不对称催化在有机化学中的应用(有机合成作业)
有机合成中的不对称催化反应

有机合成中的不对称催化反应在有机化学领域中,不对称催化反应被广泛应用于合成手性化合物的制备。
手性化合物具有两种非对称的立体异构体,它们的生物活性和化学性质可能存在巨大差异。
因此,不对称催化反应的研究和应用对于药物合成、天然产物的合成以及其他有机合成的领域具有重要意义。
一、不对称催化反应的概念和原理不对称催化反应是通过在反应过程中引入手性催化剂来控制反应产物的立体选择性。
催化剂在反应中起到降低活化能、改变反应路径的作用,并且通过催化剂手性结构的引入,使得反应中的手性度选择性增加。
不对称催化反应的原理可以通过三个方面解释:1. 手性诱导机制:手性催化剂的存在导致了反应中的手性诱导,从而使得产物具有特定的手性。
2. 反应底物的手性诱导:反应底物中的手性也可以通过手性催化剂的参与而进行手性诱导,进而获得手性产物。
3. 转化态手性诱导:手性催化剂的手性结构在反应过程中会随着反应的进行而转化,从而使得产物具有特定的手性。
二、不对称催化反应的常见类型1. 不对称氢化反应:通过使用手性催化剂,将不对称的有机物转化为手性的氢化产物。
2. 不对称加成反应:催化剂引发的不对称加成反应可以将一个或多个控制碳原子的键形成或断裂。
3. 不对称苯环改变反应:手性催化剂可引发苯环改变反应,通过改变苯环结构的手性,合成手性产物。
4. 不对称的偶联反应:手性催化剂可以控制偶联反应中碳-碳键的形成,从而合成手性产品。
三、不对称催化反应在合成方面的应用1. 药物合成:手性药物往往具有高选择性和低毒性,而不对称催化反应为药物合成提供了高效、经济的手段。
2. 天然产物合成:不对称催化反应可以合成复杂天然产物的手性骨架,进而合成天然药物或重要生物活性物质。
3. 材料科学领域:手性分子在材料科学中具有重要应用,利用不对称催化反应可合成具有特定手性的材料。
4. 食品添加剂合成:不对称催化反应也逐渐应用于食品添加剂的合成过程中,以提高产品的质量和效果。
有机合成中的不对称催化反应机理解析与优化论文素材

有机合成中的不对称催化反应机理解析与优化论文素材有机合成中的不对称催化反应机理解析与优化在有机合成领域中,不对称催化反应是一项重要的研究领域。
通过引入手性配体,不对称催化反应能够有效地合成手性化合物,这对于药物合成、生命有机化学和天然产物合成等领域具有重要的意义。
本文将对不对称催化反应的机理进行解析并探讨优化的方法,以期为有机合成的发展提供一定的理论依据和实践指导。
一、不对称催化反应的基础理论不对称催化反应是通过手性催化剂引发的化学反应,其中催化剂能够选择性地催化反应的一个立体异构体,从而使得产物具有手性。
手性催化剂通常包括手性配体和金属离子两部分,手性配体与金属离子形成配位化合物,并与底物发生反应,通过过渡态中的高度不对称性,实现对产物手性的选择性控制。
不对称催化反应的基础原理有两个关键点:立体选择性和反应速率。
立体选择性是不对称催化反应的核心特点之一。
手性催化剂通过手性配体的选择,使得反应过程中形成的过渡态具有高度的不对称性,从而选择性地生成手性产物。
而对于非手性催化剂,则很难实现这种手性选择性。
反应速率是不对称催化反应的另一个重要考虑因素。
手性催化剂能够降低反应活化能,提高催化反应速率。
与非手性催化剂相比,手性催化剂能够在反应过程中形成稳定的中间体,从而降低反应能垒,加速反应进行。
二、不对称催化反应的机理解析不对称催化反应的机理解析是实现反应优化的基础。
通过探究反应速率、立体选择性和催化剂结构之间的关系,可以揭示反应中的分子间相互作用和转化过程,为探索更高效的催化剂和反应条件提供指导。
以一个典型的不对称催化反应为例,以不对称氢化为催化反应,催化剂为铑配位催化剂。
其机理如下:1. 底物与手性配体在铑金属离子的配位下形成配位化合物;2. 氢气与配位化合物发生反应,形成氢化中间体;3. 氢化中间体再次与底物反应,形成手性产物。
通过对不对称催化反应机理的解析,可以进一步探究反应过程中的关键步骤和限制因素,为优化催化体系和反应条件提供理论依据。
有机合成反应中的不对称催化剂设计与合成

有机合成反应中的不对称催化剂设计与合成不对称合成是有机化学领域中的重要研究方向之一,它可以通过控制化学反应中的手性,合成出具有高立体选择性的有机分子。
而不对称催化剂则是实现不对称合成的关键工具。
本文将讨论不对称催化剂的设计与合成,以及其在有机合成反应中的应用。
不对称催化剂设计的基本原则是选择具有手性的配体与过渡金属离子形成配位化合物。
过渡金属离子可以提供催化反应所需的活化能,并参与催化循环。
而配体的手性则能够决定反应中的立体选择性。
为了设计高效的不对称催化剂,首先需要选择适当的配体。
在不对称合成中,常见的配体包括手性膦、手性胺、手性亚砜等。
这些配体都能够通过特定的反应途径与过渡金属形成配位结构。
配体的选择将直接影响催化反应的效率和手性识别。
因此,配体的选择应基于对反应机理的深入理解和合适的实验数据支持。
根据反应类型的不同,合成不对称催化剂的方法也各有差异。
常见的方法包括手性亲核催化剂法、手性配体诱导的金属催化剂法、手性膦配体催化剂法等。
手性亲核催化剂法是一种常见且广泛应用的方法,其基本原理是通过手性亲核试剂与反应物的非对称反应来引入手性。
手性配体诱导的金属催化剂法则是利用手性配体与过渡金属离子配位,从而在催化循环中引入手性。
而手性膦配体催化剂法则是将手性膦配体与不对称合成反应中的过渡金属催化剂进行配位,从而实现手性转移。
合成不对称催化剂的过程中,不仅要关注配体的手性,还要考虑配体的稳定性、容易性、固相支撑等因素。
这些因素将直接影响催化剂的效率和稳定性。
为此,合成不对称催化剂需要设计合适的反应路径,并进行合适的中间体合成和功能化反应。
这些工作通常涉及到有机合成中的多个步骤,需要充分的化学知识和技术。
不对称催化剂在有机合成中有着广泛的应用。
它们可以用于合成手性药物、生物活性天然产物、手性液晶等重要的有机分子。
通过有机合成反应中的手性控制,不对称催化剂的应用还可以引导产生更多新颖的手性有机分子,为药物研发、材料科学等领域提供有力的支持。
有机合成中的不对称催化

有机合成中的不对称催化不对称催化在有机合成中的应用一、引言不对称催化是一种重要的有机合成方法,它可以有效地提高化学反应的立体选择性。
不对称催化通过使用手性催化剂,实现对底物官能团的选择性转化,从而合成手性有机分子。
本文将详细介绍不对称催化在有机合成中的原理、应用和发展趋势。
二、不对称催化的原理不对称催化的原理基于手性催化剂能够通过与底物特定官能团之间的相互作用,在化学反应中引入立体选择性。
手性催化剂通常分为金属催化剂和有机催化剂两大类。
金属催化剂常见的有金属锌、钯、铑等,而有机催化剂则包括丙酮醛和氨基酸等化合物。
这些催化剂通过与底物形成配位键或氢键等相互作用,使反应路径发生改变,从而实现对底物的选择性转化。
三、不对称催化的应用1. 酮醛不对称催化加成反应不对称催化加成反应是不对称催化中最常见的一种应用。
它通过使用手性催化剂,将有机酮或醛与活性化合物(如烯烃、烯丙酮等)进行加成反应,得到手性醇或手性醛酮。
这种反应具有高立体选择性和高效性,广泛应用于药物合成、天然产物合成等领域。
2. 不对称催化氢化反应不对称催化氢化反应是将不对称手性催化剂应用于化学反应中的另一常见方法。
该反应通常通过催化剂与底物的氢键或配位键相互作用,实现对不对称双键的氢化。
这种反应在合成手性药物和农药的过程中得到广泛应用,为拓宽立体化学空间提供了有效的手段。
3. 不对称催化环化反应不对称催化环化反应是将不对称手性催化剂应用于环化反应的一种方法。
这种反应通过手性催化剂的作用,将开链底物转化为手性环状化合物,并且能够控制环的构型和立体选择性。
这一方法在天然产物合成、医药和农药合成等领域具有重要的应用价值。
四、不对称催化的发展趋势随着有机化学和催化化学的不断发展,不对称催化在有机合成中的应用也在不断扩展和丰富。
未来的发展趋势主要体现在以下几个方面:1. 发展新型手性催化剂。
研究人员将致力于开发新型的手性催化剂,以满足对底物更高立体选择性的需求。
不对称催化技术

不对称催化技术不对称催化技术是一种重要的化学合成方法,可以有效地合成具有高立体选择性的有机分子。
本文将介绍不对称催化技术的原理、应用以及未来的发展趋势。
不对称催化技术是一种利用手性催化剂催化的化学反应方法,可以在不改变反应物的对称性的情况下合成手性化合物。
手性化合物是指具有非对称碳原子或其他手性中心的有机分子,它们在生物学、药物学和材料科学等领域具有重要的应用价值。
而不对称催化技术的发展使得手性化合物的合成更加高效、具有高立体选择性和环境友好。
不对称催化技术的核心是手性催化剂。
手性催化剂是一种具有手性结构的化合物,它可以选择性地催化反应物中的一个对映异构体,从而合成手性化合物。
手性催化剂可以通过配体和金属离子之间的配位作用实现对反应的控制。
通常情况下,手性催化剂可以通过手性配体与金属离子形成配位键,从而形成活性催化剂。
活性催化剂可以与反应物发生反应,并在反应过程中控制反应物的立体构型。
不对称催化技术在有机合成中具有广泛的应用。
它可以用于合成药物、农药、天然产物和功能材料等重要化合物。
通过选择不同的手性催化剂和反应条件,可以实现多种不同类型的不对称催化反应。
例如,不对称氢化、不对称酰胺合成、不对称亲核取代等。
这些反应具有高立体选择性和高效率,可以大大简化合成路线,提高产率,减少废物产生。
不对称催化技术的发展还面临一些挑战。
首先,手性催化剂的设计和合成是一个复杂而繁琐的过程。
需要考虑催化剂的活性、选择性、稳定性等因素,同时还要考虑合成的成本和环境影响。
其次,催化剂的寿命和稳定性也是一个重要的问题。
在催化反应中,催化剂可能会失活或被污染,导致反应效果下降。
因此,研究如何提高催化剂的稳定性和寿命是一个重要的方向。
此外,不对称催化技术还需要更加深入的理论研究,以揭示反应机理和催化剂的作用方式。
随着化学合成的不断发展,不对称催化技术在有机合成中的应用前景非常广阔。
未来的发展方向包括开发更加高效、选择性和环境友好的手性催化剂,研究新的不对称催化反应,探索更加复杂的催化体系等。
有机合成中的不对称催化

有机合成中的不对称催化不对称催化是有机合成领域中的一项重要技术,该技术通过使用手性催化剂,使得具有对称结构的底物在反应中进行不对称转化,从而得到具有手性的有机化合物。
本文将介绍不对称催化的基本原理、应用和发展趋势。
一、不对称催化的基本原理不对称催化是利用手性催化剂介导的化学反应,使得反应生成的产物具有手性。
手性催化剂是指分子具有手性结构并且可以选择性地催化反应的物质。
不对称催化的基本原理是在反应过程中,手性催化剂与底物形成一个手性催化剂-底物复合物,通过催化剂与底物之间的相互作用使得底物选择性发生反应。
催化剂与底物之间的相互作用包括氢键、π-π相互作用、静电相互作用等。
二、不对称催化的应用不对称催化在有机合成中具有广泛的应用。
其中,不对称催化反应被广泛应用于制备手性药物、农药和天然产物合成等领域。
通过不对称催化反应,可以有效地控制反应反应的立体选择性,提高反应产物的纯度和产率。
不对称催化的应用还可以降低反应底物的用量,减少环境污染。
三、不对称催化的发展趋势随着有机合成领域的发展,不对称催化技术也在不断演进和改进。
目前,新型手性催化剂的设计和合成成为不对称催化的研究热点。
研究人员通过调节手性催化剂的结构和配体,设计出更加高效的手性催化剂,提高反应的立体选择性和催化活性。
此外,开展反应底物的扩展研究,拓展不对称催化反应的适用范围也是当前不对称催化研究的方向之一。
总结:不对称催化在有机合成中起着重要的作用。
通过使用手性催化剂,不对称转化使得底物具有手性的有机化合物,广泛应用于制备手性药物、农药和天然产物合成等领域。
当前的研究趋势是设计和合成高效的手性催化剂,拓展不对称催化反应的底物范围,以进一步提高反应的效率和立体选择性。
随着对不对称催化的深入研究,相信在有机合成领域将有更多新的突破和进展。
有机合成中的不对称催化

有机合成中的不对称催化不对称催化是一种在有机合成中广泛应用的重要方法。
它通过引入手性配体,使得对称的反应转化为具有手性产物的反应。
在这篇文章中,将介绍不对称催化的原理、应用以及发展趋势。
一、不对称催化的原理不对称催化的原理基于手性配体和手性催化剂的应用。
手性配体是具有手性结构的有机化合物,可以与金属离子配位形成手性配位化合物。
这些手性配体能够通过选择性吸附、空间位阻等方式影响反应的立体选择性,从而实现对称反应的不对称性转化。
而手性催化剂则是由手性金属配合物和手性有机分子组成的复合物,能够通过催化作用使反应产生手性产物。
二、不对称催化的应用1. 不对称还原反应不对称还原反应是不对称催化中的一种重要应用。
通过引入手性配体和催化剂,可以实现对不对称有机物的还原,得到具有手性的醇、胺等化合物。
这种方法在医药、农药、香料等领域中有广泛的应用。
2. 不对称氧化反应不对称氧化反应是不对称催化的另一种重要应用。
通过引入手性配体和催化剂,可以使对称的氧化反应转化为不对称的氧化反应,得到手性醛、酮等化合物。
这种方法在合成有机中间体和天然产物的过程中起着重要的作用。
3. 不对称烯烃化反应不对称烯烃化反应是一种在不对称催化中较具挑战性的应用。
通过引入手性配体和催化剂,可以实现对不对称烯烃化反应的控制,得到具有手性的烯醇、烯醛等化合物。
这种方法在生物活性分子的合成中具有广阔的应用前景。
三、不对称催化的发展趋势随着合成化学的发展,不对称催化在有机合成中的应用越来越重要。
未来,不对称催化的发展趋势主要体现在以下几个方面:1. 发展更多的手性配体和催化剂为了提高不对称催化的效率和选择性,需要开发更多的手性配体和催化剂。
这些新型配体和催化剂能够应对更广泛的反应类型,提高催化剂的稳定性和反应活性。
2. 开发新的反应类型目前,大多数不对称催化反应都是针对特定的反应类型。
未来,需要发展更多新的反应类型,探索更广泛的不对称催化反应。
这将有助于拓宽不对称催化的应用范围,并提供更多的合成路线。
化学中的有机合成不对称催化反应

化学中的有机合成不对称催化反应有机化学一直是很多化学爱好者关注的领域,其中有机合成反应更是受到广泛的关注,因为它涉及到人类生产生活中大量的化工产品。
有机合成反应中的催化反应环节特别重要,而其反应中的对称和不对称催化反应更是备受关注。
在本文中,我将会重点介绍化学中的有机合成不对称催化反应,并讨论其在实际应用中的性能和局限性。
一、不对称催化反应不对称合成是有机化学家们长期以来致力于解决的难题。
随着化学研究的深入发展,伴随着化学物质的不断扩展和人类对于化学产品的需求也在不断增加。
因此,找到一种可靠的方法来产生对映异构体可以极大地提高化学合成的效率和质量,也为制药行业提供了广泛的可能。
不对称催化反应是一类已经成功发展的不对称合成反应。
不对称催化反应,指在手性催化剂的作用下,以不对称的方式生成对映异构体中的一种。
它可以用于生成大量的手性小分子化合物,从而解决对映异构体的不对称合成问题。
二、不对称催化反应的应用1、医药化学随着人类对各种疾病治疗方式的不断改进和提高,医药化学行业也在不断发展壮大。
其中,不对称催化反应不仅可以用来合成不对称的分子,而且还可用于在生物上做结构-活性关系研究,从而寻找到最优的治疗方案。
2、生物化学不对称催化反应可以用来产生具有手性的胡萝卜素、氨基酸和脂肪酸等生物分子,并可以通过这些手性化合物的研究来了解生物体系的结构和功能。
三、不对称催化反应的局限性1、价格高昂手性催化剂的价格往往比较高,导致不对称催化合成反应的成本相对较高。
2、稳定性差手性催化剂的稳定性不如非手性催化剂,需要特别注意反应条件以避免其不稳定。
3、难于合成手性催化剂往往是复杂分子,因此它们的合成过程可能比其他分子还要复杂。
这就需要有更加优秀的合成技术和化学研究能力来支持。
综上所述,不对称催化反应在化学合成领域中的应用前景很广阔,如用于医药和生物领域,以及其他各种工业和化学领域。
但需要注意的是,其价格对于大规模应用至关重要,并需要更加高效稳定的催化剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不对称催化在有机化学中的应用
不对称催化反应是使用非外消旋手性催化剂进行反应的,仅用少量手性催化剂,可将大量前手性底物对映选择性地的转化为手性产物,具有催化效率高、选择性高、催化剂用量少、对环境污染小、成本低等优点。
经过40年的研究,不对称催化已发展成合成手性物质最经济有效的一种方法。
不对称催化领域最关键的技术是高效手性催化剂的开发,因为手性催化剂是催化反应产生不对称诱导和控制作用的源泉。
美国孟山都公司的Knowles和德国的Homer在1968年分别发现了使用手性麟一锗催化剂的不对称催化氢化反应,从此不对称催化反应迅速发展。
近几十年来手性配体的开发是不对称催化领域最为关注的焦点,并已合成出上千种手性配体,其中BINAP和(DHQD)2PHAL等已实现工业化应用,对映选择性已达到或接近100%,在氢化、环氧化、环丙烷化、烯烃异构化、氢氰化、氢硅烷化、双烯加成、烯丙基烷基化等几十种反应中取得成功,同时在均相催化剂负载化、水溶性配体固载化等研究中也取得了突出成果。
以下是不对称催化研究的一些实例。
一、脯胺酸及其衍生物催化的不对称Michael加成反应
Listd、组在2001年首次用脯氨酸作催化剂研究了不对称Michael成反应。
以DMSO为溶剂进行催化反应,获得了较好的收率,但是选择性却很差。
这与之前报道的脯氨酸催化的不对称Aldol反应相比,e.e值明显降低。
随后,2002年Endersd、组对该反应进行了进一步的探索。
在筛选L.脯氨酸用量时,发现反应中实际起催化作用的是溶解于溶剂DMSO中的L.脯氨酸,为此于体系中加入一定量甲醇或以甲醇为溶剂来增大L.脯氨酸的溶解度,同时加大催化剂的用量,该反应的e.e.能够提高到57%,但是反应时间大大延长。
Leyd小组用脯氨酸衍生的四氮唑为催化剂17进行的不对称Michael反应,不仅克服了脯氨酸需要使用大极性的DMSO溶剂,而且还使e.e.值明显提高。
研究表明,四氮唑环上H的酸性和脯氨酸的酸性相当,仍然是一个双功能型的催化剂。
Wang等人以脯氨酸为原料合成了系列含氟的四氢吡咯磺酰胺19,这种催化剂优点之一是可以从反应体系中利用氟固柱提取回收,回收后反复使用六次而不影响催化活性和选择性。
另外它可以在水中进行催化反应,产物收率高达98%,e.e.及95%及50:l 的d.e.值。
Barbas小组以脯氨酸为原料合成的催化剂,在三氟乙酸存在下,研究二取代的醛的不对称Michael加成反应。
得到了含有季碳中心的Michael加成产物随后又合成了下列配体,其中以2l为催化剂,以三氟乙酸为添加剂,以大西洋的水为溶剂催化环己酮和硝基苯乙烯,底物转化率大于99%,以很高的产率和91%的e.e.值及96:4的d.e值得到产物。
Polomo小组最近报道了醛与硝基苯乙烯之间的对映选择性加成反应。
他们设计、合成了4一羟基吡咯烷衍生物催化剂。
4位的轻基对催化剂的活性起到了至关重要的作用,使催化剂量在该类反应中第一次降低到5mol%,而且反应可以放大到20mmol 的规模,催化剂可以通过酸、碱倒置后萃取回收再利用,遗憾的是该催化剂对酮的效果很差。
Alonse小组以脯氨酸和氨基醇为原料合成了酰胺类催化剂24,催化3-戊酮与硝基苯乙烯之间的Michael反应效果不错,在NMP中,20mol%的催化剂量,可以获得高产率,中等到好的对映选择性和非对映选择性,试验表明,酰胺键和羟基对催化剂获得高活性和选择性十分重要,两者和硝基通过氢键作用,起到了活化和立体控制作用。
Vieario等人直接用市售脯胺醇为催化剂进行了不对称Micbael加成反应,以醛和特殊的硝基乙烯为反应物,获得了较理想的结果。
二、手性磷酸不对称催化
不对称有机小分子催化是指用催化量的手性有机分子加速不对称有机化学反应。
尽管有机小分子催化已经出现了将近一个世纪,但是没有引起有机化学家的关注。
直到本世纪初,List 报道了脯氨酸催化的丙酮与醛的分子间直接Adol 反应和MacMillan报道了苯丙氨酸衍生的二级胺催化的不对称Diels-Alder反应以后,有机小分子催化的不对称反应研究才真正复苏。
此后,有机小分子催化的反应类型不断涌现、催化剂种类和活化模式不断丰富、反应底物范围不断扩大、反应结果不断提高,逐渐成为了当代有机化学研究的热点。
有机小分子催化主要集中在烯胺催化、亚胺正离子催化、硫脲催化、磷酸催化、相转移催化和卡宾催化等研究方向。
下面将简要总结手性磷酸催化的不对称反应。
手性Lewis酸催化的不对称反应已经被广泛地研究,然而手性Brønsted酸催化剂的研究一直没有得到足够的重视。
Brønsted酸最初是主要用来催化水解、酯化和缩醛的合成。
1998年,Jacobsen报道了手性硫脲催化剂催化的不对称Strecker 反应1。
2003年,Rawal报道了TADDOL催化的不对称Hetero-Diels-Alder反应。
2004年,Akiyama和Terada分别报道了手性磷酸催化的不对称Mannich反应,从此以后以手性磷酸为代表的中等强度手性Brønsted酸逐渐发展成为一类用途广泛的有机小分子催化剂,实现了一系列重要的不对称C-C键形成反应。
相对于Lewis酸催化剂,Brønsted酸催化剂有如下优点:稳定、易储存、制备方便而且容易回收、对环境友好,催化反应时条件简单、温和,适合大规模的合成。
手Brønsted酸催化剂分为两种类型(Figure 1.1):1)中性的Brønsted酸,如硫脲和TADDOL;2)强Brønsted酸,如BINOL衍生物和磷酸。
Brønsted酸催化活化模式。
最常用的手性磷酸为BINOL衍生的磷酸二酯(Figure 1.3),其具有以下特性1) 磷羟基上的质子具有较强酸性,作为Brønsted 酸活化亲电底物;2) 磷氧双键上的氧具有Lewis 碱性,通过氢键形式活化亲核底物。
3) 改变3,3-位取代基可以调节催化剂的立体环境,从而调控催化剂的手性诱导能力。
手性磷酸催化的吲哚的Aza-Friedel-Craft 反应研究得相对较多。
Terada课题组报道了Boc保护的烯胺和吲哚的Friedel-Craft 反应,Boc保护的烯胺在酸性条件下异构化为亚胺,然后和吲哚在手性磷酸催化下发生加成反应。
周其林课题组报道了在磷酸作用下α-芳基烯胺和吲哚的Friedel-Craft 反应,得到含有季碳手性中心的吲哚衍生物。
游书力课题组报道了磺酰亚胺与吲哚的不对称Friedel-Craft反应,高选择性地生成手性吲哚衍生物。
List 报道了手性磷酸催化的色胺衍生物和醛的不对称Pictet-Spengler 反应。
在色胺氨基的α-位置引入两个酯基,提高了反应中原位生成的亚胺的活性,从而使反应顺利进行。
Hiemstra课题组报道了亚胺正离子参与的不对称Pictet-Spengler 反应。
在色胺氨基上引入硫取代基作为反应物,与醛脱水形成亚胺正离子,亚胺正离子与手性磷酸根负离子形成正负离子对,然后发生不对称环化反应。
Akiyama课题组又报道了一例反电子的Aza-Diels-Alder反应(Scheme 1.9)。
在手性磷酸作用下,烯醇硅醚与芳香亚胺反应得到手性四氢喹啉,非对映选择性和对映选择性都很高。
2009 年,Zhu 课题组发展了磷酸催化的Cbz 保护的烯酰胺与芳香亚胺的Aza-Diels-Alder反应(Povarov 反应)。
Rueping等发现在手性磷酸催化下,Hantzsch 酯能有效地还原喹啉,高收
率的得到高光学纯度的2-芳香基或者脂肪基取代的四氢喹啉。
该反应条件温和、操作简单实用、而且催化剂用量低,是一种非常好的合成手性四氢喹啉的方法。
同时作者将该方法进一步应用到苯并恶嗪,苯并噻嗪,苯并恶嗪酮和贫电子的吡啶等杂环化合物的不对称还原。
手性相转移催化是依靠催化剂中手性阳离子与非手性阴离子形成的手性离子对控制反应的立体选择性。
与之相反,List 等发展了一种利用手性阴离子与非手性的阳离子形成的手性离子对来实现不对称催化反应的立体选择性控制。
利用手性磷酸的吗啡啉盐作为催化剂,用Hantzsch 酯作还原剂,实现了α, β-不饱和醛的不对称转移氢化反应。
这个概念的基本原理是吗啡啉二级胺与α, β-不饱和醛形成的亚胺正离子后,与磷酸根负离子形成紧密离子对,在反应过程中手性磷酸根负离子控制反应的立体选择性。
当R 取代基为芳香基时,得到非常高的对映选择性,当R 为小位阻的脂肪取代基时,该反应也能取得90% ee 值,结果明显优于苯丙氨酸衍生的二级胺催化的不对称转移氢化反应。
之后,他们将该方法应用到了不饱和酮的还原。
最近,List 课题组报道了手性磷酸催化的6- 电环化反应。
而且原料腙可以通过α, -不饱和酮和苯肼发生缩合反应原位制备,然后在手性磷酸作用下发生不对称电环化反应。
不对称催化反应在20世纪90年代发展迅速,目前,该研究趋势逐渐向实用手性技术和工业化的方向发展。
在不对称催化反应的研究中,催化剂的设计、合成是不对称催化反应中的第一步,也是最关键的一步。
这些吸引了无数科学家的眼球,很多人在这方面进行了深入的研究,希望找到更加简便的合成方法。
无论是学术上的突破和发展,还是社会需求,都成为不对称催化的发展动力,引导人们的进一步探索和研究。