八年级数学上册15.2乘法公式(第3课时)教案新人教版

合集下载

人教版八年级数学上册教案八年级数学整式的乘法

人教版八年级数学上册教案八年级数学整式的乘法

15.2整式的乘法复习新课指南1.知识与技能:(1)掌握同底数幂的乘法;(2)幂的乘方;(3)积的乘方;(4)整式的乘法法则及运算规律.2.过程与方法:经历探索同底数幂的乘法公式的过程,在乘法运算的基础上理解同底数幂的乘法、幂的乘方与积的乘方的运算公式,从而熟练地掌握和应用整式的乘法.3.情感态度与价值观:通过本节的学习,全面体现转化思想的应用,也使学生认识到数学知识来源于实际生活的需求,反过来又服务于实际生产、生活的需求.4.重点与难点:重点是同底数幂的乘法及幂的乘方、积的乘方运算.难点是整式的乘法.教材解读 精华要义数学与生活著名诺贝尔奖获得者法国科学家居里夫人发明了“镭”,据测算:1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量.估计地壳里含有1×1010千克镭,试问这些镭蜕变后放出的热量相当于多少千克煤放出的热量?思考讨论 由题意可知,地壳里1×1010千克镭完全蜕变后放出的热量相当于(3.75×105)×(1×1010)千克煤放出的热量,所以,如何计算这个算式呢?由乘法的交换律和结合律可进行如下计算:(3.75×105)×(1×1010)=3.75×105×1010=(3.75×1)×(105×1010)=3.75×(105×1010),那么如何计算105×1010呢?知识详解知识点1 同底数幂的乘法法则 a m ·a n =a m+n(m ,n 都是正整数).同底数幂相乘,底数不变,指数相加. 例如:计算.(1)23×24; (2)105×102;解:(1)23×24=(2×2×2)×(2×2×2×2)=2×2×2×2×2×2×2=27.(2)105×102=(10×10×10×10×10)×(10×10) =10×10×10×10×10×10×10 =107.由23×24=27,105×102=107可以发现:23×24=23+4,105×102=105+2.猜测一下:a m ·a n=m+n(m ,n 为正整数),推导如下:a m·a n= 相乘个 a m a a a a a )·····(相乘个 a n a a a a a a )······(=a m+n知识点2 幂的乘方 (a m )n =a mn(m ,n 都是正整数).幂的乘方,底数不变,指数相乘.【说明】 (1)幂的乘方法则是由同底数幂的乘法法则和乘方的意义推导的. (2)(a m )n与的anm 区别.其中,(a m )n 表示n 个a m相乘,而a nm 表示m n 个a 相乘,例如:(52)3=52×3=56,532=58.因此,(a m )n≠anm ,要仔细区别.知识点3 积的乘方(a b)n =a n b n(n 为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 探究交流填空,看看运算过程用到哪些运算律?运算结果有什么规律?(1)(a b)2=(a b)·(a b)=( a ·a )(b ·b)= a ( )b ( )(2)(a b)3= = =a ( )b ( )点拨 由积的乘方法则得知:(1)2 2 (2)(a b)·(a b)·(a b) ( a ·a ·a )(b ·b ·b) 3 3【说明】 在运用积的乘方计算时,要注意灵活,如果底数互为倒数时,可适当变形.如:(21)10·210=(21·2)10=110=1;42·(-21)5=24·(-21)5=[24·(-21)4]·(-21)=[(-21)·2]4·(-21) =1·(-21)=-21.知识点4 单项式的乘法法则单项式乘法是指单项式乘以单项式.单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.为了防止出现系数与指数的混淆,同底数幂的乘法性质与幂的乘方性质的混淆等错误,同学们在初学本节解题时,应该按法则把计算步骤写全,逐步进行计算.如21x 2y ·4xy 2=(21×4)·x 2+1y 1+2=2x 3y 3. 在许多单项式乘法的题目中,都包含有幂的乘方、积的乘方等,解题时要注意综合运用所学的知识.【注意】 (1)运算顺序是先乘方,后乘法,最后加减. (2)做每一步运算时都要自觉地注意有理有据,也就是避免知识上的混淆及符号等错误. 知识点5 单项式与多项式相乘的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 例如:a (m+n+p)=a m+a n+a p.【说明】 (1)单项式与多项式相乘,其实质就是乘法分配律的应用. (2)在应用乘法分配律时,要注意单项式分别与多项式的每一项相乘. 探究交流下列三个计算中,哪个正确?哪个不正确?错在什么地方? (1)3a (b-c+a )=3a b-c+a(2)-2x(x 2-3x+2)=-2x 3-6x 2+4x(3)2m(m 2-mn+1)=2m 3-2m 2n+2m 点拨 (1)(2)不正确,(3)正确.(1)题错在没有将单项式分别与多项式的每一项相乘.(2)题错在没有将-2x 中的负号乘进去.知识点6 多项式相乘的乘法法则 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.【说明】 多项式相乘的问题是通过把它转化为单项式与多项式相乘的问题来解决的,渗透了转化的数学思想.(a +b)(m+n)=(a +b)m+(a +b)n=a m+bm+a n+bn.计算时是首先把(a +b)看作一个整体,作为单项式,利用单项式与多项式相乘的乘法法则计算.典例剖析 师生互动基本概念题本节有关基本概念的题目包括以下几个方面:(1)同底数幂的乘法;(2)幂的乘方与积的乘方;(3)整式的乘法.例1 计算.(1)①103×104;②a ·a 3;③a ·a 3·a 5;④(m+n)2·(m+n)3.(2)①(103)5;②(b 3)4;③(-4)3·(-41)3. (3)①(2b)3;②(2a 3)2;③(-a )3;④(-3x)4.(分析) 本题主要考查三个公式:a m ·a n =a m+n ,(a m )n =a mn ,(a b)n =a n b n,其中,m ,n 均为正整数.解:(1)①103×104=103+4=107. ②a ·a 3=a 1+3=a 4.③a ·a 3·a 5=a 1+3+5=a 9. ④(m+n)2·(m+n)3=(m+n)2+3=(m+n)5.(2)①(103)5=103×5=1015. ②(b 3)4=b 3×4=b 12.③(-4)3·(-41)3=[(-4)·(-41)]3=13=1. (3)①(2b)3=23b 3=8b 3. ②(2a 3)2=22(a 3)2=4a 6.③(-a )3=(-1)3a 3=-a 3. ④(-3x)4=(-3)4x 4=81x 4.小结 在应用这三个公式时要准确,尤其是公式(a m )n=a mn,不要写成(a m )n=anm ,这是不正确的.基本知识应用题本节的基础知识应用包括:(1)经历探索整式乘法运算法则的过程;(2)会进行简单的整式乘法运算.例2 计算.(1)3x 2y ·(-2xy 3); (2)(-5a 2b 3)·(-4b 2c).(分析) 单项式乘法,其实质就是同底数幂乘法与乘法交换律和结合律.解:(1)3x 2y ·(-2xy 3)=[3·(-2)](x 2·x)(y ·y 3)=-6x 3y 4.(2)(-5a 2b 3)·(-4b 2c)=[(-5)(-4)]a 2·(b 3·b 2)·c=20a 2b 5c. 例3 计算.(1)2a 2(3a 2-5b); (2)(-2a 2)(3a b 2-5a b 3).(分析)单项式与多项式相乘,其实质就是乘法分配律的应用.解:(1)2a 2(3a 2-5b) =2a 2·3a 2-2a 2·5b =6a 4-10a 2b.解法1:(2)(-2a 2)(3a b 2-5a b 3)=(-2a 2)·3a b 2-(-2a 2)·5a b 3=-6a 3b 2+10a 3b 3.解法2:(2)(-2a 2)(3a b 2-5a b 3)=-(2a 2·3a b 2-2a 2·5a b 3)=-(6a 3b 2-10a 3b 3)=-6a 3b 2+10a 3b 3.小结 单项式与多项式相乘时,要注意两个问题: (1)要用单项式与多项式的每一项相乘,避免漏乘;(2)单项式带有负号时,如(2)小题,乘的时候容易弄错符号,为了避免这一错误出现,可以用(2)小题的第二种解法,就能有效地解决.例4 计算.(1)(x-3y)(x+7y); (2)(5x+2y)(3x-2y).(分析)先用多项式乘法法则计算,最后要合并同类项.解:(1)(x-3y)(x+7y)=x 2+7xy-3xy-21y 2=x 2+4xy-21y 2.(2)(5x+2y)(3x-2y)=15x 2-1Oxy+6xy-4y 2=15x 2-4xy-4y 2. 学生做一做 计算.(1)(x+2)(x-3); (2)(3x-1)(2x+1).老师评一评 (1)(x+2)(x-3)=x 2-3x+2x-6=x 2-x-6.(2)(3x-1)(2x+1)=6x 2+3x-2x-1=6x 2+x-1. 综合应用题本节知识的综合应用包括:(1)整式乘法与方程的综合应用;(2)整式乘法与不等式的综合应用;(3)整式乘法与整式加减的综合应用.例5 化简.(1)(a +b)(a -2b)-(a +2b)(a -b);(2)5x(x 2+2x+1)-(2x+3)(x-5).(分析) 整式加减与整式乘法的混合计算,要依照先乘法,后加减的顺序计算. 解:(1)(a +b)(a -2b)-(a +2b)(a -b) =(a 2-a b-2b 2)-(a 2+a b-2b 2) =a 2-a b-2b 2-a 2-a b+2b 2 =-2a b.(2)5x(x 2+2x+1)-(2x+3)(x-5)=(5x 3+10x 2+5x)-(2x 2-7x-15) =5x 3+10x 2+5x-2x 2+7x+15 =5x 3+8x 2+12x+15. 学生做一做 化简.(1)(3y+2)(y-4)-3(y-2)(y-3);(2)(3x-2)(x-3)-2(x+6)(x-5)+31x 2-7x-13. 老师评一评 (1)原式=5y-26.(2)原式=32x 2-20x+53.例6 解方程(3x-2)(2x-3)=(6x+5)(x-1). (分析) 解方程时,有括号的先去括号. 解:(3x-2)(2x-3)=(6x+5)(x-1), 6x 2-13x+6=6x 2-x-5, 6x 2-13x-6x 2+x=-5-6, -12x=-11,∴x=1211. 学生做一做 解下列方程. (1)3x(7-x)=18-x(3x-15); (2)21x(x+2)=1-x(3-21x). 老师评一评 (1)x=3;(2)x=41. 小结 在解存在整式乘法的方程时,依照先乘法,后加减的顺序,其他步骤没有变化.例7 解不等式(3x+4)(3x-4)>9(x-2)(x+3). 解:(3x+4)(3x-4)>9(x-2)(x+3), 9x 2-16>9(x 2+x-6), 9x 2-16>9x 2+9x-54, 9x 2-9x 2-9x >16-54, -9x >38,∴x <938. 学生做一做 解不等式(x+3)(x-7)+8>(x+5)(x-1). 老师评一评 x <-1. 探索与创新题主要考查灵活解决问题和创新的能力. 例8 已知m b a +·m b a -=m 12,求a 的值.(分析)由同底数幂乘法法则可把原式变形为m )()(b a b a -++=m 12,由此得到(a +b)+(a -b)=12,进而求出a 的值.解:∵m b a +·m b a -=m 12,∴m )()(b a b a -++=m 12.∴(a +b)+(a -b)=12, ∴2a =12.∴a =6.学生做一做 (1)若644×83=2x,则x= ;(2)若x 2n =4,x 6n = ,(3x 3n )2= ;(3)已知a m =2,a n =3,则a m+n= .老师评一评 (1)33 (2)64 576 (3)6小结 在应用同底数幂乘法、幂的乘方及积的乘方运算解决问题时,贵在灵活,尤其是公式:a m ·a n =a m+n ,(a m )n =a mn ,(a b)m = a m b m(m ,n 为正整数),它们的逆应用非常广泛,大家要引起充分的重视.例9 计算(-3)2004·(31)2005. (分析)按照本题的运算级别,应先乘方后乘法,但是我们看到,要计算出(-3)2004·(31)2005的具体值是相当困难的,也是不必要的.因此我们不妨仔细观察本题的特点,虽然两个乘方运算的指数都很大,但是它们两者却只相差1,而且它们的底数互为负倒数,而且互为负倒数的乘积是-1,因此考虑公式(a b)m =a m b m的逆应用,即把指数大的乘方运算中的指数进行变化.解:(-3)2004·(31)2005=(-3)2004·(31)2004+1=(-3)2004·(31)2004·31=[(-3)·31]2004·31=(-1)2004·31 =1×31=31. 学生做一做 (1)(51)5993×252996= ; (2)(-32)2001×(241)1000= ; (3)(131)2001×(-141)2002×(-53)2003= .老师评一评 (1)(51)5993×252996=(51)5993×(52)2996=(51)5993×55992=51·(51)5992·55992=51.(2)(-32)2001×(241)1000=(-32)2001×(49)1000=(-32)·(-32)2000×[(23)2]1000=(-32)×(-32)2000×(23)2000=(-32)×[(-32)×23]2000=(-32)×(-1)2000=(-32)×1=-32. (3)原式=(34)2001×(-45)2002×(-53)2003=[34×(-45)×(-53)]2001×(-45)×(-53)2=12001×(-45)×259=-209.例10 已知2x=3,2y=5,2z=15.求证x+y=z.(分析)要说明x+y=z ,只需说明2x+y =2z即可.证明:∵2x =3,2y=5, ∴2x+y =2x ·2y=3×5=15.又∵2z =15,∴2x+y =2z.∴x+y=z. 例11 比较大小.(1)1625与290;(2)2100与375.(分析) 比较两个正数幂的大小,一种是指数相同,比较底数大小,另一种是底数相同,比较指数大小.解:(1)∵1625=(24)25=2100,290=290,又∵2>1,∴290<2100,即1625>290.(2)∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴1625<2725,即2100<375.学生做一做 比较355,444,533的大小.老师评一评 ∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,且256>243>125,∴25611>24311>12511,即444>355>533.例12 如果(x+q)(x+51)的积中不含x 项,那么q= . (分析) 欲求q 的值,则需化简(x+q)(x+51)=x 2+(51+q)x+51q,因为积中不含x 项,即x 项的系数是0,所以51+q=0,所以q=-51.小结 欲求多项式中不含某项,即某项的系数为0.例13 若n 为自然数,试说明n(2n+1)-2n(n-1)的值一定是3的倍数.解:∵n(2n+1)-2n(n-1)=2n2+n-(2n2-2n)=2n2+n-2n2+2n=3n,且n为自然数,∴n(2n+1)-2n(n-1)一定是3的倍数.学生做一做用你所学的知识,说明523-521能被120整除.老师评一评∵523-521=521+2-521=521·52-521=521·(52-1)=24×521=24×5×520=120×520,∴是120的整数倍,∴523-521能被120整除.例14 设m2+m-1=0,求m3+2m2+2004的值.(分析) 欲求代数式的值,从m2+m-1=0中求m的值是比较困难的,也是不必要的,只需利用单项式与多项式的积的逆运算即可.解:∵m2+m-1=0,∴m2+m=1.∴m3+2m2+2004=m(m2+m)+m2+2004=m·1+m2+2004=m2+m+2004=1+2004=2005.∴m3+2m2+2004=2005.学生做一做若2x+5y-3=0,则4x·32y= .老师评一评∵2x+5y-3=0,∴2x+5y=3,∴4x·32y=(22)x·(25)y-22x·25y=22x+5y=23=8.中考展望点击中考中考命题总结与展望历年中考多为填空题、选择题或化简求值题,经常与函数、方程等知识综合出题.中考试题预测例1 化简(-x)3·(-x)2的结果正确的是( )A.-x6B.x6C.x5D.-x5(分析) 本题主要考查幂的乘方与单项式的乘法,解法有两种:①原式=(-x3)·x2=-x5;②原式=(-x)5=-x5.故正确答案为D项.例2 下列运算中,正确的是( )A.x2·x3=x6B.(a b)3=a3b3C.3a+2a=5a2D.(a-1)2=a2-1(分析) 本题主要考查整式的乘法与合并同类项.其中A项不正确,x2·x3=x5,主要考查同底数幂的乘法公式;B项正确,主要考查积的乘方;C项不正确,主要考查合并同类项;D 项不正确,主要考查多项式相乘,故选择B项.例3 下列运算正确的是( )A.x2·x3=x6B.x2+x2=2x4C.(-2x)2=-4x2D.(-2x2)(-3x3)=6x5(分析) 本题主要考查整式的加减和乘法.答案:D例4 计算:4x2·(-2xy)= .(分析) 本题旨在检测单项式乘法法则.4x2·(-2xy)=-8x3y.例5 计算:(-21x 3y)2= . (分析) 本题旨在考查积的乘方与幂的乘方.(-21x 3y)2=(-21)2(x 3)2y 2=41x 6y 2. 例6 下列各式正确的是( ) A.(-a )2=a 2B.(-a)3=a 3C.2a -=-a 2D.3a -=a 3答案:A例7 化简:a 3·a 2b= .答案:a 5b例8 计算:9xy ·(-31x 2y)= . 答案:-3x 3y 2课堂小结 本节归纳1.本节主要学习了同底数幂的乘法、幂的乘方与积的乘方公式.整式的乘法,包括单项式乘法、单项式乘以多项式及多项式乘法.2.必须掌握每种情况的运算法则,计算时一定要正确运用法则和有关知识.自我评价 知识巩固1.如果x m-3·x n =x 2,那么n 等于( )A.m-1B.m+5C.4-mD.5-m 2.下列计算错误的是( )A.(- a )·(-a )2=a 3B.(- a )2·(-a )2=a 4C.(- a )3·(-a )2=-a 5D.(- a )3·(-a )3=a 63.计算(a 3)2+a 2·a 4的结果为( )A.2a 9B.2a 6C.a 6+a 8D.a 124.计算(32)2003×1.52002×(-1)2004的结果是( ) A.32 B.23 C.-32D.-23 5.方程x(x-3)+2(x-3)=x 2-8的解为( )A.x=2B.x=-2C.x=4D.x=-46.若3x(x n +5)=3x n+1-7,则x= .7.若(a n ·b m ·b)3=a 9b 15,则m= ,n= . 8.计算:(-21x 2y)3·(-3xy 2)2= . 9.计算:(4×106)×(8×103)= .10.当x=2时,代数式a x 3+bx-7的值为5,则x=-2时,这个代数式的值为 . 11.计算.(1)(-x)3(-y)2-(-x 3y 2); (2)890·(21)90·(21)180;(3)24×45×(-0.125)4;(4)(x-6)(x 2+x+1)-x(2x+1)(3x-1); (5)2(a -4)(a +3)-(2a +1)(a -1); (6)(2x+1)(x-1)-(x+2)(2x-1).12.已知2x =a ,2y =b ,求2x+y +23x+2y的值.13.要使x(x 2+a )+3x-2b=x 3+5x+4成立,则a ,b 的值分别为多少?14.若(3x 2-2x+1)(x+b)中不含x 2项,求b 的值. 15.若3k(2k-5)+2k(1-3k)=52,求k 的值. 16.解不等式x 2+21x(3-2x)<241. 17.观察下列等式:13=12 13+23=32 13+23+33=62 13+23+33+43=102 …… 想一想,等式左边各项的底数与等式右边的底数有什么关系?猜一猜,可以得出什么规律?18.计算(101×91×81×…×21×1)10·(10×9×8×7×…×3×2×1)10.参考答案1.D2.A3.B4.A5.A6.-1577.4 38.-89x 8y 7 9.3.2×101010.-19 11.(1)原式=0; (2)解:原式=(23)90·(21)90·(21)180=2270·(21)270=(2·21)270=1. (3)解:原式=(2×4×0.125)4×4=14×4=4.(4)原式=-5x 3-6x 2-4x-6; (5)原式=-a -23; (6)原式=1-4x.12.提示:∵2x =a ,2y=b , ∴2x+y +23x+2y =2x ·2y +23x ·22y =2x ·2y +(2x )3·(2y)2=a b+ a 3b 2.13.解:原等式可化为x 3+(a +3)x-2b=x 3+5x+4,14.提示:(3x 2-2x+1)(x+b)=3x 3+(3b-2)x 2+(1-2b)x+b ,∵多项式中不含x 2项,∴(3b-2)=0,∴b=32. 15.k=-4. 16.x <23. 17.提示:由上述等式可以发现: 13=12 13+23=32=(1+2)2 13+23+33=62=(1+2+3)2 13+23+33+43=102=(1+2+3+4)2 ……综上所述,有:13+23+33+…+n 3=(1+2+3+4+…+n)2.18.解:(101×91×81×…×21×1)10·(10×9×8×7×…×3×2×1)10=(101×91×81×…×21×10×9×8×7×…×3×2×1)10=1.。

人教版八年级上册数学教案14.2 乘法公式(3课时)

人教版八年级上册数学教案14.2 乘法公式(3课时)

14.2乘法公式14.2.1平方差公式(第1课时)一、基本目标【知识与技能】掌握平方差公式,会用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性,感受数学知识的实际价值.二、重难点目标【教学重点】平方差公式.【教学难点】理解平方差公式的结构特征,灵活应用平方差公式.环节1自学提纲,生成问题【5 min阅读】阅读教材P107~P108的内容,完成下面练习.【3 min反馈】1.根据条件列代数式:(1)a、b两数的平方差可以表示为a2-b2;(2)a、b两数差的平方可以表示为(a-b)2.2.(1)(x+2)(x-2)=x2-4;(1+3a)(1-3a)=1-9a2;(x+5y)(x-5y)=x2-25y2.观察以上算式及其运算结果填空:上面三个算式中的每个因式都是多项式;等式的左边都是两个数的和与两个数的差的乘积,等式的右边是这两个数的平方的差.(2)平方差公式:(a +b )(a -b )=a 2-b 2.也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差.3.已知a +b =10,a -b =8,则a 2-b 2=80. 4.计算(3-x )(3+x )的结果是9-x 2. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】运用平方差公式计算: (1)(3x -5)(3x +5); (2)(-2a -b )(b -2a ); (3)(x -2)(x +2)(x 2+4).【互动探索】(引发学生思考)观察各式子的特点,确定用什么公式计算? 【解答】(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25. (2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2. (3)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.【互动总结】(学生总结,老师点评)运用平方差公式计算时,要注意以下几点:(1)左边是两个二项式相乘,并且这两个二项式中一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【例2】计算:10015×9945.【互动探索】(引发学生思考)观察式子特点,直接计算比较难,将原式转化为⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15,用平方差公式计算.【解答】原式=⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15=10 000-125=99992425. 【互动总结】(学生总结,老师点评)可将两个因数写成相同的两个数的和与差,形成平方差公式结构.活动2 巩固练习(学生独学)1.下列运算中,可用平方差公式计算的是( C ) A .(x +y )(x +y )B .(-x +y )(x -y )C .(-x -y )(y -x )D .(x +y )(-x -y )2.如图1,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图2),利用这两幅图形的面积,可以验证的乘法公式是(a +b )(a -b )=a 2-b 2.3.长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为4a 2-9b 2. 4.若(m +3x )(m -3x )=16-nx 2,则mn 的值为±36. 5.计算:(1)⎝⎛⎭⎫34y +212x ⎝⎛⎭⎫212x -34y ; (2)⎝⎛⎭⎫-56x -0.7a 2b ⎝⎛⎭⎫56x -0.7a 2b ; (3)(2a -3b )(2a +3b )(4a 2+9b 2)(16a 4+81b 4).解:(1)254x 2-916y 2. (2)0.49a 4b 2-2536x 2. (3)256a 8-6561b 8.6.运用平方差公式简算: (1)2013×1923; (2)13.2×12.8.解:(1)原式=⎝⎛⎭⎫20+13×⎝⎛⎭⎫20-13=400-19=39989. (2)原式=(13+0.2)×(13-0.2)=169-0.04=168.96. 活动3 拓展延伸(学生对学)【例3】对于任意的正整数n ,整式(3n +1)(3n -1)-(3-n )(3+n )的值一定是10的倍数吗?【互动探索】要判断整式是否为10的倍数→需化简代数式→化简结果是否是10的倍数→做出判断.【解答】原式=9n 2-1-(9-n 2)=10n 2-10=10(n +1)(n -1). ∵n 为正整数,∴(n -1)(n +1)为整数,即(3n +1)(3n -1)-(3-n )(3+n )的值是10的倍数.【互动总结】(学生总结,老师点评)平方差公式中的a 和b 可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.环节3课堂小结,当堂达标(学生总结,老师点评)平方差公式:(a+b)(a-b)=a2-b2.请完成本课时对应练习!14.2.2完全平方公式第2课时完全平方公式一、基本目标【知识与技能】1.掌握完全平方公式及其结构特征.2.会用完全平方公式进行简单计算.【过程与方法】利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感态度与价值观】培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.二、重难点目标【教学重点】完全平方公式及其结构特征.【教学难点】灵活应用完全平方公式进行计算.环节1自学提纲,生成问题【5 min阅读】阅读教材P109~P110的内容,完成下面练习.【3 min反馈】1.按要求列代数式:(1)a、b两数和的平方可以表示为(a+b)2;(2)a、b两数平方的和可以表示为a2+b2.2.计算下列各式:(a+1)2=(a+1)(a+1)=a2+2a+1;(a-1)2=(a-1)(a-1)=a2-2a+1;(m-3)2=(m-3)(m-3)=m2-6m+9.3.完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.如图1可以用来解释(a+b)2-(a-b)2=4ab,那么通过图2面积的计算,验证了一个恒等式,此等式是(a-b)2=a2-2ab+b2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】运用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2; (4)(a+b+c)2.【互动探索】(引发学生思考)观察式子的特点,怎样运用完全平方公式进行计算?【解答】(1)(5-a)2=52-2·5·a+a2=25-10a+a2.(2)(-3m-4n)2=(-3m)2-2·(-3m)·4n+(4n)2=9m2+24mn+16n2.(3)(-3a+b)2=(-3a)2+2·(-3a)·b+b2=9a2-6ab+b2.(4)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2.【互动总结】(学生总结,老师点评)完全平方公式:(a±b)2=a2±2ab+b2,可巧记为“首平方,尾平方,积的2倍在中央,符号确定看前方”.【例2】计算:(1)9982;(2)(2)20182-2018×4034+20172.【互动探索】(引发学生思考)(1)直接计算9982比较复杂,考虑将998转化为1000-2,再利用完全平方公式计算.(2)逆用完全平方公式即可.【解答】(1)原式=(1000-2)2=1 000 000-4000+4=996 004.(2)原式=20182-2×2018×2017+20172=(2018-2017)2=1.【互动总结】(学生总结,老师点评)(1)中可将该式变形为(1000-2)2,再运用完全平方公式可简便运算.活动2巩固练习(学生独学)1.运算结果是x4y2-2x2y+1的是(C)A.(-1+x2y2)2B.(1+x2y2)2C.(-1+x2y)2D.(-1-x2y)22.若|a-b|=1,则b2-2ab+a2的值为(A)A.1B.-1C.±1D.无法确定3.下列关于962的计算方法正确的是(D)A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92164.运用完全平方公式计算:(1)(-3a+2b)2;(2)(a+2b-1)2;(3)50.012; (4)49.92.解:(1)4b2-12ab+9a2.(2)a2+4ab+4b2-2a-4b+1.(3)2501.0001.(4)2490.01.活动3拓展延伸(学生对学)【例3】如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.【互动探索】根据完全平方公式的结构特点→确定(m+1)xy的值→建立方程→确定m 的值.【解答】∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61.【互动总结】(学生总结,老师点评)两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【例4】已知a+b=4,ab=-5,求下列各式的值.(1)a 2+b 2; (2)(a -b )2.【互动探索】由已知等式联想到什么乘法公式?所求代数式与已知等式有什么关系?怎样求解?【解答】(1)a 2+b 2=(a +b )2-2ab .把a +b =4,ab =-5代入,得a 2+b 2=42-2×(-5)=16+10=26. (2)(a -b )2=(a +b )2-4ab .把a +b =4,ab =-5代入,得(a -b )2=42-4×(-5)=16+20=36. 【互动总结】(学生总结,老师点评)完全平方公式的常用变形: (1)a 2+b 2=(a +b )2-2ab =(a -b )2-2ab ; (2)ab =12[(a +b )2-(a 2+b 2)];(3)(a -b )2+(a +b )2=2(a 2+b 2); (4)(a +b )2+(a -b )2=4ab ; (5)(a +b )2=(a -b )2+4ab ; (6)(a -b )2=(a +b )2-4ab ; (7)ab =⎝⎛⎭⎪⎫a +b 22-⎝ ⎛⎭⎪⎫a -b 22; (8)a 2+b 2+c 2+ab +ac +bc =12[(a +b )2+(b +c )2+(a +c )2];(9)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc . 环节3 课堂小结,当堂达标 (学生总结,老师点评) 完全平方公式两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 字母表示:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2.请完成本课时对应练习!第3课时 添括号法则一、基本目标【知识与技能】理解并掌握添括号法则,综合运用乘法公式进行计算.【过程与方法】经历类比去括号法则,推出添括号法则的过程,发展学生的知识迁移能力,使学生逐渐掌握添括号法则.【情感态度与价值观】通过类比学习,掌握添括号法则,培养学生的归纳概括能力和发散思维.二、重难点目标【教学重点】添括号法则的推导和运用.【教学难点】添括号法则的运用.环节1自学提纲,生成问题【5 min阅读】阅读教材P111的内容,完成下面练习.【3 min反馈】1.去括号法则:a+(b+c)=a+b+c;a-(b+c)=a-b-c.2.反过来,就得到添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).3.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.4.在括号内填入适当的项:(1)x2-2x+y=x2-(2x-y);(2)a-2b+3c=-(-a+2b-3c).5.根据添括号法则完成变形:(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)].环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按下列要求,给多项式3x3-5x2-3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“-”号;(3)把多项式后三项括起来,括号前面带有“-”号;(4)把多项式中间的两项括起来,括号前面“-”号.【互动探索】(引发学生思考)根据添括号法则,联系题目要求多项式的各项的符号变化进行添加.【解答】(1)3x3+(-5x2-3x+4).(2)-(-3x3+5x2)-3x+4.(3)3x3-(5x2+3x-4).(4)3x3-(5x2+3x)+4.【互动总结】(学生总结,老师点评)添括号时,明确括号前的符号以及括到的项.无论怎样添括号,原式的值都不能改变,可以用去括号法则检验是否正确.【例2】计算:(1)(a-m+2n)2;(2)(x-y-m+n)(x-y+m-n);(3)(2x-y-3)(2x-y+3);(4)(x-2y-z)2.【互动探索】(引发学生思考)利用添括号法则对原式添加括号→变为乘法公示结构→利用乘法计算公式进行计算.【解答】(1)原式=[(a-m)+2n]2=(a-m)2+4n(a-m)+4n2=a2-2am+m2+4an-4mn+4n2.(2)原式=[(x-y)-(m-n)][(x-y)+(m-n)]=(x-y)2-(m-n)2=x2-2xy+y2-(m2-2mn+n2)=x2-2xy+y2-m2+2mn-n2.(3)原式=[(2x-y)-3][(2x-y)+3]=(2x-y)2-9=4x2-4xy+y2-9;(4)原式=[(x-2y)-z]2=(x-2y)2-2z(x-2y)+z2=x2-4xy+4y2-2xz+4yz+z2.【互动总结】(学生总结,老师点评)此式需添括号变形成公式结构,再运用公式使计算简便.活动2巩固练习(学生独学)1.下列去(添)括号做法正确的有(C)A.x-(y-z)=x-y-zB.-(x-y+z)=-x-y-zC.x+2y-2z=x-2(z-y)D.-a+c+d+b=-(a+b)+(c+d)2.在横线上填入“+”或“-”号,使等式成立.(1)a-b=-(b-a);(2)a+b=+(b+a);(3)(a-b)2=+(b-a)2(4)(a-b)3=-(b-a)3.3.在括号内填上恰当的项:ax-bx-ay+by=(ax-bx)-(ay-by).环节3课堂小结,当堂达标(学生总结,老师点评)添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.简记:遇“加”不变,遇“减”都变.字母表示:a+b+c=a+(b+c);a-b-c=a-(b+c).请完成本课时对应练习!。

新人教版八年级上册数学教学计划

新人教版八年级上册数学教学计划

八年级数学上册教学计划老店镇一中:黄海祥一指导思想以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。

同时通过本期教学,完成八年级上册数学教学任务。

二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

有少数同学基础特差,问题较严重。

要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。

上学年学生期末考试的成绩平均分为38分,总体来看,成绩只能算一般。

在学生所学知识的掌握程度上,整个班级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。

在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。

学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

人教版数学八年级上册教学设计《14-2乘法公式》(第3课时)

人教版数学八年级上册教学设计《14-2乘法公式》(第3课时)

人教版数学八年级上册教学设计《14-2乘法公式》(第3课时)一. 教材分析《14-2乘法公式》是人教版数学八年级上册的教学内容,本节课主要介绍了完全平方公式和平方差公式的概念及其应用。

通过学习本节课,学生能够掌握完全平方公式和平方差公式的推导过程,理解其含义,并能灵活运用这两个公式解决实际问题。

教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析八年级的学生已经具备了一定的数学基础,对公式、定理有一定的认识。

但在解决实际问题时,仍需加强对公式的理解和运用。

学生在学习过程中,可能对完全平方公式和平方差公式的推导过程存在一定的困惑,因此需要教师耐心引导,让学生逐步理解并掌握这两个公式。

三. 教学目标1.知识与技能:让学生掌握完全平方公式和平方差公式的推导过程,理解其含义,并能灵活运用这两个公式解决实际问题。

2.过程与方法:通过小组合作、讨论交流的方式,培养学生的合作精神和沟通能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受到数学在生活中的重要性。

四. 教学重难点1.教学重点:完全平方公式和平方差公式的推导过程,及其在实际问题中的应用。

2.教学难点:完全平方公式和平方差公式的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.启发式教学法:教师引导学生思考,让学生自主探索,发现公式的推导过程。

3.小组合作学习:学生分组讨论,培养学生的合作精神和沟通能力。

4.练习法:布置适量的练习题,让学生在实践中巩固所学知识。

六. 教学准备1.课件:制作乘法公式的课件,包括教学内容、例题、练习题等。

2.教学素材:准备一些与生活相关的实例,用于导入新课。

3.练习题:挑选一些适合本节课的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如平方运算、面积计算等,引导学生思考乘法公式的应用。

初中数学八年级上册第十五章《整式的乘除与因式分解》简介

初中数学八年级上册第十五章《整式的乘除与因式分解》简介

新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。

本章的主要内容是整式的乘除运算、乘法公式以及因式分解。

本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。

整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。

本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。

其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。

在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。

首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。

在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。

15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。

乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。

人教版八年级上册数学15.2.3 整数指数幂

人教版八年级上册数学15.2.3 整数指数幂

导入新知
通过上节课的学习,大家明确了整数指数幂具有正 整数指数幂的运算性质,这节课我们来学习运用其性质 进行有关计算及负整数指数幂在科学记数法中的运用.
素养目标
2.了解负整数指数幂在科学记数法中的 运用.
1.熟练应用整数指数幂的意义及性质进行综 合计算.
探究新知 知识点 1 用科学记数法表示绝对值小于1的小数
人教版 数学 八年级 上册
15.2 分式的运算
15.2.3 整数指数幂
第一课时 第二课时
第一课时
负整数指数幂
导入新知
正整数指数幂有以下运算性质:
(1)
(m,n是正整数)
(2)
如果(m指,数n是是正负整整数数)
(3)
该如何(计n是算正呢整?数)
(4)
(a≠0,m,n是正整数,m>n)
(5)
(n是正整数)
0.000 01= 100 000 = 105.
10n = 1 = 0.00 0 1.
1 00 0
n个0
n个0
探究新知
如何用科学记数法表示0.0035和0.0000982呢?
0.003 5=3.5×0.001 = 3.5×103 0.000 098 2=9.82×0.000 01= 9.82× 105
此外,还学过0指数幂,即a0=1(a≠0)
素养目标
2. 能运用分式的有关知识推导整数指数 幂的意义.
1. 知道负整数指数幂的意义及表示法.
探究新知
知识点 1 整数指数幂
探究1
将正整数指数幂的运算性质中指数的取值范
围由“正整数”扩大到“整数”,这些性质还适用吗?
探究2
am 中指数m 可以是负整数吗?如果可以,那

最新人教版八年级数学上册《15.2.1 分式的乘除(第1课时)》优质教学课件

最新人教版八年级数学上册《15.2.1 分式的乘除(第1课时)》优质教学课件
人教版 数学 八年级 上册
15.2
分式的运算
15.2.1 分式的乘除
第1课时
导入新知
通过前面分式的学习,我们知道分式和
分数有很多的相似性,如基本性质、约分和
通分.那么在运算上它们有相似性吗?
素养目标
2.能准确地进行分式的乘除法的计算.
1.知道并熟记分式乘除法法则.
探究新知
知识点
分式的乘除法法则
500
a 2 -1 a +1
2
(2)
=

=
.
2
2
(a -1) a -1 (a -1) 500
a -1
∴“丰收2号”小麦的单位面积产量是“丰收1号”小麦的
单位面积产量的
倍.
巩固练习
取一条长度为1个单位的线段AB,如图
第一步,把线段AB三等分,以中间
的一段为边作等边三角形,然后去掉这
一段,就得到由4条长度相等的线段组
则,说出分式的乘除法法则吗?
怎样用字母来表示分式的乘除法法则呢?
探究新知
分式的乘除法法则
a c
ac
a
c
a d
a d








b d
bd
b
d
b c
bc
乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的
分母.
除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式
相乘.
C.ab
D.


课堂检测
基础巩固题

1.化简

A.


2.计算:

人教版八年级数学上册《整式的乘法与因式分解》导学案:公式法(共3课时)

人教版八年级数学上册《整式的乘法与因式分解》导学案:公式法(共3课时)

人教版八年级数学上册《整式的乘法与因式分解》导学案公式法(1)【学习目标】1.经历通过整式乘法公式(a+b)(a-b)=a 2-b 2的逆向变形得出公式法因式分解的方法的过程,发展逆向思维和推理能力;2.会用平方差公式进行因式分解.【知识梳理】1.用字母表示平方差公式:2.乘法公式(a+b)(a-b)=a 2-b 2左边是整式的乘积,右边是一个多项式,把这个等式反过来就是 ,左边是 ,右边是 .3.平方差公式因式分解的特点:公式的左边:(1)必须 项式,(2)两项符号 ,(3)两项分别可化为一个数(或一个整式)的 形式,(4)公式中的a,b 可以是数、单项式或 。

公式的右边:是这两个数的 与这两个数的 的 。

4. 议一议:下列各式能用平方差公式因式分解吗?(1)42169y x - ( ) (2)162+x ( ) (3)224y x -- ( )(4)26441y x +- ( ) (5)()229y x --- ( ) (6)()229y x -+- ( )【典型例题】知识点一 直接用平方差公式因式分解1.把下列各式因式分解 (1)(a+m)2-(a+n)2 (2) 225116m -(3)3(a+b )2-27c 2 (4)22)(25)(16y x y x --+知识点二 先提公因式后用平方差公式因式分解1.把下列各式因式分解2316)1(mn m - )2()2()2(2a a m -+-3.分解因式:)4)(4(16224b b b -+=-,该结果 (填“正确”或“不正确”),正确的结果应该是 .4.已知长方形的面积是)34(1692>-a a ,若一边为3a+4,则另一边为 . 【巩固训练】1.下列各式中,能用平方差公式分解因式的是( )2D. C. B. .A 22222222y xy x y x y x y x +-+--+-2.22)(c b a --有一个因式是a +b -c ,则另一个因式为( )A.a -b -cB.a +b +cC.a +b -cD.a -b +c3.把多项式822-x 分解因式,结果正确的是A.)822-x (B.2)22-x (C.)2)(2(2-+x xD.)4(2xx x - 4.m 2+n 2是下列多项式( )中的一个因式A.m 2(m-n)+n 2(n-m)B.m 4-n 4C.m 4+n 4D.(m+n)2·(m-n)25.把(3m +2n)2-(3m -2n)2分解因式,结果是( )A.0B.16n 2C.36m 2D.24mn6.如果多项式4a 4-(b-c)2=M(2a 2-b+c),则M 表示的多项式是( )A.2a 2b+cB.2a 2-b-cC.2a 2+b-cD.2a 2+b+c7.已知1422=-y x ,2=-y x ,则=+y x .8.把下列各式因式分解:(1)a 2b 2-b 2 (2)14-x(3)()()2223n m n m --+ (4)22)2(9)2(4y x y x -++-9.计算 ))(())()((222221001-1991-141-131-121-1⨯⨯10. 32003-4×32002+10×32001能被7整除吗?为什么?11.能力提升(1)已知1242+-+b b a 与互为相反数,把多项式b axy y x --+224分解因式.人教版八年级数学上册《整式的乘法与因式分解》导学案公式法(2)【学习目标】1.理解完全平方公式的特点;2.知道完全平方公式的几何背景,并能运用公式进行简单计算和推理.【知识梳理】1.把下列各式因式分解:22423322)1()1)(4( 94)3( 123)2( 421+---+--x x a a ab b a ab b a )(2.用字母表示完全平方公式 .3.完全平方公式的结构特征(1)①()2______;a b += ②()2______.a b -=(2)根据上述等式填空即:(因式分解的)完全平方公式:a 2+2ab+b 2 = , a 2-2ab+b 2= .用语言叙述为:4.(1)若k x x +-62是完全平方式,则k= .(2)若42++kx x 是完全平方式,则k= .(3)若m xy x ++22是完全平方式,则k= .【典型例题】知识点一 运用完全平方公式进行因式分解1.把下列各式因式分解 )1(412--x x )( (2)2236)(12)b b a b b a ++-+(知识点二 先提公因式再用完全平方公式进行因式分解2.把下列各式因式分解(1)12123-2-+x x b a ab a 22369)2(-+知识点三 利用完全平方公式求值 3.已知3,5==-ab b a ,求代数式32232ab b a b a +-的值 4已知,求下列各式的值: (1)x 2+2xy +y 2(2)x 2﹣y 2.【巩固训练】一.选择题1.代数式①x 2+xy+1 ②4x 2+2x+1③ mn n m 222+- ④4x 2-12xy+9y 2,其中为完全平方公式的有( ) A.0个 B.1个 C.2个D.3个2.41)(2)(42+-+-x y y x 分解因式的结果是( ) A.2)2122(--y x B.2)2122(-+y x C.2)2122(+-y x D. 2)21(--y x 3.如果多项式162++mx x 2能分解为一个二项式的平方的形式,那么m 的值( )A.4B.8C.-8D.+84.计算:(1﹣)(1﹣)(1﹣)…(1﹣)= . 二.解答题5.把下列各式因式分解(1) 222;xy x y -- (2)22363;x xy y -+- (3) (x 2﹣1)2+6(1﹣x 2)+9.6.简单计算下列各式(1)419.36.7825.03.2541⨯-⨯+⨯ (2)2298196202202+⨯+7.能力提高已知x 2+y 2﹣4x+6y+13=0,求x 2﹣6xy+9y 2的值.人教版八年级数学上册《整式的乘法与因式分解》导学案公式法(3)【学习目标】1.进一步理解提公因式法和公式法分解因式;2.能用提公因式法、公式法(对二次式直接利用平方差公式或完全平方公式)进行因式分解(指数为正整数).【知识梳理】1.多项式因式分解的一般步骤:① ,② ,③ 。

2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第1课时一、教学目标【知识与技能】1.经历探索负整数指数幂和0指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力.2.理解负整数指数幂的意义,熟练运用整数指数幂运算性质进行运算.【过程与方法】1.知道负整数指数幂a-n=1a n(a≠0,n是正整数),了解幂运算的法则可以推广到整数指数幂,掌握整数指数幂的运算性质,会进行简单的整数范围内的幂运算.2.通过观察、推理、总结得出负整数指数幂的意义,体验利用负整数指数幂进行乘除法的转化.【情感、态度与价值观】1.通过独立思考、同伴交流、自主发现问题解决问题,提高学生的学习兴趣和学习主动性.2.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.【教学难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程.五、课前准备教师:课件、直尺、幂结构图等。

学生:直尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课正整数指数幂有以下运算性质:(1)(m,n是正整数)(2)(m,n是正整数)(3)(n是正整数)(4)(a≠0,m,n是正整数,m>n)(5)(n是正整数)此外,还学过0指数幂,即a0=1(a≠0)如果指数是负整数该如何计算呢?(出示课件2)(二)探索新知1.创设情境,探究整数指数幂教师问1:你会计算它们吗?53÷55=________;103÷107=________.师生共同解答如下:思路一:53÷55=5355=152,103÷107=103107=1104.思路二:53÷55=53-5=5-2,103÷107=103-7=10-4.教师问2:由以上计算,你能发现什么?学生回答:发现:5-2=152,10-4=1104.教师问3:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,正整数指数幂的那些运算性质还适用吗?(出示课件4)学生讨论后猜想:这些性质还适用.教师问4:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?学生讨论后回答:m个a相乘的积.教师问5:那么我们看下面的问题:根据分式的约分,当a≠0时,如何计算a3÷a5=?(出示课件5)学生回答:a3÷a5=33∙2=12(1)教师问6:如果把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的条件m>n去掉,即假设这个性质对于像a3÷a5的情形也能使用,如何计算?学生回答:a3÷a5=a3-5=a-2(2)教师问7:有上边的问题的计算结果,我们可以得到什么?学生回答:a-2=12教师问8:在a-2=12中,有什么限制条件吗?为什么呢?学生讨论后回答:a≠0,因为分母不能为0.总结点拨:(出示课件6)由(1)(2)想到,若规定a-2=12(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5的情形,因此:数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.教师问9:想一想:在引入负整数指数和0指数后,a m·a n=a m+n(m,n是正整数)这条性质能否扩大到m,n是整数的情形?(出示课件8)学生猜想回答:应该可以.教师问10:请完成下面的题目:填一填:(1)a3×a-5=a3·1()=1()=a()=a()+(),即a3×a-5=a()+();(2)a-3×a-5=1()·1()=1()=()=a()+(),即a-3×a-5=a()+();(3)a0×a-5=()·1()=1()=()=a()+(),即a0×a-5=a()+().学生回答:(1)a5;a2;-2;3+(-5);3+(-5)(2)a3;a5;a8;a-8;(-3)+(-5);(-3)+(-5)(3)1;a5;a5;a-5;0+(-5);0+(-5)完成填空后,思考下列问题:教师问11:从以上填空中你想到了什么?学生回答:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.教师问12:再换其他整数指数验证这个规律.类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(出示课件9)学生回答:a-3·a-7=a-3+(-7)=a-10,a-2÷a-5=a-2-(-5)=a3,a0÷a-4=a0-(-4)=a4.教师讲解:形成定论:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.总结点拨:(出示课件10)(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数);(4)(m,n是整数);(5)(n是整数).教师问11:试说说当m分别是正整数、0、负整数时,a m各表示什么意义?(出示课件11)师生共同解答如下:当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.当m是负整数时,a m表示|m|个相乘.例:计算:(出示课件12-13)师生共同解答如下:解:2.创设情境,探究整数指数幂的性质教师问19:继续举例探究:(a m)n=a mn,(ab)n=a n b n,nab⎛⎫⎪⎝⎭=a nb n在整数指数幂范围内是否适用?(出示课件15)师生共同解答如下:根据整数指数幂的运算性质,当m,n为整数时,,,因此,,即同底数幂的除法可以转化为同底数幂的乘法特别地,所以,即商的乘方可以转化为积的乘方总结点拨:(出示课件16)这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).例:下列等式是否正确?为什么?(出示课件17)(1)a m÷a n=a m·a-n;(2)师生共同解答如下:解:(1)∵a m÷a n=a m-n=a m+(-n)=a m·a-n,∴a m÷a n=a m·a-n.故等式正确.(2)故等式正确.(三)课堂练习(出示课件20-23)1.下列计算正确的是()A.30=0B.-|-3|=-3C.3-1=-3D.9=±32.下列计算不正确的是()A. B.C. D.3.若0<x<1,则x-1,x,x2的大小关系是()A.x-1<x<x2B.x<x2<x-1C.x2<x<x-1D.x2<x-1<x4.计算:5.若,试求的值.参考答案:1.B2.B3.C4.5.解:∵a+a-1=3(四)课堂小结今天我们学了哪些内容:1.幂的两个规定:a0=1(a≠0);数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.2.幂的三类运算性质:这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).(五)课前预习预习下节课(15.2.3)145页的相关内容。

人教版初中数学八年级上册课程目录与教学计划表

人教版初中数学八年级上册课程目录与教学计划表

人教版初中数学八年级上册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。

不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。

目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第十一章三角形
11.1与三角形有关的线段
11.1.1 三角形的边
11.1.2 三角形的高、中线与角平分线
11.1.3 三角形的稳定性
11.2 与三角形有关的角
11.2.1 三角形的内角
11.2.2 三角形的外角
11.3 多边形及其内角和
11.3.1 多边形
11.3.2 多边形的内角和
小结
复习题11
第十二章全等三角形
12.1 全等三角形
12.2 三角形全等的判定
12.3 角的平分线的性质
小结
复习题12
第十三章轴对称
13.1 轴对称
13.1.1 轴对称
13.1.2 线段的垂直平分线的性质
13.2 画轴对称图形
15.3 分式方程小结
复习题15
总复习。

15.2.3.1+负整数指数幂教案2023-2024学年人教版数学八年级上册

15.2.3.1+负整数指数幂教案2023-2024学年人教版数学八年级上册

15.2.3整数指数幂第1课时负整数指数幂教学步骤师生活动教学目标课题15.2.3第1课时负整数指数幂授课人素养目标1.知道负整数指数幂a-n=1a n(a≠0,n是正整数).2.了解整数指数幂的意义和基本性质,会用文字和符号语言表述整数指数幂的基本性质,能根据整数指数幂的基本性质进行幂的运算.3.通过探索负整数指数幂的运算性质,让学生体会到从特殊到一般是研究数学的一个重要方法,培养学生抽象、归纳的能力.教学重点负整数指数幂的运算.教学难点运用整数指数幂的运算性质进行计算.教学活动教学步骤师生活动活动一:复习导入,引入新课设计意图温故知新,唤醒学生的知识体系,为本节课做知识的铺垫.【复习导入】温故知新,唤醒学生的知识体系,为本节课做知识的铺垫.我们知道,当n是正整数时,你能补全以下正整数指数幂的运算性质吗?(1)同底数幂的乘法:a m·a n=a m+n(m,n是正整数);(2)幂的乘方:(a m)n=a mn(m,n是正整数);(3)积的乘方:(ab)n=a n b n(n是正整数);(4)同底数幂的除法:a m÷a n=a m-n(a≠0,m,n是正整数,m>n);(5)商的乘方:(ab)n=a nb n(n是正整数);(6)0指数幂:a0=1(a≠0).思考a m中指数m 可以是负整数吗?如果可以,那么负整数指数幂a m表示什么?【教学建议】教师需待学生独立思考完成后再公布答案,激活学生原有的知识,体现学生的学习是在原有知识上自我生成的过程.活动二:实践探究、交流新知设计意图由问题引入,再从数到式,层层深入,通过可操作的数学活动让学生体验从特殊到一般的探究方法.并在探究中找到活动一的问题的答案,前后呼应.探究点1 负整数指数幂问题在a m÷a n中,当m=n时,产生0次幂,那么当m<n时,会出现怎样的情况呢?我们先来看看具体的例子:53÷55=53-5=5-2,53÷55=5355=152,发现5-2=152.同样地,将数字换成字母,算一算“a3÷a5=?”,你发现了什么?⎭⎬⎫a3÷a5=a3a5=a3a3·a2=1a2a3÷a5=a3-5=a-2――→(a≠0)a-2=1a2所以,我们想到如果规定a-2=1a2(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5这样的情形.为使上述运算性质适用范围更广,同时也可以更简便地表示分式,数学中规定:【教学建议】教学中,应注意不要让学生产生误解,以为a-n=1a n(n是正整数)是证明出来的,而要使学生认识到这是一种规定,这种规定是合理的.这样可以扩大原有的指数运算法则的适用范围.设计意图例题的设计,底数由整数到负数再到分数,并让学生逐步掌握和理解底数符号与指数符号的差别.一般地,当n是正整数时,a-n=1a n(a≠0).这就是说,a-n(a≠0)是a n的倒数.引入负整数指数幂后,指数的取值范围就推广到全体整数.你现在能说出当m分别是正整数、0、负整数时,a m各表示什么意思吗?答:对于a m,设a≠0,则:⎩⎨⎧m为正整数时,a m=a m;m为0时,a m=1;m为负整数时,a m=1a-m.例计算:6-2=136;-2-2=-14;(-2)-3=-18;(13)-3=27;(-32)-1=-23;b-4=1b4(b≠0).解析:6-2=162=136;-2-2=-122=-14;(-2)-3=1(-2)3=-18;(13)-3=1(13)3=27;(-32)-1=1-32=-23;b-4=1b4(b≠0).【对应训练】教材P145上面练习第1题.【教学建议】教师需提醒学生数学中定义a-n=1a n (n是正整数),从这个意义上说a-n属于分式.若学生不好理解,教师可以结合具体的例子加以说明.设计意图随着指数的取值范围由正整数推广到全体整数,通过逐一验证的方式,将正整数指数幂的运算性质推广到整数指数幂.让学生体验自主探究获得结论的成就感和愉悦感,从而牢固地掌握所学知识.探究点2整数指数幂及其运算问题1引入负整数指数和0指数后,a m·a n=a m+n(m,n都是正整数)这条性质能否推广到m,n是任意整数的情形?a3·a-5=a3a5=1a2=a-2=a3+(-5),即a3·a-5=a3+(-5).a-3·a-5=1a3·1a5=1a8=a-8=a(-3)+(-5),即a-3·a-5=a(-3)+(-5).a0·a-5=1·1a5=1a5=a-5=a0+(-5),即a0·a-5=a0+(-5).教师归纳a m·a n=a m+n这条性质对于m,n是任意整数的情形仍然适用.问题2不仅仅是上面这个性质,活动一中的另外4个性质也都限定了指数的范围为正整数,现在我们希望把指数的范围扩大到全体整数,原来适合于正整数指数幂的其他运算性质,是否适合于全体整数指数幂?大家试着验证看看!验证幂的乘方(a-3)2=(1a3)2=1a6=a-6=a(-3)×2,即(a-3)2=a(-3)×2.归纳:(a m)n=a mn这条性质,对于m,n是任意整数的情形仍适用.验证同底数幂的除法a-2÷a-4=1a2÷1a4=1a2·a4=a2=a(-2)-(-4),即a-2÷a-4=a(-2)-(-4)【教学建议】大部分学生会忘记附上对指数取值范围的规定,学生对幂的指数的理解并不透彻,所以可以此为契机,引发学生对幂的指数的思考.【教学建议】在这个探究过程中,学生可能存在三个问题,老师需要引导解决:1.有些学生可能会选取2个正整数来进行验证,需要引导学生认识到,当数域进行推广之后,只要验证新推广的数对于性质是成立的就可以了.2.在验证幂的乘方教学步骤师生活动通过例题巩固知识点,使学生掌握基本的数学语言,规范其解题书写格式.对应训练是为巩固整数指数运算性质而设计的.归纳:a m÷a n=a m-n这条性质,对于m,n是任意整数的情形仍适用.验证分式的乘方(ab)-2=(ba)2=b2a2=1a2·b2=a-2·1b-2=a-2b-2,即(ab)-2=a-2b-2.归纳:(ab)n=a nb n这条性质,对于n是任意整数的情形仍适用.教师归纳:指数的范围扩大到全体整数后,活动一中所列的性质仍适用.即,整数指数幂有以下运算性质:(1)a m·a n=a m+n (m,n是整数);(2)(a m)n=a mn (m,n是整数);(3)(ab)n=a n b n (n是整数);(4)a m÷a n=a m-n (a≠0,m,n是整数);(5)(ab)n=a nb n(n是整数);(6)当a≠0时,a0=1.由于负整数指数的出现,使得a m÷a n=a m·a-n=a m-n,(同底数幂的除法――→转化同底数幂的乘法)(ab)n=(ab-1)n=a n b-n.(分式的乘方――→转化积的乘方)于是,整数指数幂的前5条运算性质,实际上可以合并为3条,即(1)a m·a n=a m+n (m,n是整数);(2)(a m)n=a mn (m,n是整数);(3)(ab)n=a n b n (n是整数).例(教材P144例9)计算:(1)a-2÷a5;(2) (b3a2)-2;(3) (a-1b2)3;(4) a-2b2·(a2b-2)-3.解:(1) a-2÷a5=a-2-5=a-7=1a7;(2)(b3a2)-2=b-6a-4=a4b-6=a4b6;(3)(a-1b2)3=a-3b6=b6a3;(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b8a8.【对应训练】教材P145上面练习第2题.这条性质时,学生可能会列举出(a-2)3和(a2)-3这两种形式,要帮助学生理解符号和指数在这里的含义.3.在验证分式的乘方这条性质时,要用到a n=1a-n这个公式,需要给学生讲解.【教学建议】解对应训练中的习题时应直接应用这些性质,而不要先急于转化为分式形式,具体解题过程可以参考例题.但最后的结果通常要转化为分式的形式.活动三:知识延伸,补充新知设计意图例题是为补充和强化0次幂、负整数指数幂有意义的条件而设计的.知识,学会规范答题,感悟几何计算的严谨性,明白学习本节知识点的意义.例若(x-3)0-2(3x-6)-2有意义,则x的取值范围是什么?思路分析:解:根据题意,若(x-3)0有意义,则x-3≠0,即x≠3.若(3x-6)-2有意义,则3x-6≠0,即x≠2.所以x≠3且x≠2.【对应训练】若(x-1)-1+x0有意义,则x取值范围应是x≠0且x≠1.【教学建议】教师强调:若要原式有意义,则底数不能为0.教学步骤师生活动活动四:随堂训练,课堂总结【随堂训练】相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题: 1.负整数指数幂的运算性质是什么? 2.an 的倒数是什么?3.整数指数幂的运算性质是什么?【知识结构】【作业布置】1.教材P 147习题15.2第7题.2.相应课时训练.板书设计15.2.3 整数指数幂 第1课时 负整数指数幂 1.负整数指数幂的运算性质.2.幂的运算性质的推广.教学反思本节课是在学生学习了分式的基本性质及运算之后的教学,在复习正整数指数幂的有关运算性质后精心设置问题让学生探究发现结论并学习如何描述,加深学生对结论的理解,让学生自己发现与前面所学知识的不同,逐步完善运算性质的限制条件,不但调动了学生学习的积极性,同时也达到了预期效果.解题大招一 含整数指数幂、0指数幂与绝对值的混合运算分别根据有理数的乘方、0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.例1 计算:-22+(-12)-2-(2 060-π)0-|-9|.解:-22+(-12)-2-(2 060-π)0-|-9|=-4+4-1-3=-4.解题大招二 负整数指数幂比较大小的方法 方法①:直接计算后进行比较.方法②:先转化为正整数指数幂,再将其化为底数或指数相同的幂进行比较. 例2 若a =(-23)-2,b =(-1)-1,c =(-32)0,则a ,b ,c 的大小关系是a >c >b .解析:∵a =(-23)-2=(-32)2=94,b =(-1)-1=-1,c =(-32)0=1,∴a >c >b.例3 比较大小:81-31<27-41.解析:81-31=18131=134×31=13124,27-41=12741=133×41=13123.∵3124>3123,∴13124<13123,∴81-31<27-41.培优点 运用负整数指数幂的性质求待定字母的值 例 已知3m =127,(12)n =16,求m n 的值.分析:将127变形为底数是3的幂,将16变形为底数是12的幂,确定m ,n 的值,最后代入求m n 的值.解:∵3m =127=133=3-3,∴m =-3.∵(12)n =16=24=12-4=(12)-4,∴n =-4.∴m n =(-3)-4=1(-3)4=181. 方法总结:求解这类问题时,要运用负整数指数幂的性质将等式两边化为同底数或同指数的形式,然后构造方程,通过解方程确定指数或底数中字母的值.。

人教版数学八年级上册第三课时 添括号法则课件

人教版数学八年级上册第三课时 添括号法则课件

中,正确的是
(D)
A.[(a+c)-b][(a-c)+b]
B.[(a-b)+c][(a+b)-c]
C.[(b+c)-a][(b-c)+a]
D.[a-(b-c)][a+(b-c)]
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
数学·八年级 (上)·配人教
8
5.在等式的括号内填上恰当的项:
(1)x2-y2+8y=x2-(__y_2-__8_y_____);
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
能力提升
数学·八年级 (上)·配人教
10
9.下列式子中不能运用乘法公式计算的是
A.(a+b-c)(a-b+c)
B.(a-b-c)2
C.(a+b)(a-b)
D.(2a+b+2)(a-2b-2)
10.已知a-b=-3,c+d=2,则(a-d)-(b+c)的值为
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
数学·八年级 (上)·配人教
15
17.运用乘法公式计算: (1)(x+2y-3)(x-2y+3); 解:原式=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-4y2+12y-9. (2)(a+2b-c)(a-2b-c)-(a-b-c)2. 解:原式=[(a-c)+2b]·[(a-c)-2b]-[(a-c)-b]2=(a-c)2-4b2-[(a-c)2 -2b(a-c)+b2]=(a-c)2-4b2-(a-c)2+2b(a-c)-b2=-5b2+2ab-2bc.
(__________)].
5
6.已知2a-3b2=5,则10-2a+3b2=_____. -3
7.(x2+x+M)2=(x2+x)2-6(x2+x)+M2,则M=_______.

八年级数学上:15.2 乘法公式教案新人教版

八年级数学上:15.2 乘法公式教案新人教版

乘法公式(第1课时)——平方差公式一、教学目标1.经历发现平方差公式的过程,会运用平方差公式进行计算.2.培养概括能力,发展符号感.二、教学重点和难点1.重点:运用平方差公式进行计算.2.难点:先交换项的位置,再运用平方差公式.三、教学过程(一)基本训练,巩固旧知1.计算:(1)(x+3)(x-3)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=(二)创设情境,导入新课师:我们知道,整式的乘法有三种,哪三种?单项式乘单项式、单项式乘多项式、多项式乘多项式.在这几种整式乘法中,哪一种计算起来比较麻烦?生:(齐答)多项式乘多项式.师:为什么多项式乘多项式比较麻烦?(稍停)因为多项式与多项式相乘,要用一个多项式的每一项去乘另一个多项式的每一项.师:既然多项式乘多项式比较麻烦,我们自然会想到一个问题,什么问题?多项式乘多项式有没有简单一点的方法?或者说,有没有不需要一项一项乘的方法?(稍停)老师要告诉大家,对普通的两个多项式来说,没有简单的乘的方法,你只有老老实实地乘,一项一项地乘,但对某些特殊形式的多项式相乘,倒是有简单的方法,不需要一项一项乘.什么样的多项式相乘不需要一项一项乘?用简单方法又怎么相乘呢?这就是本节课我们要学习的内容.(三)尝试指导,讲授新课(师出示下面的板书)(x+3)(x-3)=x2-9(m+2)(m-2)=m2-4(2x+1)(2x-1)=4x2-1师:(指板书的式子)刚才大家做了这三个题目,从这三个题目,你能发现什么规律?(生思考,要给学生充足的思考时间)师:(指板书的式子)如果你发现了其中的规律,那么做这种形式的多项式乘多项式,就不需要一项一项乘了.譬如,(板书:(y+4)(y-4))不用一项一项乘,你能直接说出(y+4)(y-4)等于什么吗?生:y2-16.(多让几名同学回答,然后师板书:=y2-16)师:(板书:(a+b)(a-b))又譬如,(a+b)(a-b)等于什么?生:a2-b2.(多让几名同学回答,然后师板书:=a2-b2)师:看来大家是真的发现了规律,那谁又能用自己的话来说一说这个规律?生……(多让几名同学说)师:(指板书的式子)从这些等式我们发现了一个规律,什么规律?(指准(a+b)(a-b)=a2-b2)两个数的和乘以这两个数的差,等于这两个数的平方差.(师出示下面的板书)两个数的和乘以这两个数的差,等于这两个数的平方差.师:(指板书)请大家把这个结论读两遍.(生读)师:(指准板书)显然这个结论与这个公式(在(a+b)(a-b)=a2-b2的外面加框)的意思是一样的,只是表达形式不一样,一个文字用表达,一个用式子表达.师:(指准(a+b)(a-b)=a2-b2)这个公式还有一个专门的名字,因为公式的右边是两个数的平方差,所以我们把这个公式叫做平方差公式(板书:平方差公式).师:(指准(a+b)(a-b)=a2-b2)有了平方差公式,以后再碰到两个数的和乘以这两个数的差这样的多项式乘多项式,我们就不需要一项一项乘了,只要用平方差公式就行了.师:下面我们就来做几道用平方差公式计算的题目.(师出示例题)例运用平方差公式计算:(1)(3x+2)(3x-2);(2)(-x-2y)(-x+2y);(3)(b+2a)(2a-b);(4)(x-4)(-x-4).师:(板书:解:(1)(3x+2)(3x-2),并指准)怎么运用平方差公式计算这个式子呢?(师出示下图)(3x+2)(3x-2)=(3x)2-22(a +b)( a-b)= a2 -b2师:(指准上图)我们可以把3x看成a,把2看成b,(指(3x+2)(3x-2))这样这个式子可以看成是(a+b)(a-b).因为(a+b)(a-b)=a2-b2,所以(3x+2)(3x-2)=(3x)2-22(板书:=(3x)2-22).师:(指准式子)(3x)2-22等于什么?(稍停)等于9x2-4(板书:=9x2-4).师:下面我们来看第(2)小题(板书:(2)(-x-2y)(-x+2y)).师:(指准(-x-2y)(-x+2y))用平方差公式,这个式子应该把什么看成a,把什么看成b?(稍停片刻)(师出示下图)(-x-2y)(-x+2y)=(-x)2-(2y)2( a- b)( a+ b)= a2 - b2师:(指准上图)我们可以把-x看成a,把2y看成b,(指(-x-2y)(-x+2y))这样这个式子可以看成是(a-b)(a+b).因为(a-b)(a+b)与(a+b)(a-b)相等,所以(a-b)(a+b)也等于a2-b2,所以(-x-2y)(-x+2y)=(-x)2-(2y)2(板书:=(-x)2-(2y)2).师:(指准式子)(-x)2-(2y)2等于什么?(稍停)等于x2-4y2(板书:=x2-4y2).师:下面我们来看第(3)小题(板书:(3)(b+2a)(2a-b)).师:(指式子)这个式子怎么用平方差公式计算?(让生思考一会儿)师:(指准式子)这个式子好像不好直接用平方差公式,怎么办?(稍停)根据加法交换律,可以交换b与2a的位置,所以这个式子等于(2a+b)(2a-b)(板书:=(2a+b)(2a-b)). 师:(指准(2a+b)(2a-b))利用平方差公式,这个式子等于什么?(稍停)等于(2a)2-b2(板书:=(2a)2-b2).师:结果是4a2-b2(板书:=4a2-b2).师:下面我们再看第(4)小题(板书:(4)(x-4)(-x-4)).师:(指式子)第(4)小题也与第(3)小题一样,不能直接用平方差公式,需要交换两项的位置.怎么交换两项的位置使式子成为(a+b)(a-b)的样子呢?大家先自己试一试.(生尝试,师巡视)师:(指准(x-4)(-x-4))我们把x与-4这两项交换位置,得到-4+x(板书:(-4+x)),我们又把-x与-4这两项交换位置,得到-4-x(板书:(-4-x)).根据加法交换律,x-4=-4+x,-x-4=-4-x,所以这两个式子相等(板书:=).师:(指准(-4+x)(-4-x))利用平方差公式,这个式子等于(-4)2-x2(板书:=(-4)2-x2),结果为16-x2(板书:=16-x2).(四)试探练习,回授调节2.用平方差公式计算:(1) (a+3b)(a-3b) (2) (1+2y)(1-2y)= == =(3) (4x-5)(4x+5) (4) (12-+2m)(12--2m)= == =3.用平方差公式计算:(1) (3b+a)(a-3b) (2) (3m-4n)(4n+3m) = == == =(3) (3+2a)(-3+2a) (4) (7-2a)(-7-2a)= == == =4.计算:(y+2)(y-2)-(y-1)(y+5)====(4题订正时需要指出,(y+2)(y-2)可以用多项式乘多项式法则计算,也可以用平方差公式计算,因为用公式计算比较简单,所以我们选择用公式计算,而(y-1)(y+5)只能用多项式乘多项式法则计算)(五)归纳小结,布置作业师:(指准板书)本节课我们学习了平方差公式,对两数和乘以这两数差这种特殊形式的多项式乘法,我们可以利用平方差公式进行计算.比起用多项式乘多项式的法则进行计算,用平方差公式进行计算有什么好处?生:(齐答)简单.(作业:P156习题1(1)(2)(3)(4),P153练习1.2(4))四、板书设计乘法公式(第2课时)——完全平方公式一、教学目标1.经历推导完全平方公式的过程,会运用完全平方公式进行计算.2.培养数学语言表达能力和运算能力,发展符号感.二、教学重点和难点1.重点:运用完全平方公式进行计算.2.难点:完全平方公式的运用.三、教学过程(一)基本训练,巩固旧知1.填空:两个数的和乘以这两个数的差,等于这两个数的,即(a+b)(a-b)=,这个公式叫做公式.(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1)= == =(3) (y+3x)(3x-y) (4) (-2+ab)(2+ab)= == == =3.判断正误:对的画“√”,错的画“×”.(1)(a-b)(a+b)=a2-b2;()(2)(b+a)(a-b)=a2-b2;()(3)(b+a)(-b+a)=a2-b2;()(4)(b-a)(a+b)=a2-b2;()(5)(a-b)(a-b)=a2-b2. ()(二)创设情境,导入新课师:(板书:(a+b)(a-b)=a2-b2,并指准)上节课我们学习了平方差公式,对两个数的和乘以这两个数的差这种形式的式子,利用平方差公式计算,不需要一项一项地乘,比起用多项式乘多项式法则计算,要简单一些.现在,我们要进一步问:除了平方差公式,还有别的多项式乘多项式的公式吗?答案是肯定的.本节课我们就来学习一种新的公式,叫完全平方公式(板书课题:完全平方公式,并擦掉平方差公式).(三)尝试指导,讲授新课师:什么是完全平方公式?先请大家利用多项式乘多项式的法则计算下面两个式子.4.用多项式乘多项式法则计算:(1) (a+b)2 (2) (a-b)2=(a+b)(a+b) =(a-b)(a-b)= == =(生计算,师巡视,要给学生充足的计算时间)师:(板书:(a+b)2)利用多项式乘多项式法则计算这个式子,得到的结果是什么?生:a2+2ab+b2.(多让几位同学回答,然后师板书:=a2+2ab+b2)师:(板书:(a-b)2)这个式子的计算结果又是什么?生:a2-2ab+b2.(多让几位同学回答,然后师板书:=a2-2ab+b2)师:(指两个等式)这两个等式就是完全平方公式(在两个公式外加框).师:与平方差公式一样,完全平方公式也可以用语言来说,怎么说呢?(指准(a+b)2=a2+2ab+b2)两数和的平方,等于它们的平方和,加它们的积的2倍.师:下面同学们一起跟着老师说,(指准(a+b)2=a2+2ab+b2)两数和的平方,等于它们的平方和,加它们的积的2倍.(生跟着说,如有必要可以再跟着说一遍)师:(指(a-b)2=a2-2ab+b2)哪位同学来说说这个式子?生:……(多让几名同学说)师:(指准(a-b)2=a2-2ab+b2)两数差的平方,等于它们的平方和,减它们的积的2倍. (师出示下面的板书)两数和的平方,等于它们的平方和,加它们的积的2倍;两数差的平方,等于它们的平方和,减它们的积的2倍. 师:大家把这个结论读一遍.(生读)师:下面我们就用完全平方公式来计算几道题目.(师出示例题)例运用完全平方公式计算:(1)(4m+n)2; (2)(y-12)2.师:(板书:解:(1)(4m+n)2,并指准)利用多项式乘多项式法则可以计算(4m+n)2,现在有了完全平方公式,就不需要一项一项乘了,可以运用完全平方公式来计算.怎么计算?(师出示下图)(4m+n)2=(4m)2+2·4m·n+n2(a +b)2= a2 + 2 a b+b2师:(指准上图)我们可以把4m看成a,把n看成b,因为(a+b)2=a2+2ab+b2,所以(4m+n)2=(4m)2+2·4m·n+n2(板书:=(4m)2+2·4m·n+n2).师:(指(4m)2+2·4m·n+n2)这个式子又等于什么?(稍停)等于16m2+8mn+n2(边讲边板书:=16m2+8mn+n2)师:(板书:(2)(y-12)2)下面我们来看第(2)小题.师:完全平方公式有两个,(指(y-12)2)计算这个式子,应该用哪一个公式?生:……师:(指(y-12)2)计算这个式子,(指(a-b)2=a2-2ab+b2)显然应该用这个公式.运用这个公式,(y-12)2等于什么?生:y2-2·y·12+212⎛⎫⎪⎝⎭.(多让几名同学回答,然后师板书:=y2-2·y·12+212⎛⎫⎪⎝⎭)师:(指y2-2·y·12+212⎛⎫⎪⎝⎭)这个式子又等于什么?生:y2-y+14.(师板书:=y2-y+14)(四)试探练习,回授调节5.运用完全平方公式计算:(1) (x+6)2 (2) (y-5)2 = == =(3) (-2x+5)2 (4) (34x-23y)2= == =6.计算:(x+1)(x-3)-(x+2)2+(x+2)(x-2)===7.选做题:如图,利用图形你能得到公式(a+b)2=a2+2ab+b2吗?(五)归纳小结,布置作业师:本节课我们学习了完全平方公式,完全平方公式有两个,(指准公式)两数和的平方,等于它们的平方和,加它们的积的2倍.两数差的平方,等于它们的平方和,减它们的积的2倍.(作业:P156习题2(1)(2)(3)(4)4)四、板书设计乘法公式(第3课时)——完全平方公式一、教学目标1.知道添括号法则,会添括号.2.会先添括号再运用乘法公式.3.培养学生的运算能力,发展符号感.二、教学重点和难点1.重点:先添括号再运用乘法公式.2.难点:先添括号再运用乘法公式.三、教学过程(一)基本训练,巩固旧知1.填空:(1)平方差公式(a+b)(a-b)=;(2)完全平方公式(a+b)2=,(a-b)2=.2.运用公式计算:(1) (2x-3)2 (2) (-2x+3y)(-2x-3y)= == =(3) (12m-3)(12m+3) (4) (13x+6y)2= == =3.判断正误:对的画“√”,错的画“×”.(1)(a+b)2=a2+b2;()(2)(a-b)2=a2-b2;()(3)(a+b)2=(-a-b)2;()(4)(a-b)2=(b-a)2. ()4.去括号:(1)(a+b)-c=(2)-(a-b)+c=(3)a+(b-c)=(4)a-(b+c)=(二)创设情境,导入新课师:(板书:(x+2y-3)(x-2y+3),并指准)怎么计算这个式子?(稍停)利用多项式乘多项式的法则,用x+2y-3的每一项去乘x-2y+3的每一项,这样计算当然是可以的.但是,假如老师要求利用平方差公式和完全平方公式来计算,哪又怎么做呢?(让生思考一会儿)师:(指式子)要用平方差公式和完全平方公式计算这个式子,会涉及添括号问题(板书:添括号).本节课我们先学习怎么添括号,然后再回过头来计算这个式子.(三)尝试指导,讲授新课师:在初一的时候我们学过去括号(板书:去括号),添括号与去括号是相反的问题,一个是加上括号,一个是去掉括号.师:譬如,a+(b+c)=a+b+c(边讲边板书:a+(b+c)=a+b+c)这是去括号;反过来a+b+c=a+(b+c)(边讲边板书:a+b+c=a+(b+c))这是添括号.师:又譬如,a-(b+c)=a-b-c(边讲边板书:a-(b+c)=a-b-c)这是去括号;反过来a-b-c=a-(b+c)(边讲边板书:a-b-c=a-(b+c))这是添括号.师:那么,怎么添括号呢?添括号的方法与去括号的方法是一样的.师:我们知道怎么去括号,(指准去括号式子)怎么去括号?如果括号前面是正号,去括号后括号内各项都不变符号;如果括号前面是负号,去括号后括号内各项都改变符号. 师:添括号也是这样的,(指准添括号式子)如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.(四)试探练习,回授调节5.填空:(1)a+b+c=( )+c;(2)a-b+c=( )+c;(3)-a+b-c=-( )-c;(4)-a-b+c=-( )+c;(5)a+b-c=a+( );(6)a-b+c=a-( );(7)a-b-c=a-( );(8)a+b+c=a-( ).(订正时,让生用去括号检查添括号是否正确)(五)尝试指导,讲授新课师:知道了怎么添括号,(指(x+2y-3)(x-2y+3))现在我们回过头来看这道题.(在(x+2y-3)(x-2y+3)前板书:例1 运用乘法公式计算)师:(指准例1)运用乘法公式计算,这里所说的乘法公式就是平方差公式和完全平方公式.怎么用乘法公式计算这个式子呢?(以下师边讲解边板演,解题过程如课本第155页所示)师:下面我们再来看一道例题.(师出示例2)例2 运用乘法公式计算(a+b+c)2.(先让生尝试,然后师边讲解边板演,解题过程如课本第155页所示)(六)试探练习,回授调节6.运用乘法公式计算:(1) (a+2b-1)2 (2) (2x+y+z)(2x-y-z)= == == == =(七)归纳小结,布置作业师:本节课我们学习了什么?我们学习了用公式计算的一种技巧.(指准例1)这个式子,初一看好像不能用公式计算,但是,如果能对式子进行适当的变形,就可以用公式计算了.在这个题目中,我们是怎么对式子进行变形的?我们通过添括号使式子成为(a+b)(a-b)的样子,这样就可以用公式计算了.例2的道理也是一样.(作业:P156习题3)四、板书设计。

阳城县第五中学八年级数学上册第十五章分式15.2分式的运算15.2.1分式的乘除1导学案新版新人教

阳城县第五中学八年级数学上册第十五章分式15.2分式的运算15.2.1分式的乘除1导学案新版新人教

15.2 分式的运算 15.2.1 分式的乘除(1)1.通过实践总结分式的乘除法,并能较熟练地进行分式的乘除法运算. 2.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力.重点:分式的乘除法运算.难点:分式的乘除法、混合运算中符号的确定.一、自学指导自学1:自学课本P135-137页“问题1,思考,例1,例2及例3”,掌握分式乘除法法则.(7分钟)类比分数的乘除法法则,计算下面各题:(1)4ac 3b ·9b 22ac 3;(2)4ac 3b ÷9b 22ac 3. 解:(1)原式=4ac·9b 23b ·2ac 3=36ab 2c 6abc 3=6b c 2;(2)原式=4ac 3b ·2ac 39b 2=8a 2c427b3.点拨精讲:计算的结果能约分的要约分,结果应为最简分式.总结归纳:分式的乘法法则——分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母.即:a b ·c d =a·cb·d.分式的除法法则——分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:a b ÷c d =a b ·d c =adbc.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 课本P137-138练习题1,2,3.点拨精讲:分子、分母是多项式时,通常先分解因式,再约分.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 计算:(1)x +12x ·4x2x 2-1;(2)8x 2x 2+2x +1÷6x x +1. 解:(1)x +12x ·4x 2x 2-1=x +12x ·4x 2(x +1)(x -1)=2xx -1;(2)8x 2x 2+2x +1÷6x x +1=8x 2(x +1)2·x +16x =4x3x +3. 点拨精讲:如果分子、分母含有多项式,应先分解因式,再按法则进行计算.探究2 当x =5时,求x 2-9x 2+6x +9÷1x +3的值.解:∵x 2-9x 2+6x +9÷1x +3=(x +3)(x -3)(x +3)2·x +31=x -3,∴当x =5时,原式=x -3=5-3=2.点拨精讲:先对分式的结果化简,可以使计算变得简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.计算:(1)3xy 24z 2·(-8z 2y );(2)-3xy÷2y 23x ;(3)m -2m -3÷m 2-6m +9m 2-4;(4)a 2-6a +91+4a +4a 2÷12-4a2a +1. 2.有这样一道题“计算:x 2-2x +1x 2-1÷x -1x 2+x -x 的值,其中x =998”,甲同学错把x=998抄成了x =999,但他的计算结果却是正确的,请问这是怎么回事?解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴无论x取何值,此式的值恒等于0.(3分钟)1.分式乘除法的法则可类比分数的乘除法则进行.2.当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.3.分式乘除法运算的最后结果能约分的要约分,一定要是一个最简分式.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)第1课时 轴对称图形与轴对称1.在角、线段、等腰三角形、平行四边形、等腰梯形、圆这六个图形中,是轴对称图形的 有 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.2乘法公式
平方差公式
教学目标
1.经历探索平方差公式的过程,进一步发展符号感和推理能力。

2.会推导平方差公式,并能运用公式进行简单计算。

3.认识平方差及其几何背景,使学生明白数形结合的思想。

4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。

5.培养学生灵活运用知识、勇于探求科学规律的意识。

教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算。

教学准备
1.为每位学习准备一张正方形纸片(边长为15c m)。

2.教师准备两张正方形(一大一小)纸板和三块矩形纸板。

3.多媒体课件。

教学流程
一、创设问题情境,引导学生观察、设想。

教师发给每个学生一张正方形纸片(边长15c m),并用多媒体课件与正方形纸板显示正方形。

师:在一块45c m的正方形纸板上,因为工作的需要,中间挖去一块边长为15c m的正方形(如图),请问剩下部分的面积有多少平方厘米?
师:计算剩下部分的面积可以有哪些方法?
小组讨论:
1.可以用大正方形面积减去小正方形面积得到。

2.可以把剩下的部分切割成几个矩形来计算。

师:从今天的问题来看,用哪一种方法比较好?你们小组能列出算式吗?
或许有学生能迅速列出算式,得出答案是1800平方厘米。

师:为了容易理解,我现在把小正方形放在大正方形的角落(如图)。

师:刚才我们说过计算面积的方法不止一种,我们现在试着用分割的方法来计算面积。

请参照老师的做法,先在你们的纸上画一条虚线,然后把刚才画的小正方形剪下来(或撕去),就像要挖去这部分一样,再沿虚线把小长方形剪下来,并把小长方形拼到大长方形的一边,刚好又变成一个新的长方形(如图)。

师:若按照我们刚开始的题目要求,现在新的大长方形的长、宽各是多少?它的面积又是多少呢?
生:大长方形的长是(45+15)c m,宽是(45-15)c m。

长方形的面积=(45+15)×(45-15)=60×30=1800(平方厘米)。

师:还记得两种方式的列式吗?
第二种方法的式子是(45+15)×(45-15)。

师:两个式子都能求出剩下的面积,它们之间有什么关系呢?
生:相等。

二、交流对话,探求新知。

看谁算得快:
(1)(x+2)(x-2)(2)(1+3a)(1-3a)
(3)(x+5y)(x-5y)
(4)(-m+n)(-m-n)
师:你们能发现什么规律?
师:再想想看,如果今天的题目换成:“在一块边长为a厘米的正方形纸板上,因为工作的需要,中间挖去一块边长为b厘米的小正方形,请问剩下的面积有多少?”我们该怎样列代数式来表示?
生:我们可以用a2-b2来表示剩下的面积。

师:还有没有别的方法?
生:也可以用(a+b)(a-b)来表示剩下的面积。

师:今天我们除了要找一个比较方便的方法来求面积外,更重要的是我们能从图形中了解到(a+b)(a-b)=a2-b2这个性质。

上一节课我们已经学过多项式的乘法,你能利用计算多项式乘法的方法,把(a+b)(a-b)的答案计算出来吗?
师:为了节省计算时间,我们(a+b)(a-b)=a2-b2作为公式来运用,把这个公式称为“平方差公式”。

平方差公式:(a+b)(a-b)=a2-b2
师:哪一位同学能用语言叙述一下平方差公式?
生:两数和与这两数差的积,等于它们的平方差。

三、运用新知,体验成功。

1.例1计算:
(1)(a+3)(a-3)
(2)(2a+3b)(2a-3b)
(3)(1+2c)(1-2c)
(4)
解:(1)原式=a2-32=a2-9
(2)原式=(2a)2-(3b)2=4a2-9b2
(3)原式=12-(2c)2=1-4c2
(4)原式=
2.巩固深化,拓展思维。

计算:
(1)(2x+3)(2x-3)
(2)(-2x+y)(2x+y)
(3)(-x+2)(-x-2)
(4)(y-x)(-x-y)
说明:在练习时,要特别注意公式的变式训练。

讲解时要紧扣公式的特征,找出相等的“项”和符号相反的“项”,然后用公式。

3.例2计算:1998×2002。

分析:这是一个数字计算问题,让学生分组讨论如何利用平方差公式进行计算。

在本例教学时不能仅仅着眼于应用公式的化简与计算,要让学生感受构造数学“模型”的乐趣。

4.练习,简便计算:
(1)498×502(2)999×1001 5.例3街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米。

问改造后的长方形草坪的面积是多少?
(首先要列出表示面积的代数式。


解:(a+2)(a-2)=a2-4
答:改造后的长方形草坪的面积是(a2-4)平方米。

6.练习
用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域面积最大,而小亮认为不一定。

你认为如何?
四、课堂小结。

1.通过本节课的学习活动,你们认识了什么?是否还有不明白的地方?
2.什么样的式子才能使用平方差公式?记住公式的特点。

相关文档
最新文档