《三维设计》2016级数学一轮复习基础讲解二次函数与幂函数(含解析)
二次函数与幂函数一轮复习课件(共21张PPT)
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,
高考数学一轮复习教学案二次函数与幂函数(含解析)
第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图象和性质a>0a<0 图象图象特点①对称轴:x=-b2a;②顶点:⎝⎛⎭⎫-b2a,4ac-b24a性质定义域 x ∈R值域y ∈⎣⎡4ac -b 24a ,+∞y ∈⎝⎛⎦⎤-∞,4ac -b 24a 奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈-∞,⎦⎤-b 2a 时递减,x ∈-b2a,+∞时递增x ∈⎝⎛⎦⎤-∞,-b2a 时递增,x ∈⎣⎡⎭⎫-b 2a ,+∞时递减[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞D.⎝⎛⎭⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________.解析:设幂函数的解析式为y =x α,则3=⎝⎛⎭⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6.则f (x )=x 2-2x +6=(x -1)2+5≥5. 答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.幂函数的图象与性质典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________.[自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >⎝⎛⎭⎫12a>(0.2)aB .(0.2)a >⎝⎛⎭⎫12a>2aC.⎝⎛⎭⎫12a>(0.2)a>2aD .2a >(0.2)a >⎝⎛⎭⎫12a解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝⎛⎭⎫12a>0.所以(0.2)a >⎝⎛⎭⎫12a>2a .求二次函数的解析式典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1. (1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式. [自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上,所以-y =(-x )2+2(-x ), 即-y =x 2-2x , y =-x 2+2x , 故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图象如图,(3)由图象可知,函数f(x)的值域为(-∞,4].二次函数的图象与性质典题导入[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.[自主解答](1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6].所以f(x)在[-4,2]上单调递减,在[2,6]上单调递增,故f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.故a 的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧ a >1,a =2或⎩⎪⎨⎪⎧ 0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1二次函数的综合问题[例4] (·衡水月考)已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.[自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R , x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. 故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0, 即⎩⎪⎨⎪⎧ m 2≥1,F (0)=1-m 2≤0⇒m ≥2; 若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F (0)=1-m 2≥0⇒-1≤m ≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是(A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝⎛⎭⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52B.⎝⎛⎭⎫52,+∞ C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2, 则t =3⎝⎛⎭⎫y -232+23. 在⎣⎡⎦⎤0,12上递减,当y =12时,t 取到最小值,t min =34.答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0. 当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧ f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-2 3.(·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为减函数,在⎣⎡⎭⎫1a ,+∞上为增函数; 当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为增函数,在⎣⎡⎭⎫1a ,+∞上为减函数. (2)∵f (x )=a ⎝⎛⎭⎫x -1a 2+1-1a, 由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝⎛⎭⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎨⎧a +1a-2,a ∈⎣⎡⎦⎤13,12,9a +1a -6,a ∈⎝⎛⎦⎤12,1.(3)证明:当a ∈⎣⎡⎦⎤13,12时,g ′(a )=1-1a 2<0, ∴函数g (a )在⎣⎡⎦⎤13,12上为减函数; 当a ∈⎝⎛⎦⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝⎛⎦⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝⎛⎭⎫12=12. 故g (a )≥12.。
高考数学一轮总复习 2.5幂函数与二次函数课件
问题2 如何解决与二次函数有关的不等式恒成立问题? (1)ax2+bx+c>0,a≠0恒成立的充要条件是ab>2-0,4ac<0. (2)ax2+bx+c<0,a≠0恒成立的充要条件是ab<2-0,4ac<0. 注意 当题目条件中未说明a≠0时,就要讨论a=0和a≠0两 种情况.
高频考点 考点一 幂函数的图象与性质 【例1】 (1)幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x) 的图象是( )
A
B
C
D
(2)设a=
3 5
2 5
,b=
2 5
3 5
,c=
2 5
2 5
,则a,b,c的大小关系是
________.
听 课 记 录 (1)令f(x)=xα,则4α=2,
备考知考情 1.幂函数、二次函数的图象与性质的应用是高考命题的热点.
2.常与一元二次不等式、一元二次方程等知识交汇命题,考查数 形结合思想. 3.题型主要以选择题、填空题为主,另外在解答题中常与导数的 应用综合,属中高档题.
J 基础回扣·自主学习
理教材 夯基础 厚积薄发
知识梳理
知识点一
幂函数
1.定义:形如 y=xα (α∈R)的函数叫幂函数,其中x是 自变量 ,α是常数.
2.幂函数的性质
知识点二 二次函数
1.二次函数的三种形式 一般式:f(x)= ax2+bx+c (a≠0); 顶点式:f(x)=a(x-h)2+k(a≠0),顶点坐标为 (h,k) ; 零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.
2.二次函数的性质 函数 y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
2.4二次函数与幂函数(一轮复习)
图象
题 型 重 点 研 讨
定义域 值域
4ac-b2 ,+∞ 4a
R
2 4 ac - b -∞, 4a
课 时 跟 踪 检 测
必考部分 第二章 §2.4
第 9页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
题 型 重 点 研 讨
必考部分
真 题 演 练 集 训
课 时 跟 踪 检 测
必考部分 第二章 §2.4
第 1页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
题 型 重 点 研 讨
第二章
函数概念与基本初等函数Ⅰ
真 题 演 练 集 训
课 时 跟 踪 检 测 真 题 演 练 集 训
题 型 重 点 研 讨
必考部分 第二章 §2.4
第12页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
1 题 f(x)=________. x2 型 重 点 研 解析:设 f(x)=xα,则 讨
[双基夯实]
真 题 演 练 集 训
1.[教材习题改编]已知幂函数 f(x)的图象过点(2, 2),则函数
2.(1)[教材习题改编]若函数 f(x)=4x2-kx-8 在[-1,2]上是单
题 型 重 点 研 讨
8
8
8
-8 或 k≥16.故所求 k 的取值范围是(-∞,-8]∪[16 ,+∞).
课 时 跟 踪 检 测
必考部分 第二章 §2.4
第14页
名师伴你行 ·高考一轮总复习 ·数学(理)
三维设计江苏专用高三数学一轮总复习第二章函数与基本初等函数Ⅰ第五节二次函数与幂函数课件文
[题点全练] 角度一:二次函数的单调性问题 1.已知函数 f(x)=x2+2ax+3,x∈[-4,6].
(1)求实数 a 的取值范围,使 y=f(x)在区间[-4,6]上是单 调函数; (2)当 a=1 时,求 f(|x|)的单调区间.
解:(1)由于函数 f(x)的图象开口向上,对称轴是 x=-a,所 以要使 f(x)在[-4,6]上是单调函数,应有-a≤-4 或-a≥6, 即 a≤-6 或 a≥4. 所以实数 a 的取值范围是(-∞,-6]∪[4,+∞). (2)当 a=1 时,f(x)=x2+2x+3, ∴f(|x|)=x2+2|x|+3,此时定义域为 x∈[-6,6], 且 f(x)=xx22+-22xx++33,,xx∈∈[0-,66,],0], ∴f(|x|)的单调递增区间是(0,6], 单调递减区间是[-6,0].
[小题纠偏]
1
1
1.若(m+1) 2 <(3-2m) 2 ,则实数 m 的取值范围为______.
1
解析:∵y=x 2 在定义域[0,+∞)上是单调增函数,
∴ m3-+21m≥≥0, 0, m+1<3-2m,
解得-1≤m<23,
即 m 的取值范围是-1,23. 答案:-1,23
2.若 y=f(x)是幂函数,且满足ff42= 22,则 f(3)=________.
[由题悟法] 求二次函数解析式的方法
[即时应用] 已知二次函数 f(x)的图象经过点(4,3),它在 x 轴上截得的 线段长为 2,并且对任意 x∈R,都有 f(2-x)=f(2+x), 求 f(x)的解析式.
解:∵f(2-x)=f(2+x)对 x∈R 恒成立, ∴f(x)的对称轴为 x=2. 又∵f(x)的图象被 x 轴截得的线段长为 2, ∴f(x)=0 的两根为 1 和 3. 设 f(x)的解析式为 f(x)=a(x-1)(x-3)(a≠0). 又∵f(x)的图象过点(4,3), ∴3a=3,a=1. ∴所求 f(x)的解析式为 f(x)=(x-1)(x-3), 即 f(x)=x2-4x+3.
高考数学一轮复习讲义: 第二章 函数 2.5 幂函数、函数与方程讲义
§2.5幂函数、函数与方程考纲解读考点内容解读要求五年高考统计常考题型预测热度2013 2014 2015 2016 20171.二次函数与幂函数1.二次函数的图象与性质2.幂函数的概念B13题5分填空题解答题★★★2.函数的零点与方程的根1.求函数零点2.由函数零点求参数B13题5分填空题解答题★★★分析解读二次函数的图象与性质和函数零点问题是江苏高考的热点内容,试题一般难度较大,综合性较强.五年高考考点一二次函数与幂函数1.(2016课标全国Ⅲ理改编,6,5分)已知a=,b=,c=2,则a,b,c的大小关系是(用<连接).答案b<a<c2.(2015四川改编,9,5分)如果函数f(x)=(m-2)x2+(n-8)x+1(m≥0,n≥0)在区间上单调递减,那么mn的最大值为.答案183.(2014辽宁,16,5分)对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0且使|2a+b|最大时,-+的最小值为.答案-24.(2013辽宁理改编,11,5分)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=.答案-165.(2013江苏,13,5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.答案-1,教师用书专用(6—7)6.(2014浙江改编,7,5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是(填序号).答案④7.(2015浙江,18,15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.解析(1)证明:由f(x)=+b-,得f(x)图象的对称轴为直线x=-.由|a|≥2,得≥1,故f(x)在[-1,1]上单调,所以M(a,b)=max{|f(1)|,|f(-1)|}.当a≥2时,由f(1)-f(-1)=2a≥4,得max{f(1),-f(-1)}≥2,即M(a,b)≥2.当a≤-2时,由f(-1)-f(1)=-2a≥4,得max{f(-1),-f(1)}≥2,即M(a,b)≥2.综上,当|a|≥2时,M(a,b)≥2.(2)由M(a,b)≤2得|1+a+b|=|f(1)|≤2,|1-a+b|=|f(-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|=得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x2+2x-1|在[-1,1]上的最大值为2,即M(2,-1)=2.所以|a|+|b|的最大值为3.考点二函数的零点与方程的根1.(2017山东理改编,10,5分)已知当x∈[0,1]时,函数y=(mx-1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是.答案(0,1]∪[3,+∞)2.(2016山东,15,5分)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.答案(3,+∞)3.(2016天津,14,5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-恰有两个不相等的实数解,则a的取值范围是.答案4.(2015北京,14,5分)设函数f(x)=①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.答案①-1 ②∪[2,+∞)5.(2015天津改编,8,5分)已知函数f(x)=函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是.答案6.(2015湖南,15,5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是.答案(-∞,0)∪(1,+∞)7.(2014江苏,13,5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时, f(x)=.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是.答案8.(2014天津,14,5分)已知函数f(x)=|x2+3x|,x∈R.若方程f(x)-a|x-1|=0恰有4个互异的实数根,则实数a 的取值范围为.答案(0,1)∪(9,+∞)9.(2013安徽理改编,10,5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是.答案 3教师用书专用(10—11)10.(2017课标全国Ⅲ理改编,11,5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=.答案11.(2013安徽理,20,13分)设函数f n(x)=-1+x+++…+(x∈R,n∈N*).证明:(1)对每个n∈N*,存在唯一的x n∈,满足f n(x n)=0;(2)对任意p∈N*,由(1)中x n构成的数列{x n}满足0<x n-x n+p<.证明(1)对每个n∈N*,当x>0时, f 'n(x)=1++…+>0,故f n(x)在(0,+∞)内单调递增.由于f1(1)=0,当n≥2时, f n(1)=++…+>0,故f n(1)≥0.又f n=-1++≤-+=-+·=-·<0,所以存在唯一的x n∈,满足f n(x n)=0.(2)当x>0时, f n+1(x)=f n(x)+>f n(x),故f n+1(x n)>f n(x n)=f n+1(x n+1)=0.由f n+1(x)在(0,+∞)内单调递增知,x n+1<x n.故{x n}为单调递减数列.从而对任意n,p∈N*,x n+p<x n.对任意p∈N*,由于f n(x n)=-1+x n++…+=0,①f n+p(x n+p)=-1+x n+p++…+++…+=0,②①式减去②式并移项,利用0<x n+p<x n≤1,得x n-x n+p=+≤≤<=-<.因此,对任意p∈N*,都有0<x n-x n+p<.三年模拟A组2016—2018年模拟·基础题组考点一二次函数与幂函数1.(2018江苏常熟高三期中调研)已知幂函数y=(m∈N*)在(0,+∞)上是增函数,则实数m的值是. 答案 12.(2018江苏东台安丰高级中学月考)已知幂函数y=f(x)的图象过点,则log2f(8)=.答案3.(2018江苏海安中学阶段测试)若幂函数f(x)=xα的图象经过点,则其单调减区间为.答案(0,+∞)4.(苏教必1,三,3,2,变式)设α∈,则使函数y=xα的定义域为R且为奇函数的所有α值为.答案1,35.(2016江苏淮阴中学期中)下列幂函数:①y=;②y=x-2;③y=;④y=,其中既是偶函数,又在区间(0,+∞)上单调递增的函数是.(填相应函数的序号)答案③考点二函数的零点与方程的根6.(2018江苏金陵中学高三月考)记函数y=ln x+2x-6的零点为x0,若k满足k≤x0且k为整数,则k的最大值为.答案 27.(2018江苏姜堰中学高三期中)函数f(x)=log2(3x-1)的零点为.答案8.(2018江苏东台安丰高级中学月考)若函数f(x)=在其定义域上恰有两个零点,则正实数a的值为.答案 e9.(2018江苏扬州中学月考)方程xlg(x+2)=1有个不同的实数根.答案 210.(2018江苏天一中学调研)已知函数f(x)=若函数g(x)=f(x)-k有三个零点,则k的取值范围是.答案11.(苏教必1,三,4,2,变式)函数f(x)=2x|log0.5 x|-1的零点个数为.答案 212.(苏教必1,三,4,8,变式)若函数f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是.答案13.(2017江苏苏州期中,9)已知函数f(x)=若函数g(x)=f(x)-m有三个零点,则实数m的取值范围是.答案14.(2016江苏泰州中学质检,10)关于x的一元二次方程x2+2(m+3)x+2m+14=0有两个不同的实根,且一根大于3,一根小于1,则m的取值范围是.答案B组2016—2018年模拟·提升题组(满分:35分时间:20分钟)一、填空题(每小题5分,共20分)1.(2017江苏苏州学情调研,11)已知函数f(x)=若关于x的方程f(x)=k(x+1)有两个不同的实数根,则实数k的取值范围是.答案2.(2017南京、盐城第二次模拟考试,12)若函数f(x)=x2-mcos x+m2+3m-8有唯一零点,则满足条件的实数m组成的集合为.答案{2}3.(2017江苏苏北四市期末,14)已知函数f(x)=若函数f(x)的图象与直线y=x有三个不同的公共点,则实数a的取值范围为.答案{a|-20<a<-16}4.(2016江苏淮阴中学期中,10)已知关于x的一元二次方程x2-2ax+a+2=0的两个实数根是α,β,且有1<α<2<β<3,则实数a的取值范围是.答案二、解答题(共15分)5.(2017江苏泰州二中期初,20)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.解析(1)当b=+1时,f(x)=+1,图象的对称轴为x=-,当a<-2时,->1,函数f(x)在[-1,1]上递减,则g(a)=f(1)=+a+2;当-2≤a≤2时,-1≤-≤1,g(a)=f=1;当a>2时,-<-1,函数f(x)在[-1,1]上递增,则g(a)=f(-1)=-a+2.综上可得,g(a)=(2)设s,t是方程f(x)=0的解,且-1≤t≤1,则由于0≤b-2a≤1,故≤s≤(-1≤t≤1),当0≤t≤1时,≤st≤.易知-≤≤0,-≤≤9-4,所以-≤b≤9-4;当-1≤t<0时,≤st≤,由于-2≤<0,-3≤<0,所以-3≤b<0,故b的取值范围是[-3,9-4].C组2016—2018年模拟·方法题组方法1 判断函数零点个数的常用方法1.(2016江苏扬州中学月考)偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=-x+1,则关于x的方程f(x)=lg(x+1)在x∈[0,9]上解的个数是.答案9方法2 利用函数零点求参数的值或取值范围2.(2018江苏无锡高三期中)关于x的方程2|x+a|=e x有3个不同的实数解,则实数a的取值范围为.答案(1-ln 2,+∞)3.(2016上海闸北区调研)已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.答案(0,1)D组2016—2018年模拟·突破题组(2016江苏南京调研,14)已知函数f(x)=x3+ax+,g(x)=-ln x,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)有3个零点,则实数a的取值范围是.答案。
新高考数学一轮复习考点知识归类讲义 第10讲 幂函数与二次函数
新高考数学一轮复习考点知识归类讲义第10讲幂函数与二次函数1.幂函数(1)定义形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+n (a ≠0); ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx+c (a >0)f (x )=ax 2+bx+c (a <0) 图象定义域 (-∞,+∞) (-∞,+∞) 值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减 奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a对称性图象关于直线x =-b2a 成轴对称图形➢考点1 ******[名师点睛]1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,可结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x轴(简记为“指大图高”).[典例]1.(2022·全国·高三专题练习)若幂函数()m n(m,n∈N*,m,n互质)的图像如图f x x所示,则()A.m,n是奇数,且m<1n>1B.m是偶数,n是奇数,且mn<1C.m是偶数,n是奇数,且mnD.m是奇数,n是偶数,且m>1n【答案】C【解析】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.2.(2022·全国·高三专题练习)幂函数223()(55)()m m f x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6B .1C .6D .1或﹣6 【答案】B 【解析】∵幂函数223()(55)()m m f x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∴2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数 1m ∴=或6m =-当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去 因此:m =1 故选:B3.(2022·全国·高三专题练习)已知幂函数()(1)n f x m x =-的图象过点(,8)m .设()0.32a f =,()20.3b f =,()2log 0.3c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .a c b <<C .a b c <<D .c b a << 【答案】D 【解析】因幂函数()()1nf x m x =-的图象过点(),8m ,则11m -=,且8n m =,于是得2m =,3n =,函数3()f x x =,函数()f x 是R 上的增函数,而20.32log 0.300.312<<<<,则有20.32(log 0.3)(0.3)(2)f f f <<,所以c b a <<. 故选:D [举一反三]1.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x = 【答案】D 【解析】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足. 故选:D2.(2022·全国·高三专题练习)已知幂函数y =f (x )经过点(3,则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数 【答案】D 【解析】设幂函数的解析式为y x α=,将点(的坐标代入解析式得3α=12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数, 故选:D.3.(2022·全国·高三专题练习)函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是( )A .(0,2)B .[0,1)C .[1,2)D .(1,2] 【答案】C 【解析】函数2()-=a f x x 单调递减可得20a -<及2a <;函数4()-⎛⎫= ⎪⎝⎭xg x a 单调递减可得014a <<,解得04a <<,若函数2()-=a f x x与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减,可得02a <<,由题可得所求区间真包含于()0,2, 结合选项,函数2()-=a f x x 与4()-⎛⎫= ⎪⎝⎭xg x a 均单调递减的一个充分不必要条件是C.故选:C.4.(多选)(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =,对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确; 对于C :因为12()f x x =,所以()f x '=设切点坐标为(0x ,则切线斜率为()0k f x =='切线方程为0)y x x -,又因为切线过点1(0,)2P ,所以01)2x -,解得01x =, 即切线方程为11(x 1)2y -=-,即1122y x =+, 即选项C 正确; 对于D :当120x x <<时,()()212221212[]222f x f x x x x x f +++⎛⎫-=-⎪⎝⎭⎝⎭212024x x +=-==-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .5.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12 【解析】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭故答案为:12.6.(2022·北京通州·一模)幂函数()mf x x =在()0,∞+上单调递增,()ng x x =在()0,∞+上单调递减,能够使()()y f x g x =-是奇函数的一组整数m ,n 的值依次是__________. 【答案】1,1-(答案不唯一) 【解析】因为幂函数()mf x x =在()0,∞+上单调递增,所以0m >,因为幂函数()ng x x =在()0,∞+上单调递减,所以0n <,又因为()()y f x g x =-是奇函数,所以幂函数()f x 和幂函数()g x 都是奇函数,所以m 可以是1,n 可以是1-.故答案为:1,1-(答案不唯一). 7.(2022·重庆·二模)关于x 的不等式()999999999999121x x x --⋅≤+,解集为___________.【答案】[)1,-+∞ 【解析】由题设,99999999(1)(2)1x x x --≤+,而9999y x =在R 上递增,当12x x ->即1x <-时,99999999(1)(2)01x x x -->>+,原不等式不成立; 当12x x -≤即1x ≥-时,99999999(1)(2)01x x x --≤≤+,原不等式恒成立. 综上,解集为[)1,-+∞. 故答案为:[)1,-+∞8.(2022·全国·高三专题练习)如图是幂函数iy x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.9.(2022·广东深圳·高三期末)已知函数()f x 的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为()f x =______.【答案】3x (答案不唯一) 【解析】设幂函数()f x x α=,由题意,得()f x x α=为奇函数,且在定义域内单调递增,所以21n α=+(N n ∈)或mnα=(,m n 是奇数,且互质), 所以满足上述条件的幂函数可以为()3f x x =.故答案为:3x (答案不唯一).10.(2022·北京·高三专题练习)已知幂函数()()2151m h x m m x +=-+为奇函数.(1)求实数m 的值;(2)求函数()()102g x h x x ⎫⎡⎫=∈⎪⎪⎢⎣⎭⎭,的值域.【解】(1)∵函数()()2151m h x m m x +=-+为幂函数,2511m m ∴-+=,解得0m =或5,当0m =时,()h x x =,()h x 为奇函数, 当5m =时,()6h x x =,()h x 为偶函数,函数()h x 为奇函数,0m ∴=;(2)由(1)可知,()h x x =,则()g x x =102x ⎡⎫∈⎪⎢⎣⎭,,t =,则21122x t =-+,(]01t ∈,, 则()22111(1)1222f t t t t =-++=--+,(]01t ∈,, 函数()f t 为开口向下,对称轴为1t =的抛物线,∴当0=t 时,函数()102f =, 当1t =,函数()f t 取得最大值为1,∴()f t 的值域为112⎛⎤ ⎥⎝⎦,,故函数()g x 的值域为112⎛⎤ ⎥⎝⎦,. ➢考点2 二次函数的解析式[名师点睛]求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:[典例]1.(2022·全国·高三专题练习)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是_______ 【答案】f (x )=-4x 2+4x +7. 【解析】法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得4,4,7.a b c =-⎧⎪=⎨⎪=⎩∴所求二次函数为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题)设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为2(1)122x +-==,所以m =12. 又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=21()82a x -+.因为f (2)=-1,所以21(2)812a -+=-,解得a =-4, 所以f (x )=214()82x --+=-4x 2+4x +7. 法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即24(21)()84a a a a----=. 解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7. 故答案为:f (x )=-4x 2+4x +7.2.(2022·全国·高三专题练习)已知()f x 为二次函数,()00f =,()()22132f x f x x x +-=++,求()f x 的解析式. 【解】解:因为()f x 为二次函数,所以设()2f x ax bx c =++,因为()00f =,所以0c ,所以()2f x ax bx =+,所以()()()()()22212121442f x a x b x ax a b x a b +=+++=++++,因为()()22132f x f x x x +-=++,所以()()223432ax a b x a b x x ++++=++,所以31a =,43a b +=,2a b +=,所以13a =,53b =,所以()21533f x x x =+. [举一反三]1.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( ) A .()236f x x x =-+B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =- 【答案】A 【解析】对于函数12x y a -=+,当1x =时,023y a =+=, 所以函数12x y a -=+过定点P ()1,3,设以P ()1,3为顶点且过原点的二次函数()()213f x a x =-+,因为()f x 过原点()0,0,所以()20013a =-+,解得:3a =-,所以()f x 的解析式为:()()2231336f x x x x =--+=-+,故选:A.2.(2022·全国·高三专题练习)已知()f x 为二次函数,且()()21f x x f x '=+-,则()f x =( )A .221x x -+B .221x x ++C .2221x x -+D .2221x x +- 【答案】B 【解析】设()()20f x ax bx c a =++≠,则()2f x ax b '=+,由()()21f x x f x '=+-可得()2221ax bx c x ax b ++=++-,所以,121a b a c b =⎧⎪=⎨⎪=-⎩,解得121a b c =⎧⎪=⎨⎪=⎩,因此,()221f x x x =++.故选:B.3.(2022·全国·高三专题练习)已知()f x 是二次函数且满足(0)1,(1)()2f f x f x x =+-=,则函数()f x 的解析式为________. 【答案】2()1f x x x =-+【解析】解:由题意,设2()(0)f x ax bx c a =++≠, 因为(0)1f =,即1c =,所以2()1f x ax bx =++,所以()22(1)()(1)(1)1122f x f x a x b x ax bx ax a b x ⎡⎤+-=++++-++=++=⎣⎦,从而有220a a b =⎧⎨+=⎩,解得1,1a b ==-,所以2()1f x x x =-+, 故答案为:2()1f x x x =-+.➢考点3 二次函数的图象与性质是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. [典例]1.(2022·全国·高三专题练习)函数()()20f x ax bx c a =++≠和函数()()g x c f x '=⋅(其中()f x '为()f x 的导函数)的图象在同一坐标系中的情况可以为( )A .①④B .②③C .③④D .①②③ 【答案】B【解析】易知()2f x ax b '=+,则()2g x acx bc =+. 由①②中函数()g x 的图象得00ac bc >⎧⎨<⎩, 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a <,所以()f x 的图象开口向下,此时①②均不符合要求;若0c >,则00a b >⎧⎨<⎩,此时()00f c =>,02ba ->,又0a >,所以()f x 的图象开口向上,此时②符合要求,①不符合要求;由③④中函数()g x 的图象得0ac bc <⎧⎨>⎩,若0c >,则00a b <⎧⎨>⎩,此时()00f c =>,02ba ->,又0a <,所以()f x 的图象开口向下,此时③符合要求,④不符合要求; 若0c <,则00a b <⎧⎨>⎩,此时()00f c =<,02ba ->,又0a >,所以()f x 的图象开口向上,此时③④均不符合要求. 综上,②③符合题意, 故选:B .2.(2022·全国·高三专题练习)二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为( ) A .0a ≤B .12a ≤-C .1a ≤-D .2a ≤- 【答案】D【解析】解:因为()221f x x ax =+-的对称轴为x a =-,开口向上,所以1a -≥,解得1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的充要条件为1a ≤-,所以二次函数()221f x x ax =+-在区间(),1-∞上单调递减的一个充分不必要条件为2a ≤-;故选:D3.(2022·全国·高三专题练习)函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是_________. 【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增, ∴2()f x x ax a =--在12,2⎡⎤--⎢⎥⎣⎦单调递减,则122a -≤,即1a ≥-,同时 需满足1(2)()02f f -->,即1(4)(21)04a a +-<, 解得142a -<<, 综上可知11,2a ⎡⎫∈-⎪⎢⎣⎭故答案为:11,2⎡⎫-⎪⎢⎣⎭4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________. 【答案】[0,1]【解析】对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,即1122()()()()f x g x f x g x --<,令2()()()21F x f x g x x a x =-=--,即12()()F x F x <只需在[0,2]上单调递增即可,当1x =时,()1F x =,函数图象恒过()1,1;当1x >时,2()22F x x ax a =-+; 当1x <时,2()22F x x ax a =+-; 要使()F x 在区间[0,2]上单调递增,则当2x ≤1<时,2()22F x x ax a =-+的对称轴1x a =≤,即1a ≤;当1x ≤0<时,2()22F x x ax a =+-的对称轴0x a =-≤,即0a ≥; 且12121212a a a a +⨯-≤-⨯+, 综上01a ≤≤ 故答案为:[0,1]. [举一反三]1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( )A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x > 【答案】B 【解析】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( )A .B .C .D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项; 故选:A.3.(2022·全国·高三专题练习)已知函数2()28f x x kx =--在[-2,1]上具有单调性,则实数k 的取值范围是()A .k ≤-8B .k ≥4C .k ≤-8或k ≥4D .-8≤k ≤4 【答案】C【解析】函数2()28f x x kx =--对称轴为4kx =, 要使()f x 在区间[-2,1]上具有单调性,则24k≤-或14k ≥,∴8k ≤-或4k ≥ 综上所述k 的范围是:k ≤-8或k ≥4. 故选:C.4.(2022·山东济南·二模)若二次函数2()(0)f x ax bx c a =++<,满足(1)(3)f f =,则下列不等式成立的是( )A .(1)(4)(2)f f f <<B .(4)(1)(2)f f f <<C .(4)(2)(1)f f f <<D .(2)(4)(1)f f f << 【答案】B【解析】因为(1)(3)f f =,所以二次函数2()f x ax bx c =++的对称轴为2x =, 又因为0a <,所以(4)(3)(2)f f f <<,又(1)(3)f f =,所以(4)(1)(2)f f f <<. 故选:B.5.(多选)(2022·全国·高三专题练习)已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,则( ) A .当x 1+x 2>-2时,f (x 1)<f (x 2) B .当x 1+x 2=-2时,f (x 1)=f (x 2) C .当x 1+x 2>-2时,f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小与a 有关 【答案】AB【解析】二次函数f (x )=ax 2+2ax +4(a >0)的图象开口向上,对称轴为x =-1, 当x 1+x 2=-2时,x 1,x 2关于x =-1对称,则有f (x 1)=f (x 2),B 正确;当x 1+x 2>-2时,而x 1<x 2,则x 2必大于-1,于是得x 2-(-1)>-1-x 1,有| x 2-(-1)|>|-1-x 1|, 因此,点x 2到对称轴的距离大于点x 1到对称轴的距离,即f (x 1)<f (x 2),A 正确,C 错误; 显然当a >0时,f (x 1)与f (x 2)的大小只与x 1,x 2离-1的远近有关,与a 无关,D 错误. 故选:AB6.(多选)(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( )A .2B .3C .4D .5 【答案】BC【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确.故选: BC.7.(2022·全国·高三专题练习)如果函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则实数a 的取值范围是______.【答案】[2,0]-【解析】当0a =时,()61f x x =-,在(,1)-∞上为增函数,符合题意,当0a ≠时,要使函数2()(6)1f x ax a x =++-在区间(,1)-∞上为增函数,则需满足0a <且对称轴为612a x a+=-≥,解得:2a ≥-,即20a -≤<, 综上所述:实数的取值范围是:[2,0]-.故答案为:[2,0]-8.(2022·天津·高三专题练习)已知函数2()2f x x x =-在定义域[]1,n -上的值域为[]1,3-,则实数n 的取值范围为____.【答案】[]1,3【解析】函数f (x )=x 2﹣2x 的对称轴方程为x =1,在[﹣1,1]上为减函数,且值域为[﹣1,3],当x ≥1时,函数为增函数,且(3)3f =∴要使函数f (x )=x 2﹣2x 在定义域[﹣1,n ]上的值域为[﹣1,3],实数n 的取值范围是[1,3].故答案为:[1,3]9.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)若函数()()g x f x mx =-在区间[]12-,上是单调函数,求实数m 的取值范围. 【解】(1)由题意得:()02f c ==,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=- 所以22a =,1a b +=-,解得:1a =,2b =-,所以函数()f x 的解析式为()222f x x x =-+.(2)()()()222g x f x mx x m x =-=-++,对称轴为22m x +=,要想函数()()g x f x mx =-在区间[]12-,上是单调函数,则要满足212m +≤-或222m +≥,解得:4m ≤-或2m ≥,故实数m 的取值范围是(][),42,-∞-+∞.10.(2022·全国·高三专题练习)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围;(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k ,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x =+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪ ⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞11.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围. 【解】(1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则 0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =, 所以2(1)2f x x x =++.(2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要 21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦。
《三维设计》2016级数学一轮复习基础讲解函数的奇偶性及周期性(含解析)
第四节 函数的奇偶性及周期性[知识能否忆起]一、函数的奇偶性二、周期性 1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[小题能否全取]1.(2012·广东高考)下列函数为偶函数的是( ) A .y =sin x B .y =x 3 C .y =e xD .y =lnx 2+1解析:选D 四个选项中的函数的定义域都是R.y =sin x 为奇函数.幂函数y =x 3也为奇函数.指数函数y =e x 为非奇非偶函数.令f (x )=ln x 2+1,得f (-x )=ln(-x )2+1=lnx 2+1=f (x ).所以y =ln x 2+1为偶函数.2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.3.(教材习题改编)已知定义在R 上的奇函数f (x ),满足f (x +4)=f (x ),则f (8)的值为( ) A .-1 B .0 C .1D .2解析:选B ∵f (x )为奇函数且f (x +4)=f (x ), ∴f (0)=0,T =4. ∴f (8)=f (0)=0.4.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析:法一:∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0,对于x ∈R 恒成立,故a =0.法二:由f (-1)=f (1), 得|a -1|=|a +1|,故a =0. 答案:05.(2011·广东高考)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.解析:观察可知,y =x 3cos x 为奇函数,且f (a )=a 3cos a +1=11,故a 3cos a =10.则f (-a )=-a 3cos a +1=-10+1=-9.答案:-91.奇、偶函数的有关性质:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件; (2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反之亦然; (3)若奇函数f (x )在x =0处有定义,则f (0)=0;(4)利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y 轴对称可知,偶函数在原点两侧的对称区间上的单调性相反.2.若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;应注意nT (n ∈Z 且n ≠0)也是函数的周期.典题导入[例1] (2012·福州质检)设Q 为有理数集,函数f (x )=⎩⎪⎨⎪⎧1,x ∈Q ,-1,x ∈∁R Q ,g (x )=e x -1e x +1,则函数h (x )=f (x )·g (x )( )A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是偶函数也不是奇函数[自主解答] ∵当x ∈Q 时,-x ∈Q ,∴f (-x )=f (x )=1;当x ∈∁R Q 时,-x ∈∁R Q ,∴f (-x )=f (x )=-1.综上,对任意x ∈R ,都有f (-x )=f (x ),故函数f (x )为偶函数.∵g (-x )=e -x -1e -x +1=1-e x 1+e x =-e x -11+e x=-g (x ),∴函数g (x )为奇函数.∴h (-x )=f (-x )·g (-x )=f (x )·[-g (x )]=-f (x )g (x )=-h (x ),∴函数h (x )=f (x )·g (x )是奇函数.∴h (1)=f (1)·g (1)=e -1e +1,h (-1)=f (-1)·g (-1)=1×e -1-1e -1+1=1-e 1+e,h (-1)≠h (1),∴函数h (x )不是偶函数. [答案] A由题悟法利用定义判断函数奇偶性的方法(1)首先求函数的定义域,定义域关于原点对称是函数为奇函数或偶函数的必要条件; (2)如果函数的定义域关于原点对称,可进一步判断f (-x )=-f (x )或f (-x )=f (x )是否对定义域内的每一个x 恒成立(恒成立要给予证明,否则要举出反例).[注意] 判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.以题试法1.判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1;(2)f (x )=3x -3-x ;(3)f (x )=4-x 2|x +3|-3;(4)f (x )=⎩⎪⎨⎪⎧x 2+2,x >0,0,x =0,-x 2-2,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(3)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x, ∴f (-x )=-f (x ),∴f (x )是奇函数.(4)f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数.典题导入[例2] (1)(2012·上海高考)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.(2)(2012·烟台调研)设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式f (x )+f (-x )x>0的解集为( ) A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)[自主解答] (1)∵y =f (x )+x 2是奇函数,且x =1时,y =2,∴当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. (2)∵f (x )为偶函数, ∴f (x )+f (-x )x =2f (x )x >0.∴xf (x )>0.∴⎩⎨⎧ x >0,f (x )>0或⎩⎨⎧x <0,f (x )<0.又f (-2)=f (2)=0,f (x )在(0,+∞)上为减函数, 故x ∈(0,2)或x ∈(-∞,-2). [答案] (1)-1 (2)B本例(2)的条件不变,若n ≥2且n ∈N *,试比较f (-n ),f (1-n ),f (n -1),f (n +1)的大小. 解:∵f (x )为偶函数,所以f (-n )=f (n ), f (1-n )=f (n -1).又∵函数y =f (x )在(0,+∞)为减函数,且0<n -1<n <n +1, ∴f (n +1)<f (n )<f (n -1).∴f (n +1)<f (-n )<f (n -1)=f (1-n ).由题悟法函数奇偶性的应用(1)已知函数的奇偶性求函数的解析式.利用奇偶性构造关于f (x )的方程,从而可得f (x )的解析式. (2)已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.(3)奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.以题试法2.(1)(2012·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________.(2)已知定义在R 上的奇函数满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a ),则实数a 的取值范围是________.解析:(1)当x <0时,则-x >0,所以f (x )=x 2+x ,f (-x )=ax 2-bx ,而f (-x )=-f (x ),即-x 2-x =ax 2-bx ,所以a =-1,b =1,故a +b =0.(2)因为f (x )=x 2+2x 在[0,+∞)上是增函数,又因为f (x )是R 上的奇函数,所以函数f (x )是R 上的增函数,要使f (3-a 2)>f (2a ),只需3-a 2>2a ,解得-3<a <1.答案:(1)0 (2)(-3,1)典题导入[例3] (2012·浙江高考)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎫32=________.[自主解答] 依题意得,f (2+x )=f (x ),f (-x )=f (x ),则f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫12=12+1=32. [答案] 32由题悟法1.周期性常用的结论:对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ;(2)若f (x +a )=1f (x ),则T =2a ; (3)若f (x +a )=-1f (x ),则T =2a .2.周期性与奇偶性相结合的综合问题中,周期性起到转换自变量值的作用,奇偶性起到调节符号作用.以题试法3.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. 解:(1)证明:∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8. 又∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].1.下列函数中,既是奇函数又是减函数的是( ) A .y =-x 3 B .y =sin x C .y =xD .y =⎝⎛⎭⎫12x答案:A2.(2012·考感统考)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( )A .-12B .-14C.14D.12解析:选A 由题意得f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫52-2=-f ⎝⎛⎭⎫12=-⎣⎡⎦⎤2×12×⎝⎛⎭⎫1-12=-12. 3.(2012·北京海淀区期末)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)解析:选C 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.4.(2013·吉林模拟)已知函数f (x )=|x +a |-|x -a |(a ≠0),h (x )=⎩⎪⎨⎪⎧-x 2+x ,x >0,x 2+x ,x ≤0,则f (x ),h (x )的奇偶性依次为( )A .偶函数,奇函数B .奇函数,偶函数C .偶函数,偶函数D .奇函数,奇函数解析:选D f (-x )=|-x +a |-|-x -a |=|x -a |-|x +a |=-f (x ),故f (x )为奇函数. 画出h (x )的图象可观察到它关于原点对称或当x >0时,-x <0,则h (-x )=x 2-x =-(-x 2+x )=-h (x ),当x <0时-x >0,则h (-x )=-x 2-x =-(x 2+x )=-h (x ).x =0时,h (0)=0,故h (x )为奇函数.5.(2013·杭州月考)已知函数f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m (m 为常数),则f (-1)的值为( )A .-3B .-1C .1D .3解析:选A 函数f (x )为定义在R 上的奇函数, 则f (0)=0,即f (0)=20+m =0,解得m =-1.则f (x )=2x +2x -1,f (1)=21+2×1-1=3,f (-1)=-f (1)=-3. 6.若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1解析:选A ∵f (x )=x(2x +1)(x -a )是奇函数,∴f (-1)=-f (1),∴-1(-2+1)(-1-a )=-1(2+1)(1-a ), ∴a +1=3(1-a ),解得a =12.7.(2013·孝感模拟)已知f (x )是偶函数,当x <0时,f (x )=x 2+x ,则当x >0时,f (x )=________. 解析:x >0,-x <0,f (x )=f (-x )=(-x )2+(-x )=x 2-x ,故x >0时,f (x )=x 2-x . 答案:x 2-x8.(2012·“江南十校”联考)定义在[-2,2]上的奇函数f (x )在(0,2]上的图象如图所示,则不等式f (x )>x 的解集为________.解析:依题意,画出y =f (x )与y =x 的图象,如图所示,注意到y =f (x )的图象与直线y =x 的交点坐标是⎝⎛⎭⎫23,23和⎝⎛⎭⎫-23,-23,结合图象可知,f (x )>x 的解集为⎣⎡⎭⎫-2,-23∪⎝⎛⎭⎫0,23. 答案:⎣⎡⎭⎫-2,-23∪⎝⎛⎭⎫0,23 9.已知函数f (x )是定义在R 上的奇函数,其最小正周期为3,且x ∈⎝⎛⎭⎫-32,0时,f (x )=log 2(-3x +1),则f (2 011)=________.解析:f (2 011)=f (3×670+1) =f (1)=-f (-1) =-log 2(3+1)=-2. 答案:-210.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性. 解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ),函数是偶函数.当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0, 即f (-1)≠-f (1),f (-1)≠f (1). 故函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1, 这时f (x )=x 2+1x.任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎫x 21+1x 1-⎝⎛⎭⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 1<x 2. 故x 1-x 2<0,x 1+x 2>1x 1x 2,所以f (x 1)<f (x 2),故f (x )在[2,+∞)上是单调递增函数. 11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称.(1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式.解:(1)证明:由函数f (x )的图象关于直线x =1对称,得f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ).故f (x +2)=-f (x ).从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.(2)由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x ,又f (0)=0,故x ∈[-1,0]时, f (x )=--x .x ∈[-5,-4],x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4.1.设f (x )是奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则x ·f (x )<0的解集是() A .{x |-3<x <0,或x >3}B .{x |x <-3,或0<x <3}C .{x |x <-3,或x >3}D .{x |-3<x <0,或0<x <3}解析:选D 由x ·f (x )<0,得⎩⎪⎨⎪⎧ x <0,f (x )>0或⎩⎪⎨⎪⎧x >0,f (x )<0, 而f (-3)=0,f (3)=0,即⎩⎪⎨⎪⎧ x <0,f (x )>f (-3)或⎩⎪⎨⎪⎧x >0,f (x )<f (3), 所以x ·f (x )<0的解集是{x |-3<x <0,或0<x <3}.2.(2012·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22,故b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10.答案:-103.(2012·烟台模拟)已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝⎛⎭⎫12=1,如果对于0<x <y ,都有f (x )>f (y ),(1)求f (1);(2)解不等式f (-x )+f (3-x )≥-2.解:(1)令x =y =1,则f (1)=f (1)+f (1),f (1)=0.(2)f (-x )+f (3-x )≥-2f ⎝⎛⎭⎫12,f (-x )+f ⎝⎛⎭⎫12+f (3-x )+f ⎝⎛⎭⎫12≥0=f (1),f ⎝⎛⎭⎫-x 2+f ⎝ ⎛⎭⎪⎫3-x 2≥f (1), f ⎝ ⎛⎭⎪⎫-x 2·3-x 2≥f (1),则⎩⎨⎧ -x >0,3-x >0,-x 2·3-x 2≤1,解得-1≤x <0. 故不等式的解集为[-1,0).1.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝⎛⎭⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝⎛⎭⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.于是解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).答案:f (1)>g (0)>g (-1)2.关于y =f (x ),给出下列五个命题:①若f (-1+x )=f (1+x ),则y =f (x )是周期函数;②若f (1-x )=-f (1+x ),则y =f (x )为奇函数;③若函数y =f (x -1)的图象关于x =1对称,则y =f (x )为偶函数;④函数y =f (1+x )与函数y =f (1-x )的图象关于直线x =1对称;⑤若f (1-x )=f (1+x ),则y =f (x )的图象关于点(1,0)对称.填写所有正确命题的序号________.解析:由f (-1+x )=f (1+x )可知,函数周期为2,①正确;由f (1-x )=-f (1+x )可知,y =f (x )的对称中心为(1,0),②错;y =f (x -1)向左平移1个单位得y =f (x ),故y =f (x )关于y 轴对称,③正确;两个函数对称时,令1+x =1-x 得x =0,故应关于y 轴对称,④错;由f (1-x )=f (1+x )得y =f (x )关于x =1对称,⑤错,故正确的应是①③.答案:①③3.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎡⎦⎤12,1上恒成立,求实数a 的取值范围.解:由于f (x )为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数,由f (ax+1)≤f (x -2),则|ax +1|≤|x -2|,又x ∈⎣⎡⎦⎤12,1,故|x -2|=2-x ,即x -2≤ax +1≤2-x .故x -3≤ax ≤1-x,1-3x ≤a ≤1x-1,在⎣⎡⎦⎤12,1上恒成立. 由于⎝⎛⎭⎫1x -1min =0,⎝⎛⎭⎫1-3x max =-2,故-2≤a ≤0.。
新高考数学一轮复习幂函数与二次函数重难点题型精讲(含答案)
幂函数与二次函数-重难点题型精讲1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较R R R {x |x ≥0} {x |x ≠0}2.二次函数的图象和性质R R【题型1 幂函数的图象及性质】【例1】(2021•宜春模拟)已知幂函数f(x)=(m﹣1)x n的图象过点(m,8).设a=f(20.3),b=f (0.32),c=f(log20.3),则a,b,c的大小关系是()A.b<c<a B.a<c<b C.a<b<c D.c<b<a【解题思路】利用幂函数的定义,先求出f(x)的解析式,可得a、b、c的值,从而判断a,b,c的大小关系.【解答过程】解:∵幂函数f(x)=(m﹣1)x n的图象过点(m,8),∴m﹣1=1,且m n=8,求得m =2,n =3,故f (x )=x 3.∵a =f (20.3)=20.9>1,b =f (0.32)=0.36∈(0,1),c =f (log 20.3)=(log 20.3)3<0, ∴a >b >c , 故选:D .【变式1-1】(2021•阳泉三模)已知点(2,8)在幂函数f (x )=x n 图象上, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .b >c >a【解题思路】推导出f (x )=x 3,从而45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0,由此能判断a ,b ,c 的大小关系.【解答过程】解:点(2,8)在幂函数f (x )=x n 图象上, ∴f (2)=2n =8,解得n =3,∴f (x )=x 3, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254), ∴45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0, ∴a ,b ,c 的大小关系是b >a >c . 故选:A .【变式1-2】(2020•金安区校级模拟)已知幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数,设a =f (sin2π7),b =f (cos2π7),c =f (tan2π7),则( ) A .b <a <c B .c <b <aC .b <c <aD .a <b <c【解题思路】根据幂函数的定义与奇函数的定义,求出m 、n 的值,写出f (x ),判断其单调性,再根据cos2π7、sin2π7和tan2π7的大小比较f (cos2π7)与f (sin2π7)、f (tan2π7)的大小.【解答过程】解:根据幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数, 得m =1,且﹣2+n =0,解得n =2;∴f (x )=x 3,且在定义域R 上是单调增函数; 又0<π4<2π7<π2,∴cos2π7<sin2π7<1<tan2π7,∴f (cos 2π7)<f (sin 2π7)<f (tan 2π7),即b <a <c . 故选:A .【变式1-3】(2020•三明模拟)已知幂函数f(x)=(m −1)2x m2−4m+2在(0,+∞)上单调递增,函数g (x )=2x ﹣t ,对于任意x 1∈[1,5)时,总存在x 2∈[1,5)使得f (x 1)=g (x 2),则t 的取值范围是( ) A .∅B .t ≥7或t ≤1C .t >7或t <1D .1≤t ≤7【解题思路】先利用幂函数的定义和单调性,求出m 的值,得到函数f (x )的解析式,设函数f (x )在[1,5)的值域为集合A ,函数g (x )在[1,5)的值域为集合B ,利用函数的单调性分别求出集合A ,集合B ,由题意可得A ⊆B ,利用集合间的包含关系列出不等式组,即可求出t 的取值范围. 【解答过程】解:∵幂函数f(x)=(m −1)2x m 2−4m+2在(0,+∞)上单调递增,∴{(m −1)2=1m 2−4m +2>0,解得m =0,∴f (x )=x 2,当x 1∈[1,5)时,f (x 1)∈[1,25),设集合A =[1,25),又当x 2∈[1,5)时,g (x 2)∈[2﹣t ,32﹣t ),设集合B =[2﹣t ,32﹣t ), 由题意得:A ⊆B ,∴{2−t ≤132−t ≥25,解得:1≤t ≤7, 故选:D .【题型2 二次函数的图象及性质】【例2】(2020•西湖区校级模拟)已知函数f (x )=mx 2+(m ﹣3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( ) A .[0,1]B .(0,1)C .(﹣∞,1)D .(﹣∞,1]【解题思路】本题考查的是函数的图象问题.在解答时,应先结合m 是否为零对函数是否为二次函数进行区别,对于二次函数情况下充分结合图形的特点利用判别式和对称轴即可获得问题解答. 【解答过程】解:由题意可知:当m =0时,由f (x )=0 知,﹣3x +1=0,∴x =13>0,符合题意;当m>0时,由f(0)=1可知:{△=(m−3)2−4m≥0−m−32m>0,解得0<m≤1;当m<0时,由f(0)=1可知,函数图象恒与X轴正半轴有一个交点综上可知,m的取值范围是:(﹣∞,1].故选:D.【变式2-1】(2020秋•龙岩期中)已知二次函数f(x)=ax2+(a﹣5)x+a2﹣6(a≠0)的图象与x轴交于M(x1,0),N(x2,0)两点,且﹣1<x1<1<x2<2,则a的取值范围是()A.(2,1+2√3)B.(2,2√3−1)C.(1+2√3,+∞)D.(−∞,2−2√3)【解题思路】由已知结合二次函数的实根分布中特殊点函数值的符号建立关于a的不等式,可求.【解答过程】解:若a>0,则{f(−1)=a2−1>0f(1)=a2+2a−11<0 f(2)=a2+6a−11>0,解得2<a<2√3−1;若a<0,则{f(−1)=a2−1<0f(1)=a2+2a−11>0f(2)=a2+6a−16<0,不等式组无解.故a的取值范围是(2,2√3−1).故选:B.【变式2-2】(2020秋•咸阳期末)已知二次函数f(x)=x2﹣2ax+3,a∈R.(Ⅰ)若函数f(x)在(﹣∞,﹣2)上单调递减,求a的取值范围;(Ⅱ)若a=1时,函数f(x)的图象恰好在函数g(x)=2x+b的图象上方(f(x)≥g(x)且恰好能取到等号),求实数b的值.【解题思路】(Ⅰ)求出函数的对称轴,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为x2﹣4x+3﹣b≥0恒成立,根据判别式△≤0,求出b的值即可.【解答过程】解:(Ⅰ)f(x)=x2﹣2ax+3=(x﹣a)2+3﹣a2,对称轴是x=a,若函数f(x)在(﹣∞,﹣2)上单调递减,则a≥﹣2,即a的取值范围是[﹣2,+∞);(Ⅱ)a=1时,f(x)=(x﹣1)2+2,f(x)﹣g(x)=x2﹣4x+3﹣b,由题意得f(x)﹣g(x)≥0,即x2﹣4x+3﹣b≥0恒成立,故△=16﹣12+4b ≤0,解得:b ≤﹣1, 当f (x )≥g (x )且恰好能取到等号, 即f (x )=g (x )时,b =﹣1.【变式2-3】(2020秋•越秀区期末)问题:是否存在二次函数f (x )=ax 2+bx +c (a ≠0,b ,c ∈R )同时满足下列条件:f (0)=3,f (x )的最大值为4,____?若存在,求出f (x )的解析式;若不存在,请说明理由.在①f (1+x )=f (1﹣x )对任意x ∈R 都成立,②函数y =f (x +2)的图象关于y 轴对称,③函数f (x )的单调递减区间是[12,+∞)这三个条件中任选一个,补充在上面问题中作答.【解题思路】由f (0)=3,可求得c =3,由条件可得函数的对称轴,又f (x )的最大值为4,可得关于a ,b 的方程组,求解即可.【解答过程】解:由f (0)=3,可得c =3,则f (x )=ax 2+bx +3, 若选择①f (1+x )=f (1﹣x )对任意x ∈R 都成立, 可得f (x )的对称轴为x =1,所以−b2a =1,又f (x )的最大值为4,可得a <0且f (1)=4,即a +b +3=4, 解得a =﹣1,b =2, 此时f (x )=﹣x 2+2x +3;若选择②函数y =f (x +2)的图象关于y 轴对称, 可得f (x )关于x =2对称,则−b2a =2,又f (x )的最大值为4,可得a <0且f (2)=4,即4a +2b +3=4, 解得a =−14,b =1, 此时f (x )=−14x 2+x +3;若选择③函数f (x )的单调递减区间是[12,+∞), 可得f (x )关于x =12对称,则−b2a =12,又f (x )的最大值为4,可得a <0且f (12)=4,即14a +12b +3=4,解得a =﹣4,b =﹣4, 此时f (x )=﹣4x 2﹣4x +3.【题型3 二次函数的最值问题】【例3】(2020春•滨海新区期末)已知函数f (x )=x 2+2ax +a 2在x ∈[﹣1,2].上有最大值是4,则实数a 的值为( ) A .﹣1或3B .﹣4或0C .﹣1或0D .﹣4或3【解题思路】由函数f (x )=x 2+2ax +a 2的图象开口向上知函数f (x )在|﹣1,2]上的最大值在﹣1或2上取得.从而分类讨论求解.【解答过程】解:由函数f (x )=x 2+2ax +a 2的图象开口向上知, 函数f (x )=x 2+2ax +a 2在|﹣1,2]上的最大值在﹣1或2上取得. 若函数f (x )在﹣1上取得最大值4,则 {−a ≥121−2a +a 2=4,解得a =﹣1,若函数f (x )在2上取得最大值4,则 {−a ≤124+4a +a 2=4,解得a =0,故选:C .【变式3-1】(2020秋•仓山区校级期中)如果函数y =4x 2﹣4ax +a 2﹣2a +3在区间[0,2]上有最小值3,那么实数a 的值为 .【解题思路】由二次函数对称轴结合定义域进行讨论即可解决此题. 【解答过程】解:函数y =4x 2﹣4ax +a 2﹣2a +3的对称轴是:x =a2.当a2≤0,即a ≤0时,f (x )在[0,2]上的最小值a 2﹣2a +3=3,解得:a =0或2(舍去);当0<a2<2,即0<a <4时,f (x )的最小值是f (a2)=﹣2a +3=3,解得:a =0(舍去);a 2≥2,即a ≥4时,f (x )的最小值是f (2)=4×22﹣4a ×2+a 2﹣2a +3=a 2﹣8a +19=3,解得:a 1=a 2=4.综上,a 的值是0或4. 故答案为:0或4.【变式3-2】(2020•浙江模拟)已知函数f (x )=ax 2+bx +c (a ≠0),对一切x ∈[﹣1,1],都有|f (x )|≤1,则当x ∈[﹣2,2]时,f (x )的最大值为 .【解题思路】由题知{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,进而求出a ,b ,c ,所以f (x )=f (1)(x 2+x 2)+f (﹣1)(x 2−x2)+f(0)(1﹣x 2)再由题知对一切x ∈[﹣1,1],都有|f (x )|≤1分别再讨论﹣2≤x ≤﹣1与1≤x ≤2区间最值,最后得出最值. 【解答过程】解:由题意{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,有得{a =12[f(1)+f(−1)−2f(0)]b =12[f(1)−f(−1)]c =f(0)所以f (x )=f (1)(x 2+x2)+f (﹣1)(x 2−x2)+f (0)(1﹣x 2) 对一切x ∈[﹣1,1],都有|f (x )|≤1所以当﹣2≤x <﹣1时,|f (x )|≤||||+||||+||||)|≤||+||+|| =(x 2+x2)+(x 2−x2)+(x 2−1)=2x 2−1≤7当1<x ≤2时,|f (x )|≤||||+||||+||||)|≤||+||+||=(x 2+x 2)+(x 2−x 2)+(x 2−1)=2x 2−1≤7综上所述,当x ∈[﹣2,2]时,f (x )的最大值为7.【变式3-3】(2021春•浦东新区校级期末)已知函数f (x )=x 2﹣(a ﹣2)x +a ﹣3. (1)若f (a +1)=f (2a ),求a 的值;(2)若函数y =f (x )在x ∈[2,3]的最小值为5﹣a ,求实数a 的取值范围;(3)是否存在整数m 、n 使得关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ]?若存在,请求出m 、n 的值;若不存在,请说明理由.【解题思路】(1)根据已知条件,得到(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3解方程即可求出结果; (2)由于f (x )的对称轴为x =a−22,根据对称轴与区间的位置关系进行分类讨论,判断单调性求出最小值即可;(3)根据题意转化为 m ,n 是方程 x 2﹣(a ﹣2)x +a ﹣3=x 的两个根,结合韦达定理得到 m +n =2+mn ,分离常数,根据m ,n 为整数即可求解.【解答过程】解:(1)因为f (x )=x 2﹣(a ﹣2)x +a ﹣3,且 f (a +1)=f (2a ), 所以(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3, 整理得2a 2+a ﹣3=0,解得a =1或−32;(2)f (x )=x 2﹣(a ﹣2)x +a ﹣3 的对称轴为 x =a−22, 因为 x ∈[2,3], ①当a−22≤2,即 a ≤6,则f (x )在x ∈[2,3]上单调递增,所以f (x )min =f (2)=22﹣2(a ﹣2)+a ﹣3=5﹣a ,符合题意;②当2<a−22<3,即6<a <8,则f (x )在(2,a−22)上单调递减,在(a−22,3)单调递增, 所以f(x)min =f(a−22)=(a−22)2−a−22(a −2)+a −3=−a 2+8a−164=5﹣a , 则a =6,与6<a <8矛盾,不符合题意; ③a−22≥3,即a ≥8,则f (x )在x ∈[2,3]上单调递减,所以f(x)min =f(3)=32−3(a −2)+a −3=12−2a =5−a , 则a =7,与a ≥8矛盾,不符合题意,综上a ≤6,因此实数a 的取值范围为(﹣∞,6];(3)因为关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ], ①若a−22≤m ,则f (x )在[m ,n ]上单调递增,所以{f(m)=mf(n)=n,即m ,n 是方程x 2﹣(a ﹣2)x +a ﹣3=x ,即x 2﹣(a ﹣1)x +a ﹣3=0的两个根, 由韦达定理得{m +n =a −1mn =a −3,所以 m +n =2+mn ,所以m (1﹣n )=2﹣n ,当n =1时,m 不存在,舍去, 当n ≠1时,m =2−n 1−n =11−n +1,所以当n =0时,m =2;当n =2时,m =0,又因为m <n ,所以n =2,m =0,经检验,此时a =3,关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;②若m <a−22≤n ,则f (x )在(m ,a−22)上单调递减,在(a−22,n +1)上单调递增,所以{f(a−22)≥m f(n)=n f(m)=n ,即{(a−22)2−(a −2)⋅a−22+a −3≥m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n,所以{−a 2+8a −16≥4m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n ,即x 2﹣(a ﹣2)x +a ﹣3﹣n =0有两个不相等的实数根,且m +n =2﹣a ,由于m ,n 为整数,则a 为整数,则a =n 2+n−3n−1=n +2−1n−1,当n =0时,a =3,m =﹣1,经检验关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;当n =2时,a =3,m =﹣1,经检验符合题意; 故m =﹣1,n =2; ③若a−22≥n ,则f (x )在[m ,n ]上单调递减,所以{f(m)=nf(n)=m,即{m 2−(a −2)⋅m +a −3=n n 2−(a −2)⋅n +a −3=m ,则m =n ,不合题意舍去. 综上:存在这样的m ,n 为整数,且m =﹣1,n =2. 【题型4 二次函数的恒成立问题】【例4】(2021•4月份模拟)对于任意a ∈[﹣1,1],函数f (x )=x 2+(a ﹣4)x +4﹣2a 的值恒大于零,那么x 的取值范围是( ) A .(1,3) B .(﹣∞,1)∪(3,+∞)C .(1,2)D .(3,+∞)【解题思路】把二次函数的恒成立问题转化为y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x 的取值范围.【解答过程】解:原问题可转化为关于a 的一次函数y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,只需{(−1)⋅(x −2)+x 2−4x +4>01×(x −2)+x 2−4x +4>0, ∴{x >3,或x <2x <1,或x >2, ∴x <1或x >3.故选:B .【变式4-1】(2020春•玉林期末)已知函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,则k 的取值范围为( )A .(﹣∞,72)B .(72,+∞)C .(﹣∞,143)D .(143,+∞)【解题思路】由题意可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,结合y =g (x )的图象,只需g (1)<0,且g (2)<0,解不等式可得所求范围.【解答过程】解:函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,由于y =g (x )的图象为开口向上的抛物线,只需g (1)<0且g (2)<0,所以{1+4−k −k +2<04+2(4−k)−k +2<0,即{k >72k >143, 可得k >143. 故选:D .【变式4-2】(2020春•浙江期中)已知f (x )=x 2﹣|x ﹣a |+a ,若f (x )≤0对任意x ∈[﹣1,1]恒成立,则a 的取值范围是( )A .(﹣∞,﹣1]B .(﹣∞,0]C .[0,+∞)D .[﹣1,0]【解题思路】利用分段思想,分类讨论,结合二次函数性质即可求解.【解答过程】解:f (x )=x 2﹣|x ﹣a |+a ={x 2−x +2a ,x ≥a x 2+x ,x <a ,∵f (x )≤0对任意x ∈[﹣1,1]恒成立,∴①{x 2−x ≤−2a x ≥a 恒成立, 此时a ≤﹣1;②{x 2+x ≤0x <a在x ∈[﹣1,1]恒成立, 此时a ≤0;综上核对a ≤0,故选:B .【变式4-3】(2021春•虹口区期末)已知函数f (x )=x 2+2ax ﹣a +2.(1)若对于任意x ∈R ,f (x )≥0恒成立,求实数a 的取值范围;(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,求实数a 的取值范围;(3)若对于任意a ∈[﹣1,1],f (x )>0成立,求实数x 的取值范围.【解题思路】(1)利用二次函数的图象与性质可得△≤0,从而可求得a 的取值范围;(2)f (x )≥0恒成立等价于f (x )min ≥0,利用二次函数的图象与性质对a 分类讨论,求出f (x )的最小值,结合题意即可求解a 的取值范围;(3)将函数f (x )看作关于a 的函数g (a ),结合题意可得关于x 的不等式组即可求解x 的取值范围.【解答过程】解:(1)f (x )=x 2+2ax ﹣a +2≥0恒成立,可得△=4a 2﹣4(2﹣a )≤0,解得﹣2≤a ≤1,即实数a 的取值范围是[﹣2,1].(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,则f (x )min ≥0,函数f (x )=x 2+2ax ﹣a +2的对称轴为x =﹣a ,当﹣a <﹣1,即a >1时,f (x )min =f (﹣1)=3﹣3a ≥0,解得a ≤1,矛盾,舍去;当﹣a >1,即a <﹣1时,f (x )min =f (1)=3+a ≥0,可得﹣3≤a <﹣1,当﹣1≤﹣a ≤1,即﹣1≤a ≤1时,f (x )min =f (﹣a )=﹣a 2﹣a +2≥0,可得﹣1≤a ≤1,综上所述,求实数a 的取值范围是[﹣3,1].(3)对于任意a ∈[﹣1,1],f (x )>0成立,等价于对于任意a ∈[﹣1,1],g (a )=(2x ﹣1)a +x 2+2>0,所以{g(−1)=x 2−2x +3>0g(1)=x 2+2x +1>0,解得x ≠1, 所以实数x 的取值范围是{x |x ≠﹣1}.。
【三维设计】高三数学文(江苏专用)一轮总复习练习:2.5二次函数与幂函数(含答案解析)
课时追踪检测(八)二次函数与幂函数一抓基础,多练小题做到眼疾手快1.二次函数的图象过点(0,1) ,对称轴为x = 2 ,最小值为- 1 ,则它的分析式为________________ .分析:依题意可设f(x) =a(x- 2)2-1,∵图象过点 (0,1) ,∴ 4a-1= 1,∴ a=1 . 2∴ f(x) =1(x- 2)2- 1. 212答案: f(x) = (x- 2)- 122.已知幂函数 f(x) = k·xα的图象过点1,2,则 k+α=________.22分析:由幂函数的定义知1=2,因此 1 α213 k= 1.又 f=2,解得α=,进而 k+α= .222223答案:23.函数 f(x) =2x2- mx+ 3,当 x∈[ - 2,+∞ )时, f (x) 是增函数,当x∈ (-∞,- 2]时, f(x) 是减函数,则f(1) 的值为 ________.2m m 分析:函数 f(x) = 2x- mx+ 3 图象的对称轴为直线x=4,由函数 f(x) 的增减区间可知4=- 2,∴ m=- 8,即 f(x) = 2x2+ 8x+ 3,∴ f(1) = 2+ 8+ 3= 13.答案: 134.函数 f(x) =(m2- m- 1)x m是幂函数,且在x∈(0,+∞)上为增函数,则实数m 的值是 ________.分析: f(x) = (m2- m- 1)x m是幂函数 ? m2- m- 1=1? m=- 1 或 m= 2.又 x∈ (0,+∞)上是增函数,因此 m=2.答案: 25.若幂函数 y= f(x) 的图象过点2,则 y= f(x 2- 2x)的单一减区间为 ________.2,2αα21111分析:设 f(x) = x ,则由 2 =2= 2-2,得α=-2,因此 f(x) = x-2=x,该函数是定义在 (0,+∞)上的单一减函数.而u= x2- 2x 在(-∞, 1)上为单一减函数,在(1,+∞)上为单一增函数,且 u= x2-2x>0 ,得 x>2 或 x<0 ,故所求函数 y= f(x 2- 2x)的单一减区间为 (2,+∞).答案: (2,+ ∞)二保高考,全练题型做到高考达标n1,则 mn =________. 1.若幂函数 y = mx (m , n ∈R)的图象经过点8,4 分析:依据幂函数的观点得 1 n - 2 3n2 2 m = 1,且 = 8 ,即 2 = 2 ,因此 n =-,因此 mn =- .43 32 答案:- 32.若函数 f(x) = (1 - x 2)(x 2+ ax - 5) 的图象对于直线 x = 0 对称,则 f(x) 的最大值是________ .分析:依题意,函数 f(x) 是偶函数, 则 y = x 2+ ax - 5 是偶函数, 故 a = 0,f(x) = (1-x 2)(x 2- 5)=- x 4+ 6x 2- 5=- (x 2- 3)2+ 4,当 x 2= 3 时, f(x) 取最大值为 4.答案: 43. (2016 无·锡调研 )若幂函数 y = (m 2- 3m + 3) ·xm 2- m - 2 的图象可是原点,则m =________.分析:由幂函数性质可知m 2- 3m + 3= 1,∴ m = 2 或 m = 1.又幂函数图象可是原点, ∴m 2 - m - 2≤0,即- 1≤m ≤2,∴ m = 2 或 m = 1. 答案:2或14.设函数 f(x) = x 2- 23x + 60,g(x) =f(x) + |f(x)| ,则 g(1)+ g(2)+ +g(20) =________.分析:由二次函数图象的性质得, 当 3≤x ≤20时,f(x) + |f(x)| =0,∴g(1)+ g(2) + + g(20)= g(1)+ g(2)= 112.答案: 1125.(2015 南·京调研 )若函数 y = x 2- 3x - 4 的定义域为 [0,m],值域为 -25,- 4 ,则 m4的取值范围是 ________.3325分析:二次函数图象的对称轴为x = 2,且 f 2=-4 , f(3) = f(0)3=- 4,由图得 m ∈ 2, 3 .答案:3, 326.若函数 y = x 2+ (a +2)x + 3, x ∈ [a ,b]的图象对于直线 x = 1 对称,则 b = ________.分析:由已知得- a + 2= 1,解得 a =- 4.又由于 a + b= 1,因此 b = 2- a = 6.22答案: 67.设二次函数 f(x) = ax 2+ 2ax + 1 在 [- 3,2] 上有最大值 4,则实数 a 的值为 ________. 分析:此函数图象的对称轴为直线x =- 1.当 a>0 时,图象张口向上, 因此 x = 2 时获得最大值,f(2) = 4a+ 4a+ 1= 4,解得a= 3;当8a<0时,图象张口向下,因此x=- 1时获得最大值,f( - 1)= a- 2a+ 1= 4,解得a=- 3.答案:-3 或388.已知幂函数f(x) = x-12,若f(a+ 1)< f(10- 2a),则 a 的取值范围是________.分析:∵1f(x)=x-2= 1x(x> 0),易知x∈ (0,+∞)时为减函数,又f(a+ 1)< f(10- 2a),a+1> 0,a>- 1,∴ 10-2a> 0,解得a< 5,∴ 3< a< 5.a+ 1>10- 2a,a> 3,答案: (3,5)9. (2016 金·陵中学检测 )已知函数 f(x) = x- 2m2+ m+ 3(m∈ Z) 是偶函数,且f(x) 在 (0,+∞)上单一递加.(1) 求 m 的值,并确立 f(x) 的分析式;(2)g(x) = log2 [3- 2x- f(x)] ,求 g(x) 的定义域和值域.解:(1) 由于 f(x) 在 (0,+∞)单一递加,由幂函数的性质得-2m 2+ m+ 3>0,解得- 1<m<3.2由于 m∈Z ,因此 m= 0 或 m= 1.当m=0 时,f(x) =x3不是偶函数;当 m= 1 时, f(x) =x2是偶函数,因此 m=1, f(x) =x2 .(2)由 (1)知 g(x) = log2(- x2- 2x +3),由- x2- 2x+ 3>0,得- 3<x<1 ,因此 g(x) 的定义域为 (- 3,1).设 t=- x2-2x+ 3, x∈ (- 3,1),则 t∈ (0,4] ,此时 g(x) 的值域就是函数y= log 2t, t∈ (0,4] 的值域.又 y= log2t 在区间 (0,4] 上是增函数,因此 y∈ (-∞, 2],因此函数 g(x) 的值域为 (-∞, 2].10. (2016 南·师附中月考)已知函数f(x) =ax2+ bx+ 1(a, b 为实数, a≠0, x∈ R).(1)若函数 f(x) 的图象过点 (- 2,1),且方程 f(x) = 0 有且只有一个根,求f(x) 的表达式;(2)在 (1)的条件下,当 x∈ [ - 1,2] 时,g(x) = f(x) - kx 是单一函数,务实数k 的取值范围.解: (1)由于 f( -2) =1,即 4a- 2b+ 1= 1,因此 b= 2a.由于方程 f(x) =0 有且只有一个根,因此=b2- 4a= 0.2因此 4a - 4a= 0,因此 a= 1,b= 2.2因此 f(x) = (x+ 1) .(2)g(x) = f(x) - kx= x2+ 2x+ 1-kx = x2- (k-2)x +1= x-k-22+ 1--2.42由 g(x) 的图象知,要知足题意,则k- 2k- 22≥2或2≤-1,即 k≥6或 k≤0,∴所务实数 k 的取值范围为 (-∞, 0]∪ [6,+∞).三登台阶,自主选做志在冲刺名校1.设 f(x) 与 g(x) 是定义在同一区间[a,b] 上的两个函数,若函数y= f(x) - g(x) 在 x∈ [a,b]上有两个不一样的零点,则称f(x) 和g(x) 在 [a, b]上是“关系函数”,区间 [a, b]称为“关系区间”.若 f(x) =x2- 3x+ 4 与 g(x) =2x+ m 在 [0,3] 上是“关系函数”,则 m 的取值范围为 ________.分析:由题意知, y= f(x) - g(x) = x2- 5x+ 4-m 在 [0,3] 上有两个不一样的零点.在同向来角坐标系下作出函数y= m与y=x2-5x+ 4(x ∈ [0,3])的图象如下图,联合图象可知,当x ∈ [2,3] 时,y = x2- 5x + 4∈-9,- 2 ,故当 m∈ -9,- 2 时,函数 y=m 与 y= x2- 5x+ 4(x ∈ [0,3]) 44的图象有两个交点.9答案:-4,-22.已知二次函数 f(x) = x2- x+ k,k∈ Z,若函数 g(x) = f(x) - 2 在- 1,3上有两个不2同的零点,则f2+ 2的最小值为 ________.分析:若函数2- x + k- 2 在-1,3上有两个不一样的零点,k ∈ Z ,则g(x) = x2-,3解得 k= 2.g 2 >0 ,= 1--,因此二次函数f(x) = x2- x+ 2,其值域为7,+∞,42]+ 2= f(x) +27,此中 f(x) ≥,4此时 f(x) +2单一递加,72+ 281因此当 f(x) =4时,获得最小值28.答案: 81283. (2016 镇·江四校联考 )已知函数 f(x) = x2-1, g(x) = a|x- 1|.(1)若当 x∈R 时,不等式f(x)≥ g(x)恒建立,务实数 a 的取值范围;(2)求函数 h(x) = |f(x)| + g(x) 在区间 [0,2] 上的最大值.解: (1)不等式 f(x) ≥g(x)对 x∈ R 恒建立,即x2- 1≥a|x- 1|(*) 对 x∈ R 恒建立.①当 x= 1时, (*) 明显建立,此时a∈ R;②当 x≠1时, (*) 可变形为x2- 1,a≤|x- 1|x2- 1x+ 1,x>1 ,令φ(x)==-+, x<1.|x- 1|由于当 x>1 时,φ(x)>2,当 x<1 时,φ(x)>- 2,因此φ(x)>- 2,故此时 a≤- 2.综合①②,得所务实数 a 的取值范围是(-∞,- 2].-x2- ax+a+ 1, 0≤x<1,(2)h(x) =0, x=1,x2+ ax- a- 1, 1<x≤2.①当-2a≤0时,即 a≥0, (- x2- ax+a+1)max= h(0)= a+ 1,(x2+ ax- a- 1)max= h(2)= a+ 3.此时, h(x) max= a+ 3.②当 0<-a2≤1时,即- 2≤a<0, (- x2- ax+ a+ 1)max= h -a2=a+ a+ 1, (x2+ ax- a- 1)max 24=h(2)= a+3.此时 h(x) max= a+ 3.a③当 1<-2≤2时,即- 4≤a<- 2,(- x2- ax+ a+ 1)max= h(1) =0,0,- 4≤ a<- 3,(x2+ ax- a- 1)max= max{h(1) , h(2)} = max{0,3 + a} =3+a,- 3≤ a<- 2.0,- 4≤ a<- 3,此时 h(x) max=3+ a,- 3≤ a<-2.a④当-2>2 时,即 a<- 4, (- x2- ax+a+ 1)max= h(1)= 0,(x2+ ax- a- 1)max= h(1)= 0.此时 h(x) max= 0.3+ a,a≥- 3,综上: h(x) max=0, a<- 3.。
高考数学一轮复习专题2.4二次函数与幂函数知识点讲解文科版含解析
高频考点二 求二次函数的解析式
例 2.(2020·辽宁大连八中调研)已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大
值是 8,试确定此二次函数的解析式.
【解析】法一(利用一般式):
4a+2b+c=-1, a-b+c=-1, 设 f(x)=ax2+bx+c(a≠0).由题意得 4ac-b2
=8, 4a
a=-4, 解得 b=4, 所以所求二次函数的解析式为 f(x)=-4x2+4x+7.
c=7.
法二(利用顶点式):
设 f(x)=a(x-m)2+n(a≠0).因为 f(2)=f(-1),f(-1)=-1,所以抛物线的对称轴为 x=2+(-1) 2
1
1
1 x-
2
= .所以 m= .又根据题意函数有最大值 8,所以 n=8,所以 f(x)=a 2 +8.因为 f(2)=-1,所以
(3)幂函数的性质
①幂函数在(0,+∞)上都有定义;
②当α>0 时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;
③当α<0 时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
知识点二 二次函数
(1)二次函数解析式的三种形式:
一般式:f(x)=ax2+bx+c(a≠0).
0),对称轴为 x=-1。给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结
论是( )
A.②④
B.①④
C.②③
D.①③
【解析】因为二次函数的图象与 x 轴交于两点,所以 b2-4ac>0,即 b2>4ac,①正确;对称轴为 x=-1, b 即- =-1,2a-b=0,②错误;结合图象,当 x=-1 时,y>0,即 a-b+c>0,③错误;由对称轴为 x 2a =-1 知,b=2a,又函数图象开口向下,所以 a<0,所以 5a<2a,即 5a<b,④正确,故选 B。
高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第四节 二次函数与幂函数
∈[2,3]上恒成立,故 a≤4.故选 D.
名师点析幂函数的图象与性质应用技巧
(1)由于幂函数解析式中只含有一个参数,因此只需一个条件,利用待定系
数法即可确定幂函数的解析式.
(2)对于幂函数的图象,可结合5个常见幂函数的图象特点进行分析判断.
(3)对于幂函数f(x)=xα,当α>0时f(x)在(0,+∞)上单调递增,当α<0时f(x)在
叫做幂函数,其中x是自变量,α是常数.
注意幂函数与指数函数的区别
2.常用5个简单幂函数的图象与性质
函数
y=x
y=x2
定义域
R
R
值域
R
{y|y≥0} R
奇偶性 奇函数 偶函数
在R上 在(-∞,0)上单调
单调性 单调
递增
递减,在(0,+∞)
上单调递增
1
x2
y=x3
y=
R
{x|x≥0}
{y|y≥0}
奇函数
单调递减.
3.一般地,对于幂函数f(x)=
(m,n∈N*,m与n互质),当m为偶数时,f(x)为
偶函数;当m,n均为奇数时,f(x)为奇函数;当n为偶数时,f(x)为非奇非偶函数.
4.如果幂函数的图象与坐标轴相交,则交点一定是原点.
对点演练
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”.
(1-)2 -4 × (-2) ≤ 0,
由
> -1,
是(
)
答案 D
考向2.二次函数的单调性
典例突破
例4.(2023四川南山中学一模)已知函数f(x)=x2-2x在定义域[-1,n]上的值域
数学一轮复习第二章2.4二次函数与幂函数学案理含解析
第四节二次函数与幂函数【知识重温】一、必记2个知识点1.幂函数(1)定义:形如①________________的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y =12x,y=x-1.(2)性质(ⅰ)幂函数在(0,+∞)上都有定义;(ⅱ)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(ⅲ)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式(ⅰ)一般式:f(x)=②________________________;(ⅱ)顶点式:f(x)=③________________________;(ⅲ)零点式:f(x)=④________________________。
(2)二次函数的图象和性质(-∞,+∞)(-∞,+∞)二、必明2个易误点1.研究函数f(x)=ax2+bx+c的性质,易忽视a的取值情况的讨论而盲目认为f(x)为二次函数.2.形如y=xα(α∈R)才是幂函数,如y=123x不是幂函数.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)函数y=132x是幂函数.()(2)当n〉0时,幂函数y=x n在(0,+∞)上是增函数.()(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.()(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。
()二、教材改编2.已知幂函数y=f(x)的图象过点(2,错误!),则函数y=f(x)的解析式为________.3.函数y=ax2-6x+7a(a≠0)的值域为[-2,+∞),则a 的值为()A.-1 B.-错误!C.1 D.2三、易错易混4.函数y=2x2-6x+3,x∈[-1,1],则y的最小值是() A.-1 B.-2 C.1 D.25.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图所示,则a,b,c,d的大小关系是()A.d>c〉b>a B.a>b〉c〉dC.d〉c〉a〉b D.a〉b〉d〉c四、走进高考6.[2020·江苏卷]已知y=f(x)是奇函数,当x≥0时,f(x)=23x,则f(-8)的值是________.考点一幂函数的图象及性质[自主练透型]1.已知点错误!在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数2.幂函数y=xm2-2m-3(m∈Z)的图象如图所示,则m 的值为()A.-1 B.0C.1 D.23.[2021·江西九江联考]已知a=0.40.3,b=0.30。
高考数学大一轮复习 第二章 函数概念与基本初等函数 4 第4讲 二次函数与幂函数课件 理
12/11/2021
第四页,共四十九页。
2.二次函数
(1)二次函数解析式的三种形式 ①一般式:f(x)=_____ax_2_+__bx_+__c_(a_≠__0_)_____. ②顶点式:f(x)=_____a_(x_-__m_)_2+__n_(a_≠__0_)____. ③零点式:f(x)=____a_(x_-__x_1)_(x_-__x_2)_(a_≠__0_)___.
12/11/2021
第二十三页,共四十九页。
法二:(利用顶点式) 设 f(x)=a(x-m)2+n(a≠0). 因为 f(2)=f(-1), 所以抛物线的对称轴为 x=2+(2-1)=12. 所以 m=12.又根据题意函数有最大值 8,所以 n=8, 所以 f(x)=ax-122+8. 因为 f(2)=-1,所以 a2-122+8=-1, 解得 a=-4,所以 f(x)=-4x-122+8=-4x2+4x+7.
调递减,则 a 的取值范围是( )
A.a≥3
B.a≤3
C.a<-3
D.a≤-3
解析:选 D.函数 f(x)=x2+4ax 的图象是开口向上的抛物线,其 对称轴是 x=-2a,由函数在区间(-∞,6)内单调递减可知, 区间(-∞,6)应在直线 x=-2a 的左侧, 所以-2a≥6,解得 a≤-3,故选 D.
4a .( )
12/11/2021
第十页,共四十九页。
(5)二次函数 y=ax2+bx+c,x∈R 不可能是偶函数.( ) (6)在 y=ax2+bx+c(a≠0)中,a 决定了图象的开口方向和在同 一直角坐标系中的开口大小.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√
调 在____-__2_ba_,__+__∞_____上单 性
【红对勾】(新课标)2016高考数学大一轮复习 2.4二次函数与幂函数课件 理
①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b. 其中正确的是( A.②④ C.②③ )
B.①④ D.①③
【解析】 因为图象与 x 轴交于两点,所以 b2-4ac>0, 即 b2>4ac,①正确; b 对称轴为 x=-1,即- =-1,2a-b=0,②错误; 2a 结合图象,当 x=-1 时,y>0,即 a-b+c>0,③错误; 由对称轴为 x=-1 知,b=2a.又函数图象开口向下, 所以 a<0,所以 5a<2a, 即 5a<b,④正确.
2
∴要使 f(x)在[-4,6]上为单调函数,只需-a≤-4 或- a≥6,解得 a≥4 或 a≤-6.
(3)当 a=-1 时,f(|x|)=x2-2|x|+3=
2 2 x +2x+3=x+1 +2,x≤0 2 2 x - 2 x + 3 = x - 1 +2,x>0
4×8×m-7-m-12 解析:∵ =0, 4×8 ∴m2-34m+225=0,∴m=9 或 25.
答案:9 或 25
5.若函数 f(x)=x2+(a+2)x+b(x∈[a,b])的图象关于 直线 x=1 对称,则 f(x)max=________.
a+2 - =1, 2 解析:由题知 a+b=2.
-1
1 3
答案:A
二次函数
1.二次函数的三种常见解析式 (1)一般式:f(x)=ax2+bx+c(a≠0); (2)顶点式: f(x)=a(x-m)2+n(a≠0), (m, n)为顶点坐标; (3)两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中 x1,x2 分别 是 f(x)=0 的两实根.
2.五种幂函数的图象
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质二、二次函数 1.二次函数的定义形如f (x )=ax 2+bx +c (a ≠0)的函数叫做二次函数. 2.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -m )2+n (a ≠0); (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 3.二次函数的图象和性质[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞D.⎝⎛⎭⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________.解析:设幂函数的解析式为y =x α,则3=⎝⎛⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6. 则f (x )=x 2-2x +6=(x -1)2+5≥5.答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题(1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________.[自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(2013·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >⎝⎛⎭⎫12a >(0.2)aB .(0.2)a >⎝⎛⎭⎫12a>2a C.⎝⎛⎭⎫12a >(0.2)a >2aD .2a >(0.2)a >⎝⎛⎭⎫12a解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝⎛⎭⎫12a>0.所以(0.2)a >⎝⎛⎭⎫12a>2a .典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1.(1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式. [自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上,所以-y =(-x )2+2(-x ), 即-y =x 2-2x , y =-x 2+2x , 故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图象如图,(3)由图象可知,函数f(x)的值域为(-∞,4].典题导入[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.[自主解答](1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6].所以f(x)在[-4,2]上单调递减,在[2,6]上单调递增,故f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.故a的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(2012·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧ a >1,a =2或⎩⎪⎨⎪⎧ 0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1典题导入[例4] (2012·衡水月考)已知函数f (x )=x 2,g (x )=x -1.(1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围. [自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R , x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. 故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0, 即⎩⎪⎨⎪⎧ m 2≥1,F (0)=1-m 2≤0⇒m ≥2;若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F (0)=1-m 2≥0⇒-1≤m≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.以题试法4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:则不等式f (|x |)≤2的解集是(A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝⎛⎭⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52 B.⎝⎛⎭⎫52,+∞ C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2, 则t =3⎝⎛⎭⎫y -232+23. 在⎣⎡⎦⎤0,12上递减,当y =12时,t 取到最小值,t min =34. 答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0.当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2.g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(2012·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点. 答案:⎝⎛⎦⎤-94,-2 3.(2013·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为减函数,在⎣⎡⎭⎫1a ,+∞上为增函数; 当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为增函数,在⎣⎡⎭⎫1a ,+∞上为减函数. (2)∵f (x )=a ⎝⎛⎭⎫x -1a 2+1-1a, 由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝⎛⎭⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎨⎧a +1a-2,a ∈⎣⎡⎦⎤13,12,9a +1a -6,a ∈⎝⎛⎦⎤12,1.(3)证明:当a ∈⎣⎡⎦⎤13,12时,g ′(a )=1-1a 2<0, ∴函数g (a )在⎣⎡⎦⎤13,12上为减函数;当a ∈⎝⎛⎦⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝⎛⎦⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝⎛⎭⎫12=12. 故g (a )≥12.。