电化学原理PPT课件
合集下载
《电化学基础》课件

电化学反应速率
总结词
电化学反应速率描述了电化学反应的快 慢程度,是衡量反应速度的重要参数。
VS
详细描述
电化学反应速率与参与反应的物质的浓度 、温度、催化剂等条件有关。在一定条件 下,反应速率可由实验测定,对于一些特 定的电化学反应,也可以通过理论计算来 预测其反应速率。
反应速率常数
总结词
反应速率常数是描述电化学反应速率的重要参数,它反映了电化学反应的内在性质。
详细描述
反应速率常数与参与反应的物质的性质、温度等条件有关。在一定条件下,反应速率常数可以通过实验测定,也 可以通过理论计算得到。反应速率常数越大,表示该反应的速率越快。
反应机理
总结词
电化学反应机理是描述电化学反应过程中各步骤的详细过程和相互关系的模型。
详细描述
电化学反应机理可以帮助人们深入理解电化学反应的本质和过程,从而更好地控制和优化电化学反应 。不同的电化学反应可能有不同的反应机理,同一电化学反应也可能存在多种可能的反应机理。 Nhomakorabea05
电化学研究方法
实验研究方法
01
重要手段
02
实验研究是电化学研究的重要手段,通过实验可以观察和测量电化学 反应的过程和现象,探究反应机理和反应动力学。
03
实验研究方法包括控制电流、电位、电场等电学参数,以及观察和测 量电流、电位、电导等电化学参数。
04
实验研究需要精密的实验设备和仪器,以及严格的操作规范和实验条 件控制。
01
02
03
电池种类
介绍不同类型电池的制造 过程,如锂离子电池、铅 酸电池、镍镉电池等。
电池材料
阐述电池制造过程中涉及 的主要材料,如正负极材 料、电解液、隔膜等。
电化学基础-PPT课件

35
3. 氢镍电池是近年开发出来的可充电电池,
它可以取代会产生镉污染的镉镍电池。氢镍
电池的总反应式是:
1/2H2+NiO(OH)
Ni(OH)2
CD
据此反应判断,下列叙述中正确的是( )
A. 电池放电时,负极周围溶液的pH不
断增大
B. 电池放电时,镍元素被氧化
C. 电池充电时,氢元素被还原
D. 电池放电时,H2是负极
Ag
电解质溶液Y是__A_g_N__O_3_溶__液_;
(2)银电极为电池的___正_____极,CuSO4溶液 Y
发生的电极反应为__A_g_+__+__e_-__=_A__g___
X电极上发生的电极反应为
__C_u___-2__e_-___=__C__u_2_+__________;
(3)外电路中的电子是从__负__(_C_u_电) 极流向
14
6. 双液原电池的工作原理(有关概念)
(1)盐桥中装有饱和的KCl溶液和琼脂制成的 胶冻,胶冻的作用是防止管中溶液流出
(2)盐桥的作用是什么?
可提供定向移动的阴阳离子,
使由它连接的两溶液保持电
中性,盐桥保障了电子通过
外电路从锌到铜的不断转移
,使锌的溶解和铜的析出过 程得以继续进行。
盐桥的作用: (1)形成闭合回路。
?思考
1、银器皿日久表面逐渐变黑色,这是由于生成硫
化银,有人设计用原电池原理加以除去,其处理方 法为:将一定浓度的食盐溶液放入一铝制容器中, 再将变黑的银器浸入溶液中,放置一段时间后,黑 色会褪去而银不会损失。 试回答:在此原电池反应中,负极发生的反应
为 Al -3e- = Al3+ ; 正极发生的反应为 Ag2S+2e- = 2Ag;+S2-
3. 氢镍电池是近年开发出来的可充电电池,
它可以取代会产生镉污染的镉镍电池。氢镍
电池的总反应式是:
1/2H2+NiO(OH)
Ni(OH)2
CD
据此反应判断,下列叙述中正确的是( )
A. 电池放电时,负极周围溶液的pH不
断增大
B. 电池放电时,镍元素被氧化
C. 电池充电时,氢元素被还原
D. 电池放电时,H2是负极
Ag
电解质溶液Y是__A_g_N__O_3_溶__液_;
(2)银电极为电池的___正_____极,CuSO4溶液 Y
发生的电极反应为__A_g_+__+__e_-__=_A__g___
X电极上发生的电极反应为
__C_u___-2__e_-___=__C__u_2_+__________;
(3)外电路中的电子是从__负__(_C_u_电) 极流向
14
6. 双液原电池的工作原理(有关概念)
(1)盐桥中装有饱和的KCl溶液和琼脂制成的 胶冻,胶冻的作用是防止管中溶液流出
(2)盐桥的作用是什么?
可提供定向移动的阴阳离子,
使由它连接的两溶液保持电
中性,盐桥保障了电子通过
外电路从锌到铜的不断转移
,使锌的溶解和铜的析出过 程得以继续进行。
盐桥的作用: (1)形成闭合回路。
?思考
1、银器皿日久表面逐渐变黑色,这是由于生成硫
化银,有人设计用原电池原理加以除去,其处理方 法为:将一定浓度的食盐溶液放入一铝制容器中, 再将变黑的银器浸入溶液中,放置一段时间后,黑 色会褪去而银不会损失。 试回答:在此原电池反应中,负极发生的反应
为 Al -3e- = Al3+ ; 正极发生的反应为 Ag2S+2e- = 2Ag;+S2-
电化学原理及应用-PPT课件

【变式1】(2010·江苏卷)下图是 一种航天器能量储存系统原理 示意图。下列说法正确的是( )
A.该系统中只存在3种形式的能量转化 B.装置Y中负极的电极反应式为: O2+2H2O+4e- 4OH- C.装置X能实现燃料电池的燃料和氧化剂再生 D.装置X、Y形成的子系统能实 现物质的零排放,并能实现化学能与电能间的完全转 化
解析:图2是原电池,其中A(负极)电极反应式为: BH-—8e-+8OH- BO+6H2O,B(正极)电极反应式为: H2O2+2e- 2OH-,故Na+应往正极区迁移,A错B对;
C 项 所 对 应 的 情 况 是 Zn - C - ZnSO4 原 电 池 ( 吸 氧 腐 蚀),负极(Zn板)电极反应式为:Zn-2e- Zn2+,正极 (铅笔)电极反应式为:O2+4e-+2H2O 4OH-,C对;
3.对于二次电池反应,需要看清“充电、放电” 的方向,放电的过程为原电池,充电的过程为电 解池。 4.电解质溶液中的离子(如H+、OH-),若电极反 应的产物能与之反应,则要写在反应式中。
【典型例题1】 以葡萄糖为燃料的微生物燃料电池结 构示意图如图所示。关于该电池的叙述正确的是( B) A.该电池能够在高温下工作 B.电池的负极反应为: C6H12O6+6H2O-24e- 6CO2↑+24H+ C.放电过程中,H+从正极区向负极区迁移 D.在电池反应中,每消耗1 mol氧气,理论上能生成 标准状况下CO2 44.8 L
答案:A、B
与原电池正极相连的电极为电解池的 阳极,与负极相连的电极为电解池的阴极。 在阳极处为阴离子放电,在阴极处为阳离 子放电,根据题中的现象,可以得出阴、 阳极,进而得出正、负极。
【变式2】(2011·苏锡常镇二模)图1是在金属锌板上贴 上一张用某溶液浸湿的滤纸,图2是NaBH4/H2O2燃料 电池;
《电化学原理第二章》PPT课件

溶液(1)
§2.2 电化学体系
电化学体系有三类 1.原电池:电化学反应自发进行并能对外做功,自发将电流送到外电 路中做功。 2.电解池:与外电源组成回路,强迫电流在电化学体系中通过并促使 电化学反应发生。 3.腐蚀电池:电化学反应自发进行,但不对外做功,仅起金属破坏作 用。
16:23:07
一、 原电池
例2: 2Ag + Hg2Cl2 2Hg + AgCl
阳极:Ag + Cl- - e → AgCl 阴极:Hg2Cl2 + 2e → 2Hg + 2Cl原电池表示为: Ag∣AgCl(s), Cl-(α1)‖Cl-(α2), Hg2Cl2(s)∣Hg(
16:23:07
例3:
H2 (P1) + Cl2 (P2)
阳极
16:23:07
E
电池电动势:
E = c - a+液接 = 右 - 左+液接
阴极
例1: Zn + CuSO4(α2) ZnSO4(α1)+Cu
阳极 Zn – 2e → Zn2+ 阴极 Cu2+ + 2e → Cu 原电池表示: Zn∣ZnSO4(α1)‖CuSO4(α2)∣Cu
16:23:07
16:23:07
二、金属接触电位
相互接触的两金属相之间的外电位差称为金属接触电位。 不同金属对电子亲和力不同,故在不同金属相中电子的电化学位不相等,电子逸出难易不同。 电子逸出功:金属电子离开金属逸出真空中所需要的最低能量来衡量电子逸出金属的难易程度,这一能量 叫电子逸出功。 其电子逸出功不同,相互逸入的电子数目将不等,故在界面形成双电子层结构。电子逸出功高的相带负 电,电子逸出功低的相带正电。两相间双电子层的电位差即为金属接触电位。
电化学原理第四章电极过程概述 ppt课件

zncuptptir液相传质步骤液相传质步骤前置的表面转化步骤前置的表面转化步骤简称前置转化简称前置转化电子转移步骤或称电化学反应步骤电子转移步骤或称电化学反应步骤随后的表面转化步骤简称随后转化随后的表面转化步骤简称随后转化新相生成步骤或反应后的液相传质步骤新相生成步骤或反应后的液相传质步骤电极表面溶液cnagcnagcncnagcnagcnagcnag吸附态传质前置转化电子转移新相生成结晶态吸附态agag溶液电极表面cncn传质银氰络离子在阴极还原的电极过程它只包括四个单元步骤除此之外还有因表面转化步骤前置转化或随后转化成为控制步骤时的电极极化称为表面转化极化
electrode
甘汞电极(SCE)
介绍两种特殊的极端情况
理想极化电极
理想不极化电极
二.极化曲线
极化曲线(polarization curve) :过电位(电 极电位)随电流密度 变化的关系曲线。
极化度 (polarizability):极 化曲线上某一点的斜 率
阳极极化 阴极极化
d d。
在一定的电流密度下,电极电位与平衡电位的差值称为该电流 密度下的过电位,用符号η表示,习惯取正值。
阴极极化时, 阳极极化时,
c 平c a a 平
⑵极化值
实际遇到的电极体系,在没有电流通过时,并不都 是可逆电极。在电流为零时,测得的电极电位可能是可 逆电极的平衡电应,也可能是不可逆电极的稳定电位。 因而,又往往把电极在没有电流通过时的电位统称为静 止电位。把有电流通过时的电极电位(极化电位)与静止 电位的差值称为极化值。
j净 j* j逆 *
式中 j逆* 为控制步骤的逆向反应绝对速度。由上式可知
j净 j*逆
其它非控制步骤,比如电子转移步骤的绝对反应
electrode
甘汞电极(SCE)
介绍两种特殊的极端情况
理想极化电极
理想不极化电极
二.极化曲线
极化曲线(polarization curve) :过电位(电 极电位)随电流密度 变化的关系曲线。
极化度 (polarizability):极 化曲线上某一点的斜 率
阳极极化 阴极极化
d d。
在一定的电流密度下,电极电位与平衡电位的差值称为该电流 密度下的过电位,用符号η表示,习惯取正值。
阴极极化时, 阳极极化时,
c 平c a a 平
⑵极化值
实际遇到的电极体系,在没有电流通过时,并不都 是可逆电极。在电流为零时,测得的电极电位可能是可 逆电极的平衡电应,也可能是不可逆电极的稳定电位。 因而,又往往把电极在没有电流通过时的电位统称为静 止电位。把有电流通过时的电极电位(极化电位)与静止 电位的差值称为极化值。
j净 j* j逆 *
式中 j逆* 为控制步骤的逆向反应绝对速度。由上式可知
j净 j*逆
其它非控制步骤,比如电子转移步骤的绝对反应
电化学原理第四版李荻课件

THANKS
感谢您的观看。
05
CHAPTER
超级电容器技术与应用
利用电极与电解质界面形成的双电层或电极表面快速可逆的氧化还原反应来储存能量。
基本原理
充电速度快、功率密度高、循环寿命长、温度范围宽、绿色环保等。
特点
优点
能量密度高、充放电速度快等。
工作原理
通过电极表面快速可逆的氧化还原反应来储存能量,电极材料通常采用金属氧化物或导电聚合物。
充电过程
正极板上的二氧化铅和负极板上的铅在电解液的作用下,分别生成硫酸铅和水,同时有电子在外电路中流动,形成充电电流。
放电过程
硫酸铅和水在正极板和负极板上分别还原成二氧化铅和铅,同时有电子在外电路中流动,形成放电电流。
镍镉电池
01
以氢氧化镍作为正极,氢氧化镉作为负极的一种碱性蓄电池。具有大电流放电特性好、耐过充和过度放电等优点,但存在记忆效应和环保问题。
在放电过程中,铝阳极与水和电解质中的氢氧根离子发生反应生成氢氧化铝和氢气,同时释放出电子产生电流;空气中的氧气在阴极接受电子被还原成氢氧根离子。充电时,逆向反应进行,氢氧化铝得电子被还原成铝沉积在阳极上。
优缺点
铝空气电池具有高的理论比能量、低成本和环境友好等优点;但是存在铝阳极自腐蚀、氢氧化铝沉积等问题导致电池性能衰减。
铂、钯等贵金属具有良好的催化活性和稳定性,广泛应用于燃料电池、有机合成等领域。
铂族金属催化剂
通过合金化可以改善贵金属的催化性能和降低成本,如铂钌合金、铂铑合金等。
贵金属合金催化剂
纳米级贵金属催化剂具有高比表面积和优异的催化活性,应用于电催化、光催化等领域。
贵金属纳米催化剂
03
非贵金属氮化物催化剂
《电化学基础》课件

学习储能装置和电池技术的原 理,如锂离子电池和太阳能电 池。
燃料电池和电化学传感器
燃料电池
探索燃料电池的原理与应用,如氢燃料电池和燃料电池汽车。
电化学传感器
了解电化学传感器的工作原理,以及其在环境监测和医学诊断中的应用。
《电化学基础》PPT课件
本PPT课件将介绍电化学的基础理论、动力学、电池与电解池、电化学表征技 术以及电化学的应用领域,带你深入了解这个令人着迷的领域。
电化学基础理论
1 电化学基础概念
2 电化学反应的基本
学习电化学的基础概念,
特征和实验表征方 法
包括电解质、离子和电
探索电化学反应的特征
子传输。
以及实验方法,包括溶
了解反应速率和速率常数的 定义及其在动力学研究中的 重要性。
电池和电解池
1
电池和电解池的基本概念
探索电池与电解池的原理和应用,包
奥姆定律和纳尔斯特方程
2
括电子转移和离子传输过程。
学习奥姆定律和纳尔斯特方程,揭示
电池和电解池中电流与电势之间的关
系。
3
活性质量、化学放电和电化学 效率
和计时电流法
深入了解线性扫描伏安法和循环伏安法的 原理和应用。
探索电位阶跃法和计时电流法在电化学研 究中的重要性。
电化学应用
电催化和电极催化反应
电化学合成和电化学分析 储能装置和电池技术
了解电催化和电极催化反应的 应用,如催化转化和废水处理。
探索电化学合成和电化学分析 在化学工业和实验室中的应用。
电解和电沉积过程
4
响,以及化学放电和电化学效率的计
算。
了解电解和电沉积在电化学中的应用
以及相关实验和工业过程。
电化学原理及应用 PPT

【解析】(2)可以根据铝的性质,先写出负极铝极的电极反应式
为=H=2=A+=l2-2e6A-eO+-l2+H82+OOO=HH=-=-+==H==32=OOO 2减H2 A-去l。负+极4H电2极O,反用应已式知,的然总后反化应简式可2得AO :l2 +3H (3O )2放热的氧化还原反应可设计成原电池。因为在碱性条件下,
CO要转化为C :CO-2e-+OH- C +H2O,根据电荷守恒和元素
守恒配平为COO 32-2e-+4OH-====OC32 +2H2O。
O
2 3
(4)正极是H2O2得到电子发生还原反应,联想到氢氧燃料电池的
()
分析:铁比锡活泼,焊接处形成的原电池中,铁作负极,更易生锈。 ×
(15)(2011·新课标全国卷)电解58.5 g熔融的NaCl,能产生标 准状况下22.4 L氯气,23.0 g金属钠。 ( × ) 分析:根据氯元素守恒,电解1 mol熔融的NaCl,产生0.5 mol氯 气,即11.2 L。 (16)(2011·山东高考)电解AlCl3、FeCl3、CuCl2的混合溶液时, 阴极上依次析出Cu、Fe、Al。 ( )
阳极。 ( )
分析:电解精炼铜时,用纯铜作阴极,电极反应为Cu2++2e-====Cu。 ×
大家学习辛苦了,还是要坚持
继续保持安静
(4)(2012·福建高考)Cu(CuSO4)-Zn(ZnSO4)通过盐桥构成的原 电池装置中,Cu电极上发生氧化反应。 ( × ) 分析:Cu(CuSO4)-Zn(ZnSO4)电池中,Cu作正极,发生还原反应; 要注意判断原电池装置中正、负极及明确两极发生的反应类型。 (5)(2012·四川高考)乙醇酸性燃料电池的负极反应式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(saturated calomel electrode,SCE) 6.导线;7. Hg;8.纤维
以标准氢电极的电极电势为标准,
可以测得SCE的电势为0.2415V。
.
21
对电极(辅助电极)
对电极一般使用惰性贵金属材料如铂丝等, 以免在此表面发生化学反应,用于与工作 电极形成回路。
.
22
电化学工作站
.
17
电化学三电极系统
• 工作电极(Working electrode) • 参比电极(Reference electrode) • 对电极(Auxiliary electrode)
.
18
工作电极
滴汞电极(极谱法) 铂电极 金电极 碳电极 热解石墨(PG)
玻碳(GC) 碳糊 碳纤维
.
19
参比电极
.
9
电分析成为独立的方法学
• 三大定量关系的建立 1833年法拉第定律Q=nFM 1889年能斯特W.Nernst提出能斯特方程
1934年尤考维奇D.Ilkovic提出扩散电流方程 Id = kC
.
10
近代电分析方法
(1) 电极的发展:化学修饰电极、超微电极 (2) 多学科参与:生物电化学传感器 (3)与其他方法联用:光谱-电化学、HPLC-EC、
1753年,俄国著名电学家利赫曼为了验证
富兰克林的实验,不幸被雷电击死,这是
做电实验的第一个牺. 牲者。
4
电化学的发展史
1791年, 意大利伽伐尼的青蛙实验 (电化学的起1799年, 伏特堆 (伏特电池/原电池的雏形)
.
6
电化学的发展史
1807年, 戴维电解木灰(potash)和苏打(soda), 分别得到钾(potassium)和钠(sodium)元素
.
26
几个重要的参数
• 两个峰电位 阳极/氧化峰电位(Epa) 氧
阴极/还原峰电位(Epc)
化 过
• 两个峰电流 阳极/氧化峰电流(ipa ) 程
还 原 过
阴极/氧化峰电流( ipc)
程
电位可定性! 电流可定量!
.
27
几个重要的参数
• 氧化还原电对的表观标准电极电位 E0’ = (Epa + Epc) / 2
电解池:需要消耗外部电源提供的电能,使电池内部发 生化学反应
.
14
无/有液体接界电池
.
15
化学电池的阴极和阳极
发生氧化反应的电极称为阳极,发生还原 反应的电极叫做阴极。
一般把作为阳极的电极和有关的溶液体系写在左边,把
作为阴极的电极和有关的溶液体系写在右边。每一个不 同相的界面用一竖线表示,盐桥用两条竖线表示。
能斯特公式为 :
H0 g2Cl2/Hg0.0259lo( g
1 [Cl]
)2
1mo/Ll
H0g2Cl2/Hg0.059logC[ l]/(1m/oLl)
由此可见:甘汞电极的电位取决于所用
KCl的浓度。利用KCl饱和溶液便制成 1.导线;2. KCl饱和溶液;3.
饱和甘汞电极
Hg2Cl2;4.多孔物质;5.胶帽;
.
23
循环伏安法(Cyclic Voltammetry)
• 基本原理 以一定的速率对工作电极施加三角波电 压,使电极上交替发生还原和氧化反应,并记录电 流-电势曲线。
三角波电压
循环伏安曲线
.
24
循环伏安图
.
25
铁氰化钾/亚铁氰化钾的循环伏安图
Fe(CN)63- + e = Fe(CN)64Fe(CN)64- - e = Fe(CN)63-
.
8
电化学的发展史
1889年能斯特W.Nernst提出能斯特方程 1908年H. J. S. Sand使用控制电位方法进 行了电解分析 1922 年,捷克科学家海洛夫斯基 J.Heyrovsky创立极谱法,于1959年获 Nobel奖 1934 年,尤考维奇 Ilkovic,提出扩散电流 理论,从理论上定量解释了伏安曲线 1942年A. Hickling研制成功三电极恒电位 仪。
AFM-EC、SPR-EC (4) 集成化:电化学芯片
.
11
电化学分析的定位
• 光谱分析(紫外/荧光/拉曼…) • 电化学分析(电位、电流、电导、电量
分析…循环伏安/计时安培/交流阻抗…) • 色谱分析(液相/气相)
.
12
二、电化学的基本原理
.
13
原电池与电解池
原电池:能自发地将化学能转化为电能
例:Zn + CuSO4
ZnSO4+Cu
阳极 Zn – 2e → Zn2+
阴极 Cu2+ + 2e → Cu
原电池表示:
Zn∣ZnSO4‖CuSO4∣Cu
.
16
电极和电极电位
电极:在电化学电池中赖以进行电极反应 和传导电流从而构成回路的部分。
电极的电极电位:在电极与溶液的两相界 面上,存在的电位差即为电极的电极电位。
绝对电极电位无法得到,因此只 能以一共同参比电极构成原电池, 测定该电池电动势。常用的参比 电极有标准氢电极(见图)和饱 和甘汞电极(见图) 。
标准氢电极电极反应为:
2H ++ 2e H 2
• 规定在任何温度下,氢标准电极 电位为零。
.
20
参比电极
甘汞电极: 电极反应:Hg2Cl2(s)+2e =2Hg+2Cl−
• 两峰的电位差 ΔEp= Epa- Epc=0.059 / n (n为得失电子数,仅 适用于可逆反应)
Q: 已知铁氰化钾的ΔEp=0.08 V,那么铁氰化钾 的电极反应参与的电子数是多少?
.
28
电极过程可逆性的判断
• 可逆过程(如图A) 两峰的电位差 ipa/ipc≈1
• 准可逆过程 (如图B)ΔEp>0.059/n, ipa/ipc<1或>1 • 不可逆过程 (如图C) 只有一个峰
戴维 (Humphry Davy 1778-1829)
电化学创始人
.
7
电化学的发展史
1833年, 法拉第电解定律
法拉第 (Michael Faraday 1791-1867)
法拉第电解定律:Q=nFM
Q: 电解消耗的电量 n: 化合价 F: 法拉第常数 1F=96487库仑/摩尔 M: 该物质的摩尔数
.
29
表观电位与电解液pH的关系
电化学
.
1
课程安排
一、电化学的发展史 二、电化学原理简介 (以三电极体系,循环伏
安法为例) 三、电化学的应用 1.小分子(抗氧化剂)的研究
2.蛋白质的电子传递研究 3.核酸检测
.
2
电化学的发展史
公元前600年, 希腊泰尔斯发现摩擦的琥珀 能吸引轻小物体
.
3
电化学的发展史
1752年, 美国富兰克林进行风筝实验,并以 此为基础设 计了避雷针。