辽宁省本溪市2009—2010学年九年级上期中数学质量抽测试题含答案

合集下载

辽宁省本溪市九年级上学期期中数学试卷

辽宁省本溪市九年级上学期期中数学试卷
17. (10分) (2017八下·长春期末) 解下列方程:
(1)

(2)

18. (5分) 在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.
x
﹣1
-
0
1
2
3
y
﹣2

1
4
2
1

﹣2
14. (1分) (2019九下·衡水期中) 廊桥是我国古老的文化遗产 如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为 ,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是________米 精确到1米
(2) 如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
(3) PA、PB、PC满足的等量关系为________.
23. (10分) (2017·江汉模拟) 某小区为了绿化环境,计划分两次购进A,B两种花草,第一次分别购进A,B两种花草30棵和15棵,共花费675元;第二次分别购进A,B两种花草12棵和5棵,共花费265元(两次购进的A、B两种花草价格均分别相同).
A . 1
B . 5
C . 6
D . 4
6. (2分) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a-b+c<0,其中正确的个数( )

2009~2010学年度第一学期九年级数学期中模

2009~2010学年度第一学期九年级数学期中模

P2009~2010学年度第一学期九年级数学期中模拟卷一、选择题(每小题3分,共24分) 1、下列各式中计算正确的是( )A 、15)5)(3(259)25)(9(=--=-⨯-=--B 、m m 482=(m ﹥0)C 、5323222=+=+D 、99140414041404122=⨯=+⨯-=- 2、下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y A 、1个; B 、2个; C 、3个; D 、4个3、如图1,点0是△ABC 的内心,若∠A=50°,则∠BOC 等于( ) A 、110° B 、115° C 、120° D 、125°4、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( )A.8B.10C.8或10D.不能确定 5、若x 2-6x-16与2x+4互为相反数,则x 的值为( ) A 、-2 B 、-10 C 、2 D 、-2或6 6、钟表上的时针经过4小时旋转了( ) A 、90° B 、80° C 、150° D 、120°7、如图2,AB 是⊙0的直径,P 是AB 延长线上一点,PC 切⊙O 于C ,PC=3,PB=1,则⊙O 的半径等于( ) A 、25B 、3C 、4D 、29ABCO图18、已知一弧长为m 的弧所对的圆周角为120°,那么它所对的弦长为( ) A 、m π433 B 、m π423 C 、m π233 D 、m π223 二、填空题(每小题3分,共30分) 1、已知二次函数232)1(+--=m m xm y 的图象开口向上,则m=_________.2、已知x=1是方程x 2-ax+4=0的一个根,则=-12a ________.3、两圆半径分别为2和5,若两圆相外切,则圆心距为_________.4、若用半径为R 的圆形桌布将边长为40㎝的正方形餐桌盖住,则R 的最小值为_________.5、在等腰梯形、矩形、圆、角、等边三角形中,既是轴对称图形又是中心对称图形的有_________个.6、如图4,⊙O 的弦AB 垂直于直径MN ,C 若OA=5㎝,CN=2㎝,则AB=_________.7、已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是_________.8、圆锥的底面直径是80㎝,母线长90㎝,则它 的侧面积为_________.9、如图,PQ=3,以PQ 为直径的圆与一个以5为半径的圆相切于点P ,正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与CD 切于点Q ,则AB=_________.10、如图,在ΔABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则_________.三、计算题(每小题5分,共10分) 1、344831214122--+ 2、2)152()521)(521(--+-四、解方程(每小题5分,共10分)1、用配方法解方程x 2+8x -2=02、2x 2+8x-1=0五、已知关于x 的kx 2+2x -1=0有实数根.(1)求k 的取值范围 (2)当k =2时,请用公式法解此方程六、如图,在平面直角坐标系中,⊙C 与y 轴相切,且C 点坐标为(1,0),直线l 过点A (—1,0),与⊙C 相切于点D ,求直线l 的解析式.(6分)七、某商店以16元/支的价格进了一批钢笔,如果以20元/支的价格售出,每月可以卖出200支,而且如果每支上涨1元就少卖10支.现在商店店主希望这种钢笔当月利润要达到1350元,求钢笔应该上涨多少元?该月售出多少支?在此情况下,如果为了减少货物的积压,你认为应该定价为多少元?(6分)八、如图,在△ABC 中,BC=6㎝,以点A 为圆心,3㎝为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点, 且∠EPF=40°,求图中阴影部分的面积.(6九、如图,⊙C 经过原点且与两坐标轴分别交于点A 和B ,点A 的坐标为(0,4),点B 的坐标为(34,0 ),解答下列各题:(12分) 1、求线段AB 的长;2、求⊙C 的半径及圆心C 的坐标;3、在⊙C 上是否存在一点P ,使得△POB 是等腰三角形?若存在, (1)请求出P 点的坐标,(2)求出∠BOP参考答案一、选择题1、D 2、B 3、B 4、B 5、D 6、D 7、C 8、A二、填空题1、3 2、62 3、7 4、220cm 5、2 6、8cm 7、30°或150° 8、3600πcm 2 9、6 10、4.8三、计算题 1、38- 2、5440+- 四、解方程 1、234±-=x 2、2234±-=x 五、 (1)k ≥-1 (2)231±-=x 六、3333+=x y 七、应该上涨5元或11元,涨5元售出150支,涨11元售出90支.为了减少货物积压,应定价25元/支. 八、(9-2π)cm 2九、1、AB=8 2、r=4 C(32,2) 3、P 1(32,6),∠BOP 1=60°;P 2(32,-2),∠BOP 2=30°。

辽宁省本溪市2010年中考数学试卷(含答案)

辽宁省本溪市2010年中考数学试卷(含答案)

222010年本溪市初中毕业生学业考试数学试卷(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分) A .-8 B.8 C.±8 D.-81 2.在平面直角坐标系中点A (-2,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 3. 不等式2x-4≥0的解集在数轴上表示为A. B. C. D. 4.一个正方体的平面展开图如图所示,将它折成正方体后“保”字的对面是 A. 碳 B.低 C.环 D.色(第4题图)5.八边形的内角和是A.360°B. 720°C.1080°D. 1440°6. 一个不透明的布袋中装着只有颜色不同的红、黄、白色三种小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是61,则估计黄色小球的数目是A.2个B.20个C.40个D.48个7.如图所示,已知圆锥的母线长6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的圆心角是 A.30° B.60° C.90° D.180°8.如图所示,若菱形OABC 的顶点O 为坐标原点,点C 在x 轴上,直线y=x 经过点A ,菱形面积是2,则经过点B 的反比例函数表达式为个图形中共有 个三角形三、解答题(17题6分、18题8分,共14分) 17.8 +3×(-31)-2-(2010-π)0-4sin45°18.化简求值:当a=2,求代数式169622-++a a a ÷823-+a a - 42+a a的值.四、解答题(每题10分,共20分)19. 如图所示,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,请按要求完成下列各题:(1)将△ABC 沿着BC 边所在的直线翻折180°,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1.请依次画出△A 1BC 、△A 2BC 1.(2)求△A 1BC 旋转到△A 2BC 1过程中所扫过的面积(计算结果用π表示)(第20题图)20. 甲、乙二人玩抽牌游戏,甲手中的牌是2、2、3、4,乙手中的牌是3、4、5、5,两人分别从对方牌中任意抽取一张(彼此看不到对方的牌面),然后将牌上的数字相加,若和为奇数则甲赢,否则乙赢.(1)请用“列表法”或“树状图法”求出甲赢的概率.(2)这个游戏公平吗?若公平,请说明理由;若不公平,请在甲、乙手中各选择一张牌进行交换使游戏公平,写出一种方案即可(不必说明理由).五、解答题(每题10分,共20分)21. 为了解某地区20万读者对工具书、小说、诗歌、漫画四类图书的喜爱情况,根据老年人、成年人、青少年各年龄段的实际人口比例3:5:2,随机抽取一定数量的读者进行调查(每人只选一类图书),统计结果如下(所绘统计图不完整):(1)本次调查了名读者,其中青少年有名.(2)补全两幅统计图.(3)请估计该地区成年人中喜爱小说的读者大约有多少人?A B 22. 已知:如图所示,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交AC 于点D ,且AD=DC ,CO 的延长线交⊙O 于点E ,过点E 作弦EF ⊥AB ,垂足为G. (1)求证:BC 是⊙O 的切线.(2)若AB=2,求EF 的长.(第22题图)六、解答题(23题10分,24题12分,共22分)23. 如图所示,一轮船向正东方向航行,在A 处测得灯塔P 在北偏东60°方向,航行40海里后到达B 处,此时测得灯塔P 在北偏东15°方向.(1)求灯塔P 到轮船的航线(直线AB )的距离PD 是多少? (2)当轮船在B 处继续向东航行时,一艘快艇从灯塔P 处前往D 处,已知快艇的速度是轮船速度的2倍,但轮船比 快艇早15分钟到达D 处,求轮船的速度.(3≈1.73,结果精确到0.1海里/时) (第23题图)A24. 自2010年6月1日起我省开始实施家电以旧换新政策,政府对以旧换新的家电给予补某商场家电部结合此政策准备购进某种型号的电视、冰箱、洗衣机共100台.这批货的若购进的电视和洗衣机数量相同,均为x台,这100台家电政府补贴为y元,商场所获利润为w元(利润=售价-进价)。

【初三数学】本溪市九年级数学上期中考试单元测试题(解析版)

【初三数学】本溪市九年级数学上期中考试单元测试题(解析版)

新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有①.【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.【解答】解:①因为a=3>0,它们的图象都是开口向上,大小是相同的,故此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是(0,1),y=3(x﹣1)2的对称轴是x=1,顶点坐标是(1,0),故此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3(x﹣1)2当x>1时,y随着x的增大而增大,故此选项错误;④它们与x轴都有一个交点,故此选项错误;综上所知,正确的有①.故答案是:①.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是x =2 .【分析】因为点(﹣2,0),(6,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣2,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==2,即x=2.故答案是:x=2.15.函数y=x2﹣2x+2的图象顶点坐标是(1,1).【分析】根据二次函数解析式,进行配方得出顶点式形式,即可得出顶点坐标.【解答】解:y=x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,∵抛物线开口向上,当x=1时,y最小=1,∴顶点坐标是(1,1).故答案为:(1,1).16.点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).三.解答题(共9小题)17.解方程:x2﹣6x+5=0(配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,∴原方程的解是:x1=5,x2=1.18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.【分析】直接利用交点式写出抛物线的解析式.【解答】解:抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?【分析】设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据共要比赛28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得:=21,整理得:x2﹣x﹣42=0,解得:x1=7,x2=﹣6(不合题意,舍去).答:共有7个队参加足球联赛.20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.【分析】(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【解答】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2.答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?【分析】(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式,求出其解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由题意,得1=a(0﹣4)2+2.6,解得:a=﹣0.1.故y=﹣0.1(x﹣4)2+2.6.答:抛物线的解析式为:y=﹣0.1(x﹣4)2+2.6;(2)由题意,得当y=0时,﹣0.1(x﹣4)2+2.6=0,解得:x1=+4,x2=﹣+4<0(舍去),故x=+4.答:这个同学推出的铅球有(+4)米远.22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.【分析】(1)计算判别式的中得到△=24,然后根据判别式的意义得到结论;(2)把x=2代入方程k2+4k=2,再把2k2+8k+2018表示为2(k2+4k)+2018,然后利用整体代入的方法计算.【解答】(1)证明:△=(2k)2﹣4(k2﹣6)=24>0,所以方程有两个不相等的实数根;(2)把x=2代入方程得4+4k+k2﹣6=0,所以k2+4k=2,所以2k2+8k+2018=2(k2+4k)+2018=2×2+2018=2022.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为6000 元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(40﹣x)元,平均每月可售出[(40﹣x)×200+600] 个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.【分析】(1)根据总盈利=单件获利乘以销量列出代数式;(2)根据“当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个”列出代数式(3)设每个台灯的售价为x元.根据每个台灯的利润×销售数量=总利润列出方程并解答;【解答】解:(1)依题意得:未降价之前,该店每月台灯总盈利为600×(40﹣30)=6000元.故答案是:6000.(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(x﹣30)元,平均每月可售出[(40﹣x)×200+600]个故答案为:(x﹣30),[(40﹣x)×200+600].(2)设每个台灯的售价为x元.根据题意,得(x﹣30)[(40﹣x)×200+600]=8400,解得x1=36(舍),x2=37.当x=36时,(40﹣36)×200+600=1400>1210;当x=37时,(40﹣37)×200+600=1200<1210;答:每个台灯的售价为37元.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.【分析】(1)根据运动时间求出PA,BQ,利用分割法求△DPQ的面积即可.(2)分别求出表示出DP2,PQ2,DQ2,进而得到PQ2+DQ2=DP2,得出答案;(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,构建方程方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.【解答】解:(1)经过1秒时,AP=1,BQ=2,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,AB=CD=6cm,BC=AD=12cm,∴PB=6﹣1=5(cm),CQ=BC﹣BQ=12﹣2=10(cm),∴S△DPQ=S矩形ABCD﹣S△ADP﹣S△PBQ﹣S△DCQ=72﹣×1×12﹣×6×2﹣×6×10=30(cm2).(2)当t=秒时,AP=,BP=6﹣=,BQ=×2=3,CQ=12﹣3=9,∴在Rt△DAP中,DP2=DA2+AP2=122+()2=,在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,在Rt△QBP中,QP2=QB2+BP2=32+()2=,∴DQ2+QP2=117+=,∴DQ2+QP2=DP2,∴△DPQ为直角三角形;(3)假设运动开始后第x秒时,满足条件,则:QP=QD,∵OP2=PB2+BQ2=(6﹣x)2+(2x)2,QD2=QC2+CD2=(12﹣2x)2+62,∴(12﹣2x)2+62=(6﹣x)2+(2x)2,整理,得:x2+36x﹣144=0,解得:x=﹣18±6,∵0<6﹣18<6,∴运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为(2,0),B点坐标为(5,0);(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.【分析】(1)y=,令y=0,解得:x=2或5,即可求解;(2)证明△OAC≌△DBC(SAS),则BD=OA=2,∠OBD=60°,即可求解;(3)分OD是平行四边形的边、OD是平行四边形的对角线两种情况,分别求解.【解答】解:(1)y=,令y=0,解得:x=2或5,故答案为:(2,0)、(5,0);(2)连接CD、BD,由(1)知:OA=2,AB=3,等边三角形ABC的边长为3,∵△ABC为等边三角形,∴AC=BC,∠ACB=60°=∠CAB,∴∠CAO=120°,∵∠COD=60°,且OD=OC,则△OCD为等边三角形,∴OD=CD=CO,则∠OCD=60°=∠OCA+∠ACD,而∠ACB=60°=∠ACD+∠DCB,∴∠OCA=∠DCB,而CO=CD,CA=CB,∴△OAC≌△DBC(SAS),∴BD=OA=2,∠CBD=∠CAO=120°,而∠CBO=60°,∴∠OBD=60°,则y D=﹣BD sin∠OBD=﹣2×=﹣,故点D的坐标为(4,﹣),当x=4时,y==﹣,故点D在抛物线上;(3)抛物线的对称轴为:x=,设点M(,s),点N(m,n),n=m2﹣m+5,①当OD是平行四边形的边时,当点N在对称轴右侧时,点O向右平移4个单位,向下平移个单位得到D,同样点M向右平移4个单位,向下平移个单位得到N,即:+4=m,s﹣=n,而n=m2﹣m+5,解得:s=则点M(,);当点N在对称轴左侧时,同理可得:点M(,);②当OD是平行四边形的对角线时,则4=+m,﹣=n+s,而n=m2﹣m+5,解得:s=,故点M的坐标为:(,)或(,)或(,).新人教版九年级(上)期中模拟数学试卷(答案)一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是()A. B. C. D.2.观察下列汽车标志,其中是中心对称图形的是()A. B.C. D.3.x=2不是下列哪一个方程的解()A. B. C. D.4.已知一元二次方程3x2-2x+a=0有实数根,则a的取值范围是()A. B. C. D.5.若一元二次方程x2=m有解,则m的取值为()A. 正数B. 非负数C. 一切实数D. 零6.函数y=(m+2)x+2x+1是二次函数,则m的值为()A. B. 0 C. 或1 D. 17.函数y=ax2与函数y=ax+a,在同一直角坐标系中的图象大致是图中的()A. B.C. D.8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A. 抛物线开口向上B. 抛物线的对称轴是C. 当时,y的最大值为4D. 抛物线与x轴的交点为,9.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 13B. 16C. 12或13D. 11或1610.如图,△ABC绕点O旋转180°得到△DEF,下列说法错误的是()A. 点B和点E关于点O对称B.C. △ ≌△D. △与△关于点B中心对称11.如图所示,△ABC绕着点A旋转能够与△ADE完全重合,则下列结论成立的有()①AE=AC;②∠EAC=∠BAD;⑧BC∥AD;④若连接BD,则△ABD为等腰三角形A. 1个B. 2个C. 3个D. 4个12.二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c>0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.已知一元二次方程2x2+x+m=0的一个根是1,则m的值是______.14.在直角坐标系中,点(-3,6)关于原点的对称点是______.15.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.16.若抛物线y=-x2-8x+c的顶点在x轴上,则c的取值是______.17.把二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位,得到的函数图象对应的解析式为______.18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=______度.三、计算题(本大题共2小题,共20.0分)19.已知抛物线y=ax2+bx-1的图象经过点(-1,2),其对称轴为x=-1.求抛物线的解析式.20.如图,A(-1,0)、B(2,-3)两点在一次函数y2=-x+m与二次函数y1=ax2+bx-3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y2>y1时,自变量x的取值范围.四、解答题(本大题共5小题,共46.0分)21.用适当的方法解下列方程(1)(y+3)2-81=0(2)2x(3-x)=4(x-3)(3)x2+10x+16=0(4)x2-x-=022.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?23.已知:关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.24.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.答案和解析1.【答案】C【解析】解:A、2x-y=1,是二元一次方程,故此选项错误;B、x+3xy+y2=2,是二元二次方程,故此选项错误;C、=,是一元二次方程,正确;D、x2+=3,含有分式,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握方程定义是解题关键.2.【答案】C【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.结合中心对称图形的概念求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A,当x=2时,方程的左边=3×(2-2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22-3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22-2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.把x=2分别代入各个方程的两边,根据方程的解的定义判断即可.本题考查的是一元二次方程的解的定义,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.4.【答案】A【解析】解:∵一元二次方程3x2-2x+a=0有实数根,∴△≥0,即22-4×3×a≥0,解得a≤.故选:A.根据△的意义得到△≥0,即22-4×3×a≥0,解不等式即可得a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】B【解析】解:当m≥0时,一元二次方程x2=m有解.故选:B.利用平方根的定义可确定m的范围.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6.【答案】D【解析】解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,解得:m=1.故选:D.直接利用二次函数的定义分析得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.7.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A、D错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:把(0,-3)代入y=x2-2x+c中得c=-3,抛物线为y=x2-2x-3=(x-1)2-4=(x+1)(x-3),所以:抛物线开口向上,对称轴是x=1,当x=1时,y的最小值为-4,与x轴的交点为(-1,0),(3,0);C错误.故选:C.把(0,-3)代入抛物线解析式求c的值,然后再求出顶点坐标、与x轴的交点坐标.要求掌握抛物线的性质并对其中的a,b,c熟悉其相关运用.9.【答案】A【解析】解:∵x2-5x+6=0,∴(x-3)(x-2)=0,解得:x1=3,x2=2,∵三角形的两边长分别是4和6,当x=3时,3+4>6,能组成三角形;当x=2时,2+4=6,不能组成三角形.∴这个三角形的第三边长是3,∴这个三角形的周长为:4+6+3=13故选:A.首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.10.【答案】D【解析】解:A、点B和点E关于点O对称,说法正确;B、CE=BF,说法正确;C、△ABC≌△DEF,说法正确;D、△ABC与△DEF关于点B中心对称,说法错误;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可知△ABC≌△DEF,再根据全等的性质可得EC=BF,进而可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.11.【答案】C【解析】解:∵△ABC绕着点A旋转能够与△ADE完全重合,∴△ABC≌△ADE,∴AE=AC,故正确;∠CAB=∠EAD,AB=AD,∴∠CAB-∠EAB=∠EAD-∠EAB,∴∠EAC=∠BAD,故正确;连接BD,则△ABD为等腰三角形,故正确,故选:C.根据旋转的性质得到△ABC≌△ADE,根据全等三角形的性质即可得到结论.本题考查了旋转的性质,等腰三角形的判定,正确的识别图形是解题的关键.12.【答案】C【解析】解:由图象可得,c>0,a>0,b>0,故正确,当x=1,y=a+b+c>0,故正确,函数图象与x轴两个不同的交点,故b2-4ac>0,故错误,∵b=4a,<0,a>0,解得,4a>c,故正确,∵c>0,a>0,b>0,∴abc>0,故错误,故选:C.根据函数图象可以判断a、b、c的正负,根据b=4a可以得到该函数的对称轴,从而可以判断各个小题是否正确,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13.【答案】-3【解析】解:∵一元二次方程2x2+x+m=0的一个根为1,∴2×12+1+m=0,解得m=-3.故答案是:-3.把x=1代入已知方程列出关于m的一元一次方程,通过解该一元一次方程来求m 的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.【答案】(3,-6)【解析】解:点(-3,6)关于原点的对称点为(3,-6).故答案为:(3,-6).根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.。

辽宁省本溪市—九年级(上)期中数学质量抽测试题(含答案)

辽宁省本溪市—九年级(上)期中数学质量抽测试题(含答案)

本溪市--(上)期中质量抽测一、选择题(每题3分,共8题,满分24分)1.下列方程中,是关于x 的一元二次方程的是( )A .23540x x +-= B .6100x +=C .25320x y +-=D .22350z x +-= 2.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球的概率是( )A .311B .811C .1114D .3143.如图1-3,△ABC 中,AB=AC ,∠BAC=120︒,D 是BC 的中点,DE ⊥AB 于E ,若AE=4cm ,则AD 的长为( )A .4cmB .6cmC .8cmD .12cm4.甲、乙两地相距50千米,设汽车从甲地到乙地所用时间为t(小时)、平均速度为v(千米/时),则t 与v 的函数图象大致为图中的( )5.一个长方体的二视图如图1.5所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为( )A .3,22B .2,22C .3,2D .2,36.在Rt △ABC 中,∠C=90︒,AB 的垂直平分线交BC 边于D ,2,则∠B 的度数为( )A .18︒B .54︒C .36︒D .72︒7.如图1-7,矩形纸片ABCD 的边长AB=8,AD=4,将矩形纸片沿EF 折叠,使点A 与点C 重台,折叠后在其一面着色,则着色部分的面积为( )A .32B .28C .25D .228.在ABCD 中,AB=6.AD=9,∠BAD 的平分线交BC于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若=BG=42.则△CEF 的周长为( )A .8B .9.5C .10D .11.5二、填空题(每题3分,共8题,满分24分)9.小明掷一枚硬币,结果是一连9次都出现正面朝上,请问他第10次掷硬币时,出现正面朝上的概率是________________10.某品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降价的百分率为x ,根据题意列出的方程是________________11.如图2.11,菱形ABCD 的对角线相交于点0,请你B添加一个条件,使得该菱形为止方形,则添加条件是______________________________(只添一个即可)12.若直角三角形两边长分别为6和8,则第三边长为_______13.如图2.13,小丽站在30米高的楼顶远眺前方的广场,15米处有一个高为5米的障碍物,那么离楼房____________的范围内小丽看不见14.如图2-14,点A 在反比例函数6y x=的图象上,点A 的坐标为 (1,6), △AOB 为等腰三角形, OA=AB 且点B 在x 轴正半轴上,当点A 的横坐标逐渐增大时,AAOB 的面积__________(填“逐渐增人”、“逐渐变小”或“不变”)15.关于x 的方程2410mx x -+=有两个实数根,则m 的取值范围是______16.己知等腰三角形ABC 中,AB=AC ,D 为BC 边上一点,连接AD ,△ACD 和△ABD 都是等腰三角形,则∠C 的度数是___________。

辽宁省本溪市2009年中考数学试题(含答案)

辽宁省本溪市2009年中考数学试题(含答案)
4.有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.
1
2
B.
14
C.1
D.
34
6.下列图案中,既是轴对称图形又是中心对称图形的是()
B.1.02×108
C.0.102×108

D.−1

D.1.02×109
2.如果a与1互为相反数,则|a+2|等于(A.2
B.−2
C.1
3.反比例函数y=
k
3),则该反比例函数图象在((k≠0)的图象经过点(−2,
x
A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限

B.3和
4
之间
第1页共12页

2009年本溪市初中毕业生学业考试




考试时间120分钟试卷满分150分
一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内,每小题3分,共24分)
1.2009年6月,全国参加高等院校统一招生考试的学生约10200000人,其中10200000用科学记数法表示应为()A.10.2×106
A.B.C.
7.某男子排球队20名队员的身高如下表:
身高(cm)人数(个)
1804
1866
1885
D.1923

2082
则此男子排球队20名队员的身高的众数和中位数分别是(A.186cm,186cmB.186cm,187cmC.208cm,188cmD.188cm,187cm8+1的值在(A.2和3之间

2009学年第一学期期中考试九年级数学试卷_2

2009学年第一学期期中考试九年级数学试卷_2

OA B(第3题A OB2009学年第一学期期中考试九年级数学试卷一.仔细选一选(本题共10小题,每小题3分)1.已知⊙O的半径为4cm,点A到圆心O的距离为3cm,则点A与⊙O的位置关系是( )A.点A在⊙O 内B.点A在⊙O 上C.点A在⊙O 外D.不能确定2.已知点P1(,)和P2(,)都在反比例函数xy2=的图象上,若021<<xx,则( )A.012<<yy B.021<<yy C.012>>yy D.021>>yy3.如图,已知⊙O的半径为5mm,弦AB=8mm,则圆心O到AB的距离是( )A.1mmB.2mmC.3mmD.4mm4。

下列四个三角形,与左图中的三角形相似的是()5。

二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc > 0;②b2—4ac 〉0;③。

4a-2b+c〈0;④a+b+c=0,⑤b+2a=0。

其中正确的个数是()A。

1个 B。

2个 C.3个 D。

4个6。

在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 27.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cmC.2cm D.1cm8.如图,一块含有30º角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到△A/B/C(B、C、A/在同一直线上)的位置.若BC的长为6cm,那么顶点A从开始到结束所经过的路程长为()A.8πcm B.10πcm C.4πcm D.4πcm9.如图,⊙O的半径OA、OB,且OA⊥OB,连接AB.现在⊙0上找一点C,使OA2+AB2=BC2, 则∠OAC的度数为( )(A)15°或75° (B) 20°或70° (C) 20° (D)30°10、如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图像大致是()二、认真填一填(本题有6个小题,每小题4分,共24分)11.请写出一个开口向上,且对称轴为直线2=x的二次函数解析式▲。

辽宁省本溪市九年级上学期期中数学试卷(五四学制)

辽宁省本溪市九年级上学期期中数学试卷(五四学制)

辽宁省本溪市九年级上学期期中数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个有理数和它的相反数的积()A . 符号必为正B . 符号必为负C . 一定不大于0D . 一定大于02. (2分)现有下列算式:其中错误的有()(1)2a+3a=5a(2)2a•3a=5a2(3)ax(﹣1﹣a2﹣x)=ax﹣a3x﹣ax2(4)(x4﹣x3)x2=x6﹣x5A . 1个B . 2个C . 3个D . 4个3. (2分)(2011·义乌) 下列图形中,中心对称图形有()A . 4个B . 3个C . 2个D . 1个4. (2分) (2019九上·东港月考) 如图,点在轴正半轴上运动,点在轴上运动,过点且平行于轴的直线分别交函数和于、两点,则三角形的面积等于()A . 1B . 2C . 3D . 65. (2分)在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是()A . x2+130x﹣1400=0B . x2+65x﹣350=0C . x2﹣130x﹣1400=0D . x2﹣65x﹣350=06. (2分) (2017九上·海淀月考) 抛物线图象如图所示,根据图象,抛物线的解析式可能是()A .B .C .D .7. (2分)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A . 海里/小时B . 30海里/小时C . 海里/小时D . 海里/小时8. (2分) (2017八下·无锡期中) 如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若CF=6,AC=AF+2,则四边形BDFG的周长为()A . 9.5B . 10C . 12.5D . 209. (2分) (2018·河北模拟) 如图,△ABC中,D,E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A . 4:2:1B . 5:3:1C . 25:12:5D . 51:24:1010. (2分)(2017·宾县模拟) 西海岸旅游旺季到来,为应对越来越严峻的交通形势,新区对某道路进行拓宽改造.工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的函数关系的大致图象是()A .B .C .D .二、填空题 (共10题;共10分)11. (1分) (2015七上·广饶期末) 据齐鲁网东营讯,广饶县2015年投资750亿元集中建设了126个项目,其中750亿元用科学记数法表示为________元.12. (1分)(2013·内江) 函数y= 中自变量x的取值范围是________.13. (1分)计算﹣2的结果是________ .14. (1分)(2016·哈尔滨) 把多项式ax2+2a2x+a3分解因式的结果是________.15. (1分)(2017·玄武模拟) 满足不等式组的整数解为________.16. (1分)分式方程=的解是________ .17. (1分)(2019·萧山模拟) 在△ABC中,点A到直线BC的距离为d,AB>AC>d,以A为圆心,AC为半径画圆弧,圆弧交直线BC于点D,过点D作DE∥AC交直线AB于点E,若BC=4,DE=1,∠EDA=∠ACD,则AD=________.18. (1分)(2017·平塘模拟) 如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=________.19. (1分)如图,在△ABC中,∠C=90°,AB=5,BC=4,点P在边AB上,若△APC为以AC为腰的等腰三角形,则tan∠BCP=________.20. (1分) (2016九上·南浔期末) 如图,已知在Rt△ABC中,∠C为直角,AC=5,BC=12,在Rt△ABC内从左往右叠放边长为1的正方形小纸片,第一层小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放________个.三、解答题 (共7题;共72分)21. (5分)如图,在Rt△ABC中,∠C=90°,AC= ,点D为BC边上一点,且BD=2AD,∠ADC=60°,求△ABC的周长.(结果保留根号)22. (10分) (2017九上·章贡期末) 根据题意解答(1)解方程:x(x﹣2)+x﹣2=0(2)如图,在已建立直角坐标系的4×4正方形方格纸中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),画出一个以格点P、A、B为顶点的三角形与△ABC相似且不全等.23. (15分) (2016九上·连州期末) 一个不透明的口袋中装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制成如下不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.24. (10分) (2019八下·柳州期末) 如图,△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC 于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.25. (10分) (2020八上·甘州期末) 由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:甲种口罩乙种口罩进价(元/袋)2025售价(元/袋)2635(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?26. (7分)(2019·海港模拟) 如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.(1)当半圆D与数轴相切时,m= ________ .(2)半圆D与数轴有两个公共点,设另一个公共点为C.①直接写出m的取值范围是________.(3)当△A0B的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值。

2009---2010学年第一学期期中考试

2009---2010学年第一学期期中考试

2009---2010学年第一学期期中考试九年级数学参考答案一、填空题(每小题4分,共32分)1、352、x=33、14、5x 2-4x-1=05、x 1=2, x 2=-36、x(x+1)7、中心 8、(2,-4)二、选择题(每小题4分,共32分)9、C 10、D 11、A 12、A 13、B 14、D 15、B 16、C三、解下列各题(每小题6分,共18分)17、解:原式=(26-212)-2(412+6)=26-212-212-26=-218、解:∵x=2,y=3,∴(x+y 3)(y-x 2)=(2+33)(3-22)=(2+3)(3-2)=1 19、解:(1)1+2=3,(2)1+2+3=6,(3)1+2+3+4=10,(4)1+2+3+4+5=15,(5)1+2+3+4+5+6=21,(6)1+2+3+---+n=21n(n+1) 四、解方程(每小题6分,共12分)20、解: x 1=2, x 2=3。

21、解: x 1=251+, x 2=251-。

五、列方程解应用题(10分)22、解:设每轮感染中平均一台电脑会感染x 台电脑,根据题意得(I+x)2=81,解这方程得,x 1=8, x 2=-10(舍去)当x=8 时, (1+x)3=93=729>700。

答:每轮感染中平均一台电脑会感染8台电脑;三轮感染后,被感染的电脑会超过700台。

六、解答题(每小题8分,共16分)23、(略)24、解:(1)把△ADF绕着点A逆时针旋转90°后可得到△AEB的位置;(2)△AFE是等腰直角三角形。

理由如下:∵△AFD≌△AEB,∴AF=AE,∠FAD=∠EAB,∴∠FAE=90°,∴△AFE是等腰直角三角形。

2009-2010学年九年级第一学期期中数学试题

2009-2010学年九年级第一学期期中数学试题

2009-2010学年第一学期期中教学质量检测九年级数学(人教版)(九上全册)考生注意:1、本卷共6页,总分120分,考试时间90分钟。

2、答题前请将密封线左侧的项目填写清楚。

3、答案请用蓝、黑色钢笔或圆珠笔填写。

一、选择题(每小题2分,共20分)1.下列成语所描述的事件一定会成功的是 ( ) A. 水中捞月 B. 拔苗助长 C. 守株待兔 D. 瓮中捉鳖 2.使式子x -2有意义的x 的取值范围是 ( ) A .x ≤2 B .x <2 C .x >1 D .x ≥23.下列图形中不是中心对称图形的是 ( )A .B .C .D .4.一元二次方程20x x -=的根为 ( )A .0或1B .±1C .0或-1D .15.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是 ( )6.下列计算正确的是 ( )8题图m7题图A .752=+B .2-22=C .39218== D .2550105==⨯ 7.如图,A 、B 是两座灯塔,在弓形Am B内有暗礁,游艇C 在附近海面游弋,且 ∠AOB=80°,要使游艇C 不驶入暗礁区,则航行中应保持∠ACB ( ) A .小于40° B .大于40° C .小于80° D .大于80°8.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1厘米,则这个圆锥的底面半径为 ( ) A .22厘米 B .21厘米 C .2厘米 D .22厘米9.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场..,然后决定小组出线的球队.如果某一小组共有x 个队,该小组共赛了90场,那么列出正确的方程是( ) A .1(1)902x x -=B .90(1)2x x -=C .(1)90x x -=D .(1)90x x += 10.如图,8×8方格纸上的两条对称轴EF 、MN 相交于中心点O ,对△ABC 分别作下列变换:①先以点A 为中心顺时针方向旋转︒90,再向右平移4格、 向上平移4格;②先以点O 为中心作中心对称图形,再以点A 的对应点为 中心逆时针方向旋转︒90;③先以直线MN 为轴作轴对称图形,再向上平移4格,再 以点A 的对应点为中心顺时针方向旋转︒90.其中,能将△ABC 变换成△PQR 的是 ( ) A .①②B .①③C .②③D .①②③二、填空题(每小题3分,共30分)B19题图17题图11.早晨起床,看见太阳从西边出来,这个事件的概率为_________. 12.点(4,-3)关于原点对称的点的坐标是 _____________.13_________=.14.请写出符合条件:一个根为1=x ,另一个根满足11<<-x 的一元二次方程______.15.一个直角三角形的两条边...长是方程01272=+-x x 的两个根,则此直角三角形的外接圆的面积为 .16.如图,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A逆时针旋转后,得到△P ′A B ,则点P 与点P ′之间的距离为 .17.如图,在“扫雷”游戏中,“3”相邻的空格中隐含有3个“雷”,那么随机点击其中一个空格,恰好点击到“雷”的概率是 .18.若用半径为r 的圆形桌布将边长为60 cm 的正方形餐桌盖住,则r 的最小值为cm.19.如图,在以O 为圆心的两个同心圆中,大圆的直径AB 交小圆于C 、D 两点,AC =CD =DB ,分别以C 、D 为圆心,以CD 为半径作圆.若AB =6cm ,则图中阴影部分的面积为 cm 2.20.如图是我市将要开发的一块长方形的土地,长为xkm ,宽为3km ,建筑开发商将这块土地分为甲、乙、丙三部分,其中甲和乙均为正方形,现计划甲地建住宅区,乙地建商业区,丙地开辟成小区公园,若已知丙地的面积为2km 2,则x 的值为 . 三、解答题(共70分)21.计算下列各题(每小题5分,共10分)(1)12(2)22)8321464(÷+-23题图22.用适当方法解下列方程(每小题5分,共10分)(1)x 2-10x+25=7 (2)(x-1)2+2x(x-1)=023. (本题满分8分)滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图所示.请你帮他们求出滴水湖的半径.24. (本题满分8分)北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”,现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子.CBA(1)小芳从盒子中任取一张,取到卡片欢欢的概率是多少?(2)小芳从盒子中取出一张卡片,记下名字后放回..,再从盒子中取出第二张卡片,记下名字. 用列表或画树形图列出小芳取到的卡片的所有可能情况,并求出两次都取到卡片欢欢的概率.25. (本题满分10分)在下面的网格图中,每个小正方形的边长均为1个单位,在Rt △ABC 中,∠C=90°,AC=3,BC=6.(1)试作出△ABC 以A 为旋转中心、沿顺时针方向旋转90°后的图形△AB 1C 1; (2)若点B 的坐标为(-4,5),试建立合适的直角坐标系,并写出A 、C 两点的坐标; (3)作出与△ABC 关于原点对称的图形△A 2B 2C 2,并写出A 2、B 2、C 2三点的坐标.ABCN图2 图1MNCPB A26. (本题满分12分)已知:如图,点C 为线段AB 上一点,△ACM 和△CBN 都是等边三角形,AN 、BM 交于点P ,由△BCM ≌△NCA ,易证结论:①BM =AN.(1)请写出除①外的两个结论: . (2)求出图1中AN 和BM 相交所得最大角的度数 .(3)将△ACM 绕C 点按顺时针方向旋转180°,使A 点落在BC 上,请对照原题图形在图2中画出符合要求的图形(不写作法,保留痕迹). (4)探究图2中AN 和BM 相交所得的最大角的度数有无变化?(填变化或不变)27. (本题满分12分)如图,⊙O 是△ABC 的外接圆,且AB=AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB=∠E ;(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB=5,BC=6时,求⊙O 的半径.。

辽宁省本溪市九年级上学期数学期中考试试卷

辽宁省本溪市九年级上学期数学期中考试试卷

辽宁省本溪市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列几种图案中,既是中心对称又是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分)已知方程x2+kx﹣6=0的一个根是2,则它的另一个根为()A . 1B . ﹣2C . 3D . ﹣33. (2分)如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC 的长是()A . 4B . 3C . 5D . 4.54. (2分) (2019九上·海淀期中) 抛物线y=x2+1的对称轴是()A . 直线B . 直线C . 直线D . 直线5. (2分)如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于()A . 100°B . 110°C . 120°D . 135°6. (2分)(2018·商河模拟) 如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做 ,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是 ,则矩形ABCD的面积是()A .B .C . 6D . 57. (2分) (2016九上·金东期末) 已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A . ac<0B . a﹣b+c>0C . b=﹣4aD . 关于x的方程ax2+bx+c=0的根是x1=﹣1,x2=58. (2分)如图,边长为1的正方形ABCD绕点A逆时针旋转后得到正方形,边与CD 交于点O,则图中阴影部分的面积是()A .B .C .D .9. (2分)如图,PA,PB是☉O的切线,A,B为切点,AC是☉O的直径,已知∠BAC=15°,则∠P的度数为()A . 30°B . 35°C . 40°D . 45°10. (2分)如图,在以AB为直径的半圆中,有一个边长为1的内接正方形CDEF,则以AC和BC的长为两根的一元二次方程是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2016九上·腾冲期中) 若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为________.12. (1分)已知点A(2,a)和点B(b,﹣1)关于原点对称,则a=________ ;b=________ .13. (1分) (2017八上·东城期末) 如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于________ cm.14. (1分)心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.15. (1分) (2017八下·徐州期中) 如图,G为正方形ABCD的边AD上的一个动点,AE⊥BG,CF⊥BG,垂足分别为点E,F.已知AD=4,则AE2+CF2=________.16. (1分)如图,抛物线与轴交于点,过点与轴平行的直线交抛物线于点、,则线段的长为________.三、解答题 (共8题;共75分)17. (10分) (2020九上·川汇期末) 关于x的方程(m+2)x2﹣4x+1=0有两个不相等实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.18. (10分) (2018八下·青岛期中) 如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A1B2C2,请直接写出旋转中心的坐标。

2010年辽宁省本溪市中考数学试卷(扫描版有答案)

2010年辽宁省本溪市中考数学试卷(扫描版有答案)

新世纪教育网精选资料 版权全部 @新世纪教育网2010 年辽宁省锦州市中考数学试题一、选择题(每题 3分,共 24分)1.太阳的直径约为 1390000千米,这个数用科学记数法表示为()7千米B . 1. 39×10 6千米A .0. 139× 10 C . 13. 9× 105千米 D . 139×104 千米2.- 6 的倒数是()11A .6B .- 6C . 6D .- 6 3.如图是由几个同样的小正方体搭成的一个几何体,它的左视图是()A B CD4.不等式组 8- 3x ≥- 1的解集是()x - 1> 0A .x ≤ 3B . 1< x ≤3C . x ≥ 3D . x > 1 5.以下图形中,既是轴对称图形,又是中心对称图形的是()6.如图,∠ BDC = 98°,∠ C =38°,∠ B =23°,则∠ A =()BA .61°B .60°DC . 37°D .39°CA7.如图是由四个全等的直角三角形围成的,若两条直角边分别为3 和 4,则向图中随机投掷一枚飞镖,飞镖落在暗影地区的概率 ( 不考虑落在线上的情况 ) 是()34A . 5B . 5C . 16D . 2525498.如图,在 △ ABC 中, AB = AC , M 、 N 分别是 AB 、AC 的中点, D 、E 为 BC上的点,连结 DN 、EM ,若 AB =5cm ,BC =8cm , DE =4cm ,则图中暗影部分的面积为( )A .1cm 2B .1. 5cm 222C . 2cmD .3cmAMNB DEC二、填空题(每题3 分,共 24 分)x 中自变量 x 的取值范围是 __________ .9.函数 y =x310.分解因式: a 2b - 2ab 2+ b 3= ____________________ .11.反比率函数 k的图象经过点 ( - 2, 3) ,则 k 等于 ____.y = x12.小亮练习射击,第一轮 10 枪打完后他的成绩如图5,他 10 次成绩的方差是 _______.108642o12345678910 次数13.将一含 30°角的三角尺直角旋一周得一,个的高是 3 3,的面是____.14.了估不透明的袋子里装有多少白球,先从袋中摸出10 个球都做上,而后放回袋中去,充足匀后再摸出10 个球,此中有一个球有,那么你估袋中大有______个白球.15.如,点A、B 在直 MN 上, AB= 11cm,⊙ A、⊙ B 的半径均1cm,⊙ A 以每秒 2cm 的速度自左向右运,与此同,⊙ B 的半径也不停增大,其半径r ( cm)与t(秒)之的关系式r= 1+ t( t≥ 0) ,当点 A 出后秒两相切.M NA B16. 1 中的与正方形各都相切,个的面S1; 2 中的四个的半径相等,并挨次外切,且与正方形的相切,四个的面之和S2; 3 中的九个半径相等,并挨次外切,且与正方形的各相切,九个的面之和S3,⋯依此律,当正方形 2 ,第 n 个中全部的面之和S n=________ .123三、解答题(共102 分)17. ( 8 分) 先化2x42x,再任一个你喜的数代入求.x241x 218. ( 8 分 ) △ ABC 在平面直角坐系中的地点如所示,此中每个小正方形的 1 个位度.yABCo x( 1)将△ ABC 向右移平 2 个单位长度,作出平移后的△A1B1C1,并写出△ A1 B1C1各极点的坐标;( 2)若将△ ABC 绕点 ( - 1,0) 顺时针旋转 180°后获取△ A2B2C2,并写出△ A2B2C2各极点的坐标;( 3)察看△ A1B1C1和△ A2B2C2,它们能否对于某点成中心对称?假如,请写出对称中心的坐标;若不是,说明原因.19. ( 10 分 ) 某校展开以“庆国庆60 周年”为主题的艺术活动,举办了四个项目的竞赛.它们分别是: A 演讲、 B 唱歌、 C 书法、 D 绘画.要求每位同学一定参加且限报一项.以九年( 一 ) 班为样本进行统计,并将统计结果绘制以下两幅统计图,请你联合图9 中所给出的信息解答以下问题:( 1) 求出参加绘画竞赛的学生人数占全班总人数的百分比;( 2) 求出扇形统计图中参加书法竞赛的学生所在的扇形圆心角的度数;( 3) 若该校九年级学生共有500 人,请你预计此次活动中参加演讲和唱歌的学生共有多少人?人数25 2025DC A 26%151310 105B 50% 2o A B C D项目20. ( 10 分) 为了加速城市经济发展,某市准备修筑一座横跨南北的大桥.如图10 所示,丈量队在点 A 处观察河对岸水边有一点C,测得 C 在北偏东60°的方向上,沿河岸向东前行30 米抵达 B 处,测得 C 在北偏东 45°的方向上,请你依据以上数据帮助该丈量队计算出这条河的宽度( 结果保存根号) .C北东A B21.( 10 分) 小刚和小明玩“石头”、“剪子”、“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势同样,则为平手.( 1) 玩一次小刚出“石头”的概率是多少?( 2) 玩一次小刚胜小明的概率是多少?请加以说明.22.( 10 分 ) 依据规划设计,某市工程队准备在开发区修筑一条长300 米的盲道.铺设了 60 米后,因为采纳新的施工方式,实质每日修筑盲道的长度比原计划增添10 米,结果共用了8 天达成任务,该工程队改进技术后每日铺设盲道多少米?23. ( 10 分) 如图, AB 为⊙ O 的直径, AD 均分∠ BAC 交⊙ O 于点 D, DE ⊥ AC 交 AC 的延伸线于点E, FB 是⊙ O 的切线交 AD 的延伸线于点 F .EF ( 1)求证: DE 是⊙ O 的切线;C D( 2)若 DE= 3,⊙ O 的半径为 5,求 BF 的长.1 A 2B O24.( 10分) 某商场购进一批单价为50 元的商品,规定销售时单价不低于进价,每件的收益不超出 40%.其中销售量 y( 件 ) 与所售单价 x( 元 ) 的关系能够近似的看作如图所表示的一次函数.( 1)求 y 与 x 之间的函数关系式,并求出x 的取值范围;( 2)设该企业获取的总收益 ( 总收益=总销售额-总成本) 为 w 元,求 w 与 x 之间的函数关系式.当销售单价为什么值时,所获收益最大?最大收益是多少?y/件400300O60 70 x/元25. ( 12 分) 如图,直角梯形 ABCD 和正方形 EFGC 的边 BC、 CG 在同一条直线上,AD ∥BC ,AB⊥BC 于点 B,AD= 4,AB=6,BC= 8,直角梯形 ABCD 的面积与正方形EFGC 的面积相等,将直角梯形 ABCD 沿 BG 向右平行挪动,当点 C 与点 G 重合时停止挪动.设梯形与正方形重叠部分的面积为S.( 1)求正方形的边长;( 2)设直角梯形 ABCD 的极点 C 向右挪动的距离为x,求 S 与 x 的函数关系式;( 3)当直角梯形 ABCD 向右挪动时,它与正方形EFGC 的D E F 重叠部分面A恳求出此时积 S,可否等于直角梯形 ABCD 面积的一半?若能,运动的距离x 的值;若不可以,请说明原因.B C G26. ( 14 分) 如图,抛物线与x 轴交于 A( x1, 0) 、 B( x2, 0) 两点,且 x1> x2,与 y 轴交于点 C( 0, 4) ,此中x1、 x2是方程 x2- 2x- 8=0 的两个根.( 1) 求这条抛物线的分析式;( 2) 点 P 是线段 AB 上的动点,过点P 作 PE∥ AC,交 BC 于点 E,连结 CP,当△ CPE 的面积最大时,求点P 的坐标;( 3) 研究:若点 Q 是抛物线对称轴上的点,能否存在这样的点Q,使△ QBC 成为等腰三角形?若存在,请直接写出全部切合条件的点Q 的坐标;若不存在,请说明原因.yCEBP AO x。

2009—2010学年上期第一学期期中考试初三数学试题

2009—2010学年上期第一学期期中考试初三数学试题

B2009—2010学年上期第一学期期中考试初三数学试题(试题范围:21章—24.1) 总分:150分 时间:120分钟一、选择题:(每小题4分,共40分)1有意义,则a 的取值范围是( ) A.0a ≥ B.0a ≤ C.3a ≥ D. 3a ≤2、下列平面图形中,既是轴对称图形,又是中心对称图形的是( )3、方程x 2+6x –5=0的左边配成完全平方后所得方程为 ( )A 、(x+3)2=14B 、(x –3)2=14C 、(x+3)2=4D 、(x –3)2=4 4.下列二次根式中,最简二次根式是( )A .12B .32+xC .23D .b a 25.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠OAC=20°,则∠AOB 的度数是( ) A. 1O ° B. 20° C. 40° D. 70°A B A'C '(6题图) 6.如图,一块边长为8 cm 的正三角形木板ABC ,在水平桌面上绕点B 按顺时针方向旋转至A ′BC ′的位置时,顶点C 从开始到结束所经过的路径长为(点A 、B 、C ′在同一直线上) ( )A.16πB.38πC.364πD.316π7、 关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是( )A. k>-1B. k>1C. k ≠0D. k>-1且k ≠08、若代数式22)4()2(-+-a a 的值是常数2,则a 的取值范围是( )A.a ≥4B.a ≤2C. 2≤a ≤4D. 2=a 或4=a 9.圆O 的半径为6cm ,P 是圆O 内一点,OP=2cm,那么过点P 的最短弦的长等于( )(A) 24cm (B) 28cm (C) 26cm (D) 12cm10、三角形的两边长分别是3和6,第三边是方程0862=+-x x 的解,则这个三角形的周长是 ( )A 、11B 、13C 、11或13D 、11和13二、填空题:(每小题3分,共30分)11、关于x 的方程032=--a ax x 的一个根是2-,则它的另一个根是 ; 12.在半径为2的⊙O 中,弦AB 的长为2,则弦AB 所对的圆周角的度数为 。

辽宁省本溪市实验中学2009—2010学年九年级数学第三次质检试题

辽宁省本溪市实验中学2009—2010学年九年级数学第三次质检试题

2009—2010学年度九年级第三次质量测试数学试卷(考试时间:120分钟 试卷满分:150分)题号 一 二 三 四 五 六 七 八 总分 得分一、选择题(24分,各3分)1、有理数13的相反数是( )A 、一13B 、13C 、一3D 、32、二次根式2(2)-的值是( )A 、一2B 、2或一2C 、4D 、23、如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A 、2个或3个B 、3个或4个C 、4个或5个D 、5个或6个 4、若n(n ≠0)是关于x 的方程220x mx n ++=的根,则m+n 的值是( ) A 、1 B 、2 C 、—1 D 、—25、从棱长为2的正方体的毛坯的一角挖去一个棱长为1的小正方体得到一个零件,则这个零件的表面积是( )A 、20B 、22C 、24D 、266、如图,在平面直角坐标系中,点A 、B 的坐标分别为(一2,0)和 (2,0),月牙绕点B 旋转90°得到新的月牙,则点A 的对应 点A ’的坐标是( )A 、(4,2)或(2,2)B 、(2,4)或(1,2)C 、(2,4)或(2,一4)D 、(2,4)或(一2,4) 7、如图,将一个长为10cm 和宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的A 、102cm B 、202cm C 、402cm D 、802cm8、如图在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC , E 为AB 边上的一点,∠BCE=15°,且AE=AD , 连接DE 交对角线AC 于点H ,连接BH ,下列结论: ①△ACD ≅∆ACE ②∆CDE 为等边三角形 ③2EH BE = ④EBC EHCSAHSCH=其中结论正确的是( ) A 、只有①② B 、只有①②④ C 、只有③④ D 、①②③④ 二、填空题(24分,各3分)9、用顶点坐标公式24(,)24b ac b a a--求出二次函数(1)(2)y x x =+-的顶点坐标为________ 10、某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本的部分打八五折,设一次购书x 本,付款金额为y 元,请填写下表:11、已知菱形ABCD 的面积为122cm ,对角线AC=4㎝,则边长为_______________12、有一组单项式234,,,2345a a a a --……请观察它们的构成规律,用你发现的规律写出第2009个单项式为_______________13、如图,菱形ABCD 的周长为20㎝,DE ⊥AB 于E ,45CosA = 下列结论①DE=3cm ②BE=lcm ③ABCD S 菱形=152cm其中正确的为___________________14、在一个不透明的布袋中有2个白球和n 个黄球它们除颜色外其余都相同,若从中随机摸出一球,摸到黄球的概率是45,则n=_____________ 15、函数124(0),y x x y x=>=(x>0)的图像如图所示,则结论: ①两个函数图象的交点A 的坐标是(2,2) ②当x>2时,21y y > ③当x=l 时,BC=3④当x 逐渐增大时,1y 随x 的增大而增大,2y 随的增大而减小,其中正确结论的序号是_________________16、如图,在正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片ABCD 使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E ,G ,连接GF ,下列结论:①∠AGD=112.5°②tan AED ∠= 2 ③AGDOGDSS=④四边形AEFG 是菱形 ⑤BE=20G ,其中正确结论的序号是______________三、解答题(30分)17、计算题(12分,各6分) (1)计算01182cos 45(22)()3--+--(2)先化简:224226926a a a a a --÷++++,再选一个你喜欢的数代人求值18、(10分)不透明的布袋中有四个分别标号为1、2、3、4的小球,它们除标号不同外其它都相同,小明任意摸出一个记下标号后放回到布袋当中并摇匀,再摸出一个小球,再记下标号,求两次摸出的小球标号的和为“8”或“6”的概率是多少?(用树状图或列表求解19.(8分)有一水库大坝的横截面是梯形ABCD,AD//BC,EF为水库的水面,点E在DC上,测得背水坡AB长为12米,迎水坡上DE为2米,∠BAD=135°,∠ADC=120°.≈≈)求水深(精确到0.1米2 1.41,3 1.73四、20、(8分)如图,在三角形ABC中,∠ACB=90°,点E位于AB边的中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.判断四边形ACEF的形状,并证明.21.(10分)、某家电商场计划用32400元购进“家电下乡”指定产品中的电视机,冰箱,洗衣机共15台,三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机的数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴,在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?五、22、完成下列有关函数的问题(每空1分,共10分)(1)函数y= 一x 上的点的坐标和为_______________________(2)函数y=x+l 与x 轴所夹的锐角为________________________ (3)考察函数2y x=的图像,当x= 一2时,y=_____________;当x<一2时.y 的取值范围是______________;当y ≥一1时,x 的取值范围是_____________________。

本溪市第一学期九年级期中质量抽测.doc

本溪市第一学期九年级期中质量抽测.doc

本溪市第一学期九年级期中质量抽测姓名:_____________ 年级:____________ 学号:______________一、作文(共2题)1. 题目:那些___________的细节要求:(1)选择(一),自拟题目作文;选择(二),把题目补充完整作文。

(2)文体不限,字数不少于600字。

(如果写诗歌,不少于20行)(3)字迹工整,书写清楚。

(达到此项要求,评分时可奖励2分)【答案】略难度:中等知识点:命题作文2. 话题:突破提示:一粒种子破壳出芽是突破,一只蛹破茧出蝶是突破,地下暗河冲破地壳的束缚浩荡在天地问是突破。

突破无处不在。

【答案】略难度:中等知识点:命题作文二、现代文阅读(共3题)1. 阅读下面一段短文,回答(1)一(6)题。

①泥石流是一种自然灾害,是山区特有的一种自然地质现象。

由于降水(包括暴雨、冰川、积雪融化水等)产生在沟谷或山坡上的一种夹带大量泥沙、石.块等固体物质的特殊洪流。

它的运动过程介于山崩、滑坡和洪水之间,是各种自然因素(地质、地貌、水文、气象等)、人为因素综合作用的结果。

②一般情况下,泥石流的发生有3个条件:大量降雨,大量碎屑物质,山间或山前沟谷地形。

⑨连续降暴雨或突降大暴雨,山区会出现山洪暴发。

如果山高坡陡谷深,乱石沙土遍野,大量土石混入山洪之中,就形成粘稠浑浊的泥石流。

泥石流经常突然爆发,来势凶猛,可携带巨大的石块,并以高速前进,具有强大的能量,因而破坏性极大。

它不仅可以冲毁所经路程碰到的一切,还可掩埋乡镇农田,阻塞河流。

泥石流灾害的特点是规模犬,危害严重;活动频繁,危及面广;且重复成灾。

④世界上发生泥石流的区域分布广泛。

除南极洲外,各大洲都有泥石流的踪迹。

泥石流最多的地区是欧洲阿尔卑斯山区、亚洲喜马拉雅山区、南北美洲太平洋沿岸山区和欧亚美各大洲内部的一些山区。

⑤我国是多山之国,受岩层断裂等地质构造的影响,许多山体陡峭,岩石结构不稳固,森林覆盖面积不多,遇到季风气候的连阴雨、大暴雨天气,常发生严重的泥石流灾害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本溪市2009--2010学年(上)期中质量抽测
一、选择题(每题3分,共8题,满分24分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .2
3540x x +-= B .6100x +=
C .25320x y +-=
D .2
50z +-=
2.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球的概率是( ) A .
311 B .811 C .1114 D .3
14
3.如图1-3,△ABC 中,AB=AC ,∠BAC=120︒,D 是BC 的中
点,DE ⊥AB 于E ,若AE=4cm ,则AD 的长为( ) A .4cm B .6cm C .8cm D .12cm
4.甲、乙两地相距50千米,设汽车从甲地到乙地所用时间为t(小时)、平均速度为v(千米/时),则t 与v 的函数图象大致为图中的( )
5.一个长方体的二视图如图1.5所示,若其俯视图为正方形,
则这个长方体的高和底面边长分别为( )
A ..C .3,2 D .2,3
6.在Rt △ABC 中,∠C=90︒,AB 的垂直平分线交BC 边于D , 2,则∠B 的度数为( )
A .18︒
B .54︒
C .36︒
D .72︒ 7.如图1-7,矩形纸片ABCD 的边长AB=8,AD=4,将矩形纸 片沿EF 折叠,使点A 与点C 重台,折叠后在其一面着色, 则着色部分的面积为( )
A .32
B .28
C .25
D .22
8.在
ABCD 中,AB=6.AD=9,∠BAD 的平分线交BC
于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,
若=BG=CEF 的周长为( ) A .8 B .9.5 C .10 D .11.5 二、填空题(每题3分,共8题,满分24分)
9.小明掷一枚硬币,结果是一连9次都出现正面朝上,请问他第10次掷硬币时,出现正面朝上的概率是________________
10.某品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平
均每月降价的百分率为x ,根据题意列出的方程是________________ 11.如图2.11,菱形ABCD 的对角线相交于点0,请你B
添加一个条件,使得该菱形为止方形,则添加条件 是______________________________(只添一个即可) 12.若直角三角形两边长分别为6和8,则第三边长为_______
13.如图2.13,小丽站在30米高的楼顶远眺前方的广场,15米处有一个
高为5米的障碍物,那么离楼房____________的范围内小丽看不见 14.如图2-14,点A 在反比例函数6
y x
=
的图象上,点A 的坐标为 (1,6), △AOB 为等腰三角形, OA=AB 且点B 在x 轴正半轴上,当点A 的横坐
标逐渐增大时,AAOB 的面积__________(填“逐渐增人”、“逐渐变小”或“不变”)
15.关于x 的方程2
410mx x -+=有两个实数根,则m 的取值范围是______
16.己知等腰三角形ABC 中,AB=AC ,D 为BC 边上一点,连接AD ,△ACD 和△ABD 都是等腰
三角形,则∠C 的度数是___________。

三、解答题(每题8分,共2题,满分1 6分) 17.解方程:
(1) 2
440x x ++-= (2)2
5(2)3(2)x x -=-
18.一个不透明的袋子中装有两个黄球和两个红球,任意摸出一球后放回,再任意摸出一球,求两次都摸到红球的概率.
四、(每题10分,共2题,满分20分)
19.在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.
20.如图,线段AB//线段CD,迎接AC,AE平分∠BAC交CD于E,F为AC中点,过F作FG//AB 交AE于G,连接CG,求证CG平分∠ACD
21.在△ABC中,AN平分∠BAC,AN BN于N,已知AB=10,AC=16,BN=3.
求证∠ACB=∠CBN.
22.如图,ABCD中,AE是BC边上的高,AE是BC沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG:
(2)若四边形ABFG是菱形,且AB:BC=2:3,求∠B的度数.
23.如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图像传递,动点T(m,n)表示火炬位置,火炬从离北京路10m处的M点开始传递,到离北京路1000m的N点时传递活动结束,迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000m2 (路线宽度均不计).
(1)求图中反比例函数的关系式(不需写出自变量的取值范围):
(2)当鲜花方阵的周长为500m时,确定此时火炬的位置(用坐标表示).
24.某广告公司制作广告的收费标准是:以面积为单位,在不超过规定面积 A(m2)的范围内,每张广告收费1000元,如果超过Am2,则除了要交1000元的基本广告费外,超过部分还按每平方米50A元收费,下表是该公司对两家用户广告面积和收费情况的记载:
红星公司要制作一张大型公益广告,其材料形状是矩形,如果它的四周是空白处,并且四周各空0.5米,空白部分不收广告费,中间的矩形部分才是广告面积,若矩形长宽之比为3:2,并且红星公司只能支出110400元的广告费
(1)求A的值
(2)求这张广告的长和宽各是多少米?
七、(满分1 2分)
25.如图①,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,连接AP、PQ.
(1)请你判断AP与P0的数量关系并证明:
(2)如图②,若将“四边形ABCD是矩形”的条件改为“四边形ABCD是平行四边形”,则
(1)中的结论是否成立,若不成立,请说明理由,若成立,请给出证明.
八、(满分14分) 2.如图,己知直线12y x =与双曲线(0)k
y k x
=>交于A 、B 两点,且点A 的横坐标为4 (1)求k 的值:
(2)若双曲线(0)k
y k x
=
>上一点C 的纵坐标为8,求△AOC 的面积;X (3)过原点O 的另一条直线L 交双曲线(0)k
y k x
=>于P 、Q 两点(P 点在第一象限),若
由点A 、B 、P 、Q 为顶点组成的四边形的面积为24,求点p 的坐标(请你直接写出点p 的坐标).。

相关文档
最新文档