高中数学竞赛校本课程
高中数学竞赛校本课程
高中数学竞赛校本课程一、课程目标数学是研究空间形式和数量关系的学科,也是研究模式与秩序的一门学科。
数学本身的特点决定了它作为科学基础的地位,中学数学的内容与其中蕴含的数学思想方法,尤其是通过数学学习培养的思考问题、解决问题的数学能力将在更深一层次的科学研究中大有作为。
1、夯实学生数学基础,使学生熟练掌握各种数学基本技能;全面提高学生演绎推理、直觉猜想、归纳抽象、体系构建、算法设计等诸多方面的能力,并在此基础上培养学生学习新的数学知识的能力,数学地提出、分析、解决问题的能力,数学表达与交流的能力;发展学生数学应用意识与数学创新意识。
2、努力扩展学生的数学视野,全面渗透研究性学习,激发学生学习数学的兴趣,使学生能欣赏数学的美学魅力,认识数学的价值,崇尚数学的思考,培养从事科学研究的精神与方法。
3、多角度衔接高等教育,大胆引入现代数学基本理念,为学生继续从事高深科学领域的学习奠定所必需的数学基础。
二、课程设计理念与课程内容特色本课程始终围绕学生群体设计,从他们的学习与发展的实际学情为基本出发点。
课程的内容的选择是严格的,它具有鲜明的针对性,能体现数学教学的特点。
本课程设计向要突现以下几点:1、注重发展学生的数学综合能力“学以致用”,数学知识的学习必须进入运用的层次,接受实践的考验。
20世纪下半叶以来,数学的最大发展是应用,这也对数学教学产生了深刻的影响。
本课程在数学知识的理论应用与实践运用上大大加强,数学的融会贯通与“数学建模”成为主体;加强了数学各分支间的结合,以重要的数学思想方法来贯穿数学学习。
2、重视数学思想与数学方法养成的创新学习理念传授数学知识不是数学教学的重点,‘授人以鱼,不若授之以渔’。
引导学生掌握解决问题的科学的数学思想与数学方法是本课程的核心。
课程不完全以知识系统为主线,很多例题与练习是为了凸现其中的蕴含的数学思想方法而设计。
本课程试图通过数学思想方法的养成为学生形成正确的,积极主动的学习方式创造有利条件,为学生提供“提出问题,探索研究,实践应用”的空间,帮助学生形成独立思考、自主钻研的习惯,培养学生的自主能力,提高理性的数学思维,养成勇于创新的科学理念。
高中数学竞赛标准教材(共18讲)
定理 4 容斥原理;用 A 表示集合 A 的元素个数,则 A Υ B = A + B − A Ι B ,
A Υ B Υ C = A + B + C − A Ι B − A Ι C − B Ι C + A Ι B Ι C ,需要 xy 此结论可以
∑ 推广到 n 个集合的情况,即
定义 3 交集, A Ι B = {x x ∈ A且x ∈ B}.
定义 4 并集, A Υ B = {x x ∈ A或x ∈ B}.
定义 5 补集,若 A ⊆ I ,则C1 A = {x x ∈ I ,且x ∉ A}称为 A 在 I 中的补集。 定义 6 差集, A \ B = {x x ∈ A,且x ∉ B} 。
(3) C1 A Υ C1 B = C1 ( A Ι B ); (4) C1 A Ι C1 B = C1 ( A Υ B).
【证明】这里仅证(1)、( 3),其余由读者自己完成。
(1)若 x ∈ A Ι (B Υ C) ,则 x ∈ A ,且 x ∈ B 或 x ∈ C ,所以 x ∈(A Ι B) 或 x ∈ ( A Ι C) ,即 x ∈ ( A Ι B) Υ ( A Ι C) ;反之, x ∈ ( A Ι B) Υ ( A Ι C) ,则 x ∈ ( A Ι B ) 或 x ∈ ( A Ι C) ,即 x ∈ A 且 x ∈ B 或 x ∈ C ,即 x ∈ A 且 x ∈ ( B Υ C) ,即 x ∈ A Ι (B Υ C).
然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用 ∅ 来表示。集合分有限集和无限集两种。 集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集 合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
高中竞赛数学教案
高中竞赛数学教案
目标:通过本课程的学习,学生将能够掌握高中竞赛数学的基本概念和解题技巧,提高数学思维能力和解题能力。
时间:2课时
教学内容:
1. 引入:介绍竞赛数学的概念和重要性,激发学生学习的兴趣。
2. 知识点讲解:主要介绍一些常见的竞赛数学题型,如整数、方程、不等式等,并讲解解题方法和技巧。
3. 练习及讲解:组织学生做一些竞赛数学题目,然后逐步讲解解题过程和方法。
4. 拓展练习:通过一些拓展练习,帮助学生将所学知识应用到更复杂的题目中。
5. 总结:对本课的内容进行总结,并强调重点和难点,为下一节课的学习做准备。
教学方法:
1. 示范教学法:老师通过讲解和演示解题过程,指导学生掌握竞赛数学的解题技巧;
2. 合作学习法:组织学生小组合作,共同解决问题,促进学生之间的交流和合作;
3. 循序渐进法:由简单到复杂,逐步引导学生掌握竞赛数学的基本知识和解题方法。
教学资源:
1. 竞赛数学教材及习题册;
2. 竞赛数学模拟试题;
3. 多媒体教学设备。
教学评估:
1. 观察学生在课堂上的表现,包括积极性、思维能力和解题能力;
2. 组织小测验,测试学生对所学知识的掌握程度;
3. 布置作业,检查学生对所学知识的理解和应用能力。
扩展活动:
1. 组织学生参加校内外的数学竞赛活动,锻炼学生的竞赛能力;
2. 组织学生参加数学讨论会,激发学生的数学兴趣和思维能力;
3. 鼓励学生自主学习,探索数学的奥秘。
数学竞赛完整课程教案高中
数学竞赛完整课程教案高中1. 学生能够掌握数学竞赛中常见的解题技巧和方法;2. 学生能够熟练运用数学知识解决竞赛中的问题;3. 学生能够提升自信心和解决问题的能力。
教学内容:1. 数论2. 代数3. 几何4. 统计教学过程:第一课:数论1. 介绍数论的基本概念和常见的解题技巧;2. 给出一些数论题目并引导学生解决;3. 分析解题思路和方法,引导学生总结经验。
第二课:代数1. 讲解代数的基本知识和解题技巧;2. 给出一些代数题目供学生练习;3. 分析解题思路和方法,帮助学生提升解题能力。
第三课:几何1. 引导学生理解几何知识和解题技巧;2. 给出一些几何题目供学生练习;3. 分析解题思路和方法,帮助学生提升几何解题能力。
第四课:统计1. 讲解统计知识和解题技巧;2. 给出一些统计题目供学生练习;3. 分析解题思路和方法,帮助学生提升统计解题能力。
第五课:综合练习1. 给出一些综合性的竞赛题目供学生练习;2. 帮助学生分析解题思路和方法;3. 鼓励学生多练习,提高解题速度和准确性。
评价方法:1. 平时的课堂练习;2. 期中和期末的考试;3. 数学竞赛的模拟比赛。
教学资源:1. 数学竞赛教材和习题集;2. 电子教学资源;3. 纸质习题和答案。
教学建议:1. 鼓励学生多练习,勤奋钻研;2. 注重引导学生理解数学知识,而不是死记硬背;3. 鼓励学生互相合作,相互学习。
以上是数学竞赛完整课程教案的高中范本,希朅能对您有所帮助。
3-2-11校本课程数学竞赛讲义1 - 副本
3-2-⑾惠东中学校本课程——数学竞赛讲义惠东县惠东中学数学科组目录第一章集合 (2)第二章函数 (15)§2.1函数及其性质 (15)§2.2二次函数 (21)§2.3函数迭代 (28)§2.4 抽象函数 (32)第三章数列 (37)§3.1 等差数列与等比数列 (37)§3.2 递归数列通项公式的求法 (44)§3.3 递推法解题 (48)第四章三角平面向量复数 (51)第五章直线、圆、圆锥曲线 (60)第六章空间向量简单几何体 (68)第七章二项式定理与多项式 (75)第八章联赛二试选讲 (82)§8.1 平几名定理、名题与竞赛题 (82)§8.2 数学归纳法 (99)§8.3 排序不等式 (103)第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛和高校自主招生中出现的问题.§1.1 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n 2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a 的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10 【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22y x y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21, *)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n 2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-. 当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a 当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间.即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++∈R }, {(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 MN ≠∅, 则 a 的取值范围是. 【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, 的取值范围:令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x =± 所以,当211a <= 时, M N =∅. ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =.所以,当3a > 时, M N =∅. ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤≤+即[13a ∈ 时, M N ≠∅.故填[1-.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a又1041=+a a ,可得94=a ,并且422a a =或.423a a =若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍)此时有}.81,25,9,1{},9,5,3,1{==B A若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系. 〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性. 【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”.〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1;{1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ② 所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ=,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立. 【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( )A.31 B.32 C.1 D.342. (2006年陕西预赛)b a ,为实数,集合M=x x f a P ab→=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( ) A.1- B.0 C.1 D.1±3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++5. 集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于 10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S ,S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈-(1)证明:三个集合中至少有两个相等.(2)三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1)当a 取何值时,C B A )(为含有两个元素的集合? (2)当a 取何值时,C B A )(为含有三个元素的集合? 4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈,{}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证该校的班级数不多于12-P 个.【参考答案】A 组1.解: N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得.为此,只要考虑在第一象限的面积就可以了.由题意可得,N M 的图形在第一象限的面积为A =613121=-.因此N M 的图形面积为32. 所以选B. 2.解:由M=P,从而1,0==a ab,即0,1==b a ,故.1=+b a 从而选C. 3. 解:MN ≠∅相当于点(0,b )在椭圆2223x y +=上或它的内部221,3b b ∴≤≤≤.故选A.4.解: 用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈=M ' 中的最大数为107]2400[]6666[=.在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396.而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C. 5.解:A=φ时,有1种可能;A 为一元集时,B 必须含有其余2元,共有6种可能;A 为二元集时,B 必须含有另一元.共有12种可能;A 为三元集时,B 可为其任一子集.共8种可能.故共有1+6+12+8=27个.从而选A.6.解:被7除余2的数可写为7k +2. 由100≤7k +2≤600.知14≤k ≤85. 又若某个k 使7k +2能被57整除,则可设7k +2=57n . 即57256227778n n n n k n -+--===+.即n -2应为7的倍数. 设n =7m +2代入,得k =57m +16. ∴14≤57m +16≤85. ∴m =0,1.于是所求的个数为85-(14-1)-2=70.7.解:依题意可得{13}A x x =<<,设1()2x f x a -=+,2()2(7)5g x x a x =-++要使A B ⊆,只需()f x ,()g x 在(1,3)上的图象均在x 轴的下方,则(1)0f ≤,(3)0f ≤,(1)0g ≤,(3)0g ≤,由此可解得结果.8.解:由于1995=15⨯133,所以,只要n >133,就有15n >1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15⨯9=135, … 15⨯133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870.另一方面,把k 与15k 配对,(k 不是15的倍数,且1≤k ≤133)共得133—8=125对,每对数中至多能取1个数为A 的元素,这说明所求数≤1870,综上可知应填1870.9.解:考虑M 的n +2元子集P={n -l ,n ,n +1,…,2n }.P 中任何4个不同元素之和不小于(n -1)+n +( n +1)+( n +2)=4 n +2,所以k ≥n +3.将M 的元配为n 对,B i =(i ,2 n +1-i ),1≤i ≤n . 对M 的任一n +3元子集A ,必有三对123,,i i i B B B 同属于A(i 1、I 2、I 3两两不同).又将M 的元配为n -1对,C I (i ,2n -i ),1≤i ≤n -1.对M 的任一n +3元子集A ,必有一对4i C 同属于A ,这一对4i C 必与123,,i i i B B B 中至少一个无公共元素,这4个元素互不相同,且和为2 n +1+2 n =4 n +1,最小的正整数k = n +310.10.解: ⑴∵k ,1k -∈Z 且21k -=22(1)k k --,∴21k -∈A ;⑵假设42 ()k A k Z -∈∈,则存在,x y Z ∈,使42k -=22x y -即()()2(21)x y x y k -+=- (*) 由于x y -与x y +具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立.由此,42()k A k Z -∉∈.11.解:{}13A x x =-≤<,()(){}30B x x a x a =--<.当0a >时,{}03B x a x a =<<<,由A B ≠∅得03a <<; 当0a <时,{}30B x a x a =<<<,由AB ≠∅得1a >-;当0a =时,{}20B x x =<=∅,与A B ≠∅不符.综上所述,()()1,00,3a ∈-.12.解:由④若x ,y ∈P ,则x +y ∈P 可知,若x ∈P ,则)( N k P kx ∈∈ (1)由①可设x ,y ∈P ,且x >0,y <0,则-y x =|y |x (|y |∈N ) 故x y ,-y x ∈P ,由④,0=(-y x )+x y ∈P .(2)2∉P .若2∈P ,则P 中的负数全为偶数,不然的话,当-(12+k )∈P (N k ∈)时,-1=(-12-k )+k 2∈P ,与③矛盾.于是,由②知P 中必有正奇数.设),( 12,2N n m P n m ∈∈--,我们取适当正整数q ,使 12|2|->-⋅n m q ,则负奇数P n qm ∈-+-)12(2.前后矛盾B 组1.证明:设任意的r ∈Q ,r ≠0,由②知r ∈S ,或-r ∈S 之一成立.再由①,若r ∈S ,则S r ∈2;若-r ∈S ,则S r r r ∈-⋅-=)()(2.总之,S r ∈2.取r =1,则1∈S .再由①,2=1+1∈S ,3=1+2∈S ,…,可知全体正整数都属于S .设S q p ∈,,由①S pq ∈,又由前证知S q ∈21,所以21qpq q p ⋅=∈S .因此,S 含有全体正有理数.再由①知,0及全体负有理数不属于S .即S 是由全体正有理数组成的集合. 2.证明:(1)若j i S y S x ∈∈,,则i k S x y x y S x y ∈-=--∈-)(,,所以每个集合中均有非负元素.当三个集合中的元素都为零时,命题显然成立.否则,设321,,S S S 中的最小正元素为a ,不妨设1S a ∈,设b 为32,S S 中最小的非负元素,不妨设,2S b ∈则b -a ∈3S .若b >0,则0≤b -a <b ,与b 的取法矛盾.所以b =0.任取,1S x ∈因0∈2S ,故x -0=x ∈3S .所以⊆1S 3S ,同理3S 1S ⊆. 所以1S =3S .(2)可能.例如1S =2S ={奇数},3S ={偶数}显然满足条件,1S 和2S 与3S 都无公共元素. 3.解:C B A )(=)()(C B C A .C A 与C B 分别为方程组(Ⅰ)⎩⎨⎧=+=+1122y x y ax (Ⅱ)⎩⎨⎧=+=+1122y x ay x 的解集.由(Ⅰ)解得(y x ,)=(0,1)=(212a a+,2211a a +-);由(Ⅱ)解得 (y x ,)=(1,0),(2211a a +-,212a a+)(1)使C B A )(恰有两个元素的情况只有两种可能:①⎪⎪⎩⎪⎪⎨⎧=+-=+111012222a a a a ②⎪⎪⎩⎪⎪⎨⎧=+-=+011112222aa a a由①解得a =0;由②解得a =1.故a =0或1时,C B A )(恰有两个元素.(2)使C B A )(恰有三个元素的情况是:212aa +=2211a a +- 解得21±-=a ,故当21±-=a 时,C B A )(恰有三个元素.4.解: (1)设1212,minP A P Bd P P ∈∈=(即集合A 中的点与集合B 中的点的距离的最小值),则称d 为A 与B 的距离.⑵解法一:∵A 中点的集合为圆22(2)(2)1,x y +++=圆心为(2,2)M --,令(,)P x y 是双曲线上的任一点,则2MP =22(2)(2)x y +++=224()8x y x y ++++ =2()24()x y xy x y +-+++8=2()4()28x y x y ++++令t x y =+,则2MP =22428(2)24t t t ++=++当2t =-时,即102xy x y =-⎧⎨+=-⎩有解,∴min MP =1d =解法二:如图,P 是双曲线上的任一点, Q 为圆22(2)(2)1x y +++=上任一点,圆心为M .显然,P M MP +Q Q ≥(当P M 、Q 、三点共线时取等号)∴min 1d MP =-.5.解:记!18=n 时,由于1,2,……18都是n 的约数,故此时.19)(=n f 从而.19M ∈ 若存在P n ∈,使99)(=n f ,则对于小于99的正整数k ,均有n k |,从而n n |11,|9,但是1)11,9(=,由整数理论中的性质9×11=99是n 的一个约数,这是一个矛盾!从而.99M ∉ 6.证明:假设该校共有m 个班级,他们的建议分别组成集合m A A A ,,,21 。
高中数学竞赛的教案
高中数学竞赛的教案
教学内容:数学竞赛的基础知识和解题技巧
教学目标:
1.了解数学竞赛的基本要求和规则
2.掌握数学竞赛常见的解题技巧
3.提高学生的数学思维能力和解题灵活性
教学步骤:
一、介绍数学竞赛的概念和意义(5分钟)
1. 解释数学竞赛对提高数学能力和思维能力的重要性
2. 介绍一些知名的数学竞赛,如数学奥林匹克、全国中学生数学竞赛等
二、讲解数学竞赛的基础知识(15分钟)
1. 分析数学竞赛的题型和难度
2. 介绍竞赛中常见的数学概念和公式
3. 解释竞赛中常见的解题方法和技巧
三、解析数学竞赛的典型题目(20分钟)
1. 选择一些经典的数学竞赛题目进行详细解析
2. 引导学生理解题目的解题思路和方法
3. 鼓励学生主动参与讨论,提出自己的解题思路
四、练习和实战(20分钟)
1. 指导学生进行一些数学竞赛题目的练习
2. 组织学生进行小组竞赛,加强学生的竞赛应试能力
3. 对学生的解题过程和答案进行批评和指导
五、总结回顾(10分钟)
1. 总结本节课学习到的数学竞赛基础知识和解题技巧
2. 强调学生在平时的学习中要多加练习和思考
3. 鼓励学生积极参加各种数学竞赛,提升自己的学习水平和竞赛实力
教学反思:
在教学过程中,要根据学生的实际情况合理调整教学内容和方式,确保学生能够全面掌握数学竞赛的基础知识和解题技巧,提高他们的数学思维能力和竞赛实战能力。
同时,要及时总结教学效果,不断改进教学方法,激发学生对数学竞赛的兴趣和热情。
高中数学竞赛教案讲义
高中数学竞赛教案讲义主题:高中数学竞赛备考一、课程目标:1. 提高学生数学逻辑思维能力和解题能力;2. 增强学生对数学知识的理解和应用能力;3. 培养学生团队合作意识和竞赛意识;4. 培养学生学习数学的兴趣和信心。
二、教学内容:1. 数论知识与解题方法;2. 代数知识与解题方法;3. 几何知识与解题方法;4. 概率与统计知识与解题方法。
三、教学重点:1. 突出数学问题解题的逻辑思维;2. 突出数学知识运用的方法;3. 突出解题过程中的技巧与技法。
四、课堂教学安排:第一节课:数论知识与解题方法1. 介绍数论基础知识;2. 讲解数论解题方法;3. 练习数论题目。
第二节课:代数知识与解题方法1. 复习代数基础知识;2. 讲解代数解题方法;3. 练习代数题目。
第三节课:几何知识与解题方法1. 复习几何基础知识;2. 讲解几何解题方法;3. 练习几何题目。
第四节课:概率与统计知识与解题方法1. 介绍概率与统计基础知识;2. 讲解概率与统计解题方法;3. 练习概率与统计题目。
五、课后作业:1. 每节课的课后习题;2. 复习本节课的知识点;3. 复习前几节课的知识点;4. 组织小组讨论解题方法。
六、教学评估:1. 每节课的课堂练习成绩;2. 期中考试成绩;3. 期末考试成绩;4. 学生综合表现与进步情况。
七、教学心得与总结:数学竞赛备考是一个长期的过程,需要坚持不懈和不断努力。
教师要引导学生找到解题的方法,培养学生的数学思维和解题能力。
同时,学生也要积极主动,多加练习,不断提高自己的数学水平。
希望通过我们的共同努力,可以在数学竞赛中获得好的成绩。
高中数学竞赛校本教材[全套共30讲].pdf
高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1) 同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑 华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
从简单情况考虑,就是一种以退为进的一种解题策略。
高中数学校本课程《培优与竞赛讲义》学生版
高中数学校本课程《培优与竞赛讲义》学生版高中数学校本课程《培优与竞赛讲义》学生版随着数学教育的不断发展和改革,高中数学教育越来越受到广泛关注。
为了更好地指导学生进行数学学习,我们特别编写了《培优与竞赛讲义》学生版。
本篇文章将对该讲义进行详细介绍。
一、确定文章类型本文属于说明文,旨在向广大高中生介绍《培优与竞赛讲义》学生版的特点、内容和优势。
通过阅读本文,学生可以了解该讲义的学习方法和使用技巧,从而更好地应对数学学习和竞赛。
二、整理思路在介绍《培优与竞赛讲义》学生版之前,我们首先对关键词进行分类,并列出各类别的优缺点,以便更好地指导学生进行选择。
然后,我们将根据选择的优劣点,介绍该讲义的特点和优势。
三、详细讲解《培优与竞赛讲义》学生版是一本针对高中生数学学习的校本课程。
该讲义以培养优秀学生和参赛选手为目标,通过深入浅出的讲解和丰富的实例,帮助学生掌握数学竞赛所需的基本知识和技能。
该讲义的内容涵盖了高中数学的所有知识点,包括代数、几何、概率与统计等方面。
在讲解过程中,该讲义采用了多种方法,如归纳法、演绎法、逆推法等,旨在培养学生的逻辑思维能力。
此外,该讲义还提供了大量的典型例题和练习题,方便学生进行巩固和拓展。
四、总结归纳通过对《培优与竞赛讲义》学生版的介绍,我们可以得出以下结论:该讲义是一本针对高中生数学学习的优秀校本课程,其内容丰富、讲解深入浅出,能够帮助学生掌握数学竞赛所需的基本知识和技能。
该讲义还注重培养学生的逻辑思维能力,并提供大量的练习题和典型例题,方便学生进行巩固和拓展。
因此,我们强烈推荐广大学生使用《培优与竞赛讲义》学生版进行数学学习和竞赛。
总之,《培优与竞赛讲义》学生版是一本非常实用的数学学习资料,旨在帮助学生提高数学成绩和竞赛水平。
通过深入学习和使用该讲义,学生可以逐步掌握数学竞赛所需的各种技能和方法,提高自身的数学素养和思维能力。
该讲义还可以为学生提供针对性的学习指导和训练,帮助学生更好地应对各种数学竞赛和考试。
高中数学校本课程(整理)
竞赛讲座一 函数的性质第一讲 函数的单调性一.学习目标会判断较复杂的函数的单调区间,能利用函数的单调性解决最值问题及解不等式、解方程。
二.知识要点单调性的定义,复合函数的单调性,抽象函数的单调性三.例题讲解例1.已知⎩⎨⎧>≤+-=1)(xlog )1( 4)13()(x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1)(B )1(0,)3 (C )11[,)73 (D )1[,1)7【答案】C【解析】由题意知)1(log )(>=x x x f a 在),1(+∞上为减函数,所以10<<a ①,)1(4)13()(<+-=x a x a x f 在)1,(-∞上为减函数,所以013<-a ②,且当1=x 时,1log 41)13(a a a ≥-⨯- ③,由①②③得答案为C.例2 已知函数x x x f -+=1)(,判断该函数在区间[),0∞+上的单调性,并说明理由.【讲解】用定义判断。
设0≤1x <2x ,)()(21x f x f -=11+x −1x −12+x +2x =112121+++-x x x x +1212x x x x +- =(1x −2x )(11121+++x x −121x x +) ∵1121+++x x >12x x +>0,∴11121+++x x <121x x + 又∵1x <2x ∴(1x −2x )(11121+++x x −121x x +)>0 ∴)()(21x f x f > ∴该函数在区间[),0∞+上的单调递增。
例3. 已知f ( x )=-x 2 + 2x + 8,g ( x ) = f ( 2-x 2 ),求g ( x )的单调增区间.【讲解】很明显这是一个复合函数的单调性问题,所以应“分层剥离”为两个函数t =-x 2+2 ① y = f ( t ) =-t 2 + 2t + 8 ②对于②f ( t ) =2)1(--t +9,可知当)1,(-∞∈t 时是增函数,当),1(+∞∈t 时是减函数。
数学学科竞赛教案高中
数学学科竞赛教案高中
教学目标:通过本次数学学科竞赛教学,让学生掌握解决数学问题的方法和技巧,培养学生的数学思维和创新能力。
一、教学内容:解题方法与技巧
二、教学重点与难点:
1.掌握常见解题技巧,如数学归纳法、递推法等;
2.培养学生观察问题的能力,运用逻辑推理解决数学问题。
三、教学步骤:
1.导入:通过一个简单的数学问题引起学生的兴趣,激发学生的求知欲;
2.讲解:讲解常见解题技巧及方法,并通过例题演示解题过程;
3.练习:让学生进行实际操作练习,巩固所学内容;
4.反馈:对学生的练习情况进行及时反馈,指导学生进一步学习;
5.总结:总结解题技巧,并鼓励学生在平时的学习中多运用这些技巧。
四、教学工具:黑板、教材、习题册等
五、教学方法:示范教学法、实践教学法
六、教学评价:根据学生的解题情况、课堂表现等进行评价,并及时给予指导和帮助。
七、教学反思:通过本次竞赛教学,发现学生在数学问题解决过程中存在的问题,并进一步完善教学内容,提高教学效果。
高中数学特色校本课程
高中数学特色校本课程
高中数学是学生学习和掌握数学知识的关键时期,为了激发学生对数学的兴趣并提高他们的数学素养,许多学校开始引入特色的校本数学课程。
这些课程与传统的数学教学相比,更注重培养学生的创新思维、问题解决能力和数学应用能力。
一种常见的高中数学特色校本课程是数学建模课程。
数学建模是通过数学的方法解决实际问题的过程,能够培养学生的实际应用能力和跨学科思维。
在数学建模课程中,学生将学习如何将实际问题转化为数学模型,并运用数学方法进行分析和求解。
通过解决实际问题,学生能够深入理解数学的应用和意义,并培养解决问题的能力和创新思维。
另外一种常见的高中数学特色校本课程是数学竞赛课程。
数学竞赛是一种能够激发学生兴趣、挑战学生思维的活动。
数学竞赛课程的目标是培养学生的问题解决能力、逻辑思维和数学思维方式。
在这门课程中,学生将学习竞赛所需的数学知识和技巧,并通过解决竞赛题目提高自己的能力。
数学竞赛课程不仅能提高学生的数学水平,还能培养学生的竞争意识和自信心。
此外,高中数学特色校本课程还可以有数学实验课程、数学研究课程等。
数学实验课程可以让学生通过实际操作和观察,探索数学规
律和定理,并培养学生的实验设计和数据分析能力。
数学研究课程则是为对数学感兴趣的学生提供一个深入研究数学问题的平台,培养学生的数学思维和创新能力。
总之,高中数学特色校本课程的引入丰富了数学教育的内容和形式,能够更好地满足学生的学习需求和兴趣。
通过这些课程的学习,学生能够在数学领域中展现自己的才华,并培养解决实际问题的能力和创新思维。
高中数学竞赛校本教材【全套共30讲】
高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
从简单情况考虑,就是一种以退为进的一种解题策略。
高中数学竞赛辅导教学计划
高中数学竞赛辅导教学计划引言:高中数学竞赛既是一项选拔优秀数学人才的途径,也是培养学生创新思维和解决问题能力的重要方式之一。
为了提高高中生参加数学竞赛的成绩,制定一个有效的辅导教学计划至关重要。
本文将从教学主题、活动安排和教材使用等方面进行详细论述,帮助老师制定一套科学合理的高中数学竞赛辅导教学计划。
一、教学主题1. 激发兴趣与培养自信激发学生对数学竞赛的兴趣是教学主题的重要目标之一。
通过多样化、趣味化的教学方式,让学生在解题过程中感受到数学的美妙与挑战,激发他们对数学竞赛的兴趣。
同时,注重对学生个人的鼓励和肯定,培养他们的自信心,相信自己在竞赛中能取得好成绩。
2. 强化基本功与培养综合能力基本功扎实是参加数学竞赛的基础。
通过对基本概念、公式和定理的讲解与练习,帮助学生打牢数学基础。
同时,注重培养学生的综合能力,包括问题分析、解决思路、逻辑推理和数学建模等方面的能力。
二、活动安排1. 周末集中辅导利用周末统一安排数学竞赛辅导课程,时间从上午开始,至下午结束。
每节课分为理论授课和实例讲解两个部分。
理论授课以概念为主,通过精讲重点和难点,帮助学生掌握基本概念和方法;实例讲解以解题为主,通过分析解题过程,帮助学生理解解题思路和方法。
通过集中辅导,能够加强学生的知识点归纳和总结能力,提高学习效果。
2. 课后讨论小组每周安排一次课后讨论小组活动。
学生按学号分组,每组有一个学生担任组长,负责组织并主持讨论活动。
讨论内容包括上课所学的知识点和作业中的难题。
组长要帮助组员解答问题、讲解思路,并整理出讨论记录,以便其他组自查修正。
通过讨论小组活动,能够培养学生的合作意识和解决问题的能力。
三、教材使用1. 校本教材根据高中数学教学大纲,结合数学竞赛要求,选择适合学生的校本教材作为基本教材。
教师可以根据学生情况,有针对性地进行讲解和练习,突出数学竞赛所涉及的重点和难点。
2. 年度竞赛真题集参加高中数学竞赛的学生,除了熟练掌握基本知识点,还需要熟悉竞赛的出题风格和难度。
中学生数学竞赛课程设计
中学生数学竞赛课程设计一、课程目标知识目标:1. 掌握数学竞赛中的基础数学概念、定理和公式,包括代数、几何、数论等领域的核心知识。
2. 理解并运用数学竞赛中常见的解题策略和技巧,如反证法、归纳法、构造法等。
3. 熟练解决数学竞赛中的综合应用题,提高问题分析和解答能力。
技能目标:1. 培养学生的逻辑思维能力和数学推理能力,提高解题速度和准确性。
2. 培养学生独立思考和团队协作的能力,能在讨论和研究中解决问题。
3. 提高学生运用数学软件和工具辅助解题的能力,如几何画板、数学建模软件等。
情感态度价值观目标:1. 培养学生对数学的兴趣和热情,激发学生学习数学的内在动力。
2. 培养学生面对困难和挑战时的坚持和毅力,形成良好的学习习惯。
3. 增强学生的竞争意识和团队精神,培养公平竞争和合作共赢的观念。
课程性质:本课程为中学生数学竞赛辅导课程,旨在提高学生的数学素养,培养学生的创新精神和实践能力。
学生特点:中学生具有较强的求知欲和好奇心,具备一定的数学基础,但个体差异较大。
教学要求:结合学生特点,注重因材施教,采用启发式教学,激发学生的兴趣和潜能,提高学生的数学竞赛水平。
通过本课程的学习,使学生能够在数学竞赛中取得优异成绩,为今后的学术和职业生涯奠定坚实基础。
二、教学内容1. 代数部分:包括多项式的运算、因式分解、方程与不等式的求解、数列的求和与通项公式、数学归纳法等。
- 教材章节:第三章《代数基础》- 进度安排:4课时2. 几何部分:涉及平面几何、立体几何、解析几何等,包括图形的性质、相似与全等、勾股定理、圆的性质等。
- 教材章节:第五章《几何基础》- 进度安排:6课时3. 数论部分:包括整数的性质、最大公约数与最小公倍数、同余、费马小定理等。
- 教材章节:第七章《数论初步》- 进度安排:4课时4. 解题技巧与策略:介绍反证法、构造法、枚举法、归纳法等解题方法,结合实际题目进行讲解和练习。
- 教材章节:第九章《解题方法与策略》- 进度安排:4课时5. 综合应用题:针对数学竞赛中的综合应用题进行讲解,培养学生的实际应用能力和创新思维。
数学竞赛教案模板范文高中
数学竞赛教案模板范文高中
教学内容:高中数学竞赛
教学目标:通过本课的学习,学生能够掌握数学竞赛中常见的题型和解题方法,提高数学
解题能力和思维逻辑能力。
教学重点:数学竞赛题型和解题方法的讲解和练习。
教学难点:数学竞赛中较难题型的解题方法和技巧。
教学过程:
一、导入(5分钟)
通过讨论数学竞赛的重要性和意义,激发学生学习的兴趣。
二、理论讲解(15分钟)
1.解题思路
2.常见的数学竞赛题型
3.解题方法和技巧
三、案例分析(20分钟)
老师给出数学竞赛中的一些案例题目,让学生进行分析和讨论,引导学生找出解题的关键
点和思路。
四、练习训练(20分钟)
学生在课堂上进行一些数学竞赛题型的练习训练,加深对知识的理解和掌握。
五、总结(10分钟)
总结本课的重点和难点,强调学生在平时的学习中要有计划地进行数学竞赛的复习和训练。
六、作业布置(5分钟)
布置相关的数学竞赛题目作业,让学生进行巩固和复习。
教学反思:
本节课主要是讲解了数学竞赛中常见题型和解题方法,通过案例分析和练习训练,使学生
能够更好地掌握数学竞赛中的解题技巧和方法。
在后续的教学中,可以加强不同题型的讲
解和训练,提高学生的解题能力和竞赛水平。
高中数学竞赛课程
高中数学竞赛课程
高中数学竞赛课程是一门旨在培养学生数学能力和思维的课程,通常包含以下几个部分:
1. 代数:包括数论、方程、不等式等方面的知识,以及代数恒等式和不等式的证明技巧。
2. 几何:包括平面几何、立体几何、解析几何等方面的知识,以及几何证明的技巧和方法。
3. 组合数学:包括计数、排列、组合等方面的知识,以及一些常见的组合数学问题和证明方法。
4. 概率统计:包括概率、统计等方面的知识,以及一些常见的概率统计问题和解决策略。
高中数学竞赛课程通常会以竞赛的形式进行,学生需要完成一些具有挑战性的题目,例如数学题、证明题等。
通过这种方式,学生可以锻炼自己的数学思维和解决问题的能力,提高自己的数学水平。
此外,高中数学竞赛课程还可以帮助学生更好地准备高考和数学竞赛,提高自己的数学成绩和竞赛能力。
因此,如果你对数学感兴趣,或者想要提高自己的数学水平和能力,可以考虑参加高中数学竞赛课程。
高中数学竞赛课教案
高中数学竞赛课教案目标:1. 熟悉高中数学竞赛常见题型2. 提升解题技巧和思维能力3. 训练学生在有限时间内解决问题的能力教学内容:1. 数论2. 几何3. 代数4. 组合数学教学步骤:1. 引入(5分钟)- 介绍高中数学竞赛的重要性和对学生数学思维能力的提升- 提出本节课的学习目标2. 知识点讲解(20分钟)- 分别介绍数论、几何、代数和组合数学在竞赛题目中的应用- 讲解每个知识点的常见题型,重点掌握解题思路和技巧3. 解题演练(30分钟)- 给学生分发练习题目,让学生单独或小组完成- 在解题过程中引导学生思考,指导他们正确的解题思路- 汇总讲解每道题的解题方法和答案4. 课堂讨论(15分钟)- 要求学生就解题过程中遇到的问题进行讨论和交流- 引导学生分享不同的解题思路和方法- 提醒学生注意解题的时间限制和答题策略5. 总结与评价(5分钟)- 对本节课的知识点进行总结回顾- 评价学生在解题过程中的表现和思考能力- 提出下节课的学习任务和要求扩展活动:1. 组织学生参加数学竞赛练习2. 设计更具挑战性的数学题目,激发学生的学习兴趣3. 鼓励学生积极参与数学竞赛,提升自身的数学水平和竞赛能力作业:1. 完成课堂练习题目2. 自主查阅数学竞赛相关资料,扩展数学知识领域3. 准备下次课堂的学习资料和心理准备教学反思:本节课主要是针对高中数学竞赛的常见题型进行讲解和解题演练,通过梳理知识点和指导解题,帮助学生提升数学解题的技巧和思维能力。
在未来的教学中,可以结合更多实例和案例,激发学生的学习兴趣,培养他们的数学竞赛能力。
高中数学竞赛实践教学计划
高中数学竞赛实践教学计划一、教学主题数学竞赛实践教学是高中数学教学中非常重要的一环,它能够提高学生的数学思维能力、解题能力和创新能力。
本次教学计划的主题是“培养学生的数学竞赛能力”,旨在通过系统化的教学活动,帮助学生掌握数学竞赛的基础知识和解题技巧,提升他们在数学竞赛中的表现。
二、活动安排1. 活动一:竞赛介绍与报名首先,教师将向学生介绍数学竞赛的种类和要求,包括各类数学竞赛的试题结构、考察内容和解题技巧等。
接着,教师将向学生宣布本班参加一次校际数学竞赛的消息,并组织学生进行报名。
在报名过程中,教师将与学生进行个别面谈,了解他们的兴趣和擅长的领域,以便调整教学内容和辅导方向。
2. 活动二:基础知识巩固为了帮助学生夯实基础知识,教师将安排一系列的课外习题和预习资料供学生自主学习。
同时,教师还将组织小组讨论和解题比赛,以激发学生的学习兴趣和竞争动力。
3. 活动三:解题技巧培训在解题技巧培训中,教师将重点讲解数学竞赛中常用的解题方法和技巧,如分类讨论法、逆向思维、等价转化等。
通过举例和实践演练,教师将引导学生逐步掌握这些方法和技巧,并引导他们在解题过程中形成自己的思考方式。
4. 活动四:模拟竞赛模拟竞赛是训练学生应对竞赛场景和时间限制的有效方式。
教师将组织全班学生进行模拟竞赛,考察他们的解题速度、准确性和思维能力。
在模拟竞赛后,教师将与学生一起分析试题解法和错误原因,并针对不同学生的问题提供个别辅导。
三、教材使用在教学过程中,教师将严选教材,选择适合竞赛学生的习题集和解题技巧指南。
教材的选择应秉持“基础为重、拓展为辅”的原则,既要巩固学生的基础知识,又要拓展他们的解题能力。
此外,教师还将根据学生的不同水平和特长,选择个性化的习题和材料,让每个学生都能得到适合自己的辅导。
四、总结通过高中数学竞赛实践教学计划,我们旨在培养学生的数学竞赛能力,提高他们的解题能力和创新思维。
活动安排从竞赛介绍与报名、基础知识巩固、解题技巧培训、模拟竞赛等方面展开,既强化了基础知识的学习,又提供了实践锻炼的机会。
高中数学竞赛校本教材——§5二次函数(1)
高中数学竞赛校本教材§5二次函数(1)二次函数是最简单的非线性函数之一,而且有着丰富内涵。
在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。
它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。
因此,必须透彻熟练地掌握二次函数的基本性质。
学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x∈R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。
一、“四个二次型”概述(一元)二次函数→a=0→↑↑(一元)二次三项式→a=0→ax2+bx+c(a≠0)↓↓↓↓↓↓↓↓→a=0→↓↓↓一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a≠0)→a=0→观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。
故将它们合称为“四个二次型”。
其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。
而二次函数y=ax2+bx+c(a≠0),犹如“四个二次型”的首脑或统帅:它的定义域即自变量X的取值范围是全体实数,即n∈R;它的解析式f(x)即是二次三项式ax2+bx+c(a≠0);若y=0,即ax2+bx+c=0(a≠0),就是初中重点研究的一元二次方程;若y>0或y<0,即ax2+bx+c>0或ax2+bx+c<0(a≠0),就是高中一年级重点研究的一元二次不等式,它总揽全局,是“四个二次型”的灵魂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛校本课程
一、课程目标
数学是研究空间形式和数量关系的学科,也是研究模式与秩序的一门学科。
数学本身的特点决定了它作为科学基础的地位,中学数学的内容与其中蕴含的数学思想方法,尤其是通过数学学习培养的思考问题、解决问题的数学能力将在更深一层次的科学研究中大有作为。
1、夯实学生数学基础,使学生熟练掌握各种数学基本技能;全面提高学生演绎推理、直觉猜想、归纳抽象、体系构建、算法设计等诸多方面的能力,并在此基础上培养学生学习新的数学知识的能力,数学地提出、分析、解决问题的能力,数学表达与交流的能力;发展学生数学应用意识与数学创新意识。
2、努力扩展学生的数学视野,全面渗透研究性学习,激发学生学习数学的兴趣,使学生能欣赏数学的美学魅力,认识数学的价值,崇尚数学的思考,培养从事科学研究的精神与方法。
3、多角度衔接高等教育,大胆引入现代数学基本理念,为学生继续从事高深科学领域的学习奠定所必需的数学基础。
二、课程设计理念与课程内容特色
本课程始终围绕学生群体设计,从他们的学习与发展的实际学情为基本出发点。
课程的内容的选择是严格的,它具有鲜明的针对性,能体现数学教学的特点。
本课程设计向要突现以下几点:
1、注重发展学生的数学综合能力
“学以致用”,数学知识的学习必须进入运用的层次,接受实践的考验。
20世纪下半叶以来,数学的最大发展是应用,这也对数学教学产生了深刻的影响。
本课程在数学知识的理论应用与实践运用上大大加强,数学的融会贯通与“数学建模”成为主体;加强了数学各分支间的结合,以重要的数学思想方法来贯穿数学学习。
2、重视数学思想与数学方法养成的创新学习理念
传授数学知识不是数学教学的重点,‘授人以鱼,不若授之以渔’。
引导学生掌握解决问题的科学的数学思想与数学方法是本课程的核心。
课程不完全以知识系统为主线,很多例题与练习是为了凸现其中的蕴含的数学思想方法而设计。
本课程试图通过数学思想方法的养成为学生形成正确的,积极主动的学习方式创造有利条件,为学生提供“提出问题,探索研究,实践应用”的空间,帮助学生形成独立思考、自主钻研的习惯,培养学生的自主能力,提高理性的数学思维,养成勇于创新的科学理念。
3、拓展数学视野,形成开放体系,努力增强时代感
由于本课程的学习对象为具备教好的数学基础与学习能力的学生,因此在内容上必须有一定的深度与广度,要能够印发学生的思考,要有新的知识内容与视角,传统的
数学课程内容长期以来已经模式化,可选择性不强,本课程大胆突破高考限制,引入“向量几何”、“矩阵理论”、“概率统计”、“线性规划”、“微积分初步”等现代数学内容,摆脱以往数学课程内容的被动与滞后,是本课程力图突破的一点。
此外,本课程通过每个章节设置的“本章阅读”介绍著名数学家、数学趣题、数学发展史以及最新数学进展来拓展学生的视野,提高学习数学兴趣。
三、课程内容与数学计划
高一上学期
第一章.集合与命题
第二章.函数
第三章.不等式
第四章.三角函数
高一下学期
第五章.直线与平面
第六章.多面体与旋转面
第七章.行列式、矩阵与向量初步
第八章.复数
高二上学期
第九章.数列与数学归纳法
第十章.直线
第十一章.圆锥曲线
第十二章.参数方程
高二下学期
第十三章.排列组合与二项式定理
第十四章.概率与统计
四、教学方法
自学指导与问题教学法,对知识的掌握,不能依赖教师的教授,因为知识在不断的更新,因此培养学生的自学能力尤为中要。
在自学的过程中,强调讨论与交流,鼓励参与,鼓励质疑,鼓励创新,以问题解决带动知识学习与能力锻炼是值得提倡的。
理科班的学生良好综合素质为此提供了可能。
实践证明“自主学习+教师指导”的方法是可行而且高效的。
五、课程评价
知识水平与实际能力相结合的综合评价,以能力考察为重点,鼓励拔尖,对突出的成绩获得给予特别加分。