液力耦合器课件.共41页

合集下载

液力耦合器

液力耦合器

液力耦合器液力耦合器液力耦合器fluid coupling以液体为工作介质的一种非刚性联轴器﹐又称液力联轴器。

液力耦合器(见图液力耦合器简图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔﹐泵轮装在输入轴上﹐涡轮装在输出轴上。

动力机(内燃机﹑电动机等)带动输入轴旋转时﹐液体被离心式泵轮甩出。

这种高速液体进入涡轮后即推动涡轮旋转﹐将从泵轮获得的能量传递给输出轴。

最后液体返回泵轮﹐形成周而复始的流动。

液力耦合器靠液体与泵轮﹑涡轮的叶片相互作用产生动量矩的变化来传递扭矩。

它的输出扭矩等于输入扭矩减去摩擦力矩﹐所以它的输出扭矩恒小于输入扭矩。

液力耦合器输入轴与输出轴间靠液体联系﹐工作构件间不存在刚性联接。

液力耦合器的特点是﹕能消除冲击和振动﹔输出转速低于输入转速﹐两轴的转速差随载荷的增大而增加﹔过载保护性能和起动性能好﹐载荷过大而停转时输入轴仍可转动﹐不致造成动力机的损坏﹔当载荷减小时﹐输出轴转速增加直到接近于输入轴的转速﹐使传递扭矩趋于零。

液力耦合器的传动效率等于输出轴转速与输入轴转速之比。

一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。

液力耦合器的特性因工作腔与泵轮﹑涡轮的形状不同而有差异。

它一般靠壳体自然散热﹐不需要外部冷却的供油系统。

如将液力耦合器的油放空﹐耦合器就处于脱开状态﹐能起离合器的作用。

变频器调速与液力耦合器调速的优缺点比较(一)[摘要]在风机,水泵类负载进行调速节能,先期应用的液力耦合器较多,高压变频器技术成熟后,也越来越多地得到了应用。

对于这两种调速节能的装置进行其优缺点的比较,提高对调速节能领域的了解。

[关键词]调速变频器液力耦合器一、引言风机、水泵是量大面广的普通机械,其耗电量占发电总量的30%左右,而高压电机拖动的大中型风机水泵的耗电量约占风机水泵耗电总量的50%。

目前大中型风机水泵基本上采用档板或阀门来调节风量或流量,以满足负荷变化的要求,其浪费电能相当严重,如若采用改变电机转速来实现调节风量或流量,无疑对节约能源,提高设备工作效率意义非常重大。

液力耦合器课件

液力耦合器课件

精选可编辑ppt
28
给水泵液力偶合器
三、常见故障原因分析和处理措施
3 、工作油压低 原因分析和处理措施: 运行中耦合器工作油压低常伴随着工作油温升高,液耦出 力下降甚至跳机。工作油压低的常见原因有: ① 液耦油温高易熔塞融化,工作油从液耦泵轮壳喷至油箱。 更换易熔塞,同时查找工作油温升高原因予以消除。 ②耦合器内勺管底部的丝堵脱落,勺管回油经过勺管套仍 回到转动外壳内,无法把转动外壳内的热油经勺管送到冷 油器冷却。及时解体耦合器,检查耦合器内勺管底部的丝 堵,如果脱落进行补焊处理。
精选可编辑ppt
27
给水泵液力偶合器
三、常见故障原因分析和处理措施
2、润滑油温高 原因分析和处理措施: ①润滑油冷油器(板式换热器)板片堵,造成换热恶 化(我厂多次出现因循环水质量造成板片堵、润滑油 温高,上盖排气孔冒青烟的现象)。及时将泵退出运 行,清洗冷油器。 ②冷却水滤网堵,造成冷却水量不足。运行人员巡检 设备时要注意检查滤网前后压差,定时对冷却水滤网 进行清洗。
1.6324 ≤3% 0.6MPa 1750-3200KW
精选可编辑ppt
21
给水泵液力偶合器
二、检修技术要点
1、动平衡要求:每次更换转子零部件时,都必须 重新做转子动平衡。 2、静平衡要求:转子所有的连接螺钉允差在0.1 克。 3、每个推力轴承总间隙在0.2-0.3mm。 4、泵轮与涡轮之间的间隙为4±0.5mm。 5、各径向轴承的间隙为0.05-0.10mm。
检查耦合器的执行机构凸轮与勺管开度是否对应,如 果在勺管开度达到 55%时,而进油控制阀没有全开, 需要调整凸轮的位置,以使得进油控制阀全开。
精选可编辑ppt
精选可编辑ppt
7

给水泵液力耦合器构造介绍 ppt课件

给水泵液力耦合器构造介绍  ppt课件

ppt课件
14
液力耦合器的特点
1、能消除冲击和振动; 2、输出转速低於输入转速,两轴的转速差随载荷的增大而
增加; 3、过载保护性能和起动性能好,载荷过大而停转时输入轴
仍可转动,不致造成动力机的损坏;当载荷减小时,输出 轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。 4、液力耦合器的传动效率等於输出轴转速与输入轴转速之 比。一般液力耦合器正常工况的转速比在0.95以上时可获 得较高的效率。 5、液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而 有差异。它一般靠壳体自然散热,不需要外部冷却的供油 系统。如将液力耦合器的油放空,耦合器就处於脱开状态, 能起离合器的作用
ppt课件
15
电动给水泵液力偶合器工作 油温偏高原因分析及处理
(湛江发电厂,广东 湛江,524099) 摘要:液 力偶合器是 300MW 发电机组电动给水泵配 套的主要设备,在运行中液力偶合器出现 了工作油温偏高的问题, 影响发电厂安全 可靠运行。根据液力偶合器结构特点及其 运行特性进行分析,找出引起工作油温偏 高的原因,采取有效 措施,解决了工作油 温偏高的问题,提高了电动给水泵组运行 的可靠性。 关键词:给水泵;液力偶合器; 油温偏高;分析;处理
ppt课件
19
电动给水泵液力偶合器工作 油温偏高原因分析及处理
• 液力偶合器示意图 工作油在泵轮里获得能量,而在涡轮里 释放能量, 通 过改变工作油量的大小来改变传递扭矩的 大小, 从而改变 涡轮的转速,以适应负荷的需要。在泵 轮转速固定的情况 下,工作油量愈多,传递的动扭矩 M 也愈大,反过来说, 如果动扭矩 M (M=gn2D5,式中 为 偶合器扭矩系数;为油的密度[kg/m3];n 为泵轮转速 [r/min];D 为偶合器有效直径[m];g 为重力加速度[m/s2]) 不变,那么,工作油量愈多,涡轮的转速 n′也愈大(因泵轮 的转速是固定的),从而可以通过改变工作油的油量来调 节涡轮的转速,以适 应给水泵需要的转速,如图 2 所示。 1.2 工作油温偏高原因分析 工作油流经偶合器, 与高速转 动的泵轮及涡轮中的叶

液力耦合器培训课件演示教学

液力耦合器培训课件演示教学
▪ 2.将控制系统密封法兰上的螺栓拆除。压出移走法 兰
▪ 3.拆除勺管处箱盖和所有垂直布置的螺栓 ▪ 4.拆除输入轴推力轴承盖和径向轴承盖间的内六角
螺钉 ▪ 5.拆除输入、输出端推力轴承盖和径向轴承盖结合
面上的螺钉 ▪ 6.将行车停在箱盖中心上方,吊起箱盖,然后放在
橡胶垫上
六、检修工艺及质量标准
▪ 勺管调节机构解体
五、主要组成部分及结构特点
▪ 旋转外壳上装有安全易容塞,防止耦合器内工作有温度过高。
易容塞
六、检修工艺及质量标准
▪ 准备工作 ▪ 1.拆下输入、输出端的联轴器 ▪ 2.排空偶合器的工作液并用适当容器收集并
正确存放 ▪ 3.解体前对所有旋转部件做出标记
六、检修工艺及质量标准
▪ 箱体拆卸
▪ 1.断开管路,吊离执行机构。将轴中心线上方的障 碍物件拆除,诸如电缆线、管子等
将轴吊起时就应拆下另一半轴承
六、检修工艺及质量标准
▪ 主油泵拆卸
▪ 1.如果充油泵损坏(流量减少/小齿轮齿面有缺陷), 建议整台更换充油泵
▪ 2.取下箱盖后,就可看到充油泵并将其拆下。另外, 拆下视孔盖后,也可通过箱盖上的开口拆下充油泵
▪ 3.拆下螺栓,用两个M12×80的起顶螺钉将充油泵 向上压起50mm左右
▪ 2.拆去所有温度探头 ▪ 3.拆去推力轴承端盖及3号轴承点的外侧推力轴承 ▪ 4.拆去推力盘及4号轴承点的内侧推力轴承 ▪ 5.松开螺栓和销钉后,拆下5号轴承点的轴承盖。从轴上拆下5号轴承点
上半轴瓦 6.同样拆下6号轴承点的轴承盖和10号轴承点的轴承盖 ▪ 7.拆下排油腔体上的螺栓和定位销 ▪ 8.从转动外壳上拆下易熔塞,清除易熔塞空中的油泥,转动转子以便排
▪ 4.将绳子绑在输入轴上,用吊车小心地将泵吊起, 注意泵的叶轮

液力耦合器的原理构造使用和维修ppt课件

液力耦合器的原理构造使用和维修ppt课件

篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
﹡轴瓦维修:轴瓦温升大于60 ℃时,应及时检查、 修理;轴瓦磨损后,接触角度大于120°时,必须更 换或重新修刮;轴瓦允许的最大磨损量为制造间隙 的1.5倍。 3.6油温油压 ﹡起动前油箱内油温要求大于10℃; ﹡耦合器出口工作油温度:一般85℃ 报警,93℃停 机; ﹡工作油油泵出口压力:一般0.25-0.45MPa;
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
4.2输出轴不加速 ﹡ 油泵吸口过滤器堵塞;吸油管密封不严漏气; ﹡ 油箱油位低 ﹡ 工作油泵出口溢流阀失灵,设定值变低 ﹡ 工作油泵损坏,打不出油 ﹡ 耦合器内油未充满,密封O型圈坏 ﹡ 勺管不到位,执行器限位动了
4.6耦合器油泄漏 ﹡ 输入输出轴轴颈漏油,密封环磨损 ﹡ 勺管作动管径向漏油,密封磨损 ﹡ 油箱内油位过高 ﹡ 排气孔堵 4.7耦合器排气孔喷油 ﹡ 加油太多,油箱内油位超标 ﹡ 油冷却器内泄漏,水进入油腔,导致油箱液面上升,
接触到转子外壳
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2.1原理 电机运转时带动耦合器的壳体与泵轮一同转动,
泵轮的叶片带动油液,在离心力的作用下油被甩 向叶片的外缘处,并充向涡轮叶片,使涡轮受到 油的冲击而同向运转,油沿涡轮叶片向内缘流动, 返回泵论内缘,然后油又被甩向叶片的外缘,如 此周而复始。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

液力耦合器

液力耦合器

液力耦合器
二、液力耦合器的工作过程
3.循环圆与导流环 为了减少液体动能损失,在耦合器中安装了导流环。导流环是分别装于泵轮、涡轮叶片上的管状圆 环,位于循环圆的中间位置。工作液体在循环圆内流动时,靠近循环圆中心的液体由于压力相近而 形成湍流运动。这部分液体阻碍叶片的运动,增加能量消耗。在叶片上去掉中间部分,并安装导流 环,可使液体在泵轮与涡轮内不断循环流动,并减少叶片的搅油损失,降低能量损耗。
液力耦合器
二、液力耦合器的工作过程
1.汽车起步阶段的液体运动 ◎汽车在起步或遇到极大的阻力时,涡轮处于静止或低转速状态。涡轮与汽车的传动系统连接,当 汽车阻力大于涡轮叶片上的作用力时,被甩到泵轮外缘的液体冲击涡轮叶片,液体的圆周速度被降 至零,释放热量。 ◎在压力差作用下,液体被迫沿着涡轮壳向低压的涡轮内缘流动,返回泵轮内缘后再次受离心力作 用被甩到外缘。涡轮速度的降低加速了液体的循环圆运动速度,液体不断从泵轮冲入涡轮,又经涡 轮返回泵轮。这时的液体运动并不对外做功,发动机的机械能转换为液体高速涡流运动的功能,进 而转换为热能而被吸收。液体的质点不断穿梭于泵轮与涡轮的叶片之间,形成首尾相接的环形螺旋 线。
液力耦合器
二、液力耦合器的工作过程
液力耦合器的两个工作轮没有刚性连接,动力传递完全依靠内部液体的运 动。当发动机驱动泵轮转动时,泵轮上的叶片推动液体同方向转动,将发 动机的机械能转变为液体的动能;运动的液体冲击在相对位置的涡轮叶片 上,使涡轮随之转动,将液体的动能转变为机械能对变速器输出。 发动机驱动泵轮旋转时,耦合器内的液体被叶片搅动,一起旋转,液体开 始绕耦合器旋转轴线做圆周运动,同时在离心力作用下,液体从泵轮叶片 的内缘向外缘流动,在外缘形成高压区,在内缘形成低压区。泵轮内部产 生的压力差迫使涡轮内的液体向低压区流动,形成首尾相接的循环圆运动。 其压力差取决于工作轮的半径和转速。液体的圆周运动与循环圆运动所合 成的运动构成对涡轮叶片的冲击,推动涡轮转动时,液体的动能转换为涡 轮的机械能。

液力耦合器培训课件综述

液力耦合器培训课件综述

主动
从动
电动机 液力偶合器
负载
五值六号机 培训课件
(三)液力耦合器的工作原理:

电动机运行时带动液力耦合器的壳体 和泵轮一同转动,泵轮叶片内的液压 油在泵轮的带动下随之一同旋转,在 离心力的作用下,液压油被甩向泵轮 叶片外缘处,并在外缘处冲向涡轮叶 片,使涡轮在受到液压油冲击力而旋 转;冲向涡轮叶片的液压油沿涡轮叶 片向内缘流动,返回到泵轮内缘,然 后又被泵轮再次甩向外缘。液压油就 这样从泵轮流向涡轮,又从涡轮返回 到泵轮而形成循环的液流。液力耦合 器中的循环液压油,在从泵轮叶片内 缘流向外缘的过程中,泵轮对其作功, 其速度和动能逐渐增大;而在从涡轮 叶片外缘流向内缘的过程中,液压油 对涡轮作功,其速度和动能逐渐减小。
五值六号机 培训课件
液力耦合器培训课件
主动
从动
电动机
负载
液力偶合器
编写:汪志强
五值六号机 培训课件
液力耦合器的工作原理与性能特点:
(一)液力耦器的结构: 液力耦合器是一种液力 传动装置,又称液力联 轴器。液力耦合器其结 构主要由壳体、泵轮、 涡轮三个部分组成,如 图所示。

五值六号机 培训课件
五值六号机 培训课件
(七) 液力耦合器的性能特点:




(1) 应用范围: l 调速范围宽,可实现从零调节。 l 没有电气连接,可工作于危险场地,对环境要求不高。 (2)技术成熟: l 结构简单,操作方便。 l 多年研究,结构合理。 l 全部国产化,维修方便。 (3)性能指标: l 价格便宜,对精度要求低 l 能量转换效率低。 l 结构简单,故障率低。 l 运行时需加专用的冷却系统。 l 液压油老化后定时更换。

液力耦合器

液力耦合器

液力耦合器耦合器的介绍液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来传递旋转动力的机械装置。

曾应用于汽车中的自动变速器,在海事和重工业中也有着广泛的应用。

液力耦合器以液体为工作介质的一种非刚性联轴器,又称液力联轴器。

液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。

动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。

这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。

最后液体返回泵轮,形成周而复始的流动。

液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。

它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。

液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。

液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。

液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。

一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。

液力耦合器的特性因工作腔与泵其内充有工作油液。

泵轮通常在内燃机或电机驱动下旋转,带动工作油液做比较复杂的向心力运动。

高速流动的油液在科里奥利力的作用下冲击涡轮叶片,将动能传给涡轮,使涡轮与泵轮同方向旋转。

油液从涡轮的叶片边缘又流回到泵轮,行成循环回路,其流动路线如同一个首尾相连的环形螺旋线。

耦合器的分类根据用途的不同,液力耦合器分为限矩型液力耦合器和调速型液力耦合器。

其中限矩型液力耦合器主要用于对电机减速机的启动保护及运行中的冲击保护,位置补偿及能量缓冲;调速型液力耦合器主要用于调整输入输出转速比,其它的功能和限矩型液力耦合器基本一样。

液力耦合器

液力耦合器

以液体为工作介质的一种非刚性联轴器,又称液力联轴器。

液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。

动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。

这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。

最后液体返回泵轮,形成周而复始的流动。

液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。

它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。

液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。

液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。

液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。

一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。

液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。

如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。

液力耦合器对电机起什么样的保护作用?1、过载保护2、启动平稳偶合器,液力偶合器原理在动力机带动偶合器转动时,首先由泵轮将偶合器腔内液体搅动,在离心力的作用下,腔内液体从半径较小的流道进口处被加速,并抛向半径较大的流道口处,从而液体的动量加大,在泵轮出口处液流以较高的速度和压强冲向涡轮叶片,释放液体动能推动涡轮旋转做功,实现涡轮将液体动能转化为机械能的过程。

当液体的动能减小后,在其后的液体推动下由涡轮流出而进入泵轮,再开始新的能量转化。

如此周而复始,输入与输出在没有直接机械连接的情况下,由液体动能完成了柔性的成功连接。

功能具有柔性传动功能:能有效的减缓冲击,隔离扭振,提高传动品质;具有电机轻载起动功能:当电机起动时,力矩甚微,接近于空载起动,从而降低起动电流,缩短起动时间,起动过程平缓、顺利;具有过载保护功能:有效的保护电机和工作机,在起动或超载时不受损坏,降低机器故障率,延长零部件和整机使用寿命,降低维护费用和停工时间;具有协调多机同步起动功能:在多机起动系统中,能够达到电机顺序起动,协调各电机同步、平稳驱动。

液力耦合器.ppt

液力耦合器.ppt
M BnB nB
(11-6)
2020/7/20
9
11.2 液力耦合器的特性
11.2.1 液力耦合器的外特性
• 当 nB﹑ 都为常数时,M f1(nT ) ﹑ f2 (nT ) 的关系 称为液力耦合器的外特性,其特性图线如图11-3。
图中横坐标也可用 i ﹑s 来表示。
• 外特性由实验求得。因 i ,所以当 i 与 用相 同比例尺时, 是从坐标原点起始与坐标轴成 45
Q
g (uB2 rB2
uT 2 rT 2 )
Q 2g
(B2
T 2 )
(11-1)
: • 涡轮
MT
Q
g
(vT
2u
rT
2
vT1urT1)
Q
g (uT 2rT 2
uB2rB2 )
Q 2g (T 2 B2 )
(11-2)
2020/7/20
7
11.1 液力耦合器的工作原理
• 将式(11-1)与式(11-2)相加,有
• 泵轮和涡轮及壳体所围成的空间,形成一个封闭 的液体循环流道,该流道就叫工作腔或循环圆, 此圆最大直径叫做液力耦合器的有效直径,用D表 示。因工作液体在循环圆内作圆周运动,又随两 工作轮一起绕轴线转动,因而工作液体在液力耦 合器中是作圆周螺旋运动。
2020/7/20
4
11.1 液力耦合器的工作原理
i 0 、P 0 功率,此工况下耦合器传递的功 率转变为热能而消耗掉了。
• 液力耦合器的正常工作范围应在Ⅰ~Ⅱ两工况之
间,而Ⅱ~Ⅲ工况之间是超载工作范围。
2020/7/20
13
11.2 液力耦合器的特性
11.2.2 液力耦合器的原始特性

液力-第3章 液力耦合器

液力-第3章 液力耦合器
偶合器中液流由泵轮所建立的能头值为
1 1 2 1 2 2 2 2 H B (vB2u uB2 vB1u uB1 ) (uB2 vT2u uB1 ) (BrB2 iB rB1 ) g g g
19
令 a rB1 rB2 ,代入上式,得
HB
2 2 B rB2 (1 ia 2 )
vB2u vT1u 和 vB1u vT2u ,根据环量定理,有
B2 B1
T2 T1
代入式中,可得
MB MT 0
(3-3)
M B M T
式(3-3)表明在液力偶合器中,泵轮叶片作用于液体 的力矩等于工作液体作用于涡轮叶片上的力矩,即液力偶合 器不能改变所传递的力矩的大小。 17
(3-2)
或 或
MT
MT
Q
g
(uT2 rT2 uT1rT1 )
Q
g 将式(3-1)和式(3-2)相加得 Q M B+M T (uB2 rB2 uB1rB1 ) (uT2rT2 uT1rT1 ) g
g Q B2 B1 T2 T1 2 g
图3-6 液力偶合器外特性
偶合器的效率 是涡轮输出功率 PT 与泵轮输出功率 PB 之比
PT M T nT PB M B nB
26
对偶合器 M B M T ,因此有
i
(3-10)
上式表示偶合器效率等于转速比,效率曲线是一条通过 坐标原点的直线。但当 i 接近与1.0时,偶合器传递的力矩 很小,而机械摩擦力矩所占的比重急剧增大,因此在高转速 比时的效率特性明显偏离 i 直线,并在 i 0.99 ~ 0.995 时急剧下降至 0 。 当0≤i≤1时,偶合器为牵引工况区。偶合器在牵引工 况区有三个特殊工况点: (1)设计工况点,一般取 i i* 0.95 ~ 0.98 ,其特点 是效率最高 。 (2)零速工况点,又称制动工况点,是车辆在起步或 27 制动时的工况。

液力耦合器培训课件

液力耦合器培训课件

序号
1
2 3 4 5 6 7 8 9 10 11 12 13 14
四、主要参数
项目
型号
单位
齿轮间距 齿轮增速比
输入转速 输出转速 调速范围 额定滑差 启动时间 工作油流量 润滑油流量 油箱容积 增速齿轮形式 调速机构形式
重量
mm
rpm rpm
% % s m3/h m3/h m / / t
规范
R17K 450M 或相当 450 4:1 1492 5962 25 - 75 2.2 10 192 36 31.4 双斜齿 VEHS 6
五、主要组成部分及结构特点
? 泵轮的主轴与电动机的主轴连接,通过齿轮传递增速,带动油腔室内的工作油液 体形成高速油流,冲击对面涡轮叶片,驱动一同旋转。
泵轮
五、主要组成部分及结构特点
? 旋转外壳与泵轮通过螺栓连接构成一个腔室,涡轮在受到高速高速工作油冲击提 速后,工作油又沿涡轮叶片流向油腔内侧并逐级减速,流回到泵轮内侧,构成一 个油的循环流动圆。
京能检修 ingneng Maintenance
(汽机车间辅机班)
王志国
2012 年11 月3日
目录
?一、培训目的 ?二、概述 ?三、工作原理 ?四、主要参数 ?五、主要组成部分及结构特点 ?六、检修工艺及质量标准 ?七、常见故障及处理措施
一、培训目的
? 通过培训以提高自身水平,了解并熟练掌握液力 耦合器的工作原理及主要技术参数,在日常巡检 维护中能及时发现设备运行的异常情况,做到提 前预防保证设备安全稳定运行。
? 液力耦合器是以油压来传动的变速传动装置,因油压大小不受等级的限 制,所在它是一个无极变速的联轴器。
? 在现代活力发电厂中,锅炉压力越来越高,为克服汽水流动阻力,要 求给水泵的压力越来越高。因此,驱动高速给水泵的驱动力需求也很大。 为了经济运行,最好的办法就是以变速调节来适应工况的改变。其中, 一种方法是采用直接变速的小型汽轮机来驱动给水泵,但此方法在单元 机组点火启动工况时必须有备用汽源才能使用需求,机构设置比较复杂。 另一种方法就是采用液力耦合器来改变给水泵转速,以适应单元机组的 启动工况。这样,一方面可以大大降低电动给水泵的电机配置余量,使 给水泵在较小的转速比下启动;另一方面不会出现定速电动泵在单元机 组启动时需节流降压以适应工况需求的情况,提高机组的经济性,并避 免了高压阀门因节流,造成在短时间内即因冲刷、磨损而报废的现象。 所以说,采用液力耦合器是一种比较理想的方法。目前,多数电厂均采 用了较经济的配置方案-----正常运行时以给水泵汽轮机来变速驱动给水 泵供水,同时配置由液力耦合器变速驱动的启动/备用给水泵,采用机组 启动。

液力耦合器讲义

液力耦合器讲义

液力耦合器一、液力耦合器的名词解释二、液力耦合器的工作过程三、液力耦合器的油系统四、勺管的调节原理五、液力耦合器的运行知识六、液力耦合器的特点七、液力耦合器运转的注意事项一、液力耦合器的名词解释以液体为工作介质的一种非刚性联轴器,又称液力联轴器。

如图:液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。

动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。

这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。

最后液体返回泵轮,形成周而复始的流动。

液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。

它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。

液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。

二、液力耦合器的工作过程液力耦合器主要由泵轮、涡轮、转动外壳、主动轴及从动轴等构件组成,见图8—10。

液力耦合器和传动齿轮安装在一个箱体内,功率传输从电动机到液力耦合器,再传到泵上。

泵轮装在与原动机轴相连的主动轴上(或第一级增速齿轮轴上),相当于离心泵的叶轮;涡轮装在与泵相连的从动轴上(或第二级增速齿轮轴上),相当于水轮机的叶轮,两轮彼此不接触,相互之间保持几毫米的轴向间隙,不能进行扭矩的直接传递。

泵轮和涡轮的形状相似,尺寸相同,相向布置,合在一起很像汽车的车轮,分开时均为具有20~40片径向直叶片的叶轮,涡轮的片数一般比泵轮少1~4片,以避免产生共振。

这种叶轮的后盖板及轮毂在轴面上形成两个对称的碗状投影,且与叶片共同组成沿圆周对称分布的几十个凹形流道,称为工作腔。

每个工作腔的进、出口均沿轴向,且在叶轮同侧,运行时工作油就在两轮的凹形工作腔内循环流动。

为防止工作油泄漏,一般在泵轮外缘还用螺栓连接旋转外壳,将涡轮密封在壳内。

泵轮和涡轮形成的工作油腔内的油自泵轮内侧引入后,在离心力的作用下被甩到油腔外侧形成高速的油流,并冲向对面的涡轮叶片,驱动涡轮一同旋转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档