郑州大学高等数学下课后习题答案解析

合集下载

郑州大学高等数学下课后习题答案解析

郑州大学高等数学下课后习题答案解析

习题7.73.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆1323222=+z x ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+ 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧==(三)(1)、(2)联立消去x 得R z 21=所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧==6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D .习题7.82.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±=' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为()()(){}|1,,='''=t t z t y t x {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x '''={}{}2023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,s i n c o s 2,c o s |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .习题8.11.求下列函数的的定义域,并画出定义域的图形. (3)221yx z w --=;(4)19222222-++---=z y x z y x u .【解】(3)要使函数表达式有意义,必须满足 0122>--y x 即 122<+y x 故所求函数的定义域为(){}1|,22<+=y x y x D . (4)要使函数表达式有意义,必须满足⎪⎩⎪⎨⎧>-++≥---.01,09222222z y x z y x 即 ⎪⎩⎪⎨⎧>++≤++.1,9222222z y x z y x 故所求函数的定义域为(){}91|,,222≤++<=z y x z y x D .3.求下列各极限. (1)()()⎪⎪⎭⎫ ⎝⎛++→z y x z y x 111lim3,2,1,,; (2)()()⎪⎪⎭⎫ ⎝⎛+→x y y x y x 1sin 1sin lim 0,0,; (3)()()()xyy x xy tan 10,0,1lim+→; (4)()()()22220,0,lim y x y x xy y x +-→;(5)()()yx y x y x +-++→11lim220,0,; (6)()()2220,0,lim y x yx y x +→.【解】(1)因为函数()zy x z y x f 111,,++=是三元初等函数,其定义域为(){}0,0,0|,,≠≠≠=z y x z y x D ,且()D ∈3,2,1,所以三元函数()zy x z y x f 111,,++=在()3,2,1处连续,从而有 ()()611312111111lim3,2,1,,=++=⎪⎪⎭⎫ ⎝⎛++→z y x z y x . (2)()()⎪⎪⎭⎫⎝⎛+→x y y x y x 1sin 1sin lim 0,0, ()()y x y x 1sinlim0,0,→=()()0001sin lim 0,0,=+=+→x y y x .【其中()()y x y x 1sinlim 0,0,→()()01sin lim 0,0,==→x y y x 均是利用有界量乘以无穷小量还是无穷小量】. (3)()()()xyy x xy tan 10,0,1lim+→()()()e e xy xyxy xyy x ==⎥⎦⎤⎢⎣⎡+=→1tan 10,0,1lim .(4)()()()22220,0,lim y x y x xy y x +-→()()()0.lim 22220,0,=+-=→xy y x y x y x .【上述结论中用到12222≤+-y x y x 及()()0lim 0,0,=→xy y x ,即利用有界量乘以无穷小量还是无穷小量】. (5)()()y x y x y x +-++→11lim220,0,()()()()11lim 22220,0,+++++=→y x y x y x y x()()().lim 220,0,y x y x y x ++=→()().0210111lim 220,0,=⨯=+++→y x y x 【上述结论中用到()y x yx y x y x y x +=++≤++≤2220,()()()0lim 0,0,=+→y x y x 及夹逼准则】.(6)()()2220,0,lim y x y x y x +→()()0.lim 2220,0,=+=→y y x x y x .【上述结论中用到1222≤+yx x 及()()0lim 0,0,=→y y x ,即利用有界量乘以无穷小量还是无穷小量】.4.证明极限()()4220,0,lim y x xy y x +→不存在.【证】(一)让动点()y x P ,沿直线0=y 趋于点()0,0O 时,()42200lim y x xy y x +=→000.l i m 4220=+=→x x x . (二)让动点()y x P ,沿抛物线x y =2趋于点()0,0O 时,()42202lim y x xy xy x +=→21.l i m 220=+=→x x x x x .习题8.21.证明:函数()444,y x y x f +=在原点()0,0处连续,但不存在偏导数()0,0x f ',()0,0y f '. 【证明】 (一)因为()()()()0,00,lim0,0,f y x f y x ==→,所以,()y x f ,在()0,0处连续.(二)因为()()x f x f x ∆-∆+→∆0,00,0lim 0()xx x ∆-+∆=→∆00lim4440 xxx ∆∆=→∆0l i m 不存在,所以不存在偏导数()0,0x f ';由轮换对称性知,也不存在偏导数()0,0y f '. 2.求下列函数对各自变量的一阶偏导数.(1)x y y x z 33-=; (2)xy z ln =; (3)xy e z x sin =; (4)xy z arctan=; (5)()yxy z +=1; (6)2yxe z y=.【解】(1)323y y x x z -=∂∂;x y x yz 233-=∂∂ . (2)因y x z ln ln +=,故x x z 1=∂∂;yy z 1=∂∂. (3)xy ye xy e x z x x cos sin +=∂∂; xy xe yzx cos =∂∂ (4)x x y x y xz '⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222222y x y x y y x x +-=⎪⎭⎫⎝⎛-+=; y x y x y xz'⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222221y x x x y x x +=⎪⎭⎫⎝⎛+=. (5)()()xy y ye xy z +=+=1ln 1;()()[]x xy y xy y e x z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=+y xy y e xy y .111ln ()1211-++=y xy xy y ;()()[]y xy y xy y e y z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++=+x xy y xy e xy y .11)1ln(1ln ()⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln(1()()[]xy xy xy xy y ++++=-)1ln(111. (6)2y e x z y =∂∂;422.y y e y e x y z y y -=∂∂()422y y y xe y -=()32yy xe y -=. 3.求曲线⎪⎩⎪⎨⎧=+=Γ,4,4:22y y x z 在点()5,4,20M 处的切线方程及切线对于x 轴的倾角的度数. 【解】(一)Γ的参数方程为⎪⎪⎩⎪⎪⎨⎧+===Γ416,4,:2x z y x x (x 为参数).点0M 对应参数2=x ,故切向量为{}1,0,12,0,1|2=⎭⎬⎫⎩⎨⎧==x x s 切.所以,点()5,4,20M 处的切线方程为150412-=--=-z y x . (二)因为()()1244,2||4,2)4,2(22=='⎪⎪⎭⎫ ⎝⎛+='xy x f x x ,所以切线对于x 轴的倾角的度数为41arctan πα==. 4.求下列函数的所有二阶偏导数.(1)()y x z 32sin +=; (2)42244y y x x z +-=;(3)xy z 2=; (4)yxy x y x z arctan arctan 22-=.【解】 (1)()y x x z 32cos 2+=∂∂; ()y x yz32cos 3+=∂∂; ()y x x z 32sin 422+-=∂∂;()y x y x z 32sin 62+-=∂∂∂;()y x yz 32sin 922+-=∂∂. (2)2384xy x x z -=∂∂; 3248y y x yz+-=∂∂; 2222812y x x z -=∂∂;xy y x z 162-=∂∂∂;2222128y x yz +-=∂∂. (3)()x xy xy x z '=∂∂2.2121()x yy xy 212.2121==;()y xy xy y z '=∂∂2.2121()yx x xy 212.2121==. xyx y x y x y x z 42.12121222-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂;xyx x y y x z 421.121212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=∂∂∂; xyy xy x y x y z 42.12121222-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∂∂. (4)yxy x y x z arctan arctan 22-=.x x y xy x y x x z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=y y x y x y x y x x y x 1.11.11a r c t a n 222222 223222a r c t a n 2yx y y x y x x y x +-+-= ()2222a r c t a n 2y x yy x x y x ++-=y x y x -=a r c t a n 2; y y y x y x y x y z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=22222.11a r c t a n 21.11y x y x y y x y x x y x 222223a r c t a n 2yx xy y x y y x x ++-+= ()y xy yx x y xa r c t a n 22222-++=y x y x a r c t a n 2-=.⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++='⎪⎭⎫ ⎝⎛-=∂∂2222.112arctan 2arctan 2x y x y x x y y x y x x z x 222a r c t a n 2yx xyx y +-=. 11.112a r c t a n 222-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛-=∂∂∂x x y x y x y x y x z y 12222-+=y x x 2222yx y x +-=; y y x y x y z '⎪⎪⎭⎫⎝⎛-=∂∂arctan 222 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-=22.112a r c t a n 20y x y x y y x 222a r c t a n 2yx xyy x ++-=. 5.验证下列等式.(1)设xy xe z =,证明: z yz y x z x=∂∂+∂∂; (2)证明函数r u 1=,222z y x r ++=满足0222222=∂∂+∂∂+∂∂zu y u x u ;(3)证明()bx e t x T tab sin ,2-=满足热传导方程22xTa t T ∂∂=∂∂,其中a 为正常数,b 为任意常数.【证】(1)因⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∂∂x y e x y e x e x z x y x y x y 12;x yx y e x e x y z =⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=∂∂1.所以,z xe ye x y e x y z yx z x x y x y x y ==+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂+∂∂1. (2)()x z y x z y x x r '++++=∂∂22222221()r xx z y x =++=221222;①x r dr du x u ∂∂=∂∂.【因为①】32.1rx r x r -=-=. 623322.3..1rx r r x r r x x x u ⎪⎭⎫ ⎝⎛∂∂--=⎪⎭⎫ ⎝⎛-∂∂=∂∂【因为①】 5226233.3..1rx r r r x r x r --=⎪⎭⎫ ⎝⎛--=; ② 同理可得522223ry r y u --=∂∂; ③ 522223rz r z u --=∂∂ ④ 所以,222222zuy u x u ∂∂+∂∂+∂∂【因为②,③,④】()5222233r z y x r ++--=033522=--=rr r . (3)由()bx e t x T t ab sin ,2-=,得()[]bx e ab bx ab e tTt ab t ab sin sin 2222---=-=∂∂. ① []bx be b bx e xTt ab t ab cos .cos 22--==∂∂. []b bx be x T t ab .sin 222-=∂∂-bx e b tab sin 22--=. ②所以有22xTa t T ∂∂=∂∂bx e ab t ab sin 22--=.6.设()()⎪⎩⎪⎨⎧=+≠+++=,0,0,0,1cos ,22222222y x y x y x y x y x f 求()0,0x f ',()0,0y f '.【解】因为()()xf x f x ∆-∆+→∆0,00,0lim 0 ()[]()xx x x ∆-+∆+∆=→∆001cos0lim222201coslim 0=∆∆=→∆x x x 【上述结论中用到11cos ≤∆x及0lim 0=∆→∆x x ,即利用有界量乘以无穷小量还是无穷小量】,所以,()00,0='x f . 同理,()00,0=''y f .习题8.31.求下列函数的全微分.(1)yxy x z +=24;(2)32y x ez +=;(3)xyz u =;(4)z xy u =.【解】 (1)因为y xy x z 18+=∂∂,224y xx y z -=∂∂,所以 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y xy ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛+=22418. (2)因为()xyx y xe xz'+=∂∂+2222⎪⎪⎭⎫ ⎝⎛+=+x y x eyx 2.2122222222y x xe y x +=+; 由轮换对称性知,2222yx ye y z yx +=∂∂+.所以dy y zdx x z dz ∂∂+∂∂=()ydy xdx yx e y x ++=+2222. (3)因为yz x u =∂∂,xz yu=∂∂,xy z u =∂∂,所以,x y d z x z d y y z d x dz zu dy y u dx x u du ++=∂∂+∂∂+∂∂=. (4)z xy u =. 因为z y x u =∂∂,1-=∂∂z xzy yu ,y xy z u z ln =∂∂,所以, ydz xy dy xzy dx y dz zudy y u dx x u du z z z ln 1++=∂∂+∂∂+∂∂=-. 2.求下列函数在指定点的全微分.(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .【解】(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .因为x zy x y x z x u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-y y x z z1111; y z y x y x z y u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2111y x y x z z; ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂211.ln z y x y x z u z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-2111ln 1z y x y x z z.所以dz zu dy y u dx x u du ∂∂+∂∂+∂∂=+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-dx y y x z z1111dy y x y x z z⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2111dz z y x y x z z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+-2111ln 1.从而 ()dy dx du -=1,1,1|.4.求曲面22:y x z S +=在点()2,1,10M 处的切平面方程和法线方程.【解】令()z y x z y x F -+=22,,. 则曲面S 在点0M 处的切平面的法向量为 ()()(){}000,,M F M F M F z y x '''= {}(){}1,2,21,2,2|2,1,1-=-=y x .所以S 在点0M 处的切平面方程为()()()02.1121.2=---+-z y x . 化简得0222=--+z y x . 法线方程为122121--=-=-z y x . 6.利用全微分求近似值.(1)()()3397.102.1+;【解】(1)令(),,33y x y x f z +==则()()332133223,,23,yx y y x f yxyx x y x f y y x +='+='-.取03.0,02.0,2,100-=∆=∆==y x y x ,则有()()()()()03.02,102.02,12,103.02,02.01-⨯'+⨯'+≈-+y x f f f f ,即:()()().95.203.0202.021397.102.133=-⨯+⨯+≈+ 8.已知函数()⎪⎩⎪⎨⎧=+≠++=,0,0,0,1sin ,222222y x y x y x xy y x f证明:(1)()y x f ,在点()0,0处连续且偏导数存在; (2)()y x f ,在点()0,0处可微. 【证】(1)因为()y x f y x ,lim 0→→01sinlim 220=+=→→yx xy y x 【无穷小乘以有界量还是无穷小量】()0,0f =,所以()y x f ,在点()0,0处连续. 又因为()()xf x f x ∆-∆+→∆0,00,0l i m000l i m 0=∆-=→∆x x ,所以()00,0='x f ;同理()00,0='y f ,所以()y x f ,在点()0,0处偏导数存在. (2)()y x f ,在点()0,0处的全增量为()()()()()220,01s i n0,00,0|y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆.因为 ()()[]()()22000,00,0limy x yf x f z y x y x ∆+∆∆'+∆'-∆→∆→∆()()()()01sinlim22220=∆+∆∆+∆∆∆=→∆→∆y x y x yx y x ,所以,()y x f ,在点()0,0处可微. 【上述结论用到了()()()()22221sin0y x y x yx ∆+∆∆+∆∆∆≤()()()()22221s i n.y x y x y x ∆+∆∆+∆∆∆=()()[]()()()[]()()()0,0,02121222222→∆∆→∆+∆=∆+∆∆+∆≤y x y x y x y x及夹逼准则 . 】习题8.41.求下列复合函数的偏导数或全导数. (1)设uv e z =,而2,sin x v x u ==,求dxdz ; (2)设()xyx z ln =,求x z ∂∂,yz ∂∂; (3)设()xy y x yf x z ,222+=,求x z ∂∂,yz∂∂. 【解】(1)因为uv ve u z =∂∂,uv ue v z =∂∂;x dx du cos =,x dxdv2=.所以由全导数公式,有 ()x x x x e x ue x ve dxdvv z dx du u z dx dz x x uv uv cos sin 22.cos ..2sin 2+=+=∂∂+∂∂=. 【另解:因为x x e z sin 2=,故 ()'=x x e dxdz x x sin 2sin 2()x x x x e x x c o s s i n 22s i n2+=.】 (2)()[]x x xy e x z '=∂∂ln ln ()[]x x xy x xy e '=ln(ln ln ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=x x xy x y e x xy 1.ln 1)ln(ln ln()⎥⎦⎤⎢⎣⎡+=x y x y x xy ln )ln(ln ln ()()()x x y x y xyxy ln ln ln ln 1+=-; ()()()y xy xy x x yz '=∂∂ln ln .ln ()()x x x xyln ln .ln =. (3)()()()[]x x xy y x f y x xy y x f y x xz'+++'=∂∂,.,.222222 ()[]y f x f y x xy y x f xy .2..,.221222'+'++=;()()()[]y y xy y x f y x xy y x f y x yz'+++'=∂∂,.,.222222 ()[]x f y f y x xy y x f x .2..,.212222'+'++=.2.设⎪⎭⎫⎝⎛+=x y x xy z ϕ,其中()u ϕ是可微函数,证明: +∂∂x z x xy z y z y+=∂∂. 5.设()221,,z yx e z y x f u ++==,而y x z sin 2=,求x u ∂∂,yu ∂∂. 6.求下列函数的22x z ∂∂,y x z ∂∂∂2和22yz∂∂.(1)()y xy f z ,=;(2)()y x e y x f z +=,cos ,sin . 【解】(1)由()y xy f z ,=得1f y x z '=∂∂,21f f x yz '+'=∂∂; []()11211122f y f y y f y xz x ''=''=''=∂∂; []()1211112111112f y f xy f f f x y f f y f yx z y ''+''+'=''+''+'=''+'=∂∂∂; [][]()()22121122221121121222f f x f x f f x f f x x f f x y z y y ''+''+''=''+''+''+''=''+''=∂∂. 【注意:书中有关22yz∂∂的答案有误】.(2)由()y x e y x f z +=,cos ,sin 得31.c o s f e f x x z y x '+'=∂∂+;32.sin f e f y yz y x '+'-=∂∂+; [][]x y x x f e f xxz ''+''=∂∂+3122.c o s ()[]13111cos cos .sin f e f x x f x y x ''+''+'-=+ ()[]33313.cos f e f x e f e y x y x y x ''+''+'++++ [][]y y x y f e f x yx z ''+''=∂∂∂+312.c o s()[]333231312sin sin cos f e f y e f e f e f y x y x y x y x y x ''+''-+'+''+''-=++++; 33223231312sin cos sin cos f e f ye f e f xe f y x y x y x y x y x ''+''-'+''+''-=++++; [][]y yx y f e f y y z ''+''-=∂∂+3222.s i n()[]23222sin sin .cos f e f y y f y y x ''+''-+'-=+ ()33323sin f e f y e f e y x y x y x ''+''-+'++++ 33223232222sin 2sin .cos f e f e f ye f y f y y x y x y x ''+'+'''-''+'-=+++. 【注意:书中有关22yz∂∂的答案有误】.8.设()[]z x f z ϕ+= ①,其中ϕ,f 可导,求dxdz . 【解】①式两端对x 求导并注意到z 是关于x 的函数,得()[]()[]x z x z x f dx dz '++'=ϕϕ()[]()⎥⎦⎤⎢⎣⎡'++'=dx dz z z x f .1ϕϕ ()[]()()[]dxdzz x f z z x f ..ϕϕϕ+''++'=. ② 由②式解得()[]()()[]z x f z z x f dx dz ϕϕϕ+'-+'=1.9.设()y x z z ,=由方程0ln 2=-+⎰-dt e z z xy t ①得到,求x z ∂∂,y z ∂∂,yx z∂∂∂2.【解】(一)①式两端对x 求导并注意到z 是关于y x ,的二元函数得012=-∂∂+∂∂-x e xzz x z ,即 211x e xzz -=∂∂⎪⎭⎫ ⎝⎛+ . ②由②式解得21x e zz x z -+=∂∂. ③ (二)①式两端对y 求导并注意到z 是关于y x ,的二元函数得012=+∂∂+∂∂-y e yzz y z ,即 211y e yzz --=∂∂⎪⎭⎫ ⎝⎛+ . ④由④ 式解得 21y e zz y z -+-=∂∂. ⑤ (三)由③式得212x y e z z y x z -'⎥⎦⎤⎢⎣⎡+=∂∂∂()2.112x e y z z -⎥⎦⎤⎢⎣⎡∂∂+=【代入④】 ()22.1.112x y e e z z z --⎥⎦⎤⎢⎣⎡+-+=()22.13y x e z z--+-=.10.设f 可微,试验证: (1)()22yx f y z -=① 满足方程211y zy z y x z x =∂∂+∂∂; 【证】()x y x f y x z '⎥⎦⎤⎢⎣⎡-=∂∂221()()[]x y x f y x f y '⎭⎬⎫⎩⎨⎧---=222221()()()⎥⎦⎤⎢⎣⎡'--'--=xy x y x f yx fy2222222.()()222222y x f yx fxy-'--=; ()yy x f y y z '⎥⎦⎤⎢⎣⎡-=∂∂221.()()y y x f y y x f '⎥⎦⎤⎢⎣⎡-+-=222211 ()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡'--'--+-=y y x y x f y x f y y x f 222222222.11 ()()()2222222221y x f yx f y y x f -'---=. 所以yz y x z x ∂∂+∂∂11()()⎥⎦⎤⎢⎣⎡-'--=2222221y x f y x f xy x ()()()⎥⎦⎤⎢⎣⎡-'---+22222222211y x f y x f y yx f y ()221.1y x f y -=【由①式】..12y zy z y ==(2)()y x f z ,=满足方程t z s z y z x z ∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂.22,其中t s y t s x -=+=,. 【证】y zx z s y y z s x x z s z ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂..; yz x z t y y z t x x z t z ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂... 故 t z s z ∂∂∂∂.⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y z x z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y z x z .22⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=y z x z . 14.设函数()y x f ,具有二阶连续偏导数,且满足等式0512422222=∂∂+∂∂∂+∂∂yuy x u x u . ①试确定b a ,的值,使等式在变换by x ay x +=+=ηξ,下化为02=∂∂∂ηξu.【解】因为ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u x u x u x u1.1...;ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ubu a b u a u y u y u y u ..... 故有⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂x u x u x u x u u u x u xx ηηξξηηηξξξηξ (2222222)2 222222ηηξξ∂∂+∂∂∂+∂∂=uu u . ②⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∂y u y u y u y u u u y x u yy ηηξξηηηξξξηξ (2222222)()22222..ηηξξ∂∂+∂∂∂++∂∂=ub u b a u a . ③⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫ ⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y u y u b y u y u a u b u a y uyy ηηξξηηηξξξηξ (2222222)222222222ηηξξ∂∂+∂∂∂+∂∂=u b u ab u a . ④ 将②、③、④代入①式左边,得①左⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂=2222224ηηξξu u u ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂++∂∂+22222.12ηηξξu b u b a u a⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂+222222225ηηξξu b u ab u a ()()()2222222512410121285124ηηξξ∂∂+++∂∂∂++++∂∂++=u b b u ab b a u a a 因此方程①化为()()()05124101212851242222222=∂∂+++∂∂∂++++∂∂++ηηξξu b b u ab b a u a a . ⑤因此要使①在变换下化为02=∂∂∂ηξu,必须⎪⎩⎪⎨⎧=++=++.05124,0512422b b a a 解之得 ⎪⎩⎪⎨⎧-=-=,52,2b a 或⎪⎩⎪⎨⎧-=-=,2,52b a 习题8.51.验证下列方程在指定点的邻域存在以x 为自变量的隐函数,并求dxdy. (1)4422y x y x +=+,在点()1,1;【解】令()4422,y x y x y x F --+=,则()342,x x y x F x -=',()342,y y y x F y -=',()01,1=F ,()()021,11,1≠-='='y x F F ,由隐函数存在定理知,方程04422=--+y x y x在点()1,1的某邻域内能唯一确定一个单值可导且当1=x 时,1=y 的函数()x y y =.由公式()()()()223321124242,,y y x x y y x x y x F y x F dx dy y x --=---=''-=. (2)xyy x arctan ln 22=+①,在点()0,1. 【解】令()x y y x y x F arctanln ,22-+=()xyy x arctan ln 2122-+=,则 ()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='2222.112.1.21,x y x y x y x y x F x 22y x y x ++=; ()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='x x y y y x y x F y 1.112.1.21,22222y x x y +-=. ()00,1=F ,()()010,1,10,1≠-='='y x F F ,由隐函数存在定理知,方程0arctanln 22=-+xyy x 在点()0,1的某邻域内能唯一确定一个单值可导且当1=x 时,0=y 的函数()x y y =.由公式()()yx yx x y y x y x F y x F dx dy y x -+=-+-=''-=,,. 2.求下列方程所确定的隐函数()y x z z ,=的偏导数x z ∂∂,yz∂∂. (1)()0ln 22=+-xyz xyz xz ;【解】令()()xyz xyz xz z y x F ln 22,,+-=z y x xyz xz ln ln ln 22+++-=,则x yz z F x 122+-=';yxz F y 12+-=';z xy x F z 122+-='. 所以z xy x x yz z F F x z z x 122122+-+--=''-=∂∂;z xy x y xz F F y z z y 12212+-+--=''-=∂∂. (2)()z y x f z +-=2.【解】令()()z z y x f z y x F -+-=2,,,则()z y x f F x +-'='2;()z y x f y F y +-'-='22;()12-+-'='z y x f F z . 所以()()122-+-'+-'-=''-=∂∂z y x f z y x f F F x z z x ()()zy x f zy x f +-'-+-'=221; ()()1222-+-'+-'--=''-=∂∂z y x f z y x f y F F y z z y ()()1222-+-'+-'=z y x f zy x f y . 3.设()y x z z ,=满足方程03333=-++axyz z y x ,求22xz∂∂.【解】令()axyz z y x z y x F 3,,333-++=,则ayz x F x 332-=';axy z F z 332-='. 所以a x y z a y z x F F x z z x 333322---=''-=∂∂a x y z x a y z --=22. ① 所以=∂∂22x z ()()()222222a x yz ay x z z x ayz axy z x x z ay -⎪⎭⎫⎝⎛-∂∂---⎪⎭⎫ ⎝⎛-∂∂【代入①】()()()2222222222.axyz ay axy z x ayz z x ayz axy z x axy z x ayz ay -⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛---=()()[]()()()()[]()3222222222axyzaxyz ay x ayz z x ayz axy z axy zx x ayz ay ----------=()()323312a x yza z xy --=.4.设函数()z y x f u ,,=可微,其中()()x z z x y y ==,由方程组⎪⎩⎪⎨⎧==,,xyxze z e y 确定,求dx du . 【解】方程组⎪⎩⎪⎨⎧==,,xyxze z e y 两边关于x 求导【并注意到()()x z z x y y ==,】得 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y e dx dz dx dz x z e dx dy xy xz 即⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y z dxdz dx dz x z y dx dy解得()()⎪⎪⎩⎪⎪⎨⎧-+=-+=.11,1122yzx xz yz dxdz yzx xy yz dx dy所以,由全导数公式得dx dz f dx dy f f dx du z y x ..'+'+'= ()()z y x f yzx xz yz f yz x xy yz f '-++'-++'=.11.1122. 5.求曲面4:=+zy zx e e S ①在点()1,2ln ,2ln 0M 处的切平面方程.【解】令()4,,-+=zy z xe e z y x F ,则z xx e z F 1=';z yy e z F 1=';z yz xz e zye z x F 22--='.曲面S 在点0M 处的切平面的法向量为 {}()||1,2ln ,2ln 22,1,1,,0⎭⎬⎫⎩⎨⎧--='''=z yz x z y z x M z y x e z ye z x e z e z F F F{}2ln 4,2,2-=.所以,曲面S 在点0M 处的切平面方程为()()().012ln 42ln 22ln 2=---+-z y x 即 ()02ln 422=-+z y x .8.求曲线⎩⎨⎧=-+-=-++Γ,04532,03:222z y x x z y x ①在点()1,1,10M 处的切线方程与法平面方程.【解法一】方程组两边关于x 求导【并注意到()()x z z x y y ==,】得⎩⎨⎧='+'-=-'+'+.0532,03222z y z z y y x ②将点()1,1,10M 代入②式有()()()()⎩⎨⎧='+'-=-'+'.015132,011212z y z y ③由③式解得 ()()1611,1691-='='z y . 故Γ在点()1,1,10M 处的切向量为()(){}{}1,9,16||161,169,11,1,1-⎭⎬⎫⎩⎨⎧-=''=z y s 切.所以,Γ在点()1,1,10M 处的切线方程L 为1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【解法二】(一)先求03:222=-++x z y x S 在点()1,1,10M 处的切平面方程. 令()x z y x z y x F 3,,222-++=,则32-='x F x ;y F y 2=';z F z 2='. 曲面S 在点0M 处的切平面的法向量为 {}{}(){}2,2,12,2,32,,||1,1,10-=-='''=z y x F F F n M z y x .所以,曲面S 在点0M 处的切平面方程为 ()()()012121.1=-+-+--z y x ,即 0322=-++-z y x . (二) Γ在点()1,1,10M 处的切线方程为⎩⎨⎧=-+-=-++-,04532,0322:z y x z y x L若进一步化L 为点向式,则为 1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【注意】解法二的一般思路叙述如下:欲求曲线()()⎩⎨⎧==Γ,0,,,0,,:z y x G z y x F 在其上某点()0000,,z y x M 处的切线方程.首先分别求出曲面()0,,:1=z y x F S 在点0M 处的切线平面01111=+++D z C y B x A . ①及曲面()0,,:2=z y x G S 在点0M 处的切线平面02222=+++D z C y B x A . ② 然后将方程①、②联立即为Γ在0M 处的切线方程.即⎩⎨⎧=+++=+++Γ.0,0:22221111D z C y B x A D z C y B x A请同学们思考此解法的理论依据是什么?10.设函数()y x z z ,=由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F ① 所确定,且F 为可微函数,求dz .【解】由①得0,,=⎪⎪⎭⎫⎝⎛x z z y y x dF由微分形式的不变性,有0...321=⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'x z d F z y d F y x d F 即01.1.1.232221=⎪⎭⎫ ⎝⎛+-'+⎪⎭⎫ ⎝⎛-'+⎪⎪⎭⎫ ⎝⎛-'dz x dx x z d F dz z y dy z d F dy y x dx y F 于是有dy F z F y x dx F y F x z dz F z y F x .111212`132223'-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'-'=⎪⎭⎫⎝⎛'-' 所以得223212`1321.11F zy F x dyF z F y x dx F y F x z dz '-''-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫⎝⎛'-'=. 习题8.62.求133223++-=xy y x x z 在点()1,31M 处从1M 到()5,62M 的方向的方向导数. 【解】{}4,321==M M,⎭⎬⎫⎩⎨⎧==54,530h .()12363||1,3221=+-=∂∂y xy x x z M ;()963||1,3221-=+-=∂∂xy x y z M . {}().0549531254,53.9,121=⨯-+⨯=⎭⎬⎫⎩⎨⎧-=∂M h3.求xyz u =在点()2,1,51M 处从1M 到()14,4,92M 的方向的方向导数. 【解】{}12,3,421==M M,⎭⎬⎫⎩⎨⎧==1312,133,1340h .()2||2,1,51==∂∂yz x u M ;()10||2,1,51==∂∂xz yuM ,()5||2,1,51==∂∂xy z u M . {}.1398131251331013421312,133,134.5,10,21=⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧=∂M h4.求()()222321ln ,,z y x z y x f +++=在点()1,1,20M 处的梯度. 【解】()523212||1,1,22220=+++=∂∂z y x x x f M ; ()523214||1,1,22220=+++=∂∂z y x y y f M ; ()533216||1,1,22220=+++=∂∂z y x z z f M . 所以,()⎭⎬⎫⎩⎨⎧=53,52,521,1,2gradf .5.求22z xy u -=在()1,1,2-M 处方向导数的最大值. 【解】()22||1,1,2-==∂∂-y x u M ;()42||1,1,2==∂∂-x y uM,()22||1,1,2-=-=∂∂-z z u M , 故 (){}2,4,21,1,2--=-g r a d u ,所以方向导数的最大值为 ()()().622421,1,2222=-++-=-g r a du6.求222z y x u ++=沿曲线()⎪⎪⎩⎪⎪⎨⎧===Γ,sin 6,,2:3t z t y t x ππ在点()0,1,2M 处的切线方向的方向导数.【解】()0,1,2M 点对应参数1=t .Γ在点()0,1,2M 处的切向量为()()(){}(){}{}6,3,2c o s6,3,2,,||121-=='''===t t t t t z t y t x h π.⎭⎬⎫⎩⎨⎧-==76,73,720h .()42||0,1,2==∂∂x x u M ;()22||0,1,2==∂∂y yuM ,()02||0,1,2==∂∂z x u M . 所以有{}.276073272476,73,72.0,2,4=⎪⎭⎫⎝⎛-⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧-=∂Mh9.设l 是曲面632:222=++z y x S 在点()1,1,1A 处指向外侧的法向量,求zy x u 2286+=在A 点沿方向的方向导数. 【解】令()632,,222-++=z y x z y x F ,则x F x 4=';y F y 6=';z F z 2='.曲面S 在点()1,1,1A 处指向外侧的法向量为 {}{}(){}{}1,3,2||2,6,42,6,4,,||1,1,1=='''=z y x F F F Az y x ;⎭⎬⎫⎩⎨⎧==141,143,1420l . ()146866||1,1,122=+=∂∂y x z x x u A ;()148868||1,1,122=+=∂∂y x z y y u A ;()1486||1,1,1222-=+-=∂∂z y x z uA .所以,().14,148,1461,1,1⎭⎬⎫⎩⎨⎧-=∂l ⎭⎬⎫⎩⎨⎧141,143,142()71114114143148142146=⨯-+⨯+⨯=. 习题8.71.求下列的极值:(1)()223333,y x y x y x f z --+==; 【解】(一)解方程组()()⇒⎪⎩⎪⎨⎧=-='=-='.063,,063,22y y y x f x x y x f y x ⎩⎨⎧==2,0,2,0y x 得四个驻点:()()()().2,2,0,2,2,0,0,04321P P P P (二)()()().66,,0,,66,-=''==''=-=''=y y x f C y x f B x y x f A yy xy xx.因为该函数不存在不可微点,故()00,0=f 为函数的极大值;()82,2-=f 为 函数的极小值.(2)x xy y x z 82322+-+=; 【解】(一)解方程组()()⇒⎩⎨⎧=-='=+-='.026,,0822,x y y x f y x y x f yx ⎩⎨⎧-=-=26y x 故得唯一驻点:()2,60--P ;无不可微点.(二)()2,=''y x f xx,()2,-=''y x f xy ;()6,=''y x f yy .在()2,60--P 处,因为 ()022,6>=--''=xxf A ;()22,6-=--''=xy f B ;()62,6=--''=yy f C , ()0826222>=--⨯=-=∆B AC ,故()242,6-=--f 为函数的极小值.(3)()()y y y x y x f ln 2,22++=; 【解】(一)解方程组()()()⇒⎪⎩⎪⎨⎧=++='=+='.0ln 12,,022,22y y x y x f y x y x f y x ⎩⎨⎧==-.,01e y x 故得唯一驻点:()10,0-e P ;无不可微点.(二)()224,y y x f xx+='',()xy y x f xy 4,='';()yx y x f yy 12,2+=''.在()10,0-e P 处, 因为()024,021>+=''=--e e f A xx;()0,01=''=-e f B xy ;()e ef C yy =''=-1,0, ()0024222>-⨯+=-=∆-e e B AC ,故()ee f 1,01-=-为函数的极小值.(4)()y y x e z x 222++=. 【解】(一)解方程组()()()()⇒⎪⎩⎪⎨⎧=+='=+++='.022,,01422,222y e y x f y y x e y x f xyx x ⎪⎩⎪⎨⎧-==.1,21y x 故得唯一驻点:⎪⎭⎫⎝⎛-1,210P ;无不可微点.(二)()()124,22+++=''y y x e y x f x xx,()()44,2+=''y e y x f x xy ;()x yy e y x f 22,=''. 在⎪⎭⎫ ⎝⎛-1,210P 处,因为021,21>=⎪⎭⎫ ⎝⎛-''=e f A xx;01,21=⎪⎭⎫ ⎝⎛-''=xy f B ;⎪⎭⎫⎝⎛-''=1,21yy f C e 2=,002222>-⨯=-=∆e e B AC ,故21,21e f -=⎪⎭⎫⎝⎛-为函数的极小值.2.求下列的极值:(1)()22222,y x y x y x f -+=在区域(){}0,4|,22≥≤+=y y x y x D ; 【解】(一)内部 解方程组()()()()⇒⎪⎩⎪⎨⎧=-='=-='.022,,012,22x y y x f y x y x f yx ⎩⎨⎧==.0,0y x ;⎩⎨⎧-=-=.1,2y x (舍);⎩⎨⎧=-=.1,2y x ;⎩⎨⎧-==.1,2y x (舍); ⎩⎨⎧==.1,2y x .因此得区域D 内三驻点:()0,01P 、()1,22-P 、()1,23P .计算得()00,0=f ,()21,2=±f . (二)边界1.在区域D 的边界[]()2,0422∈=+y y x 上,由于。

高等数学郑州大学教材答案

高等数学郑州大学教材答案

高等数学郑州大学教材答案(本篇文章为一个关于高等数学的答案指南,为了方便观看和阅读体验,将按照题目和分小节论述的方式进行排版,不包含“小节一”、“小标题”等词语)一、题目:极限与连续1. 求以下极限:(1)lim(x→0) ((1+sin3x)^(1/2)-cos(x^2)) / x(2)lim(x→∞) (e^x - e^(-x)) / (e^x + e^(-x))答案:(1)根据泰勒展开式,可以得到:(1+sin3x)^(1/2) = 1 + (1/2)sin3x - (3/8)(sin3x)^2 + O((sin3x)^3)利用余弦的泰勒展开式cos(x^2) = 1 - (1/2)(x^2) + (1/24)(x^2)^2 +O((x^2)^3)将以上结果代入原式,得到:lim(x→0) ((1+sin3x)^(1/2)-cos(x^2)) / x= lim(x→0) [(1 + (1/2)sin3x - (3/8)(sin3x)^2 + O((sin3x)^3)) - (1 -(1/2)(x^2) + (1/24)(x^2)^2 + O((x^2)^3))] / x= lim(x→0) [(1/2)sin3x - (3/8)(sin3x)^2 + O((sin3x)^3) + (1/2)(x^2) - (1/24)(x^2)^2 - O((x^2)^3)] / x= lim(x→0) [((1/2)x^2 - (1/24)(x^2)^2) / x] + O(x^2)= lim(x→0) [(1/2)x - (1/24)x^2] + O(x^2)= 0(2)利用高中知识可以知道,当x→∞时,e^x增长得非常快,e^(-x)趋近于0。

根据这个性质,lim(x→∞) (e^x - e^(-x)) / (e^x + e^(-x))= lim(x→∞) [(1 - e^(-2x)) / (1 + e^(-2x))]= lim(x→∞) [(e^(2x) - 1) / (e^(2x) + 1)]令t = e^(2x),当x→∞时,t→∞。

2012级郑州大学工学院高数课后习题答案

2012级郑州大学工学院高数课后习题答案

习题3.11. 给定函数32()6116f x x x x =-+-.(1) 验证在区间[1,3]上满足罗尔定理条件,并求出罗尔定理结论中ξ的值;(2) 验证在区间[0,3]上满足拉格朗日中值定理的条件,并求出拉格朗日中值定理结论中ξ的值。

解:(1)()f x 为多项式函数,显然在(,)-∞+∞上可导,特别在[1,3]上连续,在(1,3)内可导,又(1)161160f =-+-=,32(3)3633360f =-+-= ,故有(1)(3)f f =,满足罗尔定理的条件。

2()312110f x x x '=-+=,可解得23x =±,都属于(1,3),故123ξ=+,223ξ=-。

(2)()f x 为多项式函数,显然在(,)-∞+∞上可导,特别在[0,3]上连续,在(0,3)内可导,满足满足拉格朗日中值定理的条件。

显然(0)6f =-,2(3)(0)()31211230f f f ξξξ-'=-+==-,易解得121,3x x ==,但是3(0,3)∉,故1ξ=。

2. 验证()sin f x x =,()cos g x x =在区间[0,]2π上满足柯西中值定理条件,并求出柯西中值定理结论中ξ的值。

解:显然()sin f x x =,()cos g x x =在区间[0,]2π上连续,在(0,)2π上可导,并且对任意(0,)2x π∈,()sin 0g x x '=-≠,故满足柯西中值定理条件。

()cos cot ()sin f g ξξξξξ'==-'-,()(0)102101()(0)2f fg g ππ--==---,可求得4πξ=。

3. 不用求出函数()(1)(2)(1)(2)f x x x x x x =--++的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间。

解:由于()f x 为五次多项式,故可知()f x '为4次多项式,而4次多项式最多有4个实根,且()f x 和()f x '都在(,)-∞+∞上可导。

___《高等数学》第五版下册习题答案

___《高等数学》第五版下册习题答案

___《高等数学》第五版下册习题答案以下是练8-1的答案:1.对于第一题,我们可以使用分部积分法来求解。

具体来说,我们可以将被积函数拆分成两个部分,一部分是三角函数,另一部分是指数函数。

然后,我们可以分别对这两个部分进行积分,并利用分部积分公式将它们结合起来,最终得到原函数的表达式。

2.第二题是一个比较简单的求导题。

我们只需要利用链式法则和乘法法则,对给定的函数进行求导即可。

需要注意的是,有些项可能需要使用指数函数的求导公式来进行求导。

3.第三题是一个求极限的题目。

我们可以利用洛必达法则来求解。

具体来说,我们可以将被积函数化为一个分式,然后对分子和分母分别求导,最后利用洛必达法则求出极限的值。

4.第四题是一个求解微分方程的问题。

我们可以先将微分方程化为标准形式,然后利用分离变量法或者其他的求解方法来求解。

需要注意的是,有些微分方程可能需要使用变量代换或者其他的技巧来进行求解。

5.第五题是一个求解曲线长度的问题。

我们可以利用弧微分公式来求解。

具体来说,我们可以将曲线分成若干小段,然后对每一小段进行求解,最后将它们相加得到曲线的长度。

需要注意的是,有些曲线可能需要使用参数方程或者其他的表示方法来进行求解。

练9-2:本题要求证明一个三次方程的根的关系式。

先根据题目中给出的条件,将三次方程化为标准形式,然后利用___定理求出三个根的和、积,再利用___引理求出其中两个根的积的模,最后代入关系式中验证即可。

练9-3:本题要求证明一个函数的连续性。

先根据定义分别讨论左极限和右极限是否相等,若相等,则证明函数在该点处连续。

若不相等,则需要进一步讨论函数在该点处是否有间断点,若有,则证明函数在该点处不连续;若无,则证明函数在该点处跳跃,但仍是连续的。

练9-4:本题要求求出一个定积分的值。

首先根据积分的定义,将被积函数分解为正负两部分,然后利用线性性质将定积分分解为两个简单积分的和,再利用换元法或分部积分法求解即可得到最终结果。

高等数学下iCourse教材答案

高等数学下iCourse教材答案

高等数学下iCourse教材答案为了方便广大学生更好地学习高等数学,我们为大家准备了iCourse教材的答案。

以下是对iCourse高等数学下部分章节的习题答案,希望对学生们的学习有所帮助。

第一章:极限与连续1. 习题1.1:(1) f(x) = 2x - 3,f(4) = 5(2) g(x) = x^2 + 3x, g(-2) = 2(3) h(x) = 3/x, h(5) = 3/5...2. 习题1.2:(1) 设f(x) = 3x - 2,则f(2) = 4(2) 设g(x) = x^2 - 5,则g(-3) = 4(3) 设h(x) = 4/x^2,则h(2) = 1/4...第二章:导数与微分1. 习题2.1:(1) 设f(x) = 3x^2 + 2x,求f'(2)(2) 设g(x) = 2x^3 - 5x^2 + 3x,求g'(1)(3) 设h(x) = x^4 - 2/x,求h'(3)...2. 习题2.2:(1) 设f(x) = sin(x) + cos(x),求f'(π/4)(2) 设g(x) = ln(x) + e^x,求g'(2)(3) 设h(x) = x^2 * e^x,求h'(1)...第三章:数列与级数1. 习题3.1:(1) 设a1 = 1,an+1 = 2an + 1,求a3(2) 设b1 = 3,bn+1 = (2n+1)bn,求b4(3) 设c1 = 4,cn+1 = 3cn - 1,求c2 ...2. 习题3.2:(1) 设a1 = 2,an+1 = an + 1/n,求a5(2) 设b1 = 1,bn+1 = (n+1)bn,求b3(3) 设c1 = -1,cn+1 = cn^2,求c2...以上是iCourse高等数学下部分章节的部分习题和答案,希望能够对同学们的学习有所帮助。

学习高等数学需要不断练习,理解各个概念和定理,并能够熟练运用到解题过程中。

高等数学下册习题答案详解

高等数学下册习题答案详解

高等数学下册习题答案详解高等数学是大学数学的一门重要课程,它涵盖了微积分、线性代数、概率论等内容。

在学习过程中,习题是检验学生理解和掌握程度的重要方式。

下面将详细解答高等数学下册的一些典型习题,帮助读者更好地理解和应用数学知识。

1.微分方程习题解答微分方程是高等数学下册中的重要内容之一。

下面我们来解答一个经典的微分方程习题:已知微分方程dy/dx = 2x + 3,求其通解。

解答:首先将方程变形为dy = (2x + 3)dx,然后对两边同时积分,得到∫dy = ∫(2x + 3)dx。

对左边进行积分得到y = ∫dy = y + C1,其中C1为常数。

对右边进行积分得到∫(2x + 3)dx = x^2 + 3x + C2,其中C2为常数。

将上述结果代入原方程,得到y = x^2 + 3x + C2 - C1,即为微分方程的通解。

2.向量习题解答向量是高等数学下册中的另一个重要内容。

下面我们来解答一个向量习题:已知向量a = (1, 2, -3)和向量b = (4, -1, 2),求向量a和向量b的数量积和向量积。

解答:向量a和向量b的数量积为a·b = 1×4 + 2×(-1) + (-3)×2 = 4 - 2 - 6 = -4。

向量a和向量b的向量积为a×b = (2×2 - (-3)×(-1), (-3)×4 - 1×2, 1×(-1) - 2×4) = (7, -14, -9)。

3.级数习题解答级数是高等数学下册中的另一个重要内容。

下面我们来解答一个级数习题:已知级数∑(n=1)^(∞) 1/n^2 是收敛的,求级数∑(n=1)^(∞) 1/n^4 的和。

解答:由已知的级数∑(n=1)^(∞) 1/n^2 是收敛的可知,其和为π^2/6。

因为级数∑(n=1)^(∞) 1/n^4 是收敛的,所以存在一个常数S使得∑(n=1)^(∞) 1/n^4 = S。

习题册下册(2009参考解答)

习题册下册(2009参考解答)

+
cos 2x 8
。■
注: y1* 也容易由观察法获得。
――――――――――――――――――――――――――――――――――――――――――
∫ 3、设曲线积分 [ f ′(x) + 2 f (x) + ex ]ydx + f ′(x)dy 在全平面内与积分路径无关,其中 f (x) L
二阶可导,且 f (0) = 0 , f ′(0) = 1 ,求 f (x) 。
z

【解】∵αr // βr ⇔ x = 5 = − 1 ,∴ x = 15, z = − 1 。■
31 z
5
―――――――――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――――――――――――
习题 8-2 向量的乘积
ex 。 =1
⑵求微分方程通解:
∵特征方程为 r 2 − r − 2 = 0 ,特征值为 r = −1,2 ,
∴对应齐次微分方程通解为
F (x) = C1e−x + C2e2x 。
由观察法(也可用待定系数法确定)易知原微分方程有特解 f *(x) = − 1 ex 。 2
于是,原方程通解为
f
(x)
=
=
1
,即
C1
=

1 6
,
C2
=
2 3
,故所求特解为
f (x) = − 1 e−x + 2 e2x − 1 ex 。■ 632
――――――――――――――――――――――――――――――――――――――――――
4、一根长度为 a 米的均匀链条放置在一个水平面光滑的桌面上,假定滑动开始时链条在桌边

高等数学下册习题答案

高等数学下册习题答案

高等数学下册习题答案高等数学是大学数学的一门重要课程,它是数学的一门基础性课程,也是培养学生数学思维和解决问题能力的重要途径。

在高等数学学习过程中,习题是必不可少的一部分,通过解答习题可以帮助学生巩固所学知识,提高解决实际问题的能力。

下面我将为大家提供一些高等数学下册习题的答案,希望对大家的学习有所帮助。

1. 求函数 f(x) = 2x^3 - 3x^2 - 12x + 5 的极值点和极值。

首先,我们需要求出函数的导数 f'(x)。

对于 f(x) = 2x^3 - 3x^2 - 12x + 5,求导得到 f'(x) = 6x^2 - 6x - 12。

接下来,我们将 f'(x) = 0,解得 x = -1 和 x = 2。

将这两个解代入 f(x) 中,得到f(-1) = 20 和 f(2) = -11。

因此,函数 f(x) 的极值点为 x = -1 和 x = 2,极小值为 f(-1) = 20,极大值为 f(2) = -11。

2. 求函数 f(x) = x^4 - 4x^3 + 6x^2 的拐点。

为了求出函数的拐点,我们需要求出函数的二阶导数 f''(x)。

对于 f(x) = x^4 -4x^3 + 6x^2,求导得到 f'(x) = 4x^3 - 12x^2 + 12x,再次求导得到 f''(x) =12x^2 - 24x + 12。

接下来,我们将 f''(x) = 0,解得 x = 1。

将这个解代入 f(x) 中,得到 f(1) = 3。

因此,函数 f(x) 的拐点为 x = 1,拐点坐标为 (1, 3)。

3. 求曲线 y = e^x 在点 (0, 1) 处的切线方程。

为了求出切线方程,我们需要求出曲线在点 (0, 1) 处的斜率。

对于曲线 y = e^x,求导得到 y' = e^x。

将 x = 0 代入 y',得到 y'(0) = e^0 = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题7.73.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+ 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤⎪⎩⎪⎨⎧==(三)(1)、(2)联立消去x 得R z 21=所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧==6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D .习题7.82.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±=' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为()()(){}|1,,='''=t t z t y t x {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x '''={}{}20023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须与垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,s i n c o s 2,c o s |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .习题8.11.求下列函数的的定义域,并画出定义域的图形. (3)221yx z w --=;(4)19222222-++---=z y x z y x u .【解】(3)要使函数表达式有意义,必须满足 0122>--y x 即 122<+y x 故所求函数的定义域为(){}1|,22<+=y x y x D . (4)要使函数表达式有意义,必须满足⎪⎩⎪⎨⎧>-++≥---.01,09222222z y x z y x 即 ⎪⎩⎪⎨⎧>++≤++.1,9222222z y x z y x 故所求函数的定义域为(){}91|,,222≤++<=z y x z y x D .3.求下列各极限. (1)()()⎪⎪⎭⎫ ⎝⎛++→z y x z y x 111lim3,2,1,,; (2)()()⎪⎪⎭⎫ ⎝⎛+→x y y x y x 1sin 1sin lim 0,0,; (3)()()()xyy x xy tan 10,0,1lim+→; (4)()()()22220,0,lim y x y x xy y x +-→;(5)()()y x y x y x +-++→11lim220,0,; (6)()()2220,0,lim yx yx y x +→. 【解】(1)因为函数()zy x z y x f 111,,++=是三元初等函数,其定义域为(){}0,0,0|,,≠≠≠=z y x z y x D ,且()D ∈3,2,1,所以三元函数()zy x z y x f 111,,++=在()3,2,1处连续,从而有 ()()611312111111lim3,2,1,,=++=⎪⎪⎭⎫ ⎝⎛++→z y x z y x . (2)()()⎪⎪⎭⎫⎝⎛+→x y y x y x 1sin 1sin lim 0,0, ()()y x y x 1sinlim0,0,→=()()0001sin lim 0,0,=+=+→xy y x . 【其中()()y x y x 1sinlim 0,0,→()()01sin lim 0,0,==→xy y x 均是利用有界量乘以无穷小量还是无穷小量】. (3)()()()xyy x xy tan 10,0,1lim+→()()()e e xy xyxyxyy x ==⎥⎦⎤⎢⎣⎡+=→1tan 10,0,1lim.(4)()()()22220,0,lim y x y x xy y x +-→()()()0.lim 22220,0,=+-=→xy y x y x y x .【上述结论中用到12222≤+-y x y x 及()()0lim 0,0,=→xy y x ,即利用有界量乘以无穷小量还是无穷小量】. (5)()()y x y x y x +-++→11lim220,0,()()()()11lim 22220,0,+++++=→y x y x y x y x()()().lim 220,0,y x y x y x ++=→()().0210111lim220,0,=⨯=+++→y x y x 【上述结论中用到()y x yx y x y x y x +=++≤++≤2220,()()()0lim 0,0,=+→y x y x 及夹逼准则】.(6)()()2220,0,lim y x y x y x +→()()0.lim 2220,0,=+=→y y x x y x .【上述结论中用到1222≤+yx x 及()()0lim 0,0,=→y y x ,即利用有界量乘以无穷小量还是无穷小量】.4.证明极限()()4220,0,lim y x xy y x +→不存在.【证】(一)让动点()y x P ,沿直线0=y 趋于点()0,0O 时,()4220lim y x xy y x +=→000.lim 4220=+=→x x x . (二)让动点()y x P ,沿抛物线x y =2趋于点()0,0O 时,()42202lim y x xy xy x +=→21.l i m 220=+=→x x x x x .习题8.21.证明:函数()444,y x y x f +=在原点()0,0处连续,但不存在偏导数()0,0x f ',()0,0y f '.【证明】 (一)因为()()()()0,00,lim0,0,f y x f y x ==→,所以,()y x f ,在()0,0处连续.(二)因为()()x f x f x ∆-∆+→∆0,00,0lim 0()xx x ∆-+∆=→∆00lim4440 xx x ∆∆=→∆0l i m不存在,所以不存在偏导数()0,0x f ';由轮换对称性知,也不存在偏导数()0,0y f '. 2.求下列函数对各自变量的一阶偏导数.(1)x y y x z 33-=; (2)xy z ln =;(3)xy e z x sin =; (4)xyz arctan =;(5)()yxy z +=1; (6)2yxe z y=.【解】(1)323y y x xz-=∂∂;x y x y z 233-=∂∂ . (2)因y x z ln ln +=,故x x z 1=∂∂;yy z 1=∂∂. (3)xy ye xy e xzx x cos sin +=∂∂; xy xe y z x cos =∂∂ (4)x x y x y xz '⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222222y x y x y y x x +-=⎪⎭⎫⎝⎛-+=; yx y x y xz'⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222221y x x x y x x +=⎪⎭⎫⎝⎛+=. (5)()()xy y ye xy z +=+=1ln 1;()()[]x xy y xy y e x z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=+y xy y e xy y .111ln ()1211-++=y xy xy y ;()()[]y xy y xy y e y z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++=+x xy y xy e xy y .11)1ln(1ln ()⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln(1()()[]xy xy xy xy y ++++=-)1ln(111. (6)2y e x z y =∂∂;422.y y e y e x y z y y -=∂∂()422y y y xe y -=()32yy xe y -=. 3.求曲线⎪⎩⎪⎨⎧=+=Γ,4,4:22y y x z 在点()5,4,20M 处的切线方程及切线对于x 轴的倾角的度数. 【解】(一)Γ的参数方程为⎪⎪⎩⎪⎪⎨⎧+===Γ416,4,:2x z y x x (x 为参数).点0M 对应参数2=x ,故切向量为{}1,0,12,0,1|2=⎭⎬⎫⎩⎨⎧==x x s 切. 所以,点()5,4,20M 处的切线方程为150412-=--=-z y x . (二)因为()()1244,2||4,2)4,2(22=='⎪⎪⎭⎫ ⎝⎛+='xy x f x x ,所以切线对于x 轴的倾角的度数为41arctan πα==. 4.求下列函数的所有二阶偏导数.(1)()y x z 32sin +=; (2)42244y y x x z +-=; (3)xy z 2=; (4)yxy x y x z arctan arctan 22-=. 【解】 (1)()y x xz32cos 2+=∂∂; ()y x y z 32cos 3+=∂∂;()y x x z 32sin 422+-=∂∂;()y x y x z 32sin 62+-=∂∂∂;()y x yz32sin 922+-=∂∂. (2)2384xy x xz-=∂∂; 3248y y x y z +-=∂∂; 2222812y x x z -=∂∂;xy y x z 162-=∂∂∂;2222128y x yz +-=∂∂. (3)()x xy xy x z '=∂∂2.2121()x yy xy 212.2121==;()y xy xy y z '=∂∂2.2121()yx x xy 212.2121==. xyx y x y x y x z 42.12121222-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂;xyx x y y x z 421.121212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=∂∂∂; xyy xy x y x y z 42.12121222-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∂∂. (4)yx y x y x z arctan arctan22-=. x x y xy x y x x z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=y y x y x y x y x x y x 1.11.11a r c t a n 222222 223222a r c t a n 2yx y y x y x x y x +-+-= ()2222a r c t a n 2y x yy x x y x ++-=y x y x -=a r c t a n 2; y y y x y x y x y z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=22222.11a r c t a n 21.11y x y x y y x y x x y x 222223a r c t a n 2yx xy y x y y x x ++-+= ()y xy yx x y xa r c t a n 22222-++=y x y x a r c t a n 2-=.⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++='⎪⎭⎫ ⎝⎛-=∂∂2222.112arctan 2arctan 2x y x y x x y y x y x x z x 222a r c t a n 2yx xyx y +-=. 11.112a r c t a n 222-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛-=∂∂∂x x y x y x y x y x z y 12222-+=y x x 2222yx y x +-=; y y x y x y z '⎪⎪⎭⎫ ⎝⎛-=∂∂arctan 222 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-=22.112a r c t a n 20y x y x y y x 222a r c t a n 2yx xyy x ++-=. 5.验证下列等式.(1)设xy xe z =,证明: z yz y x z x=∂∂+∂∂; (2)证明函数r u 1=,222z y x r ++=满足0222222=∂∂+∂∂+∂∂zu y u x u ;(3)证明()bx e t x T tab sin ,2-=满足热传导方程22xTa t T ∂∂=∂∂,其中a 为正常数,b 为任意常数.【证】(1)因⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∂∂x y e x y e x e x z x y x y x y 12;x yx y e x e x y z =⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=∂∂1.所以,z xe ye x y e x y z y x z x x y x y x y ==+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂+∂∂1.(2)()x z y x z y x x r '++++=∂∂22222221()r xx z y x =++=221222;①x r dr du x u ∂∂=∂∂.【因为①】32.1rx r x r -=-=. 623322.3..1rx r r x r r x x x u ⎪⎭⎫ ⎝⎛∂∂--=⎪⎭⎫ ⎝⎛-∂∂=∂∂【因为①】 5226233.3..1rx r r r x r x r --=⎪⎭⎫ ⎝⎛--=; ② 同理可得522223ry r y u --=∂∂; ③ 522223r z r z u --=∂∂ ④所以,222222zuy u x u ∂∂+∂∂+∂∂【因为②,③,④】()5222233r z y x r ++--=033522=--=rr r . (3)由()bx e t x T t ab sin ,2-=,得()[]bx e ab bx ab e tTt ab t ab sin sin 2222---=-=∂∂. ① []bx be b bx e xTt ab t ab cos .cos 22--==∂∂.[]b bx be x T tab .sin 222-=∂∂-bx e b t ab sin 22--=. ② 所以有22xTa t T ∂∂=∂∂bx e ab t ab sin 22--=.6.设()()⎪⎩⎪⎨⎧=+≠+++=,0,0,0,1cos ,22222222y x y x y x y x y x f 求()0,0x f ',()0,0y f '.【解】因为()()xf x f x ∆-∆+→∆0,00,0lim 0 ()[]()xx x x ∆-+∆+∆=→∆001cos0lim222201coslim 0=∆∆=→∆x x x 【上述结论中用到11cos ≤∆x及0lim 0=∆→∆x x ,即利用有界量乘以无穷小量还是无穷小量】,所以,()00,0='x f . 同理,()00,0=''y f .习题8.31.求下列函数的全微分.(1)yxy x z +=24;(2)32y x ez +=;(3)xyz u =;(4)z xy u =.【解】 (1)因为y xy x z 18+=∂∂,224yx x y z -=∂∂,所以 dy y zdx x z dz ∂∂+∂∂=dy y x x dx y xy ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=22418. (2)因为()xyx y x e xz'+=∂∂+2222⎪⎪⎭⎫ ⎝⎛+=+x y x eyx 2.2122222222y x xe y x +=+; 由轮换对称性知,2222yx ye y z yx +=∂∂+.所以dy y zdx x z dz ∂∂+∂∂=()ydy xdx yx e y x ++=+2222. (3)因为yz x u =∂∂,xz y u =∂∂,xy zu=∂∂,所以,x y d z x z d y y z d x dz zu dy y u dx x u du ++=∂∂+∂∂+∂∂=. (4)z xy u =. 因为z y x u =∂∂,1-=∂∂z xzy y u ,y xy zuz ln =∂∂,所以, ydz xy dy xzy dx y dz zu dy y u dx x u du z z z ln 1++=∂∂+∂∂+∂∂=-. 2.求下列函数在指定点的全微分.(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .【解】(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .因为x zy x y x z x u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=∂∂-111⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-y y x z z1111; yz y x y x z y u '⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2111y x y x z z ; ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂211.ln z y x y x z u z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-2111ln 1z y x y x z z.所以dz zu dy y u dx x u du ∂∂+∂∂+∂∂=+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-dx y y x z z1111dy y x y x z z⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2111dz z y x y x z z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+-2111ln 1.从而 ()dy dx du -=1,1,1|.4.求曲面22:y x z S +=在点()2,1,10M 处的切平面方程和法线方程.【解】令()z y x z y x F -+=22,,. 则曲面S 在点0M 处的切平面的法向量为 ()()(){}000,,M F M F M F z y x '''= {}(){}1,2,21,2,2|2,1,1-=-=y x .所以S 在点0M 处的切平面方程为()()()02.1121.2=---+-z y x . 化简得0222=--+z y x . 法线方程为122121--=-=-z y x . 6.利用全微分求近似值. (1)()()3397.102.1+;【解】(1)令(),,33y x y x f z +==则()()332133223,,23,yx y y x f yxyx x y x f y y x +='+='-.取03.0,02.0,2,100-=∆=∆==y x y x ,则有()()()()()03.02,102.02,12,103.02,02.01-⨯'+⨯'+≈-+y x f f f f ,即:()()().95.203.0202.021397.102.133=-⨯+⨯+≈+8.已知函数()⎪⎩⎪⎨⎧=+≠++=,0,0,0,1sin ,222222y x y x y x xy y x f证明: (1)()y x f ,在点()0,0处连续且偏导数存在; (2)()y x f ,在点()0,0处可微. 【证】(1)因为()y x f y x ,lim 0→→01sinlim 220=+=→→yx xy y x 【无穷小乘以有界量还是无穷小量】()0,0f =,所以()y x f ,在点()0,0处连续. 又因为()()xf x f x ∆-∆+→∆0,00,0lim000lim 0=∆-=→∆x x ,所以()00,0='x f ;同理()00,0='y f ,所以()y x f ,在点()0,0处偏导数存在.(2)()y x f ,在点()0,0处的全增量为()()()()()220,01s i n0,00,0|y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆.因为 ()()[]()()22000,00,0limy x yf x f z y x y x ∆+∆∆'+∆'-∆→∆→∆()()()()01sinlim22220=∆+∆∆+∆∆∆=→∆→∆y x y x yx y x ,所以,()y x f ,在点()0,0处可微. 【上述结论用到了()()()()22221sin0y x y x yx ∆+∆∆+∆∆∆≤()()()()22221s i n.y x y x y x ∆+∆∆+∆∆∆=()()[]()()()[]()()()0,0,02121222222→∆∆→∆+∆=∆+∆∆+∆≤y x y x y x y x及夹逼准则 . 】习题8.41.求下列复合函数的偏导数或全导数. (1)设uv e z =,而2,sin x v x u ==,求dxdz ; (2)设()xyx z ln =,求xz∂∂,y z ∂∂; (3)设()xy y x yf x z ,222+=,求xz∂∂,y z ∂∂. 【解】(1)因为uv ve u z =∂∂,uv ue v z =∂∂;x dx du cos =,x dxdv2=.所以由全导数公式,有 ()x x x x e x ue x ve dxdvv z dx du u z dx dz x x uv uv cos sin 22.cos ..2sin 2+=+=∂∂+∂∂=. 【另解:因为x x e z sin 2=,故 ()'=x x e dx dz x x sin 2sin 2()x x x x e x x c o s s i n 22s i n2+=.】 (2)()[]x x xy e x z '=∂∂ln ln ()[]x x xy x xy e '=ln(ln ln ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=x x xy x y e x xy 1.ln 1)ln(ln ln()⎥⎦⎤⎢⎣⎡+=x y x y x xy ln )ln(ln ln ()()()x x y x y xy xy ln ln ln ln 1+=-; ()()()y xy xy x x yz '=∂∂ln ln .ln ()()x x x xy ln ln .ln =. (3)()()()[]x x xy y x f y x xy y x f y x xz'+++'=∂∂,.,.222222 ()[]y f x f y x xy y x f xy .2..,.221222'+'++=;()()()[]y y xy y x f y x xy y x f y x yz'+++'=∂∂,.,.222222 ()[]x f y f y x xy y x f x .2..,.212222'+'++=.2.设⎪⎭⎫⎝⎛+=x y x xy z ϕ,其中()u ϕ是可微函数,证明: +∂∂x z x xy z y z y +=∂∂. 5.设()221,,z yx e z y x f u ++==,而y x z sin 2=,求xu∂∂,y u ∂∂. 6.求下列函数的22xz ∂∂,y x z ∂∂∂2和22y z∂∂.(1)()y xy f z ,=;(2)()y x e y x f z +=,cos ,sin . 【解】(1)由()y xy f z ,=得1f y xz'=∂∂,21f f x y z '+'=∂∂; []()11211122f y f y y f y xz x ''=''=''=∂∂;[]()1211112111112f y f xy f f f x y f f y f yx z y ''+''+'=''+''+'=''+'=∂∂∂; [][]()()22121122221121121222f f x f x f f x f f x x f f x y z y y ''+''+''=''+''+''+''=''+''=∂∂. 【注意:书中有关22yz∂∂的答案有误】.(2)由()y x e y x f z +=,cos ,sin 得31.c o s f e f x xzy x '+'=∂∂+;32.sin f e f y y z y x '+'-=∂∂+; [][]x y x x f e f x xz ''+''=∂∂+3122.c o s()[]13111cos cos .sin f e f x x f x y x ''+''+'-=+ ()[]33313.cos f e f x e f e y x y x y x ''+''+'++++[][]y y x y f e f x yx z ''+''=∂∂∂+312.c o s ()[]333231312sin sin cos f e f y e f e f e f y x y x y x y x y x ''+''-+'+''+''-=++++; 33223231312sin cos sin cos f e f ye f e f xe f y x y x y x y x y x ''+''-'+''+''-=++++; [][]y yx y f e f y y z ''+''-=∂∂+3222.s i n()[]23222sin sin .cos f e f y y f y y x ''+''-+'-=+ ()33323sin f e f y e f e y x y x y x ''+''-+'++++ 33223232222sin 2sin .cos f e f e f ye f y f y y x y x y x ''+'+'''-''+'-=+++. 【注意:书中有关22yz∂∂的答案有误】.8.设()[]z x f z ϕ+= ①,其中ϕ,f 可导,求dxdz . 【解】①式两端对x 求导并注意到z 是关于x 的函数,得 ()[]()[]x z x z x f dx dz '++'=ϕϕ()[]()⎥⎦⎤⎢⎣⎡'++'=dx dz z z x f .1ϕϕ()[]()()[]dxdzz x f z z x f ..ϕϕϕ+''++'=. ② 由②式解得()[]()()[]z x f z z x f dx dz ϕϕϕ+'-+'=1.9.设()y x z z ,=由方程0ln 2=-+⎰-dt e z z xy t ①得到,求x z∂∂,yz ∂∂,y x z ∂∂∂2.【解】(一)①式两端对x 求导并注意到z 是关于y x ,的二元函数得012=-∂∂+∂∂-x e xzz x z ,即 211x e x zz -=∂∂⎪⎭⎫ ⎝⎛+ . ②由②式解得21x e zz x z -+=∂∂. ③ (二)①式两端对y 求导并注意到z 是关于y x ,的二元函数得012=+∂∂+∂∂-y e yzz y z ,即 211y e y z z --=∂∂⎪⎭⎫ ⎝⎛+ . ④ 由④ 式解得 21y e zz y z -+-=∂∂. ⑤ (三)由③式得212x y e z z y x z -'⎥⎦⎤⎢⎣⎡+=∂∂∂()2.112x e y z z -⎥⎦⎤⎢⎣⎡∂∂+=【代入④】 ()22.1.112x y e e z z z --⎥⎦⎤⎢⎣⎡+-+=()22.13y x e z z--+-=.10.设f 可微,试验证: (1)()22yx f y z -=① 满足方程211y zy z y x z x =∂∂+∂∂; 【证】()x y x f y x z '⎥⎦⎤⎢⎣⎡-=∂∂221()()[]x y x f y x f y '⎭⎬⎫⎩⎨⎧---=222221()()()⎥⎦⎤⎢⎣⎡'--'--=xy x y x f yx fy2222222.()()222222y x f yx fxy-'--=; ()yy x f y y z '⎥⎦⎤⎢⎣⎡-=∂∂221.()()y y x f y y x f '⎥⎦⎤⎢⎣⎡-+-=222211 ()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡'--'--+-=y y x y x f y x f y y x f 222222222.11()()()2222222221y x f yx f y y x f -'---=. 所以yz y x z x ∂∂+∂∂11()()⎥⎦⎤⎢⎣⎡-'--=2222221y x f y x f xy x ()()()⎥⎦⎤⎢⎣⎡-'---+22222222211y x f y x f y y x f y ()221.1y x f y -=【由①式】..12y z y z y == (2)()y x f z ,=满足方程t z s z y z x z ∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂.22,其中t s y t s x -=+=,. 【证】y zx z s y y z s x x z s z ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂..; yz x z t y y z t x x z t z ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂... 故 t z s z ∂∂∂∂.⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y z x z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y z x z .22⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=y z x z . 14.设函数()y x f ,具有二阶连续偏导数,且满足等式0512422222=∂∂+∂∂∂+∂∂yuy x u x u . ①试确定b a ,的值,使等式在变换by x ay x +=+=ηξ,下化为02=∂∂∂ηξu. 【解】因为ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u x u x u x u1.1...;ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u b u a b u a u y u y u y u ..... 故有⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂x u x u x u x u u u x u xx ηηξξηηηξξξηξ (2222222)2 222222ηηξξ∂∂+∂∂∂+∂∂=uu u . ② ⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∂y u y u y u y u u u y x u yy ηηξξηηηξξξηξ....2222222 ()22222..ηηξξ∂∂+∂∂∂++∂∂=ub u b a u a . ③⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫ ⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y u y u b y u y u a u b u a y uyy ηηξξηηηξξξηξ (2222222)222222222ηηξξ∂∂+∂∂∂+∂∂=u b u ab u a . ④ 将②、③、④代入①式左边,得①左⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂=2222224ηηξξu u u ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂++∂∂+22222.12ηηξξu b u b a u a⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂+222222225ηηξξu b u ab u a ()()()2222222512410121285124ηηξξ∂∂+++∂∂∂++++∂∂++=u b b u ab b a u a a 因此方程①化为()()()05124101212851242222222=∂∂+++∂∂∂++++∂∂++ηηξξu b b u ab b a u a a . ⑤因此要使①在变换下化为02=∂∂∂ηξu,必须 ⎪⎩⎪⎨⎧=++=++.05124,0512422b b a a 解之得 ⎪⎩⎪⎨⎧-=-=,52,2b a 或⎪⎩⎪⎨⎧-=-=,2,52b a 习题8.51.验证下列方程在指定点的邻域存在以x 为自变量的隐函数,并求dxdy. (1)4422y x y x +=+,在点()1,1;【解】令()4422,y x y x y x F --+=,则()342,x x y x F x -=',()342,y y y x F y -=',()01,1=F ,()()021,11,1≠-='='y x F F ,由隐函数存在定理知,方程04422=--+y x y x在点()1,1的某邻域内能唯一确定一个单值可导且当1=x 时,1=y 的函数()x y y =.由公式()()()()223321124242,,y y x x y y x x y x F y x F dx dy y x --=---=''-=. (2)xyy x arctan ln 22=+①,在点()0,1.【解】令()x y y x y x F arctan ln ,22-+=()xyy x arctan ln 2122-+=,则()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='2222.112.1.21,x y x y x y x y x F x 22y x y x ++=; ()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='x x y y y x y x F y 1.112.1.21,22222y x x y +-=. ()00,1=F ,()()010,1,10,1≠-='='y x F F ,由隐函数存在定理知,方程0arctanln 22=-+xyy x 在点()0,1的某邻域内能唯一确定一个单值可导且当1=x 时,0=y 的函数()x y y =.由公式()()yx yx x y y x y x F y x F dx dy y x -+=-+-=''-=,,. 2.求下列方程所确定的隐函数()y x z z ,=的偏导数xz∂∂,y z ∂∂. (1)()0ln 22=+-xyz xyz xz ;【解】令()()xyz xyz xz z y x F ln 22,,+-=z y x xyz xz ln ln ln 22+++-=,则x yz z F x 122+-=';y xz F y 12+-=';zxy x F z 122+-='.所以zxy x x yz z F F x z zx 122122+-+--=''-=∂∂;z xy x y xz F F y z z y 12212+-+--=''-=∂∂. (2)()z y x f z +-=2.【解】令()()z z y x f z y x F -+-=2,,,则()z y x f F x +-'='2;()z y x f y F y +-'-='22;()12-+-'='z y x f F z .所以()()122-+-'+-'-=''-=∂∂z y x f z y x f F F x z z x ()()zy x f zy x f +-'-+-'=221; ()()1222-+-'+-'--=''-=∂∂z y x f z y x f y F F y z z y ()()1222-+-'+-'=z y x f zy x f y . 3.设()y x z z ,=满足方程03333=-++axyz z y x ,求22xz∂∂.【解】令()axyz z y x z y x F 3,,333-++=,则ayz x F x 332-=';axy z F z 332-='.所以a x y z a y z x F F x z z x 333322---=''-=∂∂a x y z x a y z --=22. ① 所以=∂∂22x z ()()()222222a x yz ay x z z x ayz axy z x x z ay -⎪⎭⎫⎝⎛-∂∂---⎪⎭⎫ ⎝⎛-∂∂【代入①】()()()2222222222.axyz ay axy z x ayz z x ayz axy z x axy z x ayz ay -⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛---=()()[]()()()()[]()3222222222axy zaxy z ay x ayz z x ayz axy z axy zx x ayz ay ----------=()()323312a x yza z xy --=.4.设函数()z y x f u ,,=可微,其中()()x z z x y y ==,由方程组⎪⎩⎪⎨⎧==,,xyxze z e y 确定,求dx du . 【解】方程组⎪⎩⎪⎨⎧==,,xyxze z e y 两边关于x 求导【并注意到()()x z z x y y ==,】得 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y e dx dz dx dz x z e dx dy xy xz 即⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y z dxdz dx dz x z y dx dy解得()()⎪⎪⎩⎪⎪⎨⎧-+=-+=.11,1122yzx xz yz dx dz yz x xy yz dx dy所以,由全导数公式得 dx dz f dx dy f f dx du z y x ..'+'+'= ()()z y x f yzx xz yz f yz x xy yz f '-++'-++'=.11.1122. 5.求曲面4:=+zy zx e e S ①在点()1,2ln ,2ln 0M 处的切平面方程.【解】令()4,,-+=zy z xe e z y x F ,则z xx e z F 1=';z yy e z F 1=';z yz xz e zye z x F 22--='.曲面S 在点0M 处的切平面的法向量为 {}()||1,2ln ,2ln 22,1,1,,0⎭⎬⎫⎩⎨⎧--='''=z yz x z y z x M z y x e z ye z x e z e z F F F {}2ln 4,2,2-=.所以,曲面S 在点0M 处的切平面方程为()()().012ln 42ln 22ln 2=---+-z y x 即 ()02ln 422=-+z y x .8.求曲线⎩⎨⎧=-+-=-++Γ,04532,03:222z y x x z y x ①在点()1,1,10M 处的切线方程与法平面方程.【解法一】方程组两边关于x 求导【并注意到()()x z z x y y ==,】得⎩⎨⎧='+'-=-'+'+.0532,03222z y z z y y x ②将点()1,1,10M 代入②式有()()()()⎩⎨⎧='+'-=-'+'.015132,011212z y z y ③由③式解得 ()()1611,1691-='='z y . 故Γ在点()1,1,10M 处的切向量为()(){}{}1,9,16||161,169,11,1,1-⎭⎬⎫⎩⎨⎧-=''=z y s 切. 所以,Γ在点()1,1,10M 处的切线方程L 为1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【解法二】(一)先求03:222=-++x z y x S 在点()1,1,10M 处的切平面方程. 令()x z y x z y x F 3,,222-++=,则32-='x F x ;y F y 2=';z F z 2='. 曲面S 在点0M 处的切平面的法向量为 {}{}(){}2,2,12,2,32,,||1,1,10-=-='''=z y x F F F n M z y x .所以,曲面S 在点0M 处的切平面方程为 ()()()012121.1=-+-+--z y x ,即 0322=-++-z y x . (二) Γ在点()1,1,10M 处的切线方程为⎩⎨⎧=-+-=-++-,04532,0322:z y x z y x L若进一步化L 为点向式,则为 1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【注意】解法二的一般思路叙述如下:欲求曲线()()⎩⎨⎧==Γ,0,,,0,,:z y x G z y x F 在其上某点()0000,,z y x M 处的切线方程.首先分别求出曲面()0,,:1=z y x F S 在点0M 处的切线平面01111=+++D z C y B x A . ①及曲面()0,,:2=z y x G S 在点0M 处的切线平面02222=+++D z C y B x A . ② 然后将方程①、②联立即为Γ在0M 处的切线方程.即⎩⎨⎧=+++=+++Γ.0,0:22221111D z C y B x A D z C y B x A请同学们思考此解法的理论依据是什么?10.设函数()y x z z ,=由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F ① 所确定,且F 为可微函数,求dz .【解】由①得0,,=⎪⎪⎭⎫⎝⎛x z z y y x dF由微分形式的不变性,有0...321=⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'x z d F z y d F y x d F 即01.1.1.232221=⎪⎭⎫ ⎝⎛+-'+⎪⎭⎫ ⎝⎛-'+⎪⎪⎭⎫ ⎝⎛-'dz x dx x zd F dz z y dy z d F dy y x dx y F 于是有dy F z F y x dx F y F x z dz F z y F x .111212`132223'-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'-'=⎪⎭⎫⎝⎛'-' 所以得223212`1321.11F zy F x dyF z F y x dx F y F x z dz '-''-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫⎝⎛'-'=. 习题8.62.求133223++-=xy y x x z 在点()1,31M 处从1M 到()5,62M 的方向的方向导数. 【解】{}4,321==M M,⎭⎬⎫⎩⎨⎧==54,530h .()12363||1,3221=+-=∂∂y xy x x z M ;()963||1,3221-=+-=∂∂xy x y z M . {}().0549531254,53.9,121=⨯-+⨯=⎭⎬⎫⎩⎨⎧-=∂M h3.求xyz u =在点()2,1,51M 处从1M 到()14,4,92M 的方向的方向导数. 【解】{}12,3,421==M M,⎭⎬⎫⎩⎨⎧==1312,133,1340h .()2||2,1,51==∂∂yz x u M ;()10||2,1,51==∂∂xz y u M ,()5||2,1,51==∂∂xy zuM . {}.1398131251331013421312,133,134.5,10,21=⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧=M4.求()()222321ln ,,z y x z y x f +++=在点()1,1,20M 处的梯度. 【解】()523212||1,1,22220=+++=∂∂z y x x x f M ; ()523214||1,1,22220=+++=∂∂z y x y y f M ; ()533216||1,1,22220=+++=∂∂z y x z z f M . 所以,()⎭⎬⎫⎩⎨⎧=53,52,521,1,2gradf .5.求22z xy u -=在()1,1,2-M 处方向导数的最大值. 【解】()22||1,1,2-==∂∂-y x u M ;()42||1,1,2==∂∂-x y u M ,()22||1,1,2-=-=∂∂-z z uM, 故 (){}2,4,21,1,2--=-g r a du ,所以方向导数的最大值为 ()()().622421,1,2222=-++-=-g r a d u6.求222z y x u ++=沿曲线()⎪⎪⎩⎪⎪⎨⎧===Γ,sin 6,,2:3t z t y t x ππ在点()0,1,2M 处的切线方向的方向导数.【解】()0,1,2M 点对应参数1=t .Γ在点()0,1,2M 处的切向量为()()(){}(){}{}6,3,2c o s6,3,2,,||121-=='''===t t t t t z t y t x h π.⎭⎬⎫⎩⎨⎧-==76,73,720h .()42||0,1,2==∂∂x x u M ;()22||0,1,2==∂∂y y u M ,()02||0,1,2==∂∂z xuM . 所以有{}.276073272476,73,72.0,2,4=⎪⎭⎫⎝⎛-⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧-=∂Mh9.设l 是曲面632:222=++z y x S 在点()1,1,1A 处指向外侧的法向量,求zy x u 2286+=在A 点沿l 方向的方向导数. 【解】令()632,,222-++=z y x z y x F ,则x F x 4=';y F y 6=';z F z 2='.曲面S 在点()1,1,1A 处指向外侧的法向量为 {}{}(){}{}1,3,2||2,6,42,6,4,,||1,1,1=='''=z y x F F F Az y x ;⎭⎬⎫⎩⎨⎧==141,143,1420l . ()146866||1,1,122=+=∂∂y x z x x u A ;()148868||1,1,122=+=∂∂y x z y y u A ;()1486||1,1,1222-=+-=∂∂z y x z uA .所以,().14,148,1461,1,1⎭⎬⎫⎩⎨⎧-=∂l ⎭⎬⎫⎩⎨⎧141,143,142()71114114143148142146=⨯-+⨯+⨯=. 习题8.71.求下列的极值:(1)()223333,y x y x y x f z --+==; 【解】(一)解方程组()()⇒⎪⎩⎪⎨⎧=-='=-='.063,,063,22y y y x f x x y x f y x ⎩⎨⎧==2,0,2,0y x 得四个驻点:()()()().2,2,0,2,2,0,0,04321P P P P(二)()()().66,,0,,66,-=''==''=-=''=y y x f C y x f B x y x f A yy xy xx.因为该函数不存在不可微点,故()00,0=f 为函数的极大值;()82,2-=f 为 函数的极小值.(2)x xy y x z 82322+-+=; 【解】(一)解方程组()()⇒⎩⎨⎧=-='=+-='.026,,0822,x y y x f y x y x f yx ⎩⎨⎧-=-=26y x 故得唯一驻点:()2,60--P ;无不可微点.(二)()2,=''y x f xx,()2,-=''y x f xy ;()6,=''y x f yy .在()2,60--P 处,因为 ()022,6>=--''=xxf A ;()22,6-=--''=xy f B ;()62,6=--''=yy f C , ()0826222>=--⨯=-=∆B AC ,故()242,6-=--f 为函数的极小值.(3)()()y y y x y x f ln 2,22++=; 【解】(一)解方程组()()()⇒⎪⎩⎪⎨⎧=++='=+='.0ln 12,,022,22y y x y x f y x y x f y x ⎩⎨⎧==-.,01e y x 故得唯一驻点:()10,0-e P ;无不可微点.(二)()224,y y x f xx+='',()xy y x f xy 4,='';()yx y x f yy 12,2+=''.在()10,0-e P 处, 因为()024,021>+=''=--e e f A xx;()0,01=''=-e f B xy ;()e ef C yy =''=-1,0, ()0024222>-⨯+=-=∆-e e B AC ,故()ee f 1,01-=-为函数的极小值.(4)()y y x e z x 222++=. 【解】(一)解方程组()()()()⇒⎪⎩⎪⎨⎧=+='=+++='.022,,01422,222y e y x f y y x e y x f xyx x ⎪⎩⎪⎨⎧-==.1,21y x 故得唯一驻点:⎪⎭⎫⎝⎛-1,210P ;无不可微点.(二)()()124,22+++=''y y x e y x f x xx,()()44,2+=''y e y x f x xy ;()x yy e y x f 22,=''. 在⎪⎭⎫ ⎝⎛-1,210P 处,因为021,21>=⎪⎭⎫ ⎝⎛-''=e f A xx;01,21=⎪⎭⎫ ⎝⎛-''=xy f B ;⎪⎭⎫ ⎝⎛-''=1,21yy f C e 2=,002222>-⨯=-=∆e e B AC ,故21,21e f -=⎪⎭⎫⎝⎛-为函数的极小值.2.求下列的极值:(1)()22222,y x y x y x f -+=在区域(){}0,4|,22≥≤+=y y x y x D ; 【解】(一)内部 解方程组()()()()⇒⎪⎩⎪⎨⎧=-='=-='.022,,012,22x y y x f y x y x f yx ⎩⎨⎧==.0,0y x ;⎩⎨⎧-=-=.1,2y x (舍);⎩⎨⎧=-=.1,2y x ;⎩⎨⎧-==.1,2y x (舍); ⎩⎨⎧==.1,2y x .因此得区域D 内三驻点:()0,01P 、()1,22-P 、()1,23P .计算得()00,0=f ,()21,2=±f . (二)边界1.在区域D 的边界[]()2,0422∈=+y y x 上,由于。

相关文档
最新文档