北师大版九年级下册数学试题第三章 圆周周测16(全章)训练题

合集下载

(完整word版)北师大版九年级下册数学第三章圆单元测试(含答案)

(完整word版)北师大版九年级下册数学第三章圆单元测试(含答案)

、选择题1. 已知O O的直径为10,点P到点0的距离大于8,那么点P的位置()A. —定在O 0的内部B. —定在O 0的外部C. 一定在O 0上D. 不能确定2. 乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m ,则桥拱半径0C为()A. 4mB. 5mC. 6mD. 8m3. 给出下列说法:① 直径是弦;②优弧是半圆;③ 半径是圆的组成部分;④ 两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的有()5. 如图,点A,B,C均在坐标轴上,A0=B0=C0=1,过A,0,C作O D, E是O D上任意一点,连结CE, BE则6. 如图,在O0中,弦AC与半径0B平行,若/ B0C=5O°则/ B的大小为()第三章圆A. 1个B. 个C.个D. 个4. 一个扇形的圆心角是120 °面积为3 Mm2那么这个扇形的半径是(A. cmB. 3cmC. 6cmD. 9cmB. 5C. 6D.A. 4A. 25 °B. 30C. 50 °D. 60 °7. 在研究圆的有关性质时, 我们曾做过这样的一个操作 将一张圆形纸片沿着它的任意一条直径翻折, 可以 看到直径两侧的两个半圆互相重合 ”.由此说明()A. 圆的直径互相平分B. 垂直弦的直径平分弦及弦所对的弧C. 圆是中心对称图形,圆心是它的对称中心D. 圆是轴对称图形,任意一条直径所在的直线都是它的对称轴8. 如图,AB 为O O 的直径,点E 、C 都在圆上,连接 AE , CE BC ,过点A 作O O 的切线交BC 的延长线于 点D ,若/ AEC=25,则/ D 的度数为()9.如图,四边形 ABCD 内接于圆O , E 为CD 延长线上一点,若 / B=110:则/ADE 的度数为()10.已知:O O 是厶ABC 的外接圆,/ OAB=40°,则/ ACB 的大小为()A. 75B. 65C. 55D. 74B. 110C. 90D. 80A. 115A. 20B. 50 °"C 20 或160 M D. 50 或13011•如图,O O 内切于四边形 ABCD, AB=10, BC=7, CD=8,贝U AD 的长度为()12. 如图,在圆心角为 45的扇形内有一正方形 CDEF 其中点C 、D 在半径0A 上,点F 在半径0B 上,点E 在匚-上,则扇形与正方形的面积比是(、填空题13. P A , PB 分别切O O 于A , B 两点,点C 为O O 上不同于AB 的任意一点,已知 / P=40°则/ ACB 的度数14. 如图,AB 为O O 的直径,直线I 与O O 相切于点C, AD 丄I ,垂足为D , AD 交O O 于点E ,连接OC BE 若B. 9C. 10D. 11A. n 8" B. 5 n :8A. 8515. ________________________________________________________________________________ 如图,AB 是O O 的直径,点 C 在O O 上,/ AOC=40, D 是BC 弧的中点,贝U / ACD= ___________________16. ___________ 如图所示,O I 是Rt A ABC 的内切圆,点 D 、E 、F 分别是且点,若 / ACB=90°, AB=5cm , BC=4cm,则O I 的周长为 __ cm .17•如图,PA, PB 是O O 的切线,CD 切O O 于E , PA=6,则△ PDC 的周长为18.如图,O O 的半径为6cm , B 为O O 外一点,OB 交O O 于点A , AB=OA,动点P 从点A 出发,以n cm/s的速度在O O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为________ 时,BP 与O O 相ABCD 中,点E 在DC 的延长线上.若 / A=50 °则/BCE= ___________21.如图,在△ ABC 中,AB=AC=3, / BAC=120:以点A 为圆心,1为半径作圆弧,分别交 AB , AC 于点D , E, 以点C 为圆心,3为半径作圆弧,分别交AC , BC 于点A , F .若图中阴影部分的面积分别为在弧PA i 和弧PB 1上分别取中点 A 2和B 2 ,若一直这样取中点,求 / A n PBn=三、解答题23. 如图,AB 为O O 的直径,C 是O O 上一点,D 在AB 的延长线上,且 / DCB=Z A .求证:CD 是O O 的切P 为弧AB 的中点,分别在弧 AP 和弧PB 上取中点A i 和B i ,再则S i - S 2的值为/ BAC=32°, D 是弧AC 的中点,求/ DAC 的度数. DP// AC ,交BA 的延长线于 P,求证:AD?DC=PA?BC26. (2017?通辽)如图,AB 为O O 的直径,D 为 的中点,连接 OD 交弦AC 于点F ,过点D 作DE// AC ,交BA 的延长线于点E.(1) 求证:DE 是O O 的切线;(2) 连接CD,若OA=AE=4,求四边形 ACDE 的面积.参考答案一、 选择题 BBABCADBBDDB 二、 填空题 13. 70 或 110 ° 14.4O 的直径,15. 125 °16. 2 n17. 1218. 2秒或5秒19. 50 °20. 1221. - n122. 180 °—X 180 °三、解答题••• / ACB=90 ,°••• / A+Z ABC=90 °又•/ OB=OC, • Z OBC=Z OCB, 又•/ Z DCB=Z A°••• / A+Z ABC=/ DCB+/ OCB=90 ,••• OC X DC,• CD是O O的切线.24. 解:连接BC,••• AB是半圆O的直径,Z BAC=32 ,°•Z ACB=90 ,°Z B=90 - 32 =58 ,•Z D=180 - Z B=122。

北师大版九年级数学下学期第三章 圆 单元考试测试卷 含有答案

北师大版九年级数学下学期第三章 圆 单元考试测试卷 含有答案

)含有答案北师大版九年级数学下学期第三章( 单元考试测试卷圆单元测试卷圆北师大版九年级(下学期)数学第三章120分钟时间:满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()1A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD 2第2题图第3题图第5题图3.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.54.下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交5.如图,已知AC是⊙O的直径,点B在圆周上(不与A,C重合),点D在AC的延长线上,连接BD交⊙O于点E.若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB6.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm7.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.123mm C.6mm D.63mm8.如图,直线AB,AD与⊙O分别相切于点B,D,C为⊙O上一点,且∠BCD=140°,则∠A 的度数是()9/ 1)含有答案单元考试测试卷圆(北师大版九年级数学下学期第三章.110° D B.105°C.100°A.70°10题图第第9题图第8题图的O为⊙C,BDAO,AO与⊙O交于点9.如图,AB为⊙O的切线,切点为B,连接)O的半径为2,则图中阴影部分的面积为(直径,连接CD.若∠A=30°,⊙2π4π4π3 - D.3 B.-23 C.π-A.-3 333ADC△ABC和P和⊙Q分别是△4,BC=3,连接AC,⊙ABCD10.如图,矩形中,AB=)PQ的长是(的内切圆,则552 .2 D C. B.5 A. 22)24分(每小题3分,共二、填空题,=120°BC,若∠AOBACO的半径,点C在⊙O上,连接,11.如图,OA,OB是⊙.=________°则∠ACB13题图第第12题图第11题图=若∠DAB的延长线于点D.C.如图,过⊙O上一点作⊙O的切线,交⊙O的直径12_______. A的度数为40°,则∠与小圆相AB5cm,小圆半径长为3cm,大圆的弦13.如图,两同心圆的大圆半径长为_________.的长是切,切点为C,则弦AB_______.则AC的长为=∠4,∠ABCDAC,的外接圆,14.如图,⊙O是△ABC直径AD=第16题图题图15 题图第14 第则该圆锥形漏斗的.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,15_________.侧面积为_为半径的ABAABCDEF3如图,16.将边长为的正六边形铁丝框变形为以点为圆心,9/ 2圆单元考试测试卷(北师大版九年级数学下学期第三章含有答案)扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为__________. ]。

北师大版九年级下册数学第三章圆测试题

北师大版九年级下册数学第三章圆测试题
第三章 圆
1.如图3-Y-1,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD的度数为()
A.30°B.50°C.60°D.70°
图3-Y-1
图3-Y-2
2.如图3-Y-2,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()
A.3 B.2.5 C.2 D.1
3.如图3-Y-3,已知直线AD是⊙O的切线,A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()
(2)求证:DE是⊙O的切线.
图3-Y-12
13.如图3-Y-13,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
(1)若AC=4,BC=2,求OE的长;
(2)试判断∠A与∠CDE的数量关系,并说明理由.
图3-Y-13
14.如图3-Y-14,C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,DE⊥AB,垂足为E,DE交AC于点F.
三.解答题(共9小题)
17.如果 ,那么 =________.
18.解方程:x2-5x+1=0.
19.如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
(1)请你判断所画四边形的性状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.
图3-Y-7
图3-Y-8
9.如图3-Y-9,AB是⊙O的直径,AB=4,M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.
图3-Y-9
图3-Y-10
10.如图3-Y-10,直线AB与CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD.若BD=4,则阴影部分的面积为________.

北师大版九年级数学下册第三章圆单元检测试题(有答案)

北师大版九年级数学下册第三章圆单元检测试题(有答案)

第三章圆单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列说法正确的有()A.优弧的长一定大于劣弧的长B.以圆心为端点的线段是半径C.半径相等的两个半圆是等弧D.不同的圆中,就不可能有相等的弦长2.下列说法正确的是( )A.半径不相等的圆叫做同心圆B.优弧一定比劣弧长C.不同的圆中可能有相等的弦D .半圆一定比直径长3 .已知O 。

的半径为5,直线EF 经过。

上一点P(点E,尸在点P 的两旁),下列条件能判定直线EF 与。

相切的是()B.OE =。

尸D.OP 1 EF4 .如图,PA 与。

切于点4 P8C 是。

的害I 线,如果PB = 8C = 2,那么R4的长为A.OP=5 C.0到直线EF 的距离是4A.2B.2\/2C.4D.85.如图,在。

中,乙4。

8的度数为m, C 是弧SC8上一点,I C乏 (不与4、8两点重合),则乙D +乙E 的度数为() K-八E 是弧人8上不同的两点 3A.mB.1800 -- 2 6.如图,半径为2的。

0中,弦Z 内心,经过8、C 、P 三点作OM, A.发生变化,随4位置决定 C .有最大值为2机C9。

+ 万 D.y 3C = 273, /是优弧BC 上的一个动点,P 点是△ABC 的 管 当点4运动时,OM 的半径() ----------- B.不变,等于2 D .有最小值为17 .如图,在O 。

中,点C 是防的中点, 公CA.400B.500 C 乙。

力& = 40°,贝1]480c 等于() :.70° D.800 切点依次是E 、F 、G 、H,下列结论一定正确①力尸=BG ②CG = CH ③力B +CD =AD + BC ④BG < CG9.如图,正六边形48CDEF 内接于O 。

,力8 = 2,则图中阴影部分的而积为()D.4TT10.如图,四边形力BCD 内接于。

北师大版九年级下数学《第三章圆》单元检测卷含答案

北师大版九年级下数学《第三章圆》单元检测卷含答案

第三章圆单元检测卷姓名:__________ 班级:__________一、选择题(共12小题;共36分)1.如图,已知圆O的直径为6,CD为圆O的直径,且CD⊥AB,∠D=15°.则OE的长为()A. 3B. 3C.D.2.如图,△ABC是⊙O的内接三角形,若∠C=60°,则∠AOB的度数是()A. 30°B. 60°C. 90°D. 120°3.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A. 4B. 6C. 8D. 104.下列语句中正确的是()A. 相等的圆心角所对的弧相等B. 平分弦的直径垂直于弦C. 长度相等的两条弧是等弧D. 经过圆心的每一条直线都是圆的对称轴5.如图,⊙O的圆心O到直线l的距离为4cm,⊙O的半径为1cm,将直线l向右(垂直于l的方向)平移,使l与⊙O相切,则平移的距离为()A. 1cmB. 3cmC. 5cmD. 3cm或5cm6.如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于()A. B. C. D.7.下列说法中正确的是()①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦相等;③两条弦相等,圆心到这两弦的距离相等;④在等圆中,圆心角不变,所对的弦也不变.A. ①③B. ②④C. ①④D. ②③8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A. 30°B. 45°C. 50°D. 70°9.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A. 60°B. 90°C. 120°D. 150°10.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A. B. C. 3 D. 211.如图,AB是⊙O的直径,AC为⊙O的弦,点D是直径AB上的一点,若OA=5cm,AC=8cm,则CD的长度不可能是()A. 4cmB. 5cmC. 6cmD. 8cm12.如图,A、B、C三点在⊙O上,∠BAC=60°,若⊙O的半径OC为12,则劣弧BC的长为()A. 8πB. 6πC. 4πD. 2π二、填空题(共9题;共27分)13.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为________.14.如图,∠ACB=60°,⊙O的圆心O在边BC上,⊙O的半径为3,在圆心O向点C运动的过程中,当CO= ________时,⊙O与直线CA相切.15.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=________度.16.直角三角形两直角边为3,4,则其外接圆和内切圆半径之和为________.17.矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆.DE切⊙O于点E(如图),则tan∠CDF 的值为________ .18. 如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=________度.19.已知⊙O的半径是5,圆心O到直线AB的距离为2,则⊙O上有且只有________个点到直线AB的距离为3.20.如图,在等腰三角形ABC中,∠BAC=90°,AB=AC=1,BD平方∠ABC,点P在BD上,⊙P切AB于点Q,则AP+PQ的最小值等于________.21.已知扇形的半径为3cm,此扇形的弧长是2πcm,则此扇形的圆心角等于________度,扇形的面积是________.(结果保留π)三、解答题(共4题;共37分)22.如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O 在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.23.如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,,C△ABC=10cm且∠C=60°.求:(1)⊙O的半径r;(2)扇形OEF的面积(结果保留π);(3)扇形OEF的周长(结果保留π)24.如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,S△ABC=10cm2,C△ABC=10cm,且∠C=60°求:(1)⊙O的半径r;(2)扇形OEF的面积(结果保留π);(3)扇形OEF的周长(结果保留π)。

北师大版九年级数学下册第三章《圆》专题测试含答案

北师大版九年级数学下册第三章《圆》专题测试含答案

《圆》专题训练含答案一.选择题(共9小题)1.已知⊙O中最长的弦长8cm,则⊙O的半径是()A.2cm B.4cm C.8cm D.16cm2.有下列说法:①直径是圆中最长的弦;②等弧所对的弦相等;③圆中90°的角所对的弦是直径;④相等的圆心角对的弧相等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.4.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=37°,那么∠BAD=()A.51°B.53°C.57°D.60°5.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定6.如图EF与⊙O相切于点D,A、B为⊙O上点,则下列说法中错误的()A.∠AOB是圆心角B.∠ADB是圆周角C.∠BDF是圆周角D.∠BOD是圆心角7.如图,P A、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40°B.140°C.70°D.80°8.如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108°B.118°C.144°D.120°9.如图,在Rt△ABC中,∠C=90°,AB=6,AD是∠BAC的平分线,经过A,D两点的圆的圆心O恰好落在AB上,⊙O分别与A、B、AC相交于点E、F.若圆半径为2.则阴影部分面积()A.B.C.D.二.填空题(共8小题)10.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)11.如图,某种齿轮有20个齿,每两齿之间的间隔相等,则相邻两齿间的圆心角α等于°.12.如图所示,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为D,如果CD=2,那么AB的长是.13.如图△ABC中,AC=BC=5,AB=6,以AB为直径的⊙O与AC交于点D,若E为的中点,则DE.14.如图,在⊙O中,半径OC=6,D是半径OC上一点,且OD=4.A,B是⊙O上的两个动点,∠ADB=90°,F是AB的中点,则OF的长的最大值等于.15.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=110°,则∠COD的度数是°.16.正n边形内接于半径为R的圆,这个n边形的面积为3R2,则n等于.17.已知扇形的圆心角为120°,它所对弧长为20πcm,则扇形的半径为.三.解答题(共8小题)18.如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.19.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.20.如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连结AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.(1)求证:∠ECD=∠EDC;(2)若OC=2,求DE长;(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.21.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=4,DF=,求⊙O的半径.22.如图,不等边△ABC内接于⊙O,I是△ABC内心,AI交⊙O于D点,交BC于点E,连接BD,BI.(1)求证BD=ID;(2)连接OI,若AI⊥OI.且AB=4,BC=6,求AC的长.23.如图,已知AB、AC分别是⊙O的直径和弦,过点C的切线与AB的延长线交于点E,点D为EC的延长线上一点,DH⊥AB,垂足为点H,交AC于点F.(1)求证:△FCD是等腰三角形;(2)若点F为AC的中点,且∠E=30°,BE=2,求DF的长.24.如图,在△ABC中,AB=AC=8,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AC于点E,连接OD.(1)求证:OD∥AC;(2)若∠A=45°,求DE的长.25.在⊙O中,直径AB⊥弦CD于点F,点E是弧AD上一点,连BE交CD于点N,点P 在CD的延长线上,PN=PE.(1)求证:PE是⊙O的切线;(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.圆专题参考答案与试题解析一.选择题(共9小题)1.已知⊙O中最长的弦长8cm,则⊙O的半径是()A.2cm B.4cm C.8cm D.16cm【解答】解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.有下列说法:①直径是圆中最长的弦;②等弧所对的弦相等;③圆中90°的角所对的弦是直径;④相等的圆心角对的弧相等.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:①正确;②在同圆或等圆中,能够重合的弧叫做等弧,等弧所对的弦相等;故②正确;③圆中,90°圆周角所对的弦是直径;故③错误;④在同圆或等圆中,相等的圆心角所对的弧相等;故④错误;因此正确的结论是①②;故选:B.3.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.【解答】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:C.4.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=37°,那么∠BAD=()A.51°B.53°C.57°D.60°【解答】解:连接BD,如图所示.∵AB是⊙O的直径,∴∠ADB=90°.在△ABD中,∠ABD=∠ACD=37°,∠ADB=90°,∴∠BAD=180°﹣∠ABD﹣∠ADB=53°.故选:B.5.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定【解答】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.6.如图EF与⊙O相切于点D,A、B为⊙O上点,则下列说法中错误的()A.∠AOB是圆心角B.∠ADB是圆周角C.∠BDF是圆周角D.∠BOD是圆心角【解答】解:∵EF与⊙O相切于点D,∴点D有圆上,∴∠AOB和∠BOD是圆心角,∠ADB是圆周角,∵点F不在圆O上,∴∠BDF不是圆周角,故选:C.7.如图,P A、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40°B.140°C.70°D.80°【解答】解:∵P A是圆的切线.∴∠OAP=90°,同理∠OBP=90°,根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣40°=140°,∴∠ACB=∠AOB=70°.故选:C.8.如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108°B.118°C.144°D.120°【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A=180°﹣=108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故选:C.9.如图,在Rt△ABC中,∠C=90°,AB=6,AD是∠BAC的平分线,经过A,D两点的圆的圆心O恰好落在AB上,⊙O分别与A、B、AC相交于点E、F.若圆半径为2.则阴影部分面积()A.B.C.D.【解答】解:连接OD,OF.∵AD是∠BAC的平分线,∴∠DAB=∠DAC,∵OD=OA,∴∠ODA=∠OAD,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴S△AFD=S△OF A,∴S阴=S扇形OF A,∵OD=OA=2,AB=6,∴OB=4,∴OB=2OD,∴∠B=30°,∴∠A=60°,∵OF=OA,∴△AOF是等边三角形,∴∠AOF=60°,∴S阴=S扇形OF A==.故选:C.二.填空题(共8小题)10.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是②③(填序号)【解答】解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,但弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确,正确的结论有②③,故答案为:②③.11.如图,某种齿轮有20个齿,每两齿之间的间隔相等,则相邻两齿间的圆心角α等于18°.【解答】解:由题意这是正二十边形,中心角α==18°,故答案为18.12.如图所示,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为D,如果CD=2,那么AB的长是8.【解答】解:连接OA,∵半径OC⊥AB,∴AE=BD=AB,∵OC=5,CD=2,∴OE=3,在Rt△AOD中,AD===4,∴AB=2AD=8,故答案为8.13.如图△ABC中,AC=BC=5,AB=6,以AB为直径的⊙O与AC交于点D,若E为的中点,则DE.【解答】解:连接OC、OE、BD,OE与BD交于点F,如图所示:∵AC=BC=5,O为AB的中点,∴OA=OB=3,OC⊥AB,∴OC===4,∵AB为⊙O的直径,∴∠ADB=90°∴AD⊥BD,∴BD===,∴AD===,∵E为的中点,∴OE⊥BD,∴OE∥AD,∵OA=OB,∴OF为△ABD的中位线,∴DF=BF=BD=,OF=AD=,∴EF=OE﹣OF=3﹣=,∴DE===;故答案为:.14.如图,在⊙O中,半径OC=6,D是半径OC上一点,且OD=4.A,B是⊙O上的两个动点,∠ADB=90°,F是AB的中点,则OF的长的最大值等于2+.【解答】解:∵当点F与点D运动至共线时,OF长度最大,如图,∵F是AB的中点,∴OC⊥AB,设OF为x,则DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOC中,OB2=OF2+BF2,∵OB=OC=6,∴36=x2+(x﹣4)2,解得x=2+或2﹣(舍去)∴OF的长的最大值等于2+,故答案为2+.15.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=110°,则∠COD的度数是70°.【解答】解:如图所示:连接圆心与各切点,在Rt△DEO和Rt△DFO中,∴Rt△DEO≌Rt△DFO(HL),∴∠1=∠2,同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,Rt△CEO≌Rt△CNO,∴∠3=∠4,∠5=∠7,∠6=∠8,∴∠5+∠6=∠7+∠8=110°,∴2∠2+2∠3=360°﹣2×110°,∴∠2+∠3=∠DOC=70°.故答案为:70°.16.正n边形内接于半径为R的圆,这个n边形的面积为3R2,则n等于10.【解答】解:根据正n边形内接于半径为R的圆,则可将分割成n个全等的等腰三角形,其中等腰三角形的腰长为圆的半径R,顶角为,∵个n边形的面积为3R2,∴n××R×R×sin=3R2n sin=6解得n=10.故答案为10.17.已知扇形的圆心角为120°,它所对弧长为20πcm,则扇形的半径为30cm.【解答】解:根据题意得,r=30cm,故答案为30cm.三.解答题(共8小题)18.如图,在△ABC中,点O为BC边上一点,⊙O经过A、B两点,与BC边交于点E,点F为BE下方半圆弧上一点,FE⊥AC,垂足为D,∠BEF=2∠F.(1)求证:AC为⊙O切线.(2)若AB=5,DF=4,求⊙O半径长.【解答】(1)证明:连结OA,∴∠AOE=2∠F,∵∠BEF=2∠F,∴∠AOE=∠BEF,∴AO∥DF,∵DF⊥AC,∴OA⊥AC,∴AC为⊙O切线;(2)解:连接OF,∵∠BEF=2∠F,∴设∠AFE=α,则∠BEF=2α,∴∠BAF=∠BEF=2α,∵∠B=∠AFE=α,∴∠BAO=∠B=α,∴∠OAF=∠BAO=α,∵OA=OF,∴∠AFO=∠OAF=α,∴△ABO≌△AFO(AAS),∴AB=AF=5,∵DF=4,∴AD==3,∵BE是⊙O的直径,∴∠BAE=90°,∴∠BAE=∠FDA,∵∠B=∠AFD,∴△ABE∽△DF A,∴=,∴=,∴BE=,∴⊙O半径=.19.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∴∠CEF∠CEF∵AB∥CD,EF⊥AB,∴EF⊥CD,∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得或(舍弃),∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.20.如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连结AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.(1)求证:∠ECD=∠EDC;(2)若OC=2,求DE长;(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.【解答】解:(1)如图1,连接OD,则OD⊥DE,∵∠∠ODA+∠EDC=90°,∵OA=OD,∴∠OAD=∠ODA,又∵OA⊥OB,∴∠OAD+∠OCA=90°,且∠OCA=∠ECD,∴∠ECD=∠EDC;(2)由(1)知,∠ECD=∠EDC,∴ED=EC,在Rt△ODE中,设ED=x,则OE=CE+OC=2+x,∵OD2+DE2=OE2,∴82+x2=(2+x)2,解得,x=15,∴DE的长为15;(3)如图2,连接OD',过点O作OH⊥AD'于点H,延长AO交⊙O于点M,过点D作DN⊥AM于点N,设弦AD在圆内扫过的面积为S,则S=S扇形OAD﹣S△OAD﹣S弓形ABD',由题意知,∠OAH=30°,∴在Rt△OAH中,∠AOH=60°,AH=OA=4,OH=OA=4,∴AD'=2AH=8,∠AOD'=120°,∴S弓形ABD'=S扇形OAD'﹣S△OAD'=﹣×8×4=﹣16,在Rt△ODN中,∠DON=2∠OAD=30°,∴DN=OD=4,∴S△OAD=OA•DN=×8×4=16,∵∠AOD=180°﹣∠DON=150°,∴S扇形OAD==,∴S=S扇形OAD﹣S△OAD﹣S弓形ABD'=﹣16﹣(﹣16)=+16﹣16,∴弦AD在圆内扫过的面积为+16﹣16.21.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=4,DF=,求⊙O的半径.【解答】证明:(1)连接AO,∵OA=OD,∴∠OAD=∠ODA,∵AC=FC,∴∠CAF=∠CF A=∠OFD,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODA+∠OFD=90°,∴∠CF A+∠DAO=90°,∴∠OAC=90°,且OA是半径,∴AC是⊙O的切线;(2)在Rt△ODF中,DF2=OD2+OF2,∴10=OD2+(4﹣OD)2,∴OD=1(不合题意舍去),OD=3,∴⊙O的半径为3.22.如图,不等边△ABC内接于⊙O,I是△ABC内心,AI交⊙O于D点,交BC于点E,连接BD,BI.(1)求证BD=ID;(2)连接OI,若AI⊥OI.且AB=4,BC=6,求AC的长.【解答】解:(1)证明:∵I是△ABC内心,∴∠BAD=∠CAD,∴=,∴∠DBC=∠DAB,∵∠ABI=∠CBI,∵∠DBI=∠DBC+∠CBI∠DIB=∠DAB+∠ABI∴∠DBI=∠DIB,∴BD=ID.(2)连接OD,∵=,根据垂径定理,得OD⊥BC于点H,CH=BH=BC=3,∵AI⊥OI.∴AI=DI,∴AI=BD,作IG⊥AB于点G,∴∠AGI=∠BED=90°,∠DBC=∠BAD,∴△AGI≌△BHD(AAS)∴AG=BH=3.过点I作IM⊥BC,IN⊥AC于点M、N,∵I是△ABC内心,∴AN=AG=3,BM=BG=4﹣3=1,CN=CM=6﹣1=5,∴AC=AN+CN=8.答:AC的长为8.23.如图,已知AB、AC分别是⊙O的直径和弦,过点C的切线与AB的延长线交于点E,点D为EC的延长线上一点,DH⊥AB,垂足为点H,交AC于点F.(1)求证:△FCD是等腰三角形;(2)若点F为AC的中点,且∠E=30°,BE=2,求DF的长.【解答】(1)证明:连结OC,如图1,∵DC为⊙O的切线,∴OC⊥DC,∴∠OCD=90°,即∠ACO+∠FCD=90°,∵DH⊥AB,∴∠DHA=90°,∴∠CAO+∠AFH=90°,∵OA=OC,∴∠ACO=∠AOC,∴∠FCD=∠AFH,而∠AFH=∠DFC,∴∠DFC=∠DCF,∴△FCD是等腰三角形;(2)解:连结OF,OC,如图2,在Rt△COE中,∠E=30°,BE=2,∴OE=2OC,即OB+2=2OC,而OB=OC,∴OC=2,∴⊙O的半径为2;∵∠EOC=90°﹣∠E=60°,∴∠ACO=∠AOC=30°,∴∠FCD=90°﹣∠ACO=60°,∴△FCD为等边三角形,∵F为AC的中点,∴OF⊥AC,∴AF=CF,在Rt△OCF中,OF=OC=1,∴CF=OF=,∴.24.如图,在△ABC中,AB=AC=8,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线交AC于点E,连接OD.(1)求证:OD∥AC;(2)若∠A=45°,求DE的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠C=∠ODB,∴OD∥AC;(2)解:过点O作OF⊥AC于点F,∵DE是⊙O的切线,∴DE⊥OD.∵OD∥AC,∴DE⊥AC.∴四边形OFED是矩形.∴OF=DE.在Rt△AOF中,∠A=45°,∴OF=OA=2,∴DE=2.25.在⊙O中,直径AB⊥弦CD于点F,点E是弧AD上一点,连BE交CD于点N,点P 在CD的延长线上,PN=PE.(1)求证:PE是⊙O的切线;(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.【解答】(1)证明:连接OE,如图1所示:∵PN=PE,∴∠PEN=∠PNE=∠BNF,∵OE=OB,∴∠OEB=∠OBE.∵AB⊥CD,∴∠OBE+∠BNF=90°,∴∠OEB+∠PEN=90°,即∠OEP=90°,∴PE⊥OE,∴PE是⊙O的切线.(2)解:连接CE,如图2所示:∵DE∥AB,AB⊥CD,∴∠EDC=90°∴CE为⊙O的直径.∵AB⊥CD,∴CF=DF,∴DE=2OF=6.∵OF=3,BF=2,∴OC=OB=5,CE=10,∴CD===8,由(1)知PE⊥CE.设PD=x,则PC=x+8.在Rt△PDE和Rt△PCE中,由勾股定理,得:PD2+DE2=PE2=PC2﹣CE2,即x2+62=(x+8)2﹣102,解得:x=,∴PD=.∴PE===,∴PN=PE=.。

北师大版九年级数学下册第三章圆测试题

北师大版九年级数学下册第三章圆测试题

北师大版九年级数学下册第三章《圆》测试题一、选择题1. 如图所示,A、B、C是。

O上的三点,/ BAC=30则/ BOC勺大小是()O O O O2. 如图,AB是。

O的直径,C是。

0上的一点,若AC=8,AB=10, ODL BC于点D, 则BD的长为()3. 下列命题正确的是()A.相等的圆心角所对的弦相等B. 等弦所对的弧相等C.等弧所对的弦相等D. 垂直于弦的直线平分弦4. 如图,A、D是。

上的两个点,BC是直径,若/ D = 35。

,则/ OAC的度数是()A. 35°B. 55°C. 65°D. 70°5如图O是厶ABC的外接圆,已知/ B=60。

,则/ CAO勺度数是()A. 15°B. 30°C. 45° D . 60°6. 如图,已知。

O的两条弦AC, BD相交于点E,Z A=7(J,Z c=50°,那么sin / AEB的值为()A. 1B. -1C. 2D. 三2 3 2 27. 如图,在5X 5正方形网格中,一条圆弧经过A, B, C三点,那么这条圆弧所在圆的圆心是()A.点PB.点QC.点RD.点M8. 如图,。

0是厶ABC的外接圆,AD是。

0的直径,若。

0的半径为6, sinB=」,3 则线段AC的长是()B.49. 如图,是的直径,点在的延长线上,切于若则等于()A. B. C. D.10. 如图是△的外接圆,是。

的直径,若。

的半径为,,则的值是()A. B. C. D.、填空题11. 如图,,为上的点,且,圆与相切,则圆的半径为________ .12. 如图,△ ABC内接于。

O, AC是的直径,/ AC9 50°,点D是BAC上一点,则/ D= ________________ .13. 如图,已知。

O的半径是6cm,弦CB=6「3cm, ODL BC,垂足为D,则/COB ________ .14. 中,,以点B为圆心6cm为半径作,则边AC所在的直线与的位置关系是__________ .15. 如图,一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“ 2”和“10”(单位:cm), 那么该光盘的直径是—cm.16. 如图,AB为O O的直径,点C, D在O O上.若/ AO430°,则/ BCD勺度数是 __________ .17. 如图,AB是O O的直径,弦DC与AB相交于点E,若/ACD=60 , / ADC=50 , 则/ ABD= _____ ,/ CEB= .18. 如图6,已知AB是O O的直径,PB是O O的切线,PA交O O于C, AB=3cm PB=4cm 贝U BC= . ___19. 如图,点A B C在O O上,切线CD与OB的延长线交于点D,若/ A=30°, CD=则O O的半径长为______________ .20. 如图,扇形AOB的半径为1,Z AOB=90,以AB为直径画半圆,则图中阴影部分的面积为___________ .三、解答题21. 如图,在O O中,CD是直径,AB是弦,且CD丄AB, 已知CD = 20, CM= 4,求AB.22. 已知:如图,AB是。

(完整)北师大版九年级下册数学第三章圆单元测试(含答案),推荐文档

(完整)北师大版九年级下册数学第三章圆单元测试(含答案),推荐文档

一、选择题第三章圆1. 已知⊙O 的直径为 10,点 P 到点 O 的距离大于 8,那么点 P 的位置( )A. 一定在⊙O 的内部B. 一定在⊙O 的外部C. 一定在⊙O 上D. 不能确定2. 乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离 CD 为 8m ,水面宽 AB 为 8m ,则桥拱半径 OC 为( )A. 4mB. 5mC. 6mD. 8m3. 给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的有( )A. 1 个B. 2 个C. 3 个D. 4 个4. 一个扇形的圆心角是 120°,面积为 3πcm 2, 那么这个扇形的半径是() A. cm B. 3cmC. 6cmD. 9cm5. 如图,点 A,B,C 均在坐标轴上,AO=BO=CO=1,过 A,O,C 作⊙D ,E 是⊙D 上任意一点,连结 CE, BE ,则的最大值是( )A. 4B. 5C. 6D.6. 如图,在⊙O 中,弦 AC与半径OB 平行,若∠BOC=50°,则∠B 的大小为()A. 25°B. 30°C. 50°D. 60°7.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条直径翻折,可以看到直径两侧的两个半圆互相重合”.由此说明()A.圆的直径互相平分B.垂直弦的直径平分弦及弦所对的弧C.圆是中心对称图形,圆心是它的对称中心D.圆是轴对称图形,任意一条直径所在的直线都是它的对称轴8.如图,AB 为⊙O 的直径,点E、C 都在圆上,连接AE,CE,BC,过点A 作⊙O 的切线交BC 的延长线于点D,若∠AEC=25°,则∠D 的度数为()A. 75°B. 65°C. 55°D. 74°9.如图,四边形ABCD 内接于圆O,E 为CD 延长线上一点,若∠B=110°,则∠ADE 的度数为()A. 115°B. 110°C. 90°D. 80°10.已知:⊙O 是△ABC 的外接圆,∠OAB=40°,则∠ACB 的大小为()A. 20°B. 50°C. 20°或160°D. 50°或130°11.如图,⊙O 内切于四边形ABCD,AB=10,BC=7,CD=8,则AD 的长度为()A. 8B. 9C. 10D. 1112.如图,在圆心角为45°的扇形内有一正方形CDEF,其中点C、D 在半径OA 上,点F 在半径OB 上,点E 在上,则扇形与正方形的面积比是()A. π:8B. 5π:8C. π:4D. π:4二、填空题13.PA,PB 分别切⊙O 于A,B 两点,点C 为⊙O 上不同于AB 的任意一点,已知∠P=40°,则∠ACB 的度数是.14.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C,AD⊥l,垂足为D,AD 交⊙O 于点E,连接OC、BE.若AE=6,OA=5,则线段DC 的长为.15.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠AOC=40°,D 是BC 弧的中点,则∠ACD= .16.如图所示,⊙I 是Rt△ABC 的内切圆,点D、E、F 分别是且点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I 的周长为cm.17.如图,PA,PB 是⊙O 的切线,CD 切⊙O 于E,PA=6,则△PDC 的周长为.18.如图,⊙O 的半径为6cm,B 为⊙O 外一点,OB 交⊙O 于点A,AB=OA,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为时,BP 与⊙O 相切.19.如图,在⊙O 的内接四边形ABCD 中,点E 在DC 的延长线上.若∠A=50°,则∠BCE= .20.如图,△ABC 中,∠BAC=90°,点G 是△ABC 的重心,如果AG=4,那么BC 的长为.21.如图,在△ABC 中,AB=AC=3,∠BAC=120°,以点A 为圆心,1 为半径作圆弧,分别交AB,AC 于点D,E,以点C 为圆心,3 为半径作圆弧,分别交AC,BC 于点A,F.若图中阴影部分的面积分别为S1,S2,则S1﹣S2的值为.22.如图所示,在半圆O 中,AB 为直径,P 为弧AB 的中点,分别在弧AP 和弧PB 上取中点A1和B1,再在弧PA1和弧PB1上分别取中点A2和B2,若一直这样取中点,求∠A n PB n= .三、解答题23.如图,AB 为⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠DCB=∠A.求证:CD 是⊙O 的切线.24.如图,已知AB 是半圆O 的直径,∠BAC=32°,D 是弧AC 的中点,求∠DAC 的度数.25.如图,ABCD 是⊙O 的内接四边形,DP∥AC,交BA 的延长线于P,求证:AD•DC=PA•BC.26.(2017•通辽)如图,AB 为⊙O 的直径,D 为的中点,连接OD 交弦AC 于点F,过点D 作DE∥AC,交BA 的延长线于点E.(1)求证:DE 是⊙O 的切线;(2)连接CD,若OA=AE=4,求四边形ACDE 的面积.参考答案一、选择题B B A BC AD B B D D B二、填空题13. 70°或110°14. 4 15.125°16. 2π17. 1218. 2 秒或5 秒19. 50°20. 1221. - π22. 180°﹣×180°三、解答题23.解:证明:连接OC,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵OB=OC,∴∠OBC=∠OCB,又∵∠DCB=∠A,∴∠A+∠ABC=∠DCB+∠OCB=90°,∴OC⊥DC,∴CD 是⊙O 的切线.24.解:连接BC,∵AB 是半圆O 的直径,∠BAC=32°,∴∠ACB=90°,∠B=90°﹣32°=58°,∴∠D=180°﹣∠B=122°(圆内接四边形对角互补),∵D 是弧的中点,∴∠DAC=∠DCA=(180°﹣∠D)÷2=29°,即∠DAC 的度数是29°.25.证明:如图,连接AC,连接BD.∵DP∥AC,∴∠PDA=∠DAC.∵∠DAC=∠DBC,∴∠PDA=∠DBC.∵四边形ABCD 是圆内接四边形,∴∠DAP=∠DCB.∴△PAD∽△DCB.得PA:DC=AD:BC,即AD•DC=PA•BC.26.(1)证明:∵D 为的中点,∴OD⊥AC,∵AC∥DE,∴OD⊥DE,∴DE 是⊙O 的切线(2)解:连接DC,∵D 为的中点,∴OD⊥AC,AF=CF,∵AC∥DE,且OA=AE,∴F 为OD 的中点,即OF=FD,在△AFO 和△CFD 中,∴△AFO➴△CFD(SAS),∴S△AFO=S△CFD ,∴S 四边形ACDE=S△ODE在Rt△ODE 中,OD=OA=AE=4,∴OE=8,∴DE= =4 ,∴S 四边形ACDE=S△ODE= ×OD×DE= ×4×4 =8 .“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

北师大版2019-2020学年九年级数学第二学期第三章圆检测题(含答案)

北师大版2019-2020学年九年级数学第二学期第三章圆检测题(含答案)

北师大版九年级数学下册第三章圆检测卷一、单选题(共10题;共30分)1.已知Rt△ABC,∠C=90°,若以斜边AB为直径作⊙O,则点C在()A. ⊙O上B. ⊙O内C. ⊙O外D. 不能确定2.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A. 110°B. 130°C. 120°D. 140°3.到三角形三边距离都相等的点是三角形()的交点A. 三边中垂线B. 三条中线C. 三条高D. 三条内角平分线4.如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=()A. 65°B. 50°C. 130°D. 80°5.如图,☉O内切于Rt△ABC,∠ACB=90°,若∠CBO=30°,则∠A等于( )A. 15°B. 30°C. 45°D. 60°6.如图1,在⊙O中,弦AC和BD相交于点E,弧AB=弧BC=弧CD,若∠BEC=110°,则∠BDC()A. 35°B. 45°C. 55°D. 70°7.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于()A. 25°B. 30°C. 40°D. 50°8.若圆的一条弦把圆分成度数比为1:4的两段弧,则弦所对的圆周角等于()A. 36°B. 72°C. 36°或144°D. 72°或108°9.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连结CO,AD,∠BAD=20°,则下列说法中正确的是( )A.∠BOC=2∠BADB.CE=EOC.∠OCE=40°D.AD=2OB二、填空题(共10题;共30分)11.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=6,则BE=________.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm13.如图,AB为⨀O的弦,⨀O的半径为5,OC⊥AB于点D,交⨀O于点C,且OD=4,则弦AB的长是________.14.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC和BD相交于点E,AC=BC,DE=2cm,AD=5cm,则⊙O的半径为是________ cm.15.已知一块直角三角形钢板的两条直角边分别为30cm、40cm,能从这块钢板上截得的最大圆的半径为________.16.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=________17.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为________.18.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为________ cm.19.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.20.如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E,若∠COB=3∠AOB,OC=2 ,则图中阴影部分面积是________(结果保留π和根号)三、解答题(共8题;共60分)21.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.22.如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.23.已知如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》检测(含答案解析)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》检测(含答案解析)

一、选择题1.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( )A .0个B .1个C .2个D .3个2.已知△ABC 是半径为2的圆内接三角形,若BC =23,则∠A 的度数( ) A .30°B .60°C .120°D .60°或120° 3.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,则PC 的长为( )A .6B .25C .210D .214 4.已知⊙O 的半径是一元二次方程2690x x -+=的解,且点O 到直线AB 的距离为2,则⊙O 与直线AB 的位置关系为( )A .相交B .相切C .相离D .无法确定 5.下列关于正多边形的叙述,正确的是( )A .正七边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720︒C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形6.如图,已知⊙O 的直径8CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为M ,2OM =,则AB 的长为( )A .2B .23C .4D .43 7.如图,ABC 内接于O ,A 40∠=︒,ABC 70∠=︒,BD 是O 的直径,BD 交AC 于点E ,连接CD ,则AEB ∠等于( )A .70︒B .90°C .110°D .120°8.如图,AB 是圆O 的直径,C 、D 、E 都是圆上的点,其中C 、D 在AB 下方,E 在AB 上方,则∠C +∠D 等于( )A .60°B .75°C .80°D .90°9.“圆材埋壁”是我国古代数学名著《章算术》中的一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问:径几何?”转化为数学语言:如图,CD 为O的直径,弦AB CD ⊥,垂足为E ,1CE =寸,10AB =寸,直径CD 的长是( )A .13寸B .26寸C .28寸D .30寸10.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A .55°B .65°C .70°D .75°11.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒12.如图,正方形ABCD 的四个顶点都在⊙O 上,在AD 上取一点E (点E 不与D 重合),连接EC ,ED ,则∠CED 的度数为( )A .30°B .45°C .60°D .75°二、填空题13.如图,六边形ABCDEF 是半径为2的⊙O 的内接正六边形,则劣弧CD 的长为_____.14.如图,等边△ABC 内接于☉O ,BD 为⊙O 内接正十二边形的一边,CD=52,则图中阴影部分的面积等于_________.15.如图,是由一个大圆和四个相同的小圆组成的图案,若大圆的半径为2,则阴影部分的面积为______.16.如图,点A 、B 的坐标分别为()3,0A ,()0,4B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则的最大值为________.17.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:18.如图,将矩形ABCD 绕点C 沿逆时针方向旋转,使点B 的对应点B '刚好落在DC 延长线上,得到矩形A B CD ''',若4AB =,8AD =,则阴影部分的面积为__________.19.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,70A ∠=,50C ∠=,那么tan AEB ∠=___________.20.如图,将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心,O用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为____________________cm.(结果用含根号的式子表示)三、解答题21.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)若AC=BC,判断四边形OCED的形状,并说明理由.22.已知关于x的一元二次方程x2+2mx﹣n2+5=0.(1)当m=1时,该一元二次方程的一个根是1,求n的值;(2)若该一元二次方程有两个相等的实数根.①求m、n满足的关系式;②在x轴上取点H,使得OH=|m|,过点H作x轴的垂线l,在垂线l上取点P,使得PH =|n|,则点P到点(3,4)的距离最小值是.23.定义:把经过三角形的一个顶点并与其对边所在直线相切的圆叫做三角形的“切接圆”.根据上述定义解决下列问题,在△ABC中,AB=AC=5, BC=6,设△ABC的“切接圆”的半径为r.(1)如图1,△ABC 的“切接圆”的圆心D 在边AB 上,求r ;(2)如图2,请确定r 的最小值,并说明理由;(3)如图3,把△ABC 放在平面直角坐标系中,使点B 与原点O 重合,点C 落在x 轴正半轴上. 求证:以抛物线21(3)28y x =-+上任意一点为圆心都可以作△ABC 的“切接圆”. 24.如图,在四边形ABCD 中,//,AD BC DE BC ⊥于点,E BAD ∠的角平分线交DE 于点О,以点О为圆心,OD 为半径的圆经过点C ,交BC 于另一点F .()1求证:AB 与О相切;()2若24,5CF OE ==,求CD 的长.25.如图,O 的直径10AB =,6AC =,D 为O 上一点,过点D 作DP AC ⊥,垂足为P ,且DP 为O 的切线. (1)求证:AD 平分PAB ∠.(2)求ADP △的面积.26.如图,已知AB 是O 的直径,BC AB ⊥,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性.【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确;③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误;④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误;综上所述,②正确.故选:B .【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.2.D解析:D【分析】首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.【详解】解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23∴BD=4,∴22BD BC,∴CD=1BD,2∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°-∠A=120°,∴∠A的度数为:60°或120°.故选:D.【点睛】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.3.D解析:D【分析】延长AO交⊙O于B,连接AC,证明△PAC∽△PCB,进而得到PC2=PA•PB即可求出PC的长.【详解】解:如下图所示:连接OC,延长AO交⊙O于B,连接AC,BC,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC , ∴=PC PA PB PC,即24(104)56=⨯=⨯+=PC PA PB , ∴214=PC故选:D .【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.4.A解析:A【分析】解方程确定圆的半径为3,圆心距d=2,比较半径与圆心距的大小,根据法则判断即可.【详解】∵2690x x -+=,∴123x x ==,∴圆的半径为3,∵点O 到直线AB 的距离为2,即d=2,∴d <R ,∴直线与圆相交,故选A.【点睛】本题考查了用半径、圆心距判定直线和圆的位置关系,熟练解方程,熟记d ,R 法则是解题的关键.5.C解析:C【分析】根据中心对称图形、轴对称图形的定义、多边形外角和定理、正多边形的性质对各选项逐一判断即可得答案.【详解】A.正七边形是轴对称图形,不是中心对称图形,故该选项错误,B.任意多边形的外角和都等于360°,故该选项错误,C.任何正多边形都有一个外接圆,故该选项正确,D.∵正三角形的每个外角为120°,对应的每个内角为60°,∴存在每个外角都是对应每个内角两倍的正多边形,故该选项错误,故选:C .【点睛】本题考查正多边形的性质、中心对称图形、轴对称图形的定义及多边形外角和定理,熟练掌握相关性质及定理是解题关键.6.D解析:D【分析】连接OB ,根据勾股定理计算BM=23,利用垂径定理,AB=2BM 计算即可.【详解】连接OB ,∵直径8CD =,AB CD ⊥,2OM =∴BM=22OB OM -=2242-=23,根据垂径定理,得AB=2BM=43,故选D .【点睛】本题考查了垂径定理,勾股定理,熟练掌握连接半径构造直角三角形,灵活运用垂径定理和勾股定理求解是解题的关键.7.D解析:D【分析】根据三角形内角和定理和圆周角定理求解即可;∵A 40∠=︒,ABC 70∠=︒,∴180407070ACB ∠=︒-︒-︒=︒, ∵BD 是圆O 的直径,∴90BCD ∠=︒,∴20ACD ∠=︒,∴20ABD ACD ∠=∠=︒,∴()1801804020120AEB BAE ABE∠=︒-∠+∠=︒-︒-︒=︒;故答案选D .【点睛】本题主要考查了圆周角定理、三角形内角和,准确计算是解题的关键. 8.D解析:D【分析】连接OE ,根据圆周角定理即可求出答案.【详解】解:连接OE ,根据圆周角定理可知:∠C =12∠AOE ,∠D =12∠BOE , 则∠C +∠D =12(∠AOE +∠BOE )=90°, 故选:D .【点睛】本题考查了圆周角的性质,解题关键是连接半径,构造圆心角,依据圆周角与圆心角的关系进行计算.9.B解析:B【分析】连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =x−1,在直角△OAE 中利用勾股定理即可列方程求得半径,进而求得直径CD 的长.解:如图,连接OA .设圆的半径是x 寸,在直角△OAE 中,OA =x 寸,OE =(x−1)寸,∵222OA OE AE =+,∵AB=10,且AB CD ⊥∴AE=12AB=5 则()22125x x =-+,解得:x =13.则CD =2×13=26(寸).故选:B .【点睛】本题考查了垂径定理和勾股定理,正确作出辅助线是关键.10.B解析:B【分析】连接CD ,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD ⊥BC ,求得BD=CD ,根据等腰三角形的性质即可得到结论;【详解】如图:连接CD ,∵ ∠A=50°,∴∠CDB=180°-∠A=130°,∵ E 是边BC 的中点,∴ OD ⊥BC ,∴ BD=CD ,∴ ∠ODB=∠ODC=12∠BDC=65°, 故选:B .【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.11.B解析:B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36, ∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.12.B解析:B【分析】连接DO、CO,利用正方形的性质可求得圆心角的度数为90°,再根据圆周角定理求解即可得出结论.【详解】解:如图,连接DO、CO,∵四边形ABCD为正方形,∴∠COD=90°,∴∠CED=12∠COD=45°.故选:B.【点睛】考查了正方形和圆的性质,掌握正方形的性质及圆周角定理并能正确的作出辅助线是解答此题的关键.二、填空题13.【分析】连接OCOD求出圆心角∠COD的度数再利用弧长公式解答即可;【详解】解:连接OCOD∵六边形ABCDEF为正六边形∴∠COD=360°×=60°∵OD=2弧DC的长为故答案为:【点睛】本题考解析:2 3π【分析】连接OC、OD,求出圆心角∠COD的度数,再利用弧长公式解答即可;【详解】解:连接OC、OD,∵六边形ABCDEF为正六边形,∴∠COD=360°×16=60°,∵OD=2,弧DC的长为6022 1803.故答案为:23π.【点睛】本题考查了正多边形和圆,弧长公式,解题关键是连接半径,根据正多边形的性质求出圆心角度数,熟练运用弧长公式.14.【分析】首先连接OBOCOD 由等边△ABC 内接于⊙OBD 为内接正十二边形的一边可求得∠BOC ∠BOD 的度数则证得△COD 是等腰直角三角形并利用勾股定理求得圆的半径最后利用S 阴影=S 扇形OCD-S △O 解析:252542π- 【分析】首先连接OB ,OC ,OD ,由等边△ABC 内接于⊙O ,BD 为内接正十二边形的一边,可求得∠BOC ,∠BOD 的度数,则证得△COD 是等腰直角三角形,并利用勾股定理求得圆的半径,最后利用S 阴影=S 扇形OCD -S △OCD 进行计算后即可得出答案.【详解】解:连接OB ,OC ,OD ,∵等边△ABC 内接于⊙O ,BD 为内接正十二边形的一边,∴∠BOC =13×360°=120°,∠BOD =112×360°=30°, ∴∠COD =∠BOC−∠BOD =90°,∵OC =OD ,∴∠OCD =45°,∴OC 2+ OD 2=CD 2.即2OC 2=50,∴OC=5,∴S 阴影=S 扇形OCD -S △OCD=90251252555360242ππ-⨯⨯=-.故答案为:252542π-. 【点睛】 此题考查了正多边形与圆、扇形面积的计算等知识,掌握辅助线的作法以及数形结合思想的应用是解题的关键.15.【分析】如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积再由勾股定理可得:从而可得答案【详解】解:如图由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积大圆的半 解析:48π-【分析】如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,再由勾股定理可得:28,AC =从而可得答案.【详解】解:如图,由圆的对称性及割补法可得阴影部分的面积为大圆的面积减去正方形的面积,大圆的半径为2,90,,ACB AC BC ∠=︒=∴ 4,AB =2216,AC BC +=28,AC ∴=22248.S AC ππ∴=⨯-=-故答案为:48.π-【点睛】本题考查的是阴影部分面积的求解,勾股定理的应用,圆的对称性与正方形的性质,扇形面积与弓形面积的理解,正多边形与圆,掌握以上知识是解题的关键.16.3【分析】根据同圆的半径相等可知:点C 在半径为1的⊙B 上通过画图可知C 在BD 与圆B 的交点时OM 最小在DB 的延长线上时OM 最大根据三角形的中位线定理可得结论【详解】解:如图∵点C 为坐标平面内一点BC = 解析:3【分析】根据同圆的半径相等可知:点C 在半径为1的⊙B 上,通过画图可知,C 在BD 与圆B 的交点时,OM 最小,在DB 的延长线上时,OM 最大,根据三角形的中位线定理可得结论.【详解】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=3,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=1CD,2当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=4,OD=3,∠BOD=90°,∴BD=5,∴CD=6,∴OM=1CD=3,即OM的最大值为3;2故答案为:3.【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.17.【分析】根据点A的取法罗列出部分点A的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题解析:20172018π-22【分析】根据点A的取法,罗列出部分点A的横坐标,由此可发现规律,即n A的横坐标为:)12n-,再结合已知即可得到答案.【详解】2,观察,发现规律:1A的横坐标为:1,2A23A的横坐标为:2⋯,∴n A 的横坐标为:()12n - n B ∴的横坐标为:()12n -()()()404020192019201720182020452122223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:()12n -这一规律.18.【分析】先求出CE=2CD′求出∠D′EC=30°求出∠D′CE=60°D′E=4分别求出扇形CEB 和三角形CD′E 的面积即可求出答案【详解】解:设与交于点连接∵四边形是矩形∴在中∵∴∴∴故答案为:解析:32833π- 【分析】先求出CE=2CD′,求出∠D′EC=30°,求出∠D′CE=60°,D′E=43,分别求出扇形CEB 和三角形CD′E 的面积,即可求出答案.【详解】解:设BB '与A D ''交于点E ,连接CE ,∵四边形'''A B CD 是矩形,∴A D C ∠''90B CD =∠''=︒,在Rt ED C '中,∵8CE CB ==,=4CD AB '=,∴228443ED '=-=,30CED ∠'=︒,∴60ECD ∠'=︒,∴26081324438336023ECD ECB S S S ππ'⨯=--⨯⨯=-=△阴影扇形 故答案为:32833π-【点睛】本题考查了旋转的性质,扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE 的面积,题目比较好,难度适中.19.【分析】求出∠AEB 的度数再求三角函数值即可【详解】解:∵∠B=∠C=50°∠A=70°∴∠AEB=180°-∠A-∠B=60°故答案为:【点睛】本题考查了圆周角的性质三角形内角和特殊角的三角函数值【分析】求出∠AEB 的度数,再求三角函数值即可.【详解】解:∵∠B=∠C=50°,∠A=70°,∴∠AEB=180°-∠A-∠B=60°,tan tan 60AEB ∠=︒=,【点睛】本题考查了圆周角的性质,三角形内角和,特殊角的三角函数值,解题关键是灵活运用圆中角的关系,把已知条件集中在一个三角形中求角.20.【分析】作OC ⊥AB 根据折叠的性质得OD 等于半径的一半即OA =2OD 再根据含30°的直角三角形三边的关系得∠OAD =30°同理∠OBD =30°所以∠AOB =120°则利用弧长公式算出弧AB 的长利用圆解析:【分析】作OC ⊥AB ,根据折叠的性质得OD 等于半径的一半,即OA =2OD ,再根据含30°的直角三角形三边的关系得∠OAD =30°,同理∠OBD =30°,所以∠AOB =120°,则利用弧长公式算出弧AB 的长,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,得到圆锥的底面圆的半径,从而结合勾股定理求高即可.【详解】如图,过O 点作OC ⊥AB ,垂足为D ,交⊙O 于点C , 由折叠的性质可知,1122OD OC OA ==, 由此可得,在Rt AOD △中,30OAD ∠=︒,同理可得30OBD ∠=︒,在AOB 中,由三角形内角和定理,得180120AOB OAD OBD ∠=︒-∠-∠=︒. ∴弧AB 的长为()12032180cm ππ⨯=. 设围成的圆锥的底面半径为r cm ,则22ππ=r ,∴1r cm =.∴圆锥的高为()22-=.3122cm故答案为:22.【点睛】本题考查了折叠的性质,弧长公式的计算,直角三角形的性质等,掌握弧长公式的计算以及圆锥相关基本结论是解题的关键.三、解答题21.(1)见解析;(2)正方形,理由见解析【分析】(1)连接OD、CD,结合AC为直径可得到∠CDB=90°,E为中点,可得到ED=CE,再利用角的和差可求得∠ODE=90°,可得DE为切线;(2)由条件可得∠ODA=∠A=45°,可求得∠COD=∠ODE=∠ACB=90°,且OC=OD,可知四边形ODEC为正方形.【详解】(1)证明:如图,连接OD、CD,∵OC=OD,∴∠OCD=∠ODC,∵AC为⊙O的直径,∴∠CDB=90°,∵E为BC的中点,∴DE=CE,∴∠ECD=∠EDC,∴∠OCD+∠ECD=∠ODC+∠EDC=90°,∴∠ODE=∠ACB=90°,即OD⊥DE,又∵D在圆O上,∴DE与圆O相切;(2)若AC=BC,四边形ODEC为正方形,理由:∵AC=BC,∠ACB=90°,∴∠A=45°,∵OA=OD,∴∠ODA=∠A=45°,∴∠COD=∠A+∠ODA=90°,∵四边形ODEC中,∠COD=∠ODE=∠ACB=90°,且OC=OD,∴四边形ODEC为正方形.【点睛】本题考查了切线的判定、正方形的判定、圆的性质、三角形的外角、直角三角形的性质等知识,解答本题的关键是熟练运用以上知识证明OD⊥DE以及∠COD=∠ODE=∠ACB=90°,OC=OD.22.(1);(2)①m2+n2=5;②5【分析】(1)把m=1,x=1代入方程得1+2-n2+5=0,然后解关于n的方程即可;(2)①利用判别式的意义得到△=4m2-4(-n2+5)=0,从而得到m与n的关系;②利用勾股定理得到P在以O上,然后根据点与圆的位置关系判断点P到点(3,4)的距离最小值.【详解】解:(1)把m=1,x=1代入方程得1+2﹣n2+5=0,解得n=,即n的值为;(2)①根据题意得△=4m2﹣4(﹣n2+5)=0,整理得m2+n2=5;②∵OH=|m|,PH=|n|,∴OP即点P在以O∴原点与点(3,4)的连线与⊙O的交点P使点P到点(3,4)的距离最小,∵原点到点(3,45,∴点P到点(3,4)的距离最小值是5故答案为5【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了点与圆的位置关系.23.(1)209r =;(2)最小值2r =;(3)证明过程见解析; 【分析】 (1)作DE BC ⊥,AM BC ⊥,根据勾股定理和相似三角形的性质计算即可; (2)判断出r 的最小值范围,根据等面积法确定计算即可;(3)设抛物线21(3)28y x =-+上任意一点为()00,P x y ,证明P 到x 轴的距离与PA 的距离相等即可;【详解】(1)如图所示,作DE BC ⊥,AM BC ⊥,∵AM ∥DE ,DE r =,AB=AC ,∴3BM MC ==,∴22534AM =-=, 由题可知△△BDEBAM , ∴BD DE BA AM =, ∴554r r -=, ∴2045r r -=,∴209r =. (2)由几何关系得,当这个图的直径是三角形的一条高时,最短;∵A 到BC 的距离为4,∴124r =,12r =;设C 到AB 的距离是m ,则1122S AM BC CD m =⨯⨯=⨯⨯, ∴24 4.85m ==, ∴22 4.8r =,2 2.4r =,∵2r >1r ,∴1r 为最小值,∴最小值2r =;(3)设抛物线21(3)28y x =-+上任意一点为()00,P x y ,因为抛物线的开口向上,顶点坐标为(3,2),所以对于抛物线上任意一点来说,纵坐标均为正数, 则P 到x 轴的距离为0h y =,PA ==, ∵()2001328y x =-+, ∴220008625y x x =-+, ∴20006825x x y -=-, 将上式代入①得,0PA y ==, ∴PA h =,即说明抛物线上任意一点P 均是△ABC 的切接圆圆心.【点睛】本题主要考查了与圆有关的计算,结合相似三角形的性质、勾股定理计算是解题的关键.24.()1见解析;()2【分析】(1)过点O 作OG ⊥AB ,垂足为G .先证明DE AD ⊥,再利用角平分线的性质,得OD =OG =r ,则AB 是⊙O 的切线;(2)连接OC ,依据垂径定理可知CE =EF =12,在Rt △OEC 中,依据勾股定理可知求得OC =13,然后可得到DE 的长,最后在Rt △DEC 中,利用勾股定理求解即可.【详解】()1证明:过点O 作OG AB ⊥,垂足为G//AD BC DE BC ⊥,,DE AD ∴⊥,又BAD ∠的角平分线交DE 于点OOG OD ∴=又OG AB ⊥AB ∴与O 相切()2连接OC .DE CF ⊥ ∴1122CE CF在Rt OEC ∆中,2213OC OE CE OD = 18DE OD OE ∴=+= 在Rt DEC ∆中,22613CDDE CE 【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用,角平分线的性质等知识,掌握本题的辅助线的作法是解题的关键.25.(1)证明见详解;(2)S △PAD =4.【分析】(1)连结OD , 由PD 是圆O 的切线,可得OD ⊥PD ,由PD ⊥AC ,可得OD ∥AC ,利用两直线平行内错角相等∠ODA=∠DAP ,由半径OA=OD 可得∠ODA=∠OAD ,利用等量代换∠DAP=∠DAO 即可;(2)连结BC ,延长DO 交BC 于F ,过A 作AE ⊥OD 于E ,由AB 为⊙O 的直径,可得∠ACB=90°,由勾股定理228AB AC -,可证四边形DPCF 为矩形,由性质OF ⊥BC ,可得BF=CF =4,可求PD=4,再证四边形DPAE 也是矩形,利用性质可得DE=PA ,AE=DP=4,由AO=OB =5,利用勾股定理223AO AE -=,PA=DE=2,利用面积公式即可求出面积.【详解】解:(1)连结OD ,∵PD 是圆O 的切线,∴OD ⊥PD ,∵PD ⊥AC ,∴OD ∥AC ,∴∠ODA=∠DAP ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠DAP=∠DAO ,∴AD平分∠BAP;(2)连结BC,延长DO交BC于F,过A作AE⊥OD于E,∵AB为⊙O的直径,∴∠ACB=90°,∴在Rt△ACB中,由勾股定理BC=2222-=-=,1068AB AC∵∠FDP=∠DPC=∠PCF=90°,∴四边形DPCF为矩形,∴OF⊥BC,∴BF=CF=11⨯,BC=8=422∴PD=4,∵AE⊥OD,∴∠EDP=∠DPA=∠DEA=90°,∴四边形DPAE也是矩形,∴DE=PA ,AE=DP=4,∵AO=OB=1AB=5,2在Rt△OEA中,由勾股定理OE=2222-=-=,543AO AE∴DE=OD-OE=5-3=2,∴PA=DE=2,∴S△PAD=11⋅⨯⨯.AP PD=24=422【点睛】本题考查圆的切线性质,等腰三角形性质,角平分线的判定,垂径定理,矩形的判定与性质,勾股定理,三角形面积,掌握圆的切线性质,等腰三角形性质,角平分线的判定,垂径定理,矩形的判定与性质,勾股定理,三角形面积是解题关键.26.(1)见解析;(2)22AE =.【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =. ∵2DE BC =, ∴2ED CD =.∵//AD OC ,∴DE AE CE OE=. ∵O 的半径为2, ∴2221AE AE =++,∴AE【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.。

北师版九年级数学下册 第三章 圆 单元测试卷及答案

北师版九年级数学下册 第三章 圆 单元测试卷及答案

北师版九年级数学下册 第三章 圆 单元测试卷及答案满分:120分 时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分) 1.下列说法错误的是( )A .直径是弦B .相等的圆心角所对的弧相等C .弦的垂直平分线一定经过圆心D .平分弧的半径垂直于弧所对的弦2.⊙O 与点P 在同一平面内,⊙O 的半径为5,PO =4,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定3.已知AB 是半径为6的圆的一条弦,则AB 的长不可能是( )A .8B .10C .12D .144.如图,AB 是⊙O 的直径,∠ABC =60°,则tan ∠BAC 的值是( )A. 3B .1C.32D.33(第4题) (第5题) (第7题)5.如图是一圆柱形输水管的横截面,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则该输水管的半径为( ) A .3 cmB .4 cmC .5 cmD .6 cm6.在⊙O 中,AB ︵=2CD ︵,则AB 和2CD 的大小关系是( )A .AB >2CD B .AB =2CDC .AB <2CDD .不能确定7.如图,P A ,PB 分别切⊙O 于点A ,B ,MN 切⊙O 于点C ,且分别交P A ,PB于点M ,N ,若P A =7.5 cm ,则△PMN 的周长是( )A .7.5 cmB .10 cmC .12.5 cmD .15 cm8.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =( )A .125°B .115°C .110°D .130°(第8题) (第9题) (第10题)9.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0),与y 轴交于点B (0,4)和点C (0,16),则圆心M 到坐标原点O 的距离是( ) A .10 B .8 2 C .4 13D .2 4110.如图,正方形ABCD 的边长为1,BD ︵和AC ︵都是以1为半径的圆弧,图中两个阴影部分的面积分别记为S 1和S 2,则S 1-S 2等于( ) A.π2-1 B .1-π4 C.π3-1D .1-π6二、填空题(本大题共5小题,每小题3分,共15分)11.已知△ABC 的三边长分别是6,8,10,则△ABC 外接圆的直径是________. 12.已知某扇形的圆心角为150°,弧长为20π cm ,则该扇形的面积为________cm 2. 13.如图,⊙O 是四边形ABCD 的内切圆,若AB =10,CD =12,则四边形ABCD的周长为________.(第13题) (第14题) (第15题)14.如图,△ABC 是⊙O 的内接三角形,∠C =45°,AB =6,则⊙O 的半径为________.15.如图,在平面直角坐标系中,C (0,4),A (3,0),⊙A 的半径为2,P 为⊙A上任意一点,E 是PC 的中点,则OE 的最小值是________. 三、解答题(一)(本大题共3小题,每小题8分,共24分)16.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC =150°,求∠EBC 的度数.(第16题)17.如图,AB 、CD 是⊙O 的两条直径,CE ∥AB ,求证:BC ︵=AE ︵.(第17题)18.如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标为__________; (2)⊙M 的半径为________;(3)判断点D(5,-2)与⊙M的位置关系.(第18题)四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CB=CD.(第19题)20.如图,直线AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,OB =6 cm,OC=8 cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.(第20题)21.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接BF,求∠ABF的度数.(第21题)五、解答题(三)(本大题共2小题,每小题12分,共24分)22.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F.(1)求证:AC 平分∠DAB ; (2)求证:△PCF 是等腰三角形;(3)若AF =6,EF =2 5,求⊙O 的半径.(第22题)23.(1)如图①,△ABC 是⊙O 的内接正三角形,点P 为BC ︵上一动点,求证:P A=PB +PC ;(2)如图②,四边形ABCD 是⊙O 的内接正四边形,点P 为BC ︵上一动点,求证:P A =PC +2PB ;(3)如图③,六边形ABCDEF 是⊙O 的内接正六边形,点P 为BC ︵上一动点,请直接写出P A 、PB 、PC 三者之间的数量关系.(第23题)答案一、1.B 2.A 3.D4.D5.C6.C7.D 8.A9.D10.A二、11.1012.240π13.4414.3215.1.5三、16.解:由圆周角定理得∠ADC =12∠AOC =12×150°=75°.∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°.又∵∠ABC +∠EBC =180°,∴∠EBC =∠ADC =75°.(第17题)17.证明:连接OE ,如图,∵CE ∥AB ,∴∠BOC =∠C ,∠AOE =∠E ,∵OC =OE ,∴∠C =∠E ,∴∠BOC =∠AOE ,∴BC ︵=AE ︵.18.解:(1)(2,0)(2)25(3)点D (5,-2)在⊙M 内.四、19.(1)解:∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM =DM ,∵AM =2,BM =8,∴AB =10,∴OA =OC =5.∴OM =5-2=3.∴CM =OC 2-OM 2=52-32=4,∴CD =8.(2)证明:过点O 作ON ⊥BC ,垂足为N ,如图.(第19题)∵CO 平分∠DCB ,ON ⊥BC ,CD ⊥AB ,∴OM =ON ,∴易得CB =CD .20.解:(1)∵直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,∴易得∠OBF =∠OBE ,∠OCF =∠OCG .∵AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠OBF +∠OCF =90°,∴∠BOC =90°.(2)∵OB =6cm ,OC =8cm ,∠BOC =90°,∴BC =OB 2+OC 2=10cm ,∵直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,∴BE =BF ,CF =CG .∴BE +CG =BF +CF =BC =10cm.(3)连接OF ,则OF ⊥BC ,∴S △OBC =12OF ×BC =12OB ×OC ,即12OF ×10=12×6×8.∴OF =4.8cm.即⊙O 的半径为4.8cm.21.(1)证明:连接OB ,如图.(第21题)∵OB =OA ,CE =CB ,∴∠OAB =∠OBA ,∠CEB =∠ABC .∵CD ⊥OA ,∴∠OAB +∠AED =90°,∴∠OAB +∠CEB =90°.∴∠OBA +∠ABC =90°,即∠OBC =90°.∴OB⊥BC,∴BC是⊙O的切线.(2)解:连接OF,AF,∵DA=DO,CD⊥OA,∴AF=OF,又∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°,∴∠ABF=12∠AOF=30°.五、22.(1)证明:如图,连接OC.∵PD为⊙O的切线,∴OC⊥DP,又∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB.(2)证明:如图,连接OE.∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°.(第22题)∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,又∵∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,∵OC=OE,∴∠OCF=∠OEF,∴∠PCF=∠CFP,∴CP=FP,∴△PCF是等腰三角形.(3)解:设⊙O的半径为r,则OE=r,OF=6-r,在Rt△EOF中,∵OE2+OF2=EF2,∴r2+(6-r)2=(25)2,解得r1=4,r2=2.当r=4时,OF=6-r=2,符合题意;当r=2时,OF=6-r=4,不合题意,舍去.∴⊙O的半径为4.23.(1)证明:延长BP至E,使PE=PC,连接CE.∵四边形ABPC是⊙O的内接四边形,∴∠BAC+∠BPC=180°,又∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE.∵△ABC是正三角形,∴AC=BC,∠BAC=∠ACB=60°,∴∠CPE=60°.又∵PE=PC,∴△PCE是正三角形,∴CE=PC,∠E=∠PCE=60°.∴易得∠BCE=∠ACP.在△BEC和△APC中,=PC,BCE=∠ACP,=AC,∴△BEC≌△APC,∴PA=BE=PB+PE=PB+PC.(2)证明:连接OA,OB,过点B作BE⊥PB交PA于E,如图.∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∠ABC=90°,AB=BC.∴∠1+∠2=90°,∠APB=45°,又∵∠2+∠3=90°,∴∠1=∠3.又∵∠BAP=∠BCP,∴△ABE≌△CBP.∴AE=CP.∵∠EBP=90°,∠APB=45°,∴PE=2PB.∴PA=AE+PE=PC+2PB.(3)解:PA=PC+3PB.(第23题)11。

2022年最新精品解析北师大版九年级数学下册第三章 圆章节练习试题(含答案解析)

2022年最新精品解析北师大版九年级数学下册第三章 圆章节练习试题(含答案解析)

北师大版九年级数学下册第三章 圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A .等弧所对的圆周角相等B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .过弦的中点的直线必过圆心2、如图,在Rt△ABC 中,90BAC ∠=︒,30B ∠=︒,3AB =,以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A ,D ,则阴影部分的面积为( )A 3πB 3π-C 23π-D .23π 3、如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm ,△ABC 绕AC 所在直线旋转一周,所形成的圆锥侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .15πcm 24、如图,在O 中,AB BC CD ==,连接AC ,CD ,则AC 与CD 的关系是( ).A .2AC CD =B .2AC CD < C .2AC CD > D .无法比较5、如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A ,B 两点,连结AO ,BO ,则∠AOB 的度数是( )A .30°B .60°C .80°D .90°6、如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,若OA =2,∠B =60°,则CD 的长为( )A B.C.D.47、直角三角形△PAB一条边为AB,另一顶点P在直线l上,下面是三个学生做直角三角形的过程以及自认为正确的最终结论:甲:过点A作l的垂线,垂足为P1;过点B作l的垂线,垂足为P2;作AP3⊥BP3.故符合题意的点P 有三处;乙:以AB为直径作圆O,⊙O与交l于两点P1、P2,故符合题意的点P有两处;丙:过点A作P1A⊥AB,垂足为A,交l于点P1;过点B作P2B⊥AB,垂足为B,交l于点P2.故符合题意的点P有两处.下列说法正确的是()A.甲的作法和结论均正确B.乙、丙的作法和结论合在一起才正确C.甲、乙、丙的作法和结论合在一起才正确D.丙的作法和结论均正确8、如图,O是正方形ABCD的外接圆,若O的半径为4,则正方形ABCD的边长为()A .4B .8C .D .9、如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .D .10、计算半径为1,圆心角为60︒的扇形面积为( )A .3πB .6πC .2πD .π第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知某扇形的半径为5cm ,圆心角为120°,那么这个扇形的弧长为 _____cm .2、如图,在Rt ABC 中,∠ACB =90°,⊙O 是△ABC 的内切圆,三个切点分别为D 、E 、F ,若BF =2,AF =3,则ABC 的面积是______.3、如图,PA,PB分别切⊙O于点A,B,Q是优弧AB上一点,若∠P=40°,则∠Q的度数是________.4、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中.为区别口味,他打算制作“** 饼干”字样的矩形标签粘贴在盒子侧面.为了获得较好的视觉效果,粘贴后标签上边缘所在弧所对的圆心角为90°(如图).已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_______ cm.(π取3.1)5、16.如图,平行四边形ABCD中,∠ACB= 30°,AC的垂直平分线分别交AC,BC,AD于点O,E,F,点P在OF上,连接AE,PA,PB.若PA = PB,现有以下结论:①△PAB为等边三角形;②△PEB∽△APF;③∠PBC - ∠PAC= 30°;④EA = EB + EP其中一定正确的是______(写出所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,已知抛物线212y x bx =+. (1)求抛物线顶点Q 的坐标;(用含b 的代数式表示)(2)抛物线与x 轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A ,B ,与x 轴交于点K .①判断△AOB 的形状,并说明理由;②已知E (2,0),F (4,0),设△AOB 的外心为M ,当点K 在线段EF 上时,求点M 的纵坐标m 的取值范围.2、如图,在平面直角坐标系中,直线y =﹣3x ﹣3与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A ,C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)试探究ABC ∆的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 上一动点,过点M 的直线EF 平行y 轴交x 轴于点F ,交抛物线于点E .求BCE ∆面积 的最大值,并求出此时M 点的坐标.3、如图,AB 为O 的直径,BC 为O 的切线,弦AD OC ∥,直线CD 交BA 的延长线于点E ,连接BD .求证:(1)EDA EBD△△;(2)ED BC AO BE⋅=⋅.4、在平面直角坐标系xOy中,图形W上任意两点间的距离有最大值,将这个最大值记为d.对点P 及图形W给出如下定义:点Q为图形W上任意一点,若P,Q两点间的距离有最大值,且最大值恰好为2d,则称点P为图形W的“倍点”.(1)如图1,图形W是半径为1的⊙O.①图形W上任意两点间的距离的最大值d为_________;②在点1P(0,2),2P(3,3),3P(3-,0)中,⊙O的“倍点”是________;(2)如图2,图形W是中心在原点的正方形ABCD,已知点A(1-,1),若点E(t,3)是正方形ABCD的“倍点”,求t的值;(3)图形W是长为2的线段MN,T为MN的中点,若在半径为6的⊙O上存在MN的“倍点”,直接写出满足条件的点T所构成的图形的面积.5、尝试:如图①,ABC 中,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',直接写出图中的一对相似三角形_______;拓展:如图②,在ABC 中,90C ∠=︒,AC BC =,将ABC 绕点A 按逆时针方向旋转一定角度得到AB C '',点B 、C 的对应点分别为B ′、C ',连接BB '、CC ',若8BB '=,求CC '的长;应用:如图③,在Rt ABC △中,90ACB ∠=︒,2AB =,30ABC ∠=︒,将ABC 绕点A 按逆时针方向旋转一周,在旋转过程中,当点B 的对应点B ′恰好落在Rt ABC △的边所在的直线上时,直接写出此时点C 的运动路径长.-参考答案-一、单选题1、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.【详解】解:A . 同弧或等弧所对的圆周角相等,所以A 选项正确;B .平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误;C 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C 选项错误;D .圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D 选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.2、A【分析】连结OC ,根据切线长性质DC =AC ,OC 平分∠ACD ,求出∠OCD =∠OCA =12ACD ∠=30°,利用在Rt△ABC中,AC =AB tan B =Rt△AOC 中,∠ACO =30°,AO =AC 1=,利用三角形面积公式求出12AOC S OA AC ∆=⋅=,12DOC S OD DC ∆=⋅=212011==3603OAD S ππ⨯扇形,利用割补法求即可. 【详解】解:连结OC ,∵以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A , D ,∴DC =AC ,OC 平分∠ACD ,∵90BAC ∠=︒,30B ∠=︒,∴∠ACD =90°-∠B =60°,∴∠OCD =∠OCA =12ACD ∠=30°,在Rt△ABC 中,AC =AB tan B =在Rt△AOC 中,∠ACO =30°,AO =AC 1=,∴OD =OA =1,DC =AC∴11122AOC S OA AC ∆=⋅=⨯=11122DOC S OD DC ∆=⋅=⨯= ∵∠DOC =360°-∠OAC -∠ACD -∠ODC =360°-90°-90°-60°=120°, ∴212011==3603OAD S ππ⨯扇形,S 阴影=1133AOC DOC OAD S S S ππ∆∆+-扇形. 故选择A .【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.3、D【分析】圆锥的侧面积S rl π=侧,确定r l 、的值,进而求出圆锥侧面积.【详解】解:S rl π=侧,35r BC l AB ====、23515cm S rl πππ∴==⨯⨯=侧故选D .【点睛】本题考察了圆锥侧面积.解题的关键与难点在于确定r l 、的值.4、B【分析】连接AB ,BC ,根据AB BC CD ==得AB BC CD ==,再根据三角形三边关系可得结论.【详解】解:连接AB ,BC ,如图,∵AB BC CD ==∴AB BC CD ==又AB BC AC +>∴2AC CD <【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键.5、B【分析】延长AO交⊙O于点D,连接BD,根据圆周角定理得出∠D=∠P=30°,∠ABD=90°,由直角三角形的性质可推得AB=BO=AO,然后根据等边三角形的判定与性质可以得解.【详解】解:如图,延长AO交⊙O于点D,连接BD,∵∠P=30°,∴∠D=∠P=30°,∵AD是⊙O的直径,∴∠ABD=90°,∴AB=12AD=AO=BO,∴三角形ABO是等边三角形,∴∠AOB=60°,故选B.本题考查圆的综合应用,熟练掌握圆周角定理、圆直径的性质、直角三角形的性质、等边三角形的判定和性质是解题关键.6、B【分析】先证明OCB 是等边三角形,再证明,CE DE =求解sin 603,CE CO 从而可得答案.【详解】解:2,60,OA OB OC BOCB ∴是等边三角形, 60,BOC,AB CD ∴⊥ 3,sin 6023,2CE DE CE CO22 3.CD CE故选B【点睛】本题考查的是等边三角形的判定与性质,垂径定理的应用,锐角三角函数的应用,证明OCD 是等边三角形是解本题的关键.7、B【分析】根据三个学生的作法作出图形即可判断【详解】解:甲的作图如下,12,ABP ABP 不是直角三角形,故甲的不正确乙:如图,根据直径所对的圆周角是直角可知,乙的作法正确,但不完整,丙的作法如下,丙的作法也正确,但不完整,乙、丙的作法和结论合在一起才正确故选B【点睛】本题考查了直角三角形的判定,直径所对的圆周角是直角,根据题意作出图形是解题的关键.8、D【分析】连接OB ,OC ,过点O 作OE ⊥BC 于点E ,由等腰直角三角形的性质可知OE =BE ,由垂径定理可知BC =2BE ,故可得出结论.【详解】解:连接OB ,OC ,过点O 作OE ⊥BC 于点E ,∴OB =OC ,∠BOC =90°,∴∠OBE =45°,45BOE ∠=︒∴OE =BE ,∵OE 2+BE 2=OB 2,∴BE =∴BC =2BE =ABCD 的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.9、D作OM⊥AB于M,ON⊥CD于N,根据垂径定理、勾股定理得:OM=ON=4,再根据四边形MONP是正方形,故可求解.【详解】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,∵OB=5,BM= 142AB=,∴OM3=∵AB=CD=8,∴ON=OM=4,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP.故选C.本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.10、B【分析】直接根据扇形的面积公式计算即可.【详解】2260113603606n r S πππ︒⨯⨯===︒︒扇形 故选:B .【点睛】 本题考查了扇形的面积的计算,熟记扇形的面积公式2360n r S π=︒扇形是解题的关键. 二、填空题1、103π 【分析】根据弧长公式代入求解即可.【详解】解:∵扇形的半径为5cm ,圆心角为120°, ∴扇形的弧长=120510=1803ππ︒⨯⨯︒. 故答案为:103π. 【点睛】 此题考查了扇形的弧长公式,解题的关键是熟练掌握扇形的弧长公式:180n r π,其中n 是扇形圆心角的度数,r是扇形的半径.2、6【分析】根据题意利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理即可得出答案.【详解】解:连接DO,EO,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=2,AF=AE=3又∵∠C=90°,∴四边形OECD是矩形,又∵EO=DO,∴矩形OECD是正方形,设EO=x,则EC=CD=x,在Rt△ABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,∴BC=3,AC=4,×3×4=6.∴S△ABC=12故答案为:6.【点睛】本题主要考查三角形内切圆与内心,根据题意得出四边形OECF是正方形以及运用方程思维和勾股定理进行分析是解题的关键.3、70°度【分析】连接OA 、OB ,根据切线性质可得∠OAP =∠OBP =90°,再根据四边形的内角和为360°求得∠AOB ,然后利用圆周角定理求解即可.【详解】解:连接OA 、OB ,∵PA ,PB 分别切⊙O 于点A ,B ,∴∠OAP =∠OBP =90°,又∠P =40°,∴∠AOB =360°-90°-90°-40°=140°,∴∠Q =12∠AOB =70°,故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.4、9.3【分析】 根据弧长公式进行计算即可,180n r l π=【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90°,底面半径为6 cm , 906==39.3180180n r l πππ⨯∴==cm , 故答案为:9.3【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键.5、①③④【分析】根据等边三角形的性质、垂直平分线的性质逐项进行分析即可.【详解】连接PC①∵AC 的垂直平分线分别交AC ,BC ,AD 于点O ,E ,F∴PA =PC ,EF ⊥AC ,EA =EC∵PA =PB ,∴PA =PB =PC∴点A 、B 、C 在以P 为圆心的圆上∴260APB ACB ∠=∠=︒∴△PAB 为等边三角形;故①正确;②∵∠ACB = 30°,EF ⊥AC ,EA =EC∴60AEO CEO ∠=∠=︒∴=120PEB ∠︒∵△PAB 为等边三角形∴60APB ABP ∠=∠=︒∴180120APF APB BPE BPE ∠=-∠-∠=︒-∠∴PEB APF ∠≠∠,故②错误;③∵平行四边形ABCD 中∴AD ∥BC∴60AFE CEO ∠=∠=︒,180ABC BAD ∠+∠=︒,30ACB CAD ∠∠==︒∴△AEF 为等边三角形∵60APB BAP ∠=∠=︒,180ABC BAD ∠+∠=︒∴PBC ABC ABP ∠=∠-∠18060BAD =︒-∠-︒120()BAP FAP =︒-∠+∠120(60)FAP =︒-︒+∠60FAP =︒-∠∵30FAP CAD PAC PAC ∠=∠-∠=︒-∠∴60(30)30PBC PAC PAC ∠=︒-︒-∠=∠+︒即∠PBC - ∠PAC = 30°,故③正确;∵△AEF 、△PAB 为等边三角形∴(ABE APF SAS ≅∴BE PF =∵EF=EP+PF=EA∴EA=EB+EP,故④正确;综上,一定正确的是①③④故答案为:①③④【点睛】本题综合考查等边三角形的性质与判定、相似三角形的判定、圆周角定理、平行四边形的性质,解题的关键是根据PA=PB=PC得到点A、B、C在以P为圆心的圆上.三、解答题1、(1)(-b,-12b2);(2)①直角三角形,见解析;②94≤m≤3【分析】(1)y=12x2+bx=12(x+b)2-12b2,即可求解;(2)①求出抛物线的表达式为y=12x2,联立y=12x2和y=kx+2并整理得:x2-2kx-4=0,证明△ADO∽△OEB,即可求解;②△AOB的外心为M,则点M是AB的中点,MP是梯形BADG的中位线,则m=k2+2,进而求解.【详解】解:(1)∵y=12x2+bx=12(x+b)2-12b2,∴抛物线的顶点Q坐标为(-b,-12b2);(2)①∵抛物线与x轴只有一个公共点,∴△=b2-4×12×0=0,解得b=0,∴抛物线的表达式为y=12x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、G,设经过点(0,2)的直线的表达式为y=kx+2,联立y=12x2和y=kx+2并整理得:x2-2kx-4=0,则x1+x2=2k,x1x2=-4,∴y1=12x12,y2=12x22,则y1y2=14x12x22=4=-x1x2,∵AD=y1,DO=-x1,BE=y2,OE=x2,∴AD OD OE BE,∴∠ADO=∠BEO=90°,∴△ADO∽△OEB,∴∠AOD=∠OBE,∵∠OBG+∠BOG=90°,∴∠BOG+∠AOD=90°,即AO⊥BO,∴△AOB为直角三角形;②过点A作x轴的平行线交EB的延长线于点H,过点M作MN与y轴平行,交AH于N,∵△AOB 的外心为M ,MN ∥y 轴∥BH ,∴点M 是AB 的中点,MP 是梯形ABGD 的中位线,∴MP =12(AD +BG )=12(y 2+y 1),则m =MP =12(y 1+y 2)=12(kx 1+2+kx 2+2)=12 [k (x 1+x 2)+4]=k 2+2,令y =kx +2=0,解得x =-2k ,即点K 的坐标为(-2k ,0),由题意得:2≤-2k ≤4,解得-1≤k ≤12且k ≠0, ∴94≤k 2+2≤3,即点M 的纵坐标m 的取值范围94≤m ≤3.【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2、(1)抛物线解析式为223y x x =--,B 点坐标为(3,0);(2)△ABC 外接圆圆心在直线1x =上,其坐标为(1,14-);(3)BCE S 的最大值为278,此时M 点的坐标为(32,32-). 【分析】(1)先由一次函数解析式求出AC 的坐标,然后把AC 的坐标代入抛物线解析式中求解出抛物线解析式,然后求出B 点坐标即可;(2)设△ABC 外接圆圆心为P ,点P 的坐标为(m ,n ),又A 点坐标为(-1,0),B 点坐标为(3,0),得到抛物线的对称轴为直线1x =,根据外接圆圆心是三角形三边垂直平分线的交点,推出点P 在直线1x =上,即m =1,PB =PC ,再由PB =PC =224441n n n +=+++,由此求解即可; (3)先求出直线BC 的解析式为3y x =-,设M 的坐标为(t ,t -3),则E 点坐标为(t ,223t t --),则()22239323324ME t t t t t t ⎛⎫=----=-+=--+ ⎪⎝⎭,根据=BCE MCE MBE S S S +△△△32ME =23327228t ⎛⎫=--+ ⎪⎝⎭,利用二次函数的性质求解即可. 【详解】解:(1)∵直线33y x =--与x 轴交于点A 、与y 轴交于点C ,∴A 点坐标(-1,0),C 点坐标为(0,-3),∵抛物线2y x bx c =++经过A 、C 两点,∴103b c c -+=⎧⎨=-⎩, ∴23b c =-⎧⎨=-⎩, ∴抛物线解析式为223y x x =--,当0y =时,2230x x --=,解得1x =-或3x =,∴B 点坐标为(3,0);(2)设△ABC 外接圆圆心为P ,点P 的坐标为(m ,n ),∵A 点坐标为(-1,0),B 点坐标为(3,0),∴抛物线的对称轴为直线1x =,∵外接圆圆心是三角形三边垂直平分线的交点,∴点P 在直线1x =上,即m =1,PB =PC ,∵PB =PC =224441n n n +=+++, ∴14n =-, ∴点P 的坐标为(1,14-); (3)设直线BC 的解析式为1y kx b =+,∴11303k b b +=⎧⎨=-⎩, 1313k b =⎧⎨=-⎩, ∴直线BC 的解析式为3y x =-,设M 的坐标为(t ,t -3),则E 点坐标为(t ,223t t --),∴()22239323324ME t t t t t t ⎛⎫=----=-+=--+ ⎪⎝⎭, ∴=BCE MCE MBE S S S +△△△()()1122M C B M ME x x ME x x =⋅-+⋅- ()12B C ME x x =⋅- 32ME =, 23327228t ⎛⎫=--+ ⎪⎝⎭, ∴当32t =时,BCE S 有最大值,最大值为278,∴此时M 点的坐标为(32,32-). 【点睛】本题主要考查了一次函数与二次函数综合,三角形外接圆圆心坐标,三角形面积,解题的关键在于能够熟练掌握二次函数的相关知识.3、(1)见解析;(2)见解析【分析】(1)连接DO ,根据AD OC ∥,可证COD COB ∠=∠.从而可得()COD COB SAS ≅,90CDO CBO ∠=∠=︒,即可证明EDA DBE ∠=∠,故EDA EBD △△;(2)证明EOD ECB △△,可得ED OD BE BC=,即可证明ED BC AO BE ⋅=⋅. 【详解】证明:(1)连接DO ,如图:∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠.∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩, ∴()COD COB SAS ≅,∴90CDO CBO ∠=∠=︒,∵AB 为O 的直径,∴90EDO ADB ∠=∠=︒,即90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴EDA BDO ∠=∠,∵OD OB =,∴BDO DBO ∠=∠,∴EDA DBO ∠=∠,即EDA DBE ∠=∠,∵E E ∠=∠,∴~EDA EBD ;(2)由(1)知:90EDO EBC ∠=∠=︒,又∵E E ∠=∠,∴EOD ECB △△, ∴ED OD BE BC=, ∴ED BC OD BE ⋅=⋅,∴ED BC AO BE ⋅=⋅.【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明COD COB ≅,从而得到90EDO ∠=︒.4、(1)① 2;②3P ;(2)t 的值为3或3-;(3)π【分析】(1)①根据定义解答即可;②分别找出123PQ P Q PQ 、、的最大值,再根据定义判断即可;(2) 如图所示,正方形ABCD 上的任意两点间距离的最大值为E (t ,3)是正方形ABCD的“倍点”,则点E 到ABCD 上的点的最大距离恰好为 分0t <, 0t >和0=t 分别讨论即可求解;(3)分线段MN 在O 内部和在O 外部两种情况讨论即可.【详解】(1)①圆上两点之间的最大距离是直径2,根据定义可知d= 2,故答案为:2;②由图可知113PQ ≤≤,故1P 不是图形W 的“倍点”; 2114PQ ≤≤≠,故1P 不是图形W 的“倍点”;324PQ ≤≤,当Q (1,0)时,34PQ ==2d ,故P 为图形W 的“倍点”; 故答案为:3P ;(2)如图所示,正方形ABCD 上的任意两点间距离的最大值为依题意,若点E (t ,3)是正方形ABCD 的“倍点”,则点E 到ABCD 上的点的最大距离恰好为 当0t <时,点E 到ABCD 上的点的最大距离为EC 的长. 取点H (1,3),则CH ⊥EH 且CH =4,此时可求得EH =4,从而点E 的坐标为()13,3E -,即3t =-;当0t >时,点E 到ABCD 上的点的最大距离为ED 的长.由对称性可得点E 的坐标为()23,3E ,即3t =. 当0=t 时,显然不符合题意.综上,t 的值为3或3-.(3)MN 上d =2,2d =4,当线段MN 在O 内部时,T 组成的图形为半径为4的圆,216S r ππ==,当线段MN 在O 外部时,T 组成的图形为半径为8的圆,264S r ππ==,故点T 所构成的图形的面积为16π或64π.【点睛】此题考查考查了一次函数的性质,图形上两点间的“极大距离”等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.5、尝试:''ABB ACC △△;拓展:'CC =;应用:点C 的运动路径长为3π或43π或23π或π或2π. 【分析】尝试:根据AB C ''△是由△ABC 旋转得到的,可得到=BAC B AC ''∠∠,AB AB '=,AC AC '=,即可推出=BAB CAC ''∠∠,1AB AC AB AC =='',则ABB ACC ''△∽△;拓展:由AC =BC ,∠ACB =90°,可得AB =,同(1)可证ABB ACC ''△∽△,得到AB BB AC CC ='',由此求解即可;应用:分点'B 在AC 延长线上时,点'B 在CA 的延长线上时,当点'B 落在边BC 所在直线上时,当点'B 落在边AB 所在直线上时,当点'B 与点B 重合时,点C 旋转一周时,五种情况讨论求解即可得到答案.【详解】解:尝试:ABB ACC ''△∽△,理由如下:∵AB C ''△是由△ABC 旋转得到的,∴=BAC B AC ''∠∠,AB AB '=,AC AC '=,∴=BAC CAB B AC CAB ''''++∠∠∠∠,即=BAB CAC ''∠∠,1AB AC AB AC =='', ∴ABB ACC ''△∽△;故答案为:ABB ACC ''△∽△;拓展:∵AC =BC ,∠ACB =90°,∴AB ,同(1)原理可证ABB ACC ''△∽△, ∴AB BB AC CC ='',∴AC BB CC AB '⋅'== 应用:∵在Rt ABC 中,2AB =,30ABC ∠=︒, ∴112AC AB ==,60BAC ∠=︒,当点'B 落在AC 所在直线上时,有两种情况:①若点'B 在AC 延长线上时,如图①所示: 由旋转的旋转可得:'60CAC BAC ∠=∠=︒,∴点C 运动的路径即为CC ',∴6011803CC ππ⨯'==; ②若点'B 在CA 的延长线上时,如图②所示,此时点B ,'C ,'B 三点共线,∴点C 运动的路径即为CC ',由旋转的性质可得'60B AC BAC '∠=∠=︒,∴'180120CAC B AC ''∠=︒-=︒∠∴旋转角360240CAC '=︒-=︒∠, ∴弧240141803'CC ππ⨯==;当点'B 落在边BC 所在直线上时,如图③所示,∴点C 运动的路径即为CC ',由旋转的性质可得'60B AC BAC '∠=∠=︒,∴'18060CAB B AC BAC ''∠=︒--=︒∠∠,∴120CAC CAB B AC =''''∠=∠+∠︒ ∴弧120121803CC'ππ⨯==;当点'B 落在边AB 所在直线上时,如图④所示,此时点C ,A ,'C 三点共线,旋转角为180︒, ∴弧1801180CC'ππ⨯==. 当点'B 与点B 重合时,点C 旋转一周,∴弧'22CC AC ππ=⨯=.∴当点B 的对应点'B 恰好落在Rt ABC 的边所在直线上时,点C 的运动路径长为3π或43π或23π或π或2π. 【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式.。

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试(包含答案解析)

(常考题)北师大版初中数学九年级数学下册第三单元《圆》测试(包含答案解析)

一、选择题1.如图平面直角坐标系中,点A ,B 均在函数y =k x(k >0,x >0)的图像上,⊙A 与x 轴相切,⊙B 与y 轴相切,若点B (1,8),⊙A 的半径是⊙B 半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,4)C .(3,4)D .(4,2) 2.如图,AB 是半圆的直径,CD 为半圆的弦,且CD//AB ,∠ACD=26°,则∠B 等于( )A .26°B .36°C .64°D .74°3.若一个圆锥的底面半径为3cm ,高为62cm ,则圆锥的侧面展开图中圆心角的度数为( )A .120︒B .100︒C .80︒D .150︒ 4.如图,EM 经过圆心O ,EM ⊥CD 于M ,若CD=4,EM=6,则弧CED 所在圆的半径为( )A .3B .4C .83D .1035.若点A 在O 内,点B 在O 外,3OA =,5OB =,则O 的半径r 的取值范围是( )A .03r <<B .28r <<C .35r <<D .5r > 6.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒7.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM 相交于点C ,D ,52AB =,作OE CD ⊥于E ,3OB OE =,则弦CD 的长是( )A .22B .23C .4D .26 8.边长为2的正六边形的边心距为( ) A .1 B .2 C .3D .23 9.如图,半圆的直径为AB ,圆心为点O ,C 、D 是半圆的3等分点,在该半圆内任取一点,则该点取自阴影部分的概率是( )A .3πB .6πC .12D .1310.如图,在平面直角坐标系中,以原点O 为圆心,6为半径的O 与直线(0)y x b b =-+>交于A ,B 两点,连接,OA OB ,以,OA OB 为邻边作平行四边形OACB ,若点C 恰好在O 上,则b 的值为( )A .33B .23C .32D .22 11.如图,P 是⊙O 外一点,射线PA 、PB 分别切⊙O 于点A 、点B ,CD 切⊙O 于点E ,分别交PA 、PB 于点D 、点C ,若PB =4,则△PCD 的周长( )A .4B .6C .8D .10 12.如图,AB 是O 的直径,CD 是弦,四边形OBCD 是菱形,AC 与OD 相交于点P ,则下列结论错误的是( )A .OD AC ⊥B .AC 平分OD C .2CB DP = D .2AP OP =二、填空题13.如图,从点P 引⊙O 的切线PA ,PB ,切点分别为A ,B ,DE 切⊙O 于C ,交PA ,PB 于D ,E .若△PDE 的周长为20cm ,则PA =______cm .14.如图,圆O 是△ABC 的外接圆,BC=2,∠BAC=30°,则圆O 的直径为___________.15.如图,在ABCD 中,2AD =,3AB =,45A ∠=︒,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则图中阴影部分的面积为__________(结果保留π).16.如图,在ABC 中,D 是边BC 上的一点,以AD 为直径的O 交AC 于点E ,连接DE .若O 与BC 相切,55ADE ∠=︒,则C ∠的度数为______17.如图,在平面直角坐标系中,正六边形OABCDE 的边长是2,则它的外接圆圆心P 的坐标是______.18.如图,C ∠是O 的圆周角,45C ∠=︒,则AOB ∠的度数为____.19.如图,⊙O 的半径为5,AB 是⊙O 的直径,C 是⊙O 上一点,且AC =6,点P 是⊙O 上一个动点,点P 与点C 在直径AB 的两侧(与A 、B 不重合),CQ ⊥PC ,交PB 的延长线于点Q ,则线段CQ 长的最大值是________.20.如图,圆锥底面半径为rcm ,母线长为5cm ,侧面展开图是圆心角为216°的扇形,则r 为_____cm .三、解答题21.如图,ABC 中,AB AC =,以AC 为直径的半圆O 交BC 于点D ,DE AB ⊥于点E .(1)求证:DE 为半圆的切线;(2)若23BC =,120BAC ∠=︒,求AD 的长.22.如图,已知90MON ∠=︒,OT 是MON ∠的平分线,A 是射线OM 上一点,8cm OA =.动点P 从点A 出发,以1cm/s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O ,P ,Q 三点作圆,交OT 于点C ,连接PC ,QC .设运动时间为()t s ,其中08t <<.(1)求OP OQ +的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)在点P ,Q 运动过程中(08t <<),四边形OPCQ 的面积是否变化.如果面积变化,请说出四边形OPCQ 面积变化的趋势;如果四边形OPCQ 面积不变化,请求出它的面积.23.如图,在ABC ∆中,以AB 为直径的O 交AC 于点M ,弦//BC MN 交AB 于点E ,且3ME NE ==.(1)求证:BC 是O 的切线;(2)若4AE =,求O 的直径AB 的长度.24.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点,D E 重合),求CPD ∠的余角的度数.25.如图,BD 为ABC 外接圆O 的直径,且BAE C ∠=∠.(1)求证:AE 与O 相切于点A ;(2)若//AE BC ,23BC =2AC =,求O 的直径. 26.如图,在平面直角坐标系中,正方形网格中每个小正方形的边长是一个单位长度,其中点B 的坐标为()2,1.(1)在平面直角坐标系中画出OAB ∆先向左平移4个单位长度,再向下平移3个单位长度后得到111O A B ∆.并写出点1B 的坐标.(2)在平面直角坐标系中画出OAB ∆绕点O 逆时针旋转90︒得到22OA B ∆,并求出旋转过程中线段OA 所扫过的面积(结果保留π).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】把B 的坐标为(1,8)代入反比例函数解析式,根据⊙B 与y 轴相切,即可求得⊙B 的半径,则⊙A 的半径即可求得,即得到B 的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B 的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x, ∵B 的坐标为(1,8),⊙B 与y 轴相切,∴⊙B 的半径是1,则⊙A 的半径是2,把y=2代入y=8x得:x=4, 则A 的坐标是(4,2).故选:D .【点睛】 本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B 的坐标利用反比例函数图象上点的坐标特征求出k 值是解题的关键.2.C解析:C【分析】利用平行线的性质,得∠ACD=∠CAB=26°,根据直径上的圆周角为直角,得∠ACB=90°,利用直角三角形的性质计算即可.【详解】∵CD //AB ,∠ACD=26°,∴∠ACD=∠CAB=26°,∵AB 是半圆的直径,∴∠ACB=90°,∴∠B=64°,故选C .【点睛】本题考查了平行线的性质,圆周角的原理,直角三角形的性质,熟练掌握性质,并灵活运用是解题的关键.3.A解析:A【分析】根据勾股定理求出圆锥的母线长,根据弧长公式计算,得到答案.【详解】解:设圆锥的侧面展开图的圆心角为n °,()22362+9(cm ),∴圆锥的侧面展开图扇形的半径为9cm ,扇形弧长为2×3π=6π(cm),∴9180n π⨯=6π,解得,n=120,故选:A.【点睛】本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.4.D解析:D【分析】连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,根据垂径定理求出CM,根据勾股定理得出方程,求出即可.【详解】解:连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,∵EM经过圆心O,EM⊥CD于M,CD=4,∴CM=DM=2,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2,R2=(6−R)2+22,R=103,故选:D.【点睛】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中.5.C解析:C【分析】根据点和圆的位置关系可判断.【详解】解:∵点A在O内,3OA=,∴3r<,∵点B在O外,5OB=,∴5r<,O的半径r的取值范围是35r<<,故选:C.【点睛】本题考查了点和圆的位置关系,解题关键是熟知点和圆的位置关系是由半径和点到圆心的距离决定.6.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.7.C解析:C【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,52AB =∴BF=563,∠AFB=60°,∠FOE=30°, 设EF=x ,则OF=2x ,3x , ∵3OB OE =, ∴OB=3x ,∴BF=OB+OF=5x ,∴5x=56,3∴x=6,3∴OB=3x=6,OE=3x=2,⊥,∵OE CD∴在直角三角形OCE中,CE=2262-=-=2,OC OE根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.8.C解析:C【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用勾股定理即可求出.【详解】解:连接OA,作OM⊥AB,垂足为M,连接OB,∵六边形ABCDEF是正六边形∴△AOB是等边三角形∴∠AOM=30°,AO=AB∵正六边形ABCDEF的边长为2,∴AM=12AB=12×2=1,OA=2.∴正六边形的边心距是OM=2222213OA AM-=-=故选:C.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.9.D解析:D【分析】由C、D是半圆的3等分点知∠AOC=∠COD=∠BOD=60°,据此得S扇形AOC=S扇形COD=S扇形BOD=13S半圆,再根据概率公式求解即可.【详解】解:∵C、D是半圆的3等分点,∴∠AOC=∠COD=∠BOD=60°,∴S扇形AOC=S扇形COD=S扇形BOD=13S半圆,∴该点取自阴影部分的概率为1=3CODSS扇形半圆,故选:D.【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.10.C解析:C【分析】如图,连接OC交AB于T.想办法求出点T的坐标,利用待定系数法即可解决问题.【详解】解:如图,连接OC交AB于T,设直线AB交x轴于M,交y轴于N.∵直线AB的解析式为y=-x+b,∴N(0,b),M(b,0),∴OM=ON,∴∠OMN=45°,∵四边形OACB是平行四边形,OA=OB,∴四边形OACB是菱形,∴OC⊥AB,∴∠COM=45°,∵OC=6,∴C(∵OT=TC,∴T把T点坐标代入y=-x+b,可得b=故选:C.【点睛】本题考查圆周角定理,平行四边形的性质,菱形的判定,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.C解析:C【分析】由切线长定理可求得PA=PB,BC=CE,AD=ED,则可求得答案.【详解】解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=4,BC=EC,AD=ED,∴PC+CD+PD=PC+CE+DE+PD=PC+BC+PD+AD=PB+PA=4+4=8,即△PCD的周长为8,故选:C.【点睛】本题考查了切线长定理以及三角形的周长,熟练掌握切线长定理是解题的关键;12.D解析:D【分析】根据菱形的性质可以得出四条边平行并且都相等,又根据AB是直径,即可知道∠ACB=90°,即可判断A,因为三角形ABC为直角三角形,根据求∠A的正弦值即可判断∠A=30°,即可判断D,根据中位线的性质即可B、C选项;【详解】∵四边形OBCD是菱形,∴ OB ∥CD ,OD ∥BC ,OB=OD=CD=BC ,∵ AB 是直径,∴ ∠ACB=90°,∵OD ∥BC ,∴ ∠APO=90°,∴OD ⊥AC ,故A 正确; ∵12BC OD A AB AB ===sin ∠ , ∴∠A=30°,∴2OA OP = ,故D 错误,∵2OA OP =,∴2OD OP = ,∴DP=OP ,∴AC 平分OD ,故C 正确;∴BC=2DP ,故B 正确;故选:D .【点睛】本题考查了菱形的性质,锐角三角函数、三角形的中位线的性质,圆周角的性质,熟练掌握知识点是解题的关键; 二、填空题13.10【分析】由于PAPBDE 都是⊙O 的切线可根据切线长定理将△PDE 的周长转化为切线PAPB 长的和【详解】解:∵PAPBDE 分别切⊙O 于ABC ∴PA=PBDA=DCEC=EB ;∴C △PDE=PD+D解析:10【分析】由于PA 、PB 、DE 都是⊙O 的切线,可根据切线长定理将△PDE 的周长转化为切线PA 、PB 长的和.【详解】解:∵PA 、PB 、DE 分别切⊙O 于A 、B 、C ,∴PA =PB ,DA =DC ,EC =EB ;∴C △PDE =PD +DE +PE =PD +DA +EB +PE =PA +PB =20;∴PA =PB =10,故答案为10.【点睛】此题主要考查的是切线长定理,能够发现△PDE 的周长和切线PA 、PB 长的关系是解答此题的关键.14.4【分析】延长BO 交⊙O 于E 连接CE 根据圆周角定理得到∠E=∠A=30°∠ECB=90°根据直角三角形的性质即可得到结论【详解】解:延长BO 交⊙O 于E 连接CE 则∠E=∠A=30°∠ECB=90°∴B解析:4【分析】延长BO 交⊙O 于E ,连接CE ,根据圆周角定理得到∠E=∠A=30°,∠ECB=90°,根据直角三角形的性质即可得到结论.【详解】解:延长BO 交⊙O 于E ,连接CE ,则∠E=∠A=30°,∠ECB=90°,∴BE=2BC=2×2=4.故答案为:4.【点睛】本题考查了圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键. 15.【分析】过点作于点根据等腰直角三角形的性质求得从而求得最后由结合扇形面积公式平行四边形面积公式三角形面积公式解题即可【详解】解:过点作于点故答案为:【点睛】本题考查等腰直角三角形平行四边形的性质扇形 解析:522π- 【分析】过点D 作DF AB ⊥于点F ,根据等腰直角三角形的性质求得DF ,从而求得EB ,最后由ABCD EBC ADE S SS S =--阴影扇形结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.【详解】解:过点D 作DF AB ⊥于点F ,2,3,45AD AB A ==∠=︒,2DF AD ∴==, 2AE AD ==,1EB AB AE ∴=-=,ABCD EBC ADE S S S S ∴=--阴影扇形24521313602π⨯=-⨯22π=-2π=,故答案为:2π-. 【点睛】 本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.55°【分析】由直径所对的圆周角为直角得∠AED=90°由切线的性质得∠ADC=90°然后由同角的余角相等得∠C=∠ADE=55°【详解】解:∵AD 为的直径∴∠AED=90°∴∠ADE+∠DAE=9解析:55°【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质得∠ADC=90°,然后由同角的余角相等得∠C=∠ADE=55°.【详解】解:∵AD 为O 的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°,∵O 与BC 相切,∴∠ADC=90°,∴∠DAE+∠C=90°,∴∠C=∠ADE=55°.故答案为55°.【点睛】本题考查了切线的性质,圆的相关概念及性质,互余关系等知识点.掌握圆的相关性质是解题的关键.17.【分析】过点P 作PF ⊥OA 垂足为F 计算PFOF 的长度即可【详解】如图过点P 作PF ⊥OA 垂足为F ∵正六边形的边长是2∴OA=2∠OPA=60°∴OP=2∠OPF=30°∴OF=1PF=∴点P 的坐标为( 解析:()1,3.【分析】过点P 作PF ⊥OA ,垂足为F ,计算PF ,OF 的长度即可.【详解】如图,过点P 作PF ⊥OA ,垂足为F ,∵正六边形OABCDE 的边长是2,∴OA=2,∠OPA=60°,∴OP=2,∠OPF=30°,∴OF=1,PF=3,∴点P 的坐标为(1,3),故答案为:(1,3).【点睛】本题考查了正六边形的计算,熟练掌握正六边形的边长等于外接圆的半径,中心角为60°是解题的关键.18.【分析】根据圆周角定理计算即可;【详解】∵∴;故答案是【点睛】本题主要考查了圆周角定理准确分析计算是解题的关键解析:90︒【分析】根据圆周角定理计算即可;【详解】∵45C ∠=︒,∴290AOB C ∠=∠=︒;故答案是90︒. 【点睛】本题主要考查了圆周角定理,准确分析计算是解题的关键.19.【分析】连接BC 运用勾股定理求BC 再利用直径所对的圆周角是直角和同弧所对的圆周角相等可证明△BAC ∽△QPC 再由CP 的范围可得CQ 的范围【详解】解:如图连接BC∵AB是直径∴∠ACB=90°∴BC=解析:40 3【分析】连接BC,运用勾股定理求BC,再利用直径所对的圆周角是直角和同弧所对的圆周角相等,可证明△BAC∽△QPC,再由CP的范围可得CQ的范围.【详解】解:如图,连接BC,∵AB是直径,∴∠ACB=90°,∴BC22AB AC-22106-=8,∵CQ⊥PC,∴∠PCQ=90°∵BC BC=,∴∠BAC=∠QPC,∴△BAC∽△QPC,∴AC CP BC CQ=,∴CQ=43 CP,∵点P与点C在直径AB的两侧(与A、B不重合),∴CP≤10∴CQ≤403,故答案为:403.【点睛】本题考查了圆的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,相似三角形判定和性质,勾股定理等,连接BC,利用相似三角形性质是关键.20.3【分析】利用圆锥的侧面展开图为扇形这个扇形的弧长等于圆锥底面的周长得到2πr=然后解关于r的方程即可【详解】解:根据题意得2πr=解得:r=3故答案为3【点睛】本题考查了圆锥的计算:圆锥的侧面展开解析:3【分析】利用圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,得到2πr =2165180π⨯⨯,然后解关于r 的方程即可. 【详解】解:根据题意得2πr =2165180π⨯⨯, 解得:r =3.故答案为3.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 三、解答题21.(1)见解析;(2)3π. 【分析】(1)连接OD ,根据AB=AC ,得到∠B=∠C ,根据OD=OC ,得到∠ODC=∠C , 从而得到∠B=∠ODC ,得证DO ∥AB ,由DE ⊥AB ,得到DE ⊥OD ,问题得证;(2)连接AD ,根据AC 是直径,得到AD ⊥BC ,根据等腰三角形三线合一的性质,得到BD=DC=12BC 120BAC ∠=︒,得到∠C=30°,从而得到AD=1,AC=2, ∠DAO=∠AOD= 60°,套用弧长公式计算即可.【详解】(1)连接OD ,∵AB=AC ,∴∠B=∠C ,∵OD=OC ,∴∠ODC=∠C ,∴∠B=∠ODC ,∴DO ∥AB ,∵DE ⊥AB ,∴DE ⊥OD ,∴DE 是圆O 的切线;(2)连接AD ,∵AC 是直径,∴AD ⊥BC ,∵AB=AC ,∴BD=DC=12BC =3, ∵120BAC ∠=︒,∴∠C=30°, ∴AD=1,AC=2,∠DAO=∠AOD= 60°,∴AD =601180π⨯⨯=3π.【点睛】本题考查了圆的切线,弧长公式,等腰三角形的性质,平行线的性质,直角三角形的性质,熟练掌握切线的判定,并灵活选用方法证明是解题的关键. 22.(1)8cm ;(2)存在,t=4;(3)不变化,16cm 2.【分析】(1)由题意得出OP=8-t ,OQ=t ,则可得出答案;(2)如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .设线段BD 的长为x ,则BD=OD=x ,22,PD=8-t-x ,得出PD BD OP OQ =,则 88t x x t t--=-,解出288t t x -=.由二次函数的性质可得出答案; (3)证明△PCQ 是等腰直角三角形.则21122122224PCQ S PC QC PQ PQ PQ ∆=⋅=⨯⋅=.在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.由四边形OPCQ 的面积S=S △POQ +S △PCQ 可得出答案.【详解】解:(1)由题意可得,OP=8-t ,OQ=t ,∴OP+OQ=8-t+t=8(cm ).(2)当t=4时,线段OB 的长度最大.如图,过点B 作BD ⊥OP ,垂足为D ,则BD ∥OQ .∵OT 平分∠MON ,∴∠BOD=∠OBD=45°,∴BD=OD ,2BD .设线段BD 的长为x ,则BD=OD=x ,22x ,PD=8-t-x ,∵BD ∥OQ , ∴PD BD OP OQ=, ∴88t x x t t--=-, ∴288t t x -=. ∴228224)2288t t OB t -==--+. ∵二次项系数小于0.∴当t=4时,线段OB 的长度最大,最大为2cm .(3)∵∠POQ=90°,∴PQ 是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ 是等腰直角三角形. ∴21122122224PCQ S PC QC PQ PQ PQ ∆=⋅=⨯⋅=. 在Rt △POQ 中,PQ 2=OP 2+OQ 2=(8-t )2+t 2.∴四边形OPCQ 的面积21124POQ PCQ S S S OP OQ PQ ∆∆=+=⋅+ 2211(8)(8)24t t t t ⎡⎤=-+-+⎣⎦ 221141641622t t t t =-++-=. ∴四边形OPCQ 的面积不变化,为16cm 2.【点睛】本题是圆的综合题,考查了圆周角定理,等腰直角三角形的性质,平行线分线段成比例定理,三角形的面积,二次函数的性质等知识,熟练掌握圆的性质定理是解题的关键. 23.(1)见解析;(2)254AB =【分析】(1)根据垂径定理的推论可得AB MN ⊥,再结合//MN BC ,即可得出BC AB ⊥,即可得证;(2)连接OM ,设半径是r ,在Rt OEM ∆中运用勾股定理求解出r ,即可求出AB 的长度.【详解】 (1)证明:3ME NE ==,AB 为直径,AB MN ∴⊥,又//MN BC ,BC AB ∴⊥,BC ∴是O 的切线;(2)解:连接OM ,如图, 设OM 的半径是r ,在Rt OEM ∆中,4,3,OE AE OA r ME OM r =-=-==, 222OM ME OE =+,2223(4)r r ∴=+-,解得:258r =, 2524AB r ∴==.【点睛】本题考查了圆中切线的证明,垂径定理的推论等,熟练掌握切线的判定方法以及灵活运用垂径定理是解决此类题的关键.24.54°【分析】连接OC ,OD .求出∠COD 的度数,再根据圆周角定理即可解决问题.【详解】如图,连接,OC OD .∵五边形ABCDE 是正五边形, ∴360725COD ︒∠==︒, ∴1362CPD COD ∠=∠=︒, ∴90°-36°=54°,∴CPD ∠的余角的度数为54°.【点睛】 本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)见解析;(2)214【分析】(1)连接OA ,根据圆周角定理、等腰三角形的性质和已知求出∠DAO=∠BAE ,∠DAB=90°,求出OAE=90,根据切线的判定得出即可;(2)根据垂径定理求出BF ,根据勾股定理求出AF ,再根据勾股定理求出OB 即可.【详解】(1)连接OA ,交BC 于点F .∴OA OD =.∴D DAO ∠=∠.∵D C ∠=∠,∴C DAO ∠=∠.∵BAE C ∠=∠,∴BAE DAO ∠=∠.∵BD 是O 的直径,∴90BAD ∠=︒,即90DAO BAO ∠+∠=︒,∴90BAE BAO ∠+∠=︒,即90OAE ∠=︒,∴AE OA ⊥.又∵OA 为O 的半径, ∴AE 与O 相切于点A .(2)∵//AE BC ,AE OA ⊥,∴OA BC ⊥,∴AB AC =,12FB BC =,AB AC =.∵BC =AC =∴BF =AB =∴在Rt ABF中,1AF ===, ∴在Rt OFB △中,()222OB BF OB AF =+-,∴4OB =,∴8BD =,∴在Rt △ABD中,AD == 【点睛】本题考查了三角形的外接圆与外心,切线的判定,勾股定理,等腰三角形的性质,平行线的性质,圆周角定理等知识点,能综合运用知识点进行推理是解此题的关键. 26.(1)见详解;(2)134π,图形见详解 【分析】(1)分别画出OAB ∆各个顶点的对应点,再顺次连接起来,即可;(2)分别画出OAB ∆各个顶点绕点O 逆时针旋转90︒后的对应点,再顺次连接起来,最后利用扇形的面积公式,即可求解.【详解】(1)111O A B ∆如图所示,点1B 的坐标为(-2,-2),(2)22OA B ∆如图所示,∵,∴线段OA 所扫过的面积=290360π⨯=134π,【点睛】本题主要考查平移和旋转变换以及扇形的面积公式,掌握扇形的面积公式,是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章圆
一、选择题
1.在△ABC中,O为内心,∠A=70°,则∠BOC=()
A. 140°
B. 135°
C. 130°
D. 125°
2.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()
A. 100°
B. 130°
C. 150°
D. 160°
3.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为3m 和4m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()
A. 2m
B. 3m
C. 4m
D. 6m
4.在⊙O中,r=13,弦AB=24,则圆心O到AB的距离为()
A. 5
B. 10
C. 12
D. 13
5.如图,正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()
A. 点P
B. 点Q
C. 点R
D. 点M
6.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()
A. 20cm
B. 15cm
C. 10cm
D. 随直线MN的变化而变化
7.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是( )
A. B. C. D.
8.如图,点A、B、C是⊙O上的三点,若∠BOC=80°,则∠A的度数是()
A. 40°
B. 60°
C. 80°
D. 100°
9.如果AB为⊙O的直径,弦CD⊥AB ,垂足为E ,那么下列结论中,错误的是().
A. A.CE=DE
B. BC=BD
C. ∠BAC=∠BAD
D. AC>AD
10.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为()
A. 45°
B. 90°
C. 100°
D. 135°
11. 如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()
A. 28°
B. 54°
C. 18°
D. 36°
12.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().
A. πr2
B. πr2
C. πr2
D. πr2
二、填空题
13. 如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=________度.
14.已知直角三角形两条直角边的长是3和4,则其内切圆的圆心为点A,外接圆的圆心为点B,则AB=________.
15.已知△ABC的外心为O,内心为I,∠BOC=120°,∠BIC=________.
16. 边长为1的正三角形的内切圆半径为 ________
17. 如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是________
18. ________上的三个点确定一个圆.
19.已知△ABC的边BC=2 cm,且△ABC内接于半径为2cm的⊙O,则∠A=________度.
20.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________
21.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有________ .
22.如图,⊙O是四边形ABCD的内切圆,切点分别为E、F、G、H,已知AB=5,CD=7,那么AD+BC= ________.
三、解答题
23.如图,AB是⊙O的直径,弦CD⊥AB于H.点G在⊙O上,过点G作直线EF,交CD延长线于点E,交AB的延长线于点F.连接AG交CD于K,且KE=GE.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若AC∥EF,=,FB=1,求⊙O的半径.
24.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.
(1)求证:AC是⊙O的切线;
(2)已知sin A=,⊙O的半径为4,求图中阴影部分的面积.
25. 已知:如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.
(1)求∠AOB的度数;
(2)当⊙O的半径为2cm,求CD的长.
26.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线.
(2)过点E作EH⊥AB于点H,求证:CD=HF.。

相关文档
最新文档