 3.集合M=⎭⎬⎫⎩⎨⎧∈∈+=Z y Z x x y x ,,312|的元素个数为 ( ) A.4 B.5 C.10 D.124.已知集合{}2|54,A y y x x x R ==-+-∈,则 ( ) A.1,4且A A ∈∈ B.1,4但A A ∈∉ C.1,4但A A ∉∈ D.1,4且A A ∉∉ 【重难突破——重拳出击】5.方程组⎩⎨⎧=+-=-+085203y x y x 的解集可表示为 ( )A.(1,2) B.{(1,2)} C.{1,2} D.{x,y|x=1,y=1}6.下列集合中不同于另外三个集合的是( ) A.{x|x=1} B.{t||t-1|=0} C.{y=1} D.{1} 7.已知{}2,2,1aa ∈,则a的取值集合可以用列举法表示为 ( )A.{1,2} B.{-1,2} C.{-1,0,2} D.{0,2} 8.已知a,b,c为非零实数,代数式abcabc c c b b a a ||||||||+++的值组成集合A,则下列判断正确的是( )A .0A ∉ B.2A ∈ C.-4A ∉ D.4A ∈9.已知集合m={}N x N x ∈-∈)8(|,则M中元素个数是 ( )A.10 B.9 C.8 D.7{2,21x y x y =--=-10. 方程组的解集为 ( )A .{}1,1x y ==B .{}1C .{}(1,1)D .()(){},1,1x y11.方程组 3,4,5x y y z z x +=+=+=的解集用①{}2,1,3,②()2,1,3,③(){}2,1,3表示,其中正确的表示是 ( )A. ① ②B. ① ③C. ③D. ① ② ③ 12.集合A={x Z k k x ∈=,2},B={Z k k x x ∈+=,12},C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( ) (A )(a+b ∈ A (B) (a+b)∈B (C)(a+b)∈ C (D) (a+b)∈ A 、B 、C 任一个 【巩固提高——登峰揽月】 13.{x ︱x=12+-n n , n∈N, n≤5}用列举法表示为__ ; 14.用适当的方法表示下列集合: (1)由所有非负奇数组成的集合;(2)由所有小于20的既是奇数又是质数的数组成的集合; (3)平面直角坐标系内第二象限的点组成的集合. 【课外拓展——超越自我】 15.已知集合A={ x∈N︱x-68∈N },试用列举法表示A . 16.关于x 的方程ax 2+bx+c=0(a ≠0),当a, b, c 分别满足什么条件时,解集为空集?单元集?二元集?13.{-2,0,14 ,12 ,25}; 4.∈,∉ ;14.(1) {x ︱x=2n+1,n ∈N} (或{1,3,5,7,……}) (2) {3,5,7,11,13,17,19},(3) {(x ,y)︱x<0,y>0}.15. 解: 分别令集合中的三个数为 1,得a=0,-1,-2.根据元素的互异性可排除 -1, -2.∴ a=0.16.当b2-4ac<0时为空集,当b2-4ac=0时为一元集,当b2-4ac>0时为二元集.。
高中数学第一章集合1.1集合与集合的表示方法1.1.2集合的表示方法课堂探究新人教B版必修1
集合表示方法课堂探究探究一用列举法表示集合1.用列举法表示集合时,一般不必考虑元素间前后顺序,如{a,b}与{b,a}表示同一个集合.2.元素与元素之间必须用“,〞隔开.3.集合中元素不能重复.4.列举法也可以表示无限集.【典型例题1】用列举法表示以下集合:(1)36与60公约数构成集合;(2)方程(x-4)2(x-2)=0根构成集合;(3)一次函数y=x-1与y=-23x+43图象交点构成集合.思路分析:(1)要明确公约数含义;(2)注意4是重根;(3)要写成点集形式.解:(1)36与60公约数有1,2,3,4,6,12,所求集合可表示为{1,2,3,4,6,12};(2)方程(x-4)2(x-2)=0根是4,2,所求集合可表示为{2,4};(3)方程y=x-1与y=-23x+43可分别化为x-y=1与2x+3y=4,那么方程组解是所求集合可表示为.探究二用描述法表示集合1.使用描述法表示集合时要注意以下几点:(1)写清元素符号;(2)说明该集合中元素性质;(3)不能出现未被说明字母;(4)多层描述时,应当准确使用“且〞“或〞;(5)所有描述内容都要写在集合符号内;(6)用于描述语句力求简明、准确.2.集合A={x|y=x2+1},B={y|y=x2+1}与C={(x,y)|y=x2+1}不是一样集合.这是因为集合A代表元素是x,且x∈R;集合B代表元素是y,且y≥1;集合C代表元素是(x,y),且(x,y)表示平面直角坐标系内抛物线y=x2+1上点,所以它们是互不一样集合.3.{三角形}实际上是{x|x是三角形}简写,千万别理解成是由三个汉字组成集合,三角形构成集合不要写成{所有三角形},因为{ }本身就有“所有〞含义.【典型例题2】用描述法表示以下集合:(1)小于10所有非负整数构成集合;(2)数轴上与原点距离大于3点构成集合;(3)平面直角坐标系中第二、四象限内点构成集合;(4)方程组解构成集合;(5)集合{1,3,5,7,…}.思路分析:(1)“0≤x<10,x∈Z〞可作为集合一个特征性质;(2)要利用数轴上距离公式来表示,即|x|>3;(3),(4)注意代表元素为点坐标;(5)“x=2k-1,k∈N+〞可作为集合一个特征性质.解:(1)小于10所有非负整数构成集合,用描述法可表示为{x|0≤x<10,x∈Z};(2)数轴上与原点距离大于3点构成集合,用描述法可表示为{x||x|>3};(3)平面直角坐标系中第二、四象限内点构成集合,用描述法可表示为{(x,y)|xy<0};(4)方程组解构成集合,用描述法表示为或;(5){1,3,5,7,…}用描述法可表示为{x|x=2k-1,k∈N+}.反思用描述法表示集合之前,应先通过代表元素确定集合是“点集〞还是“数集〞.另外,二元一次方程组解,因为含有两个未知数,所以在表示时,可看成“点集〞形式进展描述.探究三含参数问题1.对于集合表示方法中含参数问题一定要注意弄清集合含义,也要清楚参数在集合中地位.2.含参数问题常用分类讨论思想来解决,在讨论参数时要做到不重不漏.【典型例题3】集合M={x|(x-a)(x2-ax+a-1)=0}中各元素之和等于3,求实数a 值,并用列举法表示集合M.解:根据集合中元素互异性知,当方程(x-a)(x2-ax+a-1)=0有重根时,重根只能算作集合一个元素,又M={x|(x-a)(x-1)[x-(a-1)]=0}.当a=1时,M={1,0},不符合题意;当a-1=1,即a=2时,M={1,2},符合题意;当a≠1,且a≠2时,a+1+a-1=3,那么a=32,M=,符合题意.综上所述,实数a值为2或32,当a=2时,M={1,2};当a=32时,M=.探究四易错辨析易错点1 认为集合中a具有一致性而致误【典型例题4】集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},C={x|x=4a+1,a∈Z}.假设m∈A,n∈B,那么有( )A.m+n∈AB.m+n∈BC.m+n∈CD.m+n不属于A,B,C中任意一个错解:C错因分析:不能正确利用集合中元素特征性质,认为三个集合中a是一致,从而由m∈A,得m=2a,a∈Z.由n∈B,得n=2a+1,a∈Z.所以得到m+n=4a+1,a∈Z.进而错误判断m+n∈C.而实际上,三个集合中a是不一致.应由m∈A,设m=2a1,a1∈Z.由n∈B,设n =2a2+1,a2∈Z.所以得到m+n=2(a1+a2)+1,且a1+a2∈Z,所以m+n∈B,故正确答案为B.正解:B反思在分析集合中元素关系时,一定要注意字母各自取值独立性,并要注意用不同字母来区分,否那么会引起错误.易错点2 混淆集合中代表元素而致误【典型例题5】判断命题=真假,并说明理由.错解:此命题是真命题.理由如下:∵x与61x+范围一致,∴题中命题是真命题.错因分析:误认为两个集合代表元素一样而导致错误.实际上,代表元素是x,而代表元素是61x+,因而构成两个集合元素不同.正解:此命题是假命题.理由如下:∵x∈N,且61x+∈Z,∴1+x=1,2,3,6.∴x=0,1,2,5.∴={0,1,2,5}.而={6,3,2,1},∴题中命题是假命题.反思化简集合时一定要注意该集合代表元素是什么,看清楚是数集、点集,还是其他形式,还要注意充分利用特征性质求解,两者相互兼顾,缺一不可.。
高中数学 第一章 集合 第2课时 集合的表示方法练习 新人教B版必修1-新人教B版高一必修1数学试题
第2课时集合的表示方法课时目标1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.识记强化1.列举法表示集合把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法表示集合用集合所含元素的特征性质表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)X围,再画一条竖线,在竖线后写出这个集合中元素所具有的特征性质.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.用列举法表示集合{x|x2-3x+2=0}为( )A.{(1,2)} B.{(2,1)}C.{1,2} D.{x2-3x+2=0}答案:C2.集合M={(x,y)|xy<0,x∈R,y∈R}是( )A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集答案:D解析:∵xy<0.∴x与y异号,故点(x,y)在第二或第四象限,故选D.(2)D={(x,y)|y=-x2+5,x∈N,y∈N}.解:(1)∵y∈N,∴0≤-x2+5,∴x=0,1,2,故y=5,4,1,即C={5,4,1}.(2)x=0时y=5;x=1时y=4;x=2时y=1,∴D={(0,5),(1,4),(2,1)}.11.(13分)已知集合A={x|mx2-8x+16=0}只有一个元素,试某某数m的值.解:当m=0时,原方程变为-8x+16=0,解得x=2,此时集合A={2},满足题意;当m≠0时,要使一元二次方程mx2-8x+16=0有两个相等实根,需Δ=64-64m=0,解得m=1,此时方程的解为x1=x2=4,集合A={4},满足题意.综上所述,实数m的值为0或1.能力提升12.(5分)集合{x∈N*|x<5}的另一种表示法是( )A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案:B解析:集合{x∈N*|x<5}表示由所有小于5的正整数构成的集合,故选B.13.(15分)集合M中的元素为自然数,且满足若x∈M,则8-x∈M.试回答下列问题:(1)写出只有一个元素的集合M;(2)写出元素个数为2的所有的集合M;(3)满足题设条件的集合M共有多少个?解析:(1)M中只有一个元素,根据已知必须满足x=8-x,所以x=4.所以含一个元素的集合M={4}.(2)当M中只含两个元素时,其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8},{1,7},{2,6},{3,5}.(3)满足条件的集合M是由集合{4},{0,8},{1,7},{2,6},{3,5}中的元素组成,它包括以下情况:①{4},{0,8},{1,7},{2,6},{3,5},共5个;②{4,0,8},{4,1,7},{4,2,6},{4,3,5},{0,8,1,7},{0,8,2,6},{0,8,3,5},{1,7,2,6},{1,7,3,5},{2,6,3,5},共10个;③{4,0,8,1,7},{4,0,8,2,6},{4,0,8,3,5},{4,1,7,2,6},{4,1,7,3,5},{4,2,6,3,5},{0,8,1,7,2,6},{0,8,1,7,3,5},{1,7,2,6,3,5},{0,8,2,6,3,5},共10个;④{4,0,8,1,7,2,6},{4,0,8,1,7,3,5},{4,0,8,2,6,3,5},{4,1,7,2,6,3,5},{0,8,1,7,2,6,3,5},共5个;⑤{4,0,8,1,7,2,6,3,5},共1个.于是满足题设条件的集合M共有5+10+10+5+1=31个.。
人教B高中数学必修一课时跟踪检测:第一章 集合 2 第1课时 含解析
第一章 集 合 1.2 集合之间的关系与运算1.2.2 集合的运算 第一课时 交集与并集课时跟踪检测[A 组 基础过关]1.已知集合M ={x |-1≤x <3,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ) A .{-1,0,2,3} B .{-1,0,1,2} C .{0,1,2}D .{0,1,2,3}解析:M ∩N ={-1,0,1,2},故选B . 答案:B 2.设集合M ={-1,1},N =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x <0或x >12,则下列结论正确的是( )A .N ⊆MB .N ∩M =∅C .M ⊆ND .M ∪N =R解析:∵M ={-1,1},N =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x <0或x >12,∴M ⊆N ,故选C .答案:C3.设集合A ={4,5,6},B ={2,3,4},则A ∪B 中有________个元素( ) A .1 B .4 C .5D .6解析:A ∪B ={2,3,4,5,6},有5个元素,故选C . 答案:C4.(2018·天津卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C.{-1,0,1} D.{2,3,4}解析:由并集的定义可得,A∪B={-1,0,1,2,3,4},结合交集的定义可知,(A∪B)∩C={-1,0,1}.故选C.答案:C5.如图,表示图形中的阴影部分是()A.(A∪C)∩(B∪C)B.(A∪B)∩(A∪C)C.(A∪B)∩(B∪C)D.(A∪B)∩C解析:图中的阴影部分为集合A,B的交集并上集合C,可表示为(A∩B)∪C.分析可知(A∩B)∪C=(A∪C)∩(B∪C),故选A.答案:A6.设集合A={x|x+2>0},B={x|x-1>0},C={x|x+2<0},D={x|x-1<0},E={x|-2<x<1},则下列结论正确的是()A.E=A∩B B.E=A∩DC.E=B∩C D.E=B∪C解析:A∩D={x|-2<x<1}=E.故选B.答案:B7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.解析:由A∪B=R,∴a≤1.答案:a≤18.设A={x|-2≤x≤5},B={x|m-1≤x≤2m+1}.(1)当x∈N+时,求A的子集的个数;(2)当x∈R且A∩B=∅时,求m的取值范围.解:(1)由题意知A 中元素为{1,2,3,4,5}, ∴A 的子集的个数为25=32.(2)∵x ∈R 且A ∩B =∅,∴B 可分为两个情况. ①当B =∅时,即m -1>2m +1⇒m <-2;②当B ≠∅时,可得⎩⎨⎧ 2m +1<-2,m -1≤2m +1或⎩⎨⎧m -1>5,m -1≤2m +1.解得-2≤m <-32或m >6. 综上,m <-32或m >6.[B 组 技能提升]1.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:由x -1≥0得x ≥1,故A ={x |x ≥1}, 所以A ∩B ={1,2}. 答案:C2.(2018·北京卷)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2}D .{-1,0,1,2}解析:∵|x |<2,∴-2<x <2,因此A ∩B ={-2,0,1,2}∩(-2,2)={0,1},故选A . 答案:A3.(2018·北京卷,改编)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},若(2,1)∈A ,则a 的取值范围为________.解析:若(2,1)∈A ,则2a +1>4且2-a ≤2,解得a >32且a ≥0.∴a >32.答案:⎩⎨⎧⎭⎬⎫aa >32 4.对于集合A ,B ,定义A -B ={x |x ∈A ,且x ∉B },A ⊕B =(A -B )∪(B -A ).设M ={1,2,3,4,5,6},N ={4,5,6,7,8,9,10},则M ⊕N 中元素个数为________.解析:M ⊕N =(M -N )∪(N -M ) ={1,2,3}∪{7,8,9,10} ={1,2,3,7,8,9,10}. ∴M ⊕N 中有7个元素. 答案:7个5.设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},其中x ∈R ,如果A ∩B =B ,求实数a 的取值范围.解:A ={0,-4},∵A ∩B =B ,∴B ⊆A . 由x 2+2(a +1)x +a 2-1=0, 得Δ=4(a +1)2-4(a 2-1)=8(a +1). (1)当a <-1时,Δ<0,B =∅⊆A ; (2)当a =-1时,Δ=0,B ={0}⊆A ; (3)当a >-1时,Δ>0,要使B ⊆A ,则A =B . ∴0,-4是方程x 2+2(a +1)x +a 2-1=0的两根, ∴⎩⎨⎧-2(a +1)=-4,a 2-1=0, 解之得a =1,综上可得a ≤-1或a =1.6.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)已知A ={1,2,3},B ={2,3,4},求A -B ;(2)差集A -B 和B -A 是否一定相等?说明你的理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )及B -(B -A ),由此你可以得到什么结论?(不必证明)解:(1)A -B ={1}.(2)不一定相等,由(1)知B -A ={4},∴B -A ≠A -B ,再如A ={1,2,3},B ={1,2,3}, A -B =∅,B -A =∅,此时A -B =B -A ,∴A-B与B-A不一定相等.(3)∵A-B={x|x≥6},B-A={x|-6<x≤4},∴A-(A-B)={x|4<x<6},B-(B-A)={x|4<x<6}.由此猜测一般对于两个集合有A-(A-B)=B-(B-A).。
新人教版高中数学必修第一册课时跟踪检测(二) 集合的表示
课时跟踪检测(二) 集合的表示A 级——学考合格性考试达标练1.下列说法中正确的是( )A .集合{x |x 2=1,x ∈R }中有两个元素B .集合{0}中没有元素C .13∈{x |x <23}D .{1,2}与{2,1}是不同的集合解析:选A {x |x 2=1,x ∈R }={1,-1};集合{0}是单元素集,有一个元素,这个元素是0;{x |x <23}={x |x <12},13>12,所以13∉{x |x {<23};根据集合中元素的无序性可知{1,2}与{2,1}是同一个集合.2.实数1不是下面哪一个集合中的元素( )A .整数集ZB .{x |x =|x |}C .{x ∈N |-1<x <1}D .⎩⎨⎧x ∈R ⎪⎪⎪⎭⎬⎫x -1x +1≤0 解析:选C 1不满足-1<x <1,故选C.3.下列集合的表示方法正确的是( )A .第二、四象限内的点集可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R }B .不等式x -1<4的解集为{x <5}C .{全体整数}D .实数集可表示为R解析:选D 选项A 中应是xy <0;选项B 的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x ;选项C 的“{}”与“全体”意思重复.4.已知M ={x |x -1<2},那么( )A .2∈M ,-2∈MB .2∈M ,-2∉MC .2∉M ,-2∉MD .2∉M ,-2∈M解析:选A 若x =2,则x -1=1<2,所以2∈M ;若x =-2,则x -1=-3<2,所以-2∈M .故选A.5.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( ) A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)},选D. 6.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________.解析:由题意可知集合B 是由A 中元素的平方构成的,故B ={4,9,16}.答案:{4,9,16}7.设集合A ={1,-2,a 2-1},B ={1,a 2-3a ,0},若A ,B 相等,则实数a =________.解析:由集合相等的概念得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2,解得a =1. 答案:18.设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}=________.解析:由题意知,-5是方程x 2-ax -5=0的一个根,所以(-5)2+5a -5=0,得a =-4,则方程x 2+ax +3=0,即x 2-4x +3=0,解得x =1或x =3,所以{x |x 2-4x +3=0}={1,3}.答案:{1,3}9.用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,的解集; (2)由所有小于13的既是奇数又是质数的自然数组成的集合;(3)方程x 2-4x +4=0的实数根组成的集合;(4)二次函数y =x 2+2x -10的图象上所有的点组成的集合;(5)二次函数y =x 2+2x -10的图象上所有点的纵坐标组成的集合.解:(1)解方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎩⎪⎨⎪⎧x =4y =-2 ,也可用列举法表示为{(4,-2)}. (2)小于13的既是奇数又是质数的自然数有4个,分别为3,5,7,11.可用列举法表示为{3,5,7,11}.(3)方程x 2-4x +4=0的实数根为2,因此可用列举法表示为{2},也可用描述法表示为{x ∈R |x 2-4x +4=0}.(4)二次函数y =x 2+2x -10的图象上所有的点组成的集合中,代表元素为有序实数对(x ,y ),其中x ,y 满足y =x 2+2x -10,由于点有无数个,则用描述法表示为{(x ,y )|y =x 2+2x -10}.(5)二次函数y =x 2+2x -10的图象上所有点的纵坐标组成的集合中,代表元素为y ,是实数,故可用描述法表示为{y |y =x 2+2x -10}.10.设y =x 2-ax +b ,A ={x |y -x =0},B ={x |y -ax =0},若A ={-3,1},试用列举法表示集合B .解:将y =x 2-ax +b 代入集合A 中的方程并整理,得x 2-(a +1)x +b =0.因为A ={-3,1},所以方程x 2-(a +1)x +b =0的两个实数根为-3,1.由根与系数的关系得⎩⎪⎨⎪⎧-3+1=a +1,-3×1=b ,解得⎩⎪⎨⎪⎧a =-3,b =-3,所以y =x 2+3x -3.将y =x 2+3x -3,a =-3代入集合B 中的方程并整理,得x 2+6x -3=0,解得x =-3±23,所以B ={-3-23,-3+23}.B 级——面向全国卷高考高分练1.集合{-1,0,1,2,3,4,5,6,7,8}用描述法可表示为( )A .{-1≤x ≤8}B .{x |-1≤x ≤8}C .{x ∈Z |-1≤x ≤8}D .{x ∈N |-1≤x ≤8}解析:选C 观察可知集合中的元素是从-1到8的连续整数,所以可以表示为{x ∈Z |-1≤x ≤8},选C.2.已知集合A ={x |x =2m -1,m ∈Z },B ={x |x =2n ,n ∈Z },且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A解析:选D ∵集合A 表示奇数集,集合B 表示偶数集,∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3应为偶数,即D 是错误的.3.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R ).选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C 集合A 中元素y 是实数,不是点,故选项B ,D 不对.集合B 的元素(x ,y )是点而不是实数,2∈B 不正确,所以A 错.4.(2019·襄阳高一检测)对于任意两个正整数m ,n ,定义运算“※”:当m ,n 都为偶数或奇数时,m ※n =m +n ;当m ,n 中一个为偶数,另一个为奇数时,m ※n =mn .在此定义下,集合M ={(a ,b )|a ※b =16}中的元素个数是( )A .18B .17C .16D .15解析:选B 因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,且集合M 中的元素是有序数对(a ,b ),所以集合M 中的元素共有17个,故选B.5.(2018·安庆市高一联考)已知集合A =⎩⎨⎧a ⎪⎪⎭⎬⎫65-a ∈N ,a ∈Z ,则A 可用列举法表示为________.解析:由65-a ∈N ,可知0<5-a ≤6,即-1≤a <5,又a ∈Z ,所以当a =-1时,65-a=1∈N ;当a =0时,65-a =65∉N ,当a =1时,65-a =32∉N ;当a =2时,65-a=2∈N ;当a =3时,65-a =3∈N ;当a =4时,65-a=6∈N .综上可得A ={-1,2,3,4}. 答案:{-1,2,3,4}6.定义P *Q ={ab |a ∈P ,b ∈Q },若P ={0,1,2},Q ={1,2,3},则P *Q 中元素的个数是________.解析:若a =0,则ab =0;若a =1,则ab =1,2,3;若a =2,则ab =2,4,6.故P *Q ={0,1,2,3,4,6},共6个元素.答案:67.已知集合A ={x ∈R |ax 2-3x +1=0,a ∈R }.(1)若集合A 中仅有一个元素,求实数a 的值;(2)若集合A 中有两个元素,求实数a 的取值范围;(3)若集合A 中至多有一个元素,求实数a 的取值范围.解:(1)当a =0时,x =13,符合题意; 当a ≠0时,Δ=(-3)2-4a =0,∴a =94. 综上,集合A 中仅含有一个元素时,a =0或a =94. (2)集合A 中含有两个元素,即关于x 的方程ax 2-3x +1=0有两个不相等的实数解, 所以a ≠0,且Δ=(-3)2-4a >0,解得a <94且a ≠0, 所以实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪a <94且a ≠0. (3)当a =0时,x =13,符合题意; 当a ≠0时,Δ=(-3)2-4a ≤0,即a ≥94. 所以实数a 的取值范围为⎩⎨⎧a ⎪⎪⎭⎬⎫a ≥94或a =0. C 级——拓展探索性题目应用练(2019·安庆高三二模)已知集合A ={x |x =3N +1,n ∈Z },B ={x |x =3N +2,n ∈Z },M ={x |x=6N+3,n∈Z}.(1)若m∈M,则是否存在a∈A,b∈B,使m=a+b成立?(2)对于任意a∈A,b∈B,是否一定存在m∈M,使a+b=m?证明你的结论.解:(1)设m=6k+3=3k+1+3k+2(k∈Z),令a=3k+1(k∈Z),b=3k+2(k∈Z),则m=a+b.故若m∈M,则存在a∈A,b∈B,使m=a+b成立.(2)不一定存在m∈M,使a+b=m,证明如下:设a=3k+1,b=3l+2,k,l∈Z,则a+b=3(k+l)+3,k,l∈Z.当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时存在m∈M,使a+b=m成立;当k+l =2p+1(p∈Z)时,a+b=6p+6∉M,此时不存在m∈M,使a+b=m成立.故对于任意a∈A,b∈B,不一定存在m∈M,使a+b=m.。
高中数学集合与常用逻辑用语1.1集合1.1.1第2课时集合的表示方法课件新人教B版必修第一册
③将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),故两直线的 交点组成的集合是{(0,1)}.
④解方程组xx+ -yy= =- 1,1, 得xy= =01, . ∴用列举法表示方程组xx+ -yy= =1-,1 的解集为{(0,1)}.
用列举法表示集合的 3 个步骤 (1)求出集合的元素. (2)把元素一一列举出来,且相同元素只能列举一次. (3)用花括号括起来.
{1,2,3,4} [∵x-2<3,∴x<5.又 x∈N*,∴x=1,2,3,4,故可表 示为{1,2,3,4}.]
2.描述法 一般地,如果属于集合 A 的任意一个元素 x 都具有性质 p(x),而 不属于集合 A 的元素都不具有这个性质,则性质 p(x)称为集合 A 的 一 个 特 征 性 质 . 此 时 , 集 合 A 可 以 用 它 的 特 征 性 质 p(x) 表 示 为 {x|p(x)} .这种表示集合的方法,称为特征性质描述法,简称为 描述法.
[跟进训练] 2.用描述法表示下列集合: (1)方程 x2+y2-4x+6y+13=0 的解集; (2)二次函数 y=x2-10 图像上的所有点组成的集合.
[解] (1)方程 x2+y2-4x+6y+13=0 可化为(x-2)2+(y+3)2= 0,解得 x=2,y=-3,
所以方程的解集为{(x,y)|x=2,y=-3}.
A [若 x=2,则 x-1=1< 2,所以 2∈M; 若 x=-2,则 x-1=-3< 2,所以-2∈M.故选 A.]
1234 5
3.已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素
的个数是( )
A.1
B.3
C.5
D.9
C [x-y∈{-2,-1,0,1,2}.]
高中新课程数学(新课标人教B版)必修一112《集合的表示方法》教案
1.1.2集合的表示方法一、学习目标:1.知识与技能:①理解列举法和特征性质描述法的实质,能运用他们表示集合。
②体验用集合语言表示文字语言的过程,尝试用集合语言表示集合的方法。
③集合语言是基本的数学语言,是数学交流所需要的语言之一,学习本节内容可以帮助我们提高学习数学的兴趣,树立良好的数学信心,进一步体会形式化表达在数学学习中的重要性。
2.过程与方法:①通过实例体会集合中条件对元素的描述和限制,从元素入手,正确理解集合。
②观察实例,感受集合语言在描述客观现实和数学对象中的意义。
二、相关知识连接:1.质数的概念。
2.奇数,偶数数学表达式的转化。
3.不等式与数轴之间的关系,数轴作为工具的重要性。
三、学习中应注意的问题:①注意a 与{}a 的区别,两者的性质不同一个是元素一个是集合,他们是属于的关系。
②注意Φ与{0}的区别,Φ是不含有任何元素的集合,{0}是含有0一个元素的集合。
③在用列举法表示集合时,一定不能犯如用{}实数集或{}R 这一类错误,因为大括号已经包含了“所有”的意思。
用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,他应该具有哪一些性质,从而准确的理解集合的意义。
例如:1.{(,)}x y y x =中的元素是点。
满足条件的二元方程的解集,是成对出现的。
2. {}x y x =中的元素是实数,是函数自变量的取值范围,等价于{0}x x ≥。
3. {}y y x =中的元素是函数值,也是实数,但是与上例不同,表示函数值的取值范围,等价于{0}y y ≥。
4. {}y x =表示单元素集合,方程的解。
四、讲授表示集合的方法有两种:列举法、特征性质描述法。
这两种表示方法分别适合表示哪一类集合?(通过学生看课本,了解了一部分,但不系统,需要一起归纳)1.列举的含义是把满足条件的元素列举出来,再结合集合的表达形式,例子见课本。
表示的分类:有限集:{0,1,2,3,4,5,6,7,8,9}A =能不能表示无限集?(只能表示存在规律的集合){0,2,4,6,8,}A n =2.描述法的含义用不同的语言形式描述出限制元素的条件,从而通过限制元素来表达集合。
2021_2022学年新教材高中数学1.1.1第2课时集合的表示方法课件新人教B版必修第一册
(6)这里集合的“{ }”已包含“所有”的意思.例如:{整数},即代表整数集Z,所
以不能写成{全体整数}.
微思考
用列举法可以表示无限集吗?
提示 可以.但构成集合的元素必须具有明显的规律,并且表示时要把元素
间的规律呈现清楚,如正整数集N+可表示为{1,2,3,4,5,6,…}.
②{y|y=x2+1}中的代表元素是y(二次函数y=x2+1中的因变量),表示的是该函数
的函数值构成的集合.由图易知(图略),y≥1,该集合就是{y|y≥1}.
③{(x,y)|y=x2+1}中的代表元素是(x,y),该集合可以理解为是满足y=x2+1的有序
实数对(x,y)的集合,也可以认为是坐标平面内满足y=x2+1的点(x,y)构成的集合.
系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关
注判别式在一元二次方程的实数根个数的讨论中的作用.
延伸探究(1)本例中,若集合A中含有2个元素,试求k的取值集合.
(2)本例中,若集合A中至多有一个元素,试求k的取值集合.
≠ 0,
解 (1)由题意得
= (-8)2 -4 × × 16 > 0,
2021
第一章
第2课时 集合的表示方法
内
容
索
引
01
课前篇 自主预习
02
课堂篇 探究学习
课标阐释
1.掌握集合的两种表示方法——列举法和描述法.(数学抽象)
2.能够利用集合的两种表示方法表示一些简单的集合.(直观想象)
3.理解集合的特征性质,会用集合的特征性质描述一些集合,如数集、解集
2020高中数学 1.1.2集合的表示方法同步检测 新人教B版必修1
第一章 1.1 1.1.2集合的表示方法一、选择题1.(2014~2015学年度山西太原市高一上学期期中测试)已知集合A ={x |x (x -2)=0},那么( )A .0∈AB .2∉AC .-2∈AD .0∉A[答案] A[解析] ∵A ={x |x (x -2)=0}={0,2},∴0∈A,2∈A ,-2∉A ,故选A . 2.下列集合表示内容中,不同于另外三个的是( ) A .{x |x =1} B .{y |(y -1)2=0} C .{x |x -1=0} D .{x =1}[答案] D[解析] A 、B 、C 三个选项表示的集合中含有一个元素1,而D 选项中集合的表示法是错误的.3.集合{x ∈N |-1<x <112}的另一种表示方法是( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}[答案] C[解析] ∵x ∈N ,-1<x <112,∴x =0,1,2,3,4,5,故选C .4.集合A ={(x ,y )|x +y ≤1,x ∈N ,y ∈N }中元素的个数是( ) A .1 B .2 C .3 D .4[答案] C[解析] ∵A ={(x ,y )|x +y ≤1,x ∈N ,y ∈N }, ∴x =0,y =0,或x =0,y =1,或x =1,y =0, ∴A ={(0,0),(0,1),(1,0)}.5.(2014~2015学年度西藏拉萨中学高一上学期月考)已知集合A ={x |ax 2-3x +2=0,a ∈R },若A 中只有一个元素,则a 的值是( )A .0B .98C .0或98D .-98[答案] C[解析] 当a =0时,方程ax 2-3x +2=0只有一个实数根,满足题意;当a ≠0时,由题意得Δ=(-3)2-8a =0,∴a =98,故选C .6.由大于-3且小于11的偶数所组成的集合是( ) A .{x |-3<x <11,x ∈Q } B .{x |-3<x <11}C .{x |-3<x <11,x =2k ,k ∈N }D .{x |-3<x <11,x =2k ,k ∈Z } [答案] D[解析] 选项A 表示的是所有大于-3且小于11的有理数;选项B 表示的是所有大于-3且小于11的实数;选项C 表示的集合中不含有-2这个偶数,故选D .二、填空题7.用列举法表示下列集合: (1)A ={x ∈N ||x |≤2}=________; (2)B ={x ∈Z ||x |≤2}=________;(3)C ={(x ,y )|x 2+y 2=4,x ∈Z ,y ∈Z }=________. [答案] (1){0,1,2} (2){-2,-1,0,1,2} (3){(2,0),(-2,0),(0,2),(0,-2)} [解析] (1)∵|x |≤2,∴-2≤x ≤2, 又∵x ∈N ,∴x =0,1,2,故A ={0,1,2}. (2)∵|x |≤2,∴-2≤x ≤2, 又∵x ∈Z ,∴x =-2,-1,0,1,2, 故B ={-2,-1,0,1,2}. (3)∵x 2+y 2=4,x ∈Z ,y ∈Z ,∴x =-2,y =0,x =2,y =0,x =0,y =2,x =0,y =-2, 故C ={(2,0),(-2,0),(0,2),(0,-2)}.8.设A 、B 为两个实数集,定义集合A +B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则A +B 中元素的个数为________.[答案] 4[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4; 当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5; 当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.所以,A+B={3,4,5,6},有4个元素.三、解答题9.用适当的方法表示下列集合:(1)方程x(x2+2x+1)=0的解集;(2)在自然数集内,小于1 000的奇数构成的集合;(3)不等式x-2>6的解的集合;(4)大于0.5且不大于6的自然数的全体构成的集合.[解析] (1)∵方程x(x2+2x+1)=0的解为0和-1,∴解集为{0,-1}.(2){x|x=2n+1,且x<1 000,n∈N}.(3){x|x>8}.(4){1,2,3,4,5,6}.10.用适当方法表示下列集合:(1)由所有非负奇数组成的集合;(2)由所有小于10的奇数且又是质数的自然数组成的集合;(3)平面直角坐标系中,不在x轴上的点的集合.[解析] (1){x|x=2n+1,n∈N}.(2){3,5,7}.(3){(x,y)|x∈R,y∈R且y≠0}.一、选择题1.集合{y|y=x,-1≤x≤1,x∈Z}用列举法表示是( )A.{-1,0,1} B.{0,1}C.{-1,0} D.{-1,1}[答案] A[解析] 集合中的元素是y,而y又是通过x来表示的,满足条件的x有-1,0,1,将所有相应的y值一一写到大括号中,便得到用列举法表示的集合.2.集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},(A、B中x∈R,y∈R).关于元素与集合关系的判断都正确的是( )A.2∈A,且2∈BB.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈BD.(3,10)∈A,且2∈B[答案] C[解析] 集合A 中元素y 是实数,不是点,故选项B ,D 不对.集合B 的元素(x ,y )是点而不是实数,2∈B 不正确,所以选项A 错.选项C 经验证正确.3.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10[答案] D[解析] x =5,y =1,2,3,4;x =4,y =1,2,3;x =3,y =1,2;x =2,y =1,共10个. 4.已知A ={1,2,3},B ={2,4},定义集合A 、B 间的运算A *B ={x |x ∈A ,且x ∉B },则集合A *B 等于( )A .{1,2,3}B .{2,3}C .{1,3}D .{2}[答案] C[解析] ∵A *B 为所有属于集合A 但不属于集合B 的元素组成的集合, ∴只要找到集合A 中的元素,然后从中除去属于集合B 的元素即可. ∵属于集合A 的元素是1,2,3,但2属于集合B ,故要去掉. ∴A *B ={1,3},故选C . 二、填空题5.集合⎩⎨⎧⎭⎬⎫14,25,12,47,58可用特征性质描述法表示为__________.[答案] {x |x =nn +3,n ∈N +,n ≤5}[解析] 将分母改写为连续自然数,考虑分子与分母间的关系.14、25、36、47、58,可得nn +3,n ∈N +,n ≤5.6.若集合A ={x ∈Z |-2≤x ≤2},B ={y |y =x 2+2 000,x ∈A },则用列举法表示集合B =____________.[答案] {2 000,2 001,2 004}[解析] 由A ={x ∈Z |-2≤x ≤2}={-2,-1,0,1,2},所以x 2∈{0,1,4},x 2+2 000的值为2 000,2 001,2 004,所以B ={2 000,2 001,2 004}.三、解答题7.(1)用描述法表示图中阴影部分(不含边界)的点构成的集合;(2)用图形表示不等式组⎩⎪⎨⎪⎧3x -2≥12x -1<5的解集.[解析] (1){(x ,y )|0<x <2,0<y <1}.(2)由⎩⎪⎨⎪⎧3x -2≥12x -1<5,得⎩⎪⎨⎪⎧x ≥1x <3.用图形可表示为:8.已知集合A ={x ∈R |ax 2-3x +1=0,a ∈R },若A 中元素最多只有一个,求a 的取值范围.[解析] 当a =0时,原方程为-3x +1=0,x =13,符合题意;当a ≠0时,方程ax 2-3x +1=0为一元二次方程, 由题意得Δ=9-4a ≤0,∴a ≥94.即当a ≥94时,方程有两个相等的实数根或无实根,综上所述,a 的取值范围为a =0或a ≥94.。
(新课程)高中数学1.1.2 集合的表示方法评估训练 新人教B版必修1
(新课程)高中数学《1.1.2 集合的表示方法》评估训练新人教B版必修1双基达标限时20分钟1.集合{x∈N|x-3<2}的另一种表示方法是( ).A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析由x-3<2得x<5且x∈N,∴x可取0,1,2,3,4.答案 A2.集合{(x,y)|y=2x-1}表示( ).A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合解析集合的代表元素是点,且满足y=2x-1,即在y=2x-1图象上的所有点组成的集合.答案 D3.由大于-3且小于11的偶数所组成的集合是( ).A.{x|-3<x<11,x∈Q}B.{x|-3<x<11}C.{x|-3<x<11,x=2k,k∈N}D.{x|-3<x<11,x=2k,k∈Z}解析设大于-3且小于11的偶数为x,则-3<x<11且x是偶数,即x=2k,k∈Z.答案 D4.集合A={(x,y)|x+y≤1,x∈N,y∈N}中元素的个数是( ).A.1 B.2C.3 D.4解析∵x∈N,y∈N,且x+y≤1,∴当x=0时,y=0或1;当x=1时,y=0.故A={(0,0),(0,1),(1,0)}.答案 C5.若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示B=________.解析∵t∈A,且x=t2,∴x=4,9,16.答案{4,9,16}6.用另一种方法表示下列集合: (1){-3,-1,1,3,5};(2)已知M ={2,3},P ={(x ,y )|x ∈M ,y ∈M },写出集合P .解 (1)集合中的元素为大于等于-3,小于等于5的奇数,可表示为{x |x =2k -1,k ∈Z 且-1≤k ≤3}.(2)x ∈M ,y ∈M ,且M ={2,3},则可取值(2,2),(2,3),(3,2),(3,3). ∴P ={(2,2),(2,3),(3,2),(3,3)}.综合提高限时25分钟 7.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( ).A .(5,4)B .{5,-4}C .{(-5,4)}D .{(5,-4)}解析 由⎩⎪⎨⎪⎧x +y =1x -y =9得⎩⎪⎨⎪⎧x =5y =-4,而解集为点集,故选D.答案 D8.集合P ={x |x =2k ,k ∈Z },Q ={x |x =2k +1,k ∈Z },R ={x |x =4k +1,k ∈Z },a ∈P ,b ∈Q ,则有( ).A .a +b ∈PB .a +b ∈QC .a +b ∈RD .a +b 不属于P ,Q ,R 中任意一个解析 设a =2m (m ∈Z ),b =2n +1(n ∈Z ),∴a +b =2m +2n +1=2(m +n )+1. 又m +n ∈Z ,故与集合Q 中元素特征x =2k +1(k ∈Z )相符合,说明a +b ∈Q ,故选B. 答案 B9.用列举法表示D ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N }=________. 解析 由y =-x 2+6,x ∈N ,y ∈N ,∴⎩⎪⎨⎪⎧x =0y =6,⎩⎪⎨⎪⎧x =1y =5,⎩⎪⎨⎪⎧x =2y =2∴D ={(0,6),(1,5),(2,2)}. 答案 {(0,6),(1,5),(2,2)}10.设A ={2,3,a 2+2a -3},B ={|a +3|,2},已知5∈A ,且5∉B ,则a 为________. 解析 ∵5∈A ,∴a 2+2a -3=5,∴a =2或a =-4,又5∉B ,∴|a +3|≠5,∴a ≠2且a ≠-8,∴a =-4.答案 -411.用描述法表示下列集合:(1)方程2x +y =5的解集; (2)小于10的所有非负整数的集合; (3)方程ax +by =0(ab ≠0)的解;(4)数轴上离开原点的距离大于3的点的集合; (5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)方程组⎩⎪⎨⎪⎧x +y =1,x -y =1,的解的集合;(7){1,3,5,7,…}; (8)x 轴上所有点的集合; (9)非负偶数;(10)能被3整除的整数. 解 (1){(x ,y )|2x +y =5}; (2){x |0≤x <10,x ∈Z }; (3){(x ,y )|ax +by =0(ab ≠0)}; (4){x ||x |>3}; (5){(x ,y )|xy <0};(6){(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =1x -y =1; (7){x |x =2k -1,k ∈N +}; (8){(x ,y )|x ∈R ,y =0}; (9){x |x =2k ,k ∈N }; (10){x |x =3k ,k ∈Z }.12.(创新拓展)已知集合A ={x |ax 2-3x +2=0,x ∈R ,a ∈R },若A 中元素至多只有一个,求a 的取值范围.解 A 中元素至多只有一个,包括两种情况:A 中只有一个元素,A 中没有元素. (1)A 中只有一个元素,也包括两种情况: ①当a =0时,A ={23},符合题意;②当a ≠0时,则必须且只需Δ=(-3)2-4×a ×2=0,即a =98.(2)A 中没有元素,此时应有:⎩⎪⎨⎪⎧a ≠0,Δ=9-8a <0.a >98.9 8或a=0.∴a的取值范围是a≥。
高中数学 第一章 集合 1.1.2 集合的表示方法学案 新人教B版必修1
1.1.2 集合的表示方法[学习目标] 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.[知识链接]1.质数又称素数,指在大于1的自然数中,除了1和此整数自身外,不能被其他正整数整除的数.2.函数y=x2-2x-1的图象与x轴有2个交点,函数y=x2-2x+1的图象与x轴有1个交点,函数y=x2-x+1的图象与x轴没有交点.[预习导引]1.列举法把有限集合中的所有元素都列举出来,写在花括号“{__}”内表示这个集合的方法.2.描述法(1)集合的特征性质如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质.(2)特征性质描述法集合A可以用它的特征性质p(x)描述为{x∈I|p(x)},它表示集合A是由集合I中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法.要点一用列举法表示集合例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.解(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.规律方法对于元素个数较少的集合或元素个数不确定但元素间存在明显规律的集合,可采用列举法.应用列举法时要注意:①元素之间用“,”而不是用“、”隔开;②元素不能重复.跟踪演练1 用列举法表示下列集合:(1)我国现有的所有直辖市;(2)绝对值小于3的整数的集合;(3)一次函数y =x -1与y =-23x +43的图象交点组成的集合. 解 (1){北京,上海,天津,重庆};(2){-2,-1,0,1,2};(3)方程组⎩⎪⎨⎪⎧ y =x -1,y =-23x +43 的解是⎩⎪⎨⎪⎧ x =75,y =25,所求集合为⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫75,25. 要点二 用描述法表示集合例2 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解 (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点的集合可表示为{(x ,y )|xy =0}.规律方法 用描述法表示集合时应注意:①“竖线”前面的x ∈R 可简记为x ;②“竖线”不可省略;③p (x )可以是文字语言,也可以是数学符号语言,能用数学符号表示的尽量用数学符号表示;④同一个集合,描述法表示可以不唯一.跟踪演练2 用描述法表示下列集合:(1)所有被5整除的数;(2)方程6x 2-5x +1=0的实数解集;(3)集合{-2,-1,0,1,2}.解 (1){x |x =5n ,n ∈Z };(2){x |6x 2-5x +1=0};(3){x ∈Z ||x |≤2}.要点三 列举法与描述法的综合运用例3 集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .解 (1)当k =0时,原方程为16-8x =0.∴x =2,此时A ={2}.(2)当k ≠0时,由集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根.则Δ=64-64k =0,即k =1.从而x 1=x 2=4,∴集合A ={4}.综上所述,实数k 的值为0或1.当k =0时,A ={2};当k =1时,A ={4}.规律方法 1.(1)本题在求解过程中,常因忽略讨论k 是否为0而漏解.(2)kx 2-8x +16=0的二次项系数k 不确定,需分k =0和k ≠0展开讨论,从而做到不重不漏.2.解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点.跟踪演练3 把本例中条件“有一个元素”改为“有两个元素”,求实数k 取值范围的集合. 解 由题意可知方程kx 2-8x +16=0有两个不等实根.∴⎩⎪⎨⎪⎧ k ≠0,Δ=64-64k >0,解得k <1,且k ≠0.所以k 取值范围的集合为{k |k <1,且k ≠0}.1.集合{x ∈N *|x -3<2}用列举法可表示为( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}答案 B解析 {x ∈N *|x -3<2}={x ∈N *|x <5}={1,2,3,4}.2.已知集合A ={x ∈N |-3≤x ≤3},则有( )A.-1∈AB.0∈AC.3∈AD.2∈A答案 B 解析 ∵0∈N 且-3≤0≤3,∴0∈A .3.用描述法表示方程x <-x -3的解集为________.答案 {x |x <-32} 解析 ∵x <-x -3,∴x <-32. ∴解集为{x |x <-32}. 4.已知x ∈N ,则方程x 2+x -2=0的解集用列举法可表示为________.答案 {1}解析 由x 2+x -2=0,得x =-2或x =1.又x ∈N ,∴x =1.5.用适当的方法表示下列集合.(1)方程x (x 2+2x +1)=0的解集;(2)在自然数集内,小于1 000的奇数构成的集合;(3)不等式x -2>6的解的集合;(4)大于0.5且不大于6的自然数的全体构成的集合.解 (1)∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};(2){x |x =2n +1,且x <1 000,n ∈N };(3){x |x >8}; (4){1,2,3,4,5,6}.1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则.(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.。
高中数学课时跟踪检测二集合的表示方法新人教B版必修1
课时跟踪检测(二) 集合的表示方法层级一 学业水平达标1.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形解析:选D 集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.2.下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x |x 2=1}C .{1}D .{y |(y -1)2=0}解析:选B {x |x 2=1}={-1,1},另外三个集合都是{1},选B.3.已知M ={x |x -1<2},那么( )A .2∈M ,-2∈MB .2∈M ,-2∉MC .2∉M ,-2∉MD .2∉M ,-2∈M解析:选A 若x =2,则x -1=1<2,所以2∈M ;若x =-2,则x -1=-3<2,所以-2∈M .故选A.4.下列集合的表示方法正确的是( )A .第二、四象限内的点集可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R}B .不等式x -1<4的解集为{x <5}C .{全体整数}D .实数集可表示为R解析:选D 选项A 中应是xy <0;选项B 的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x ;选项C 的“{}”与“全体”意思重复.5.方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧ x =5,y =-4,故解集为{(5,-4)},选D.6.已知集合M ={x |x =7n +2,n ∈N},则2 011________M,2 016________M .(填“∈”或“∉”)解析:∵2 011=7×287+2,2 016=7×288.∴2 011∈M,2 016∉M .答案:∈∉7.设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}=________.解析:由题意知,-5是方程x 2-ax -5=0的一个根,所以(-5)2+5a -5=0,得a =-4,则方程x 2+ax +3=0,即x 2-4x +3=0,解得x =1或x =3,所以{x |x 2-4x +3=0}={1,3}.答案:{1,3}8.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. 解析:由题意可知集合B 是由A 中元素的平方构成的,故B ={4,9,16}.答案:{4,9,16}9.用适当的方法表示下列集合:(1)一年中有31天的月份的全体;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合.解: (1){1月,3月,5月,7月,8月,10月,12月}.(2)用描述法表示该集合为M ={(x ,y )|y =-x +4,x ∈N ,y ∈N},或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.10.含有三个实数的集合A =⎩⎨⎧⎭⎬⎫a 2,b a ,a ,若0∈A 且1∈A ,求a 2 016+b 2 016的值. 解:由0∈A ,“0不能做分母”可知a ≠0,故a 2≠0,所以b a =0,即b =0.又1∈A ,可知a 2=1或a =1.当a =1时,得a 2=1,由集合元素的互异性,知a =1不合题意.当a 2=1时,得a =-1或a =1(由集合元素的互异性,舍去).故a =-1,b =0,所以a 2 016+b 2 016的值为1.层级二 应试能力达标1.下列命题中正确的是( )A .集合{x |x 2=1,x ∈R}中有两个元素B .集合{0}中没有元素 C.13∈{x |x <23}D .{1,2}与{2,1}是不同的集合解析:选A {x |x 2=1,x ∈R}={1,-1};集合{0}是单元素集,有一个元素,这个元素是0;{x |x <23}={x |x <12},13>12,所以13∉{x |x <23};根据集合中元素的无序性可知{1,2}与{2,1}是同一个集合.。
高中数学:人教B版必修1学业分层测评2 集合的表示方法 (1)
学业分层测评(二)集合的表示方法(建议用时:45分钟)[学业达标]一、选择题1.把集合{x|x2-3x+2=0}用列举法表示为()A.{x=1,x=2} B.{x|x=1,x=2}C.{x2-3x+2=0} D.{1,2}【解析】解方程x2-3x+2=0可得x=1或2,所以集合{x|x2-3x+2=0}用列举法可表示为{1,2}.【答案】 D2.(2016·石家庄高一检测)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4 B.5C.6 D.7【解析】由题意,B={2,3,4,5,6,8},共有6个元素,故选C.【答案】 C3.(2016·漳州高一检测)下列各组两个集合M和N表示同一集合的是() A.M={π},N={3.141 59}B.M={2,3},N={(2,3)}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={x|x2+1=0},N=∅【解析】对于A,∵π≠3.141 59,∴{π}≠{3.141 59}.对于B,前者包含2个元素,而后者只含一个元素,是个点.对于C,前者是直线x+y=1上点的集合,而后者是函数y=-x+1的值域.对于D,∵x2+1=0无解,∴{x|x2+1=0}=∅,故选D.【答案】 D4.(2016·贵阳高一检测)设集合A={-2,0,1,3},集合B={x|-x∈A,1-x∉A},则集合B中元素的个数为() 【导学号:60210006】A.1 B.2C.3 D.4【解析】若x∈B,则-x∈A,∴x的可能取值为:2,0,-1,-3,当2∈B时,则1-2=-1∉A,∴2∈B;当0∈B时,则1-0∈A,∴0∉B;当-1∈B时,则1-(-1)=2∉A,∴-1∈B;当-3∈B时,则1-(-3)=4∉A,∴-3∈B.综上,B={-3,-1,2},所以集合B含有的元素个数为3,故选C.【答案】 C5.已知P={x|2<x<k,x∈N},若集合P中恰有3个元素,则()A.5<x<6 B.5≤x<6C.5<x≤6 D.5≤x≤6【解析】因为P中恰有3个元素,所以P={3,4,5},可得5<k≤6,故选C.【答案】 C二、填空题6.已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B 应为________.【解析】(-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.【答案】{0,1,4}7.已知集合A={x|x2+2x+a=0},若1∈A,则A=________.【解析】把x=1代入方程x2+2x+a=0可得a=-3,解方程x2+2x-3=0可得A={-3,1}.【答案】{-3,1}8.(2016·松原高一检测)若2∉{x|x-a<0},则实数a的取值集合是________.【解析】由题意,{x|x-a<0}={x|x<a},∵2∉{x|x-a<0},∴a≤2,∴实数a的取值集合是{a|a≤2}.【答案】{a|a≤2}三、解答题9.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.【解】(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x =2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N且x<1 000}.(3)“二次函数y=x2-10图象上的所有点”用描述法表示为{(x,y)|y=x2-10}.10.(2016·宁德高一检测)若-3∈{a-3,2a-1,a2+1},求实数a的值.【解】∵-3∈{a-3,2a-1,a2+1},又a2+1≥1,∴-3=a-3,或-3=2a-1,解得a=0,或a=-1,当a=0时,{a-3,2a-1,a2+1}={-3,-1,1},满足集合三要素;当a=-1时,{a-3,2a-1,a2+1}={-4,-3,2},满足集合三要素;∴a=0或-1.[能力提升]1.集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为()A.3 B.4C.11 D.12【解析】C={1,2,3,4,5,6,8,9,10,12,15},故选C.【答案】 C2.已知集合A={2,0,1,4},B={k|k∈R,k2-2∈A,k-2∉A},则集合B中所有的元素之和为()A.2 B.-2C.0 D. 2【解析】若k2-2=2,得k=2或k=-2,当k=2时,k-2=0不满足条件,当k=-2时,k-2=-4,满足条件;若k2-2=0,得k=±2,显然满足条件;若k 2-2=1,得k =±3,显然满足条件;若k 2-2=4,得k =±6,显然满足条件.所以集合B 中的元素为-2,±2,±3,±6,所以集合B 中的元素之和为-2,则选B.【答案】 B3.已知集合M ={a,2,3+a },集合N ={3,2,a 2},若M =N ,则a =( )【导学号:60210007】A .1B .3C .0D .0或1【解析】 因为集合M 与集合N 相等.所以⎩⎨⎧ a =3,3+a =a 2,或⎩⎨⎧ a =a 2,3+a =3,对于⎩⎨⎧ a =3,3+a =a 2,无解; 对于⎩⎨⎧ a =a 2,3+a =3,解得a =0, 综上可知a =0.【答案】 C4.设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪ 62+x ∈N , (1)试判断元素1和2与集合B 的关系;(2)用列举法表示集合B .【解】 (1)当x =1时,62+1=2∈N ;当x =2时,62+2=32∉N ,所以1∈B,2∉B .(2)令x =0,1,4代入62+x ∈N 检验,可得B ={0,1,4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(二) 集合的表示方法
层级一 学业水平达标
1.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .等腰三角形
解析:选D 集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互
不相等的,故选D.
2.下列集合中,不同于另外三个集合的是( )
A .{x |x =1}
B .{x |x 2
=1} C .{1} D .{y |(y -1)2=0}
解析:选B {x |x 2
=1}={-1,1},另外三个集合都是{1},选B.
3.已知M ={x |x -1<2},那么( )
A .2∈M ,-2∈M
B .2∈M ,-2∉M
C .2∉M ,-2∉M
D .2∉M ,-2∈M
解析:选A 若x =2,则x -1=1<2,所以2∈M ;若x =-2,则x -1=-3<2,所以
-2∈M .故选A.
4.下列集合的表示方法正确的是( )
A .第二、四象限内的点集可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R}
B .不等式x -1<4的解集为{x <5}
C .{全体整数}
D .实数集可表示为R
解析:选D 选项A 中应是xy <0;选项B 的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x ;选项C 的“{}”与“全体”意思重复.
5.方程组⎩⎪⎨
⎪⎧
x +y =1,
x2-y2=9
的解集是( )
A .(-5,4)
B .(5,-4)
C .{(-5,4)}
D .{(5,-4)}
解析:选D 解方程组⎩
⎪⎨
⎪⎧
x +y =1,
x2-y2=9,得⎩
⎪⎨
⎪⎧
x =5,
y =-4,故解集为{(5,-4)},选D.
”
∈“填(.M 2 016________M,2 011________,则N}∈n ,2+n 7=x |x {=M .已知集合6或“∉”)
解析:∵2 011=7×287+2,2 016=7×288.
∴2 011∈M,2 016∉M .
答案:∈∉
7.设-5∈{x |x 2
-ax -5=0},则集合{x |x 2
+ax +3=0}=________.
解析:由题意知,-5是方程x 2
-ax -5=0的一个根,
所以(-5)2
+5a -5=0,得a =-4,
则方程x 2
+ax +3=0,即x 2
-4x +3=0,
解得x =1或x =3,
所以{x |x 2
-4x +3=0}={1,3}.
答案:{1,3}
8.若A ={-2,2,3,4},B ={x |x =t 2
,t ∈A },用列举法表示集合B 为________.
解析:由题意可知集合B 是由A 中元素的平方构成的,故B ={4,9,16}.
答案:{4,9,16}
9.用适当的方法表示下列集合: (1)一年中有31天的月份的全体;
(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合.
解: (1){1月,3月,5月,7月,8月,10月,12月}.
(2)用描述法表示该集合为M ={(x ,y )|y =-x +4,x ∈N ,y ∈N},或用列举法表示该集合
为{(0,4),(1,3),(2,2),(3,1),(4,0)}.
10.含有三个实数的集合A =⎩
⎨⎧⎭⎬⎫a2,b a ,a ,若0∈A 且1∈A ,求a 2 016+b 2 016
的值.
解:由0∈A ,“0不能做分母”可知a ≠0,故a 2
≠0,所以b a
=0,即b =0.
又1∈A ,可知a 2
=1或a =1.
当a =1时,得a 2
=1,由集合元素的互异性,知a =1不合题意. 当a 2
=1时,得a =-1或a =1(由集合元素的互异性,舍去).
故a =-1,b =0,所以a
2 016
+b
2 016
的值为1.
层级二 应试能力达标
1.下列命题中正确的是( )
A .集合{x |x 2
=1,x ∈R}中有两个元素
B .集合{0}中没有元素
C.13∈{x |x <23}
D .{1,2}与{2,1}是不同的集合
解析:选A {x |x 2
=1,x ∈R}={1,-1};集合{0}是单元素集,有一个元素,这个元素是0;{x |x <23}={x |x <12},13>12,所以13∉{x |x <23};根据集合中元素的无序性
可知{1,2}与{2,1}是同一个集合.。