微积分及三角函数公式合集
微积分及三角函数公式
微积分及三角函数基本公式cos (α±β)=cos α cos β sin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α - sin β = 2 cos ½(α+β) sin ½(α-β)cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β) tan (α±β)=βαβαtan tan tan tan ±, cot (α±β)=βαβαcot cot cot cot ±e x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ½n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [½n (n +1)]2Γ(x) =⎰∞tx-1e -td t = 2⎰∞t2x-12te -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x希臘字母 (Greek Alphabets)大寫 小寫讀音 大寫 小寫讀音 大寫 小寫 讀音Α α alpha Ι ι iota Ρ ρrho Β β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi Θθ thetaΠπ piΩω omega倒數關係: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1商數關係: tan θ=θθcos sin ; cot θ= θθsin cos 平方關係: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 順位高d 順位低 ;0*∞ = ∞1 *∞ = ∞∞ = 0*01 = 000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e順位一: 對數; 反三角(反雙曲) 順位二: 多項函數; 冪函數 順位三: 指數; 三角(雙曲)算術平均數(Arithmetic mean) nX X X X n+++= (21)1 000 000 000 000 000 000 000 000 10 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十億1 000 000 106 mega M 百萬1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0、1 10-1 deci d 分,十分之一0、01 10-2 centi c 厘(或寫作「厘」),百分之一0、001 10-3 milli m 毫,千分之一0、000 001 10-6 micro ? 微,百萬分之一0、000 000 001 10-9 nano n 奈,十億分之一0、000 000 000 001 10-12 pico p 皮,兆分之一0、000 000 000 000 001 10-15 femto f 飛(或作「費」),千兆分之一0、000 000 000 000 000 001 10-18 atto a 阿0、000 000 000 000 000 000 001 10-21 zepto z0、000 000 000 000 000 000 000 001 10-24 yocto y。
(完整word)高数微积分公式+三角函数公式考研
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
高等数学中所涉及到的微积分公式汇总
高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。
下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。
高等数学公式(定积分 微积分 三角函数 导函数 等等 应有尽有) 值得搜藏
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
微分积分及常用三角函数公式集锦
微分积分及常用三角函数公式集锦微分和积分是微积分的两个基本概念,它们在数学和物理学中具有广泛的应用。
常用的三角函数是在三角学中常见的函数,它们具有周期性和性质丰富,也是求解微积分问题中常用的工具之一、下面是微分、积分和常用三角函数的一些公式集锦。
微分公式:1.导数的定义:\[ f'(x) = \lim_{{dx \to 0}} \frac{{f(x+dx) - f(x)}}{{dx}} \]其中,\(f'(x)\)表示函数f(x)的导数。
2.基本导数法则:(1)常数法则:\((c)'=0\),其中c是常数。
(2)幂法则:\( (x^n)' = n \cdot x^{n-1} \),其中 n 是实数。
(3)和差法则:\( (f(x) \pm g(x))' = f'(x) \pm g'(x) \)。
(4)乘法法则:\( (f(x) \cdot g(x))' = f'(x) \cdot g(x) +f(x) \cdot g'(x) \)。
(5)除法法则:\( \left(\frac{{f(x)}}{{g(x)}}\right)' =\frac{{f'(x) \cdot g(x) - f(x) \cdot g'(x)}}{{(g(x))^2}} \)。
(6)复合函数法则:\( (f(g(x)))' = f'(g(x)) \cdot g'(x) \)。
积分公式:1.不定积分的定义:\[ \int f(x)dx = F(x) + C \]其中,\( \int \) 表示积分,f(x) 是被积函数,F(x) 是 f(x) 的一个原函数,C 是常数。
2.基本积分法则:(1)幂法则:\( \int x^n dx = \frac{{x^{n+1}}}{{n+1}}+C \),其中 n 不等于 -1(2)常数倍法则:\( \int cf(x)dx = c \int f(x)dx \),其中 c 是常数。
微积分及三角函数公式合集
第一部分:常用积分公式基本积分公式: 1kdx kx c =+⎰2 11x x dx c μμμ+=++⎰ 3ln dxx c x =+⎰4 ln xxa a dx c a=+⎰ 5 x xe dx ec =+⎰6 cos sin xdx x c =+⎰7 sin cos xdx x c =-+⎰8221sec tan cos dx xdx x c x ==+⎰⎰9 221csc cot sin xdx x c x ==-+⎰⎰ 10 21arctan 1dx x c x=++⎰ 11arcsin x c =+12 tan ln cos xdx x c =-+⎰ 13 cot ln sin xdx x c =+⎰ 14 sec ln sec tan xdx x x c =++⎰ 15 csc ln csc cot xdx x x c =-+⎰162211arctan xdx c a x a a=++⎰ 172211ln 2x a dx c x a a x a-=+-+⎰ 18arcsinx c a=+19ln x c =+分部积分法公式1 形如n ax x e dx ⎰,令n u x =,axdv e dx =2 形如sin n x xdx ⎰令nu x =,sin dv xdx =3 形如cos n x xdx ⎰令nu x =,cos dv xdx = 4 形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =5 形如ln n x xdx ⎰,令ln u x =,ndv x dx =6 形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
常用凑微分公式 1.()()()1f ax b dx f ax b d ax b a+=++⎰⎰ 2.()()()11f x x dx f x d x μμμμμ-=⎰⎰3. ()()()1ln ln ln f x dx f x d x x⋅=⎰⎰4. ()()()x x x x f e e dx f e d e ⋅=⎰⎰5. ()()()1ln x x x x f a a dx f a d a a⋅=⎰⎰ 6. ()()()sin cos sin sin f x xdx f x d x ⋅=⎰⎰ 7. ()()()cos sin cos cos f x xdx f x d x ⋅=-⎰⎰ 8.()()()2tan sectan tan f x xdx f x d x ⋅=⎰⎰9.2dx f d=⎰ 10.21111()()()f dx f d x x x x =-⎰⎰11.()()()2cot csccot cot f x xdx f x d x ⋅=⎰⎰第二部分:常用微分、导数公式〔c=常数〕1、极限〔1〕0sin lim 1x xx→= 〔2〕()10lim 1x x x e →+= 〔3〕)1n a o >=〔4〕1n = 〔5〕limarctan 2x x π→∞=〔6〕lim tan 2x arc x π→-∞=-〔7〕limarccot 0x x →∞= 〔8〕lim arccot x x π→-∞= 〔9〕lim 0x x e →-∞=〔10〕lim x x e →+∞=∞ 〔11〕0lim 1xx x +→= 〔12〕0101101lim0n n n m m x m a n mb a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩〔系数不为0的情况〕 〔13〕000()()limx x x xf x f x y x →+∆-∆=∆∆2、常用等价无穷小关系〔0x →〕sin ~x x tan ~x x arcsin ~x x arctan ~x x 211cos ~2x x -()ln 1~x x +1~x e x -1~ln xa x a-()11~x x∂+-∂21sec 1~2x x -211~2x 2~x 33sin ~()x x 3、导数的四则运算法则()u v u v '''±=±()uv u v uv '''=+2u u v uv v v '''-⎛⎫= ⎪⎝⎭4、基本导数公式⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '=⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅⑻()csc csc cot x x x '=-⋅⑼()x xe e '=⑽()ln x x a a a '=⑾()1ln x x '=⑿()1log ln x a x a '=⒀()arcsin x '=⒁()arccos x '=⒂()21arctan 1x x '=+⒃()21arccot 1x x '=-+⒄()1x '=⒅'=5、高阶导数的运算法则 〔1〕()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ 〔2〕()()()()n n cu x cu x =⎡⎤⎣⎦〔3〕()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦〔4〕()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 6、基本初等函数的n 阶导数公式 〔1〕()()!n nxn = 〔2〕()()n ax bn ax bea e++=⋅ (3)()()ln n xx n aa a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5)()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+(7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+7、微分公式与微分运算法则⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx =⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx =⑽()ln x x d a a adx =⑾()1ln d x dx x= ⑿()1log ln x a d dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+⒃()21arccot 1d x dx x=-+ 8、微分运算法则 ⑴()d u v du dv ±=±⑵()d cu cdu =⑶()d uv vdu udv =+⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭第三部分:常用三角函数公式1.和差公式sin()sin cos cos sin A B A B A B +=+sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=-cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=-tan tan tan()1tan tan A BA B A B --=+ cot cot 1cot()cot cot A B A B B A ⋅-+=+cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.倍角公式sin 22sin cos A A A =2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan AA A=- 3.半角公式sin2A=cos 2A =sin tan21cos A A A ==+sin cot 21cos A A A==- 4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦ 6.万能公式22tan 2sin 1tan 2aa a=+221tan 2cos 1tan 2a a a -=+22tan2tan 1tan 2aa a=-7.平方关系22sin cos 1x x +=22sec n 1x ta x -=22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅=sec cos 1x x ⋅=c sin 1cs x x ⋅=9.商数关系sin tan cos x x x =cos cot sin xx x=10.正弦定理:R C cB b A a 2sin sin sin ===11.余弦定理:C ab b a c cos 2222-+= 12.反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ。
凑微分公式_微分积分三角函数数学公式大全
凑微分公式_微分积分三角函数数学公式大全一、基本微分公式1.常数微分公式:如果f(x)是一个常数c,则它的导数为f'(x)=0。
2. 幂函数微分公式:对于任何实数n,有f(x) = x^n,则它的导数为f'(x) = nx^(n-1)。
3.幂函数特殊情况微分公式:如果n=-1,则有f(x)=1/x,它的导数为f'(x)=-1/x^24.反比例函数微分公式:对于f(x)=1/x,则它的导数为f'(x)=-1/x^25. 指数函数微分公式:对于f(x) = a^x,其中a > 0, a ≠ 1,则它的导数为f'(x) = a^x * ln(a)。
6. 对数函数微分公式:对于f(x) = loga(x),其中a > 0, a ≠ 1,则它的导数为f'(x) = 1 / (x * ln(a))。
7. 三角函数微分公式:对于sin(x),它的导数为cos(x);对于cos(x),它的导数为-sin(x);对于tan(x),它的导数为sec^2(x)。
8. 反三角函数微分公式:对于arcsin(x),它的导数为1 / sqrt(1- x^2);对于arccos(x),它的导数为-1 / sqrt(1 - x^2);对于arctan(x),它的导数为1 / (1 + x^2)。
二、复合函数微分公式1.复合函数微分法则:如果f(x)和g(x)是连续可微的函数,则有以下公式。
-(f(g(x)))'=f'(g(x))*g'(x)(链式法则)-(f(g(x)))''=f''(g(x))*g'(x)^2+f'(g(x))*g''(x)(链式法则的二阶导数形式)2.反函数微分公式:如果y=f(x)的反函数是x=g(y),则有以下公式。
-g'(y)=1/f'(x),其中x=g(y)三、积分公式1.基本积分公式:对于常数c和实数n(n≠-1),有以下公式。
微积分及三角函数公式合集共7页文档
第一部分:常用积分公式基本积分公式:1 kdx kx c =+⎰2 11x x dx c μμμ+=++⎰ 3 ln dxx c x=+⎰4 ln xxa a dx c a=+⎰ 5 x x e dx e c =+⎰ 6 cos sin xdx x c =+⎰7 sin cos xdx x c =-+⎰8 221sec tan cos dx xdx x c x ==+⎰⎰ 9 221csc cot sin xdx x c x ==-+⎰⎰10 21arctan 1dx x c x=++⎰ 11arcsin x c =+12 tan ln cos xdx x c =-+⎰ 13 cot ln sin xdx x c =+⎰14 sec ln sec tan xdx x x c =++⎰ 15 csc ln csc cot xdx x x c =-+⎰ 16 2211arctan xdx c a x a a=++⎰ 17 2211ln 2x adx c x a a x a -=+-+⎰18arcsinxc a=+19ln x c =++分部积分法公式1 形如n ax x e dx ⎰,令n u x =,ax dv e dx =2 形如sin n x xdx ⎰令n u x =,sin dv xdx =3 形如cos n x xdx ⎰令n u x =,cos dv xdx =4 形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =5 形如ln n x xdx ⎰,令ln u x =,n dv x dx =6 形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。
常用凑微分公式 1. ()()()1f ax b dx f ax b d ax b a +=++⎰⎰2. ()()()11f x x dx f x d x μμμμμ-=⎰⎰3. ()()()1ln ln ln f x dx f x d x x⋅=⎰⎰ 4. ()()()x x x x f e e dx f e d e ⋅=⎰⎰ 5. ()()()1ln x x x xf a a dx f a d a a⋅=⎰⎰ 6. ()()()sin cos sin sin f x xdx f x d x ⋅=⎰⎰ 7. ()()()cos sin cos cos f x xdx f x d x ⋅=-⎰⎰ 8. ()()()2tan sec tan tan f x xdx f x d x ⋅=⎰⎰9. 2dx f d=⎰ 10.21111()()()f dx f d x xx x =-⎰⎰ 11.()()()2cot csc cot cot f x xdx f x d x ⋅=⎰⎰第二部分:常用微分、导数公式(c=常数)1、极限(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0x x e →-∞= (10)lim x x e →+∞=∞ (11)0lim 1x x x +→=(12)0101101lim 0n n n m m x m a n mb a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩L L (系数不为0的情况) (13)000()()limx x x xf x f x y x →+∆-∆=∆∆2、常用等价无穷小关系(0x →)sin ~x x tan ~x x arcsin ~x x arctan ~x x 211cos ~2x x - ()ln 1~x x + 1~x e x - 1~ln x a x a -()11~x x ∂+-∂ 21sec 1~2x x -211~2x2~x 33sin ~()x x3、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭4、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'= ⑿()1log ln x a x a '=⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=5、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 6、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+7、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1logln x a d dx x a =⒀()arcsin d x =⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 8、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v-⎛⎫=⎪⎝⎭第三部分:常用三角函数公式1.和差公式sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.倍角公式sin 22sin cos A A A=2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-22tan tan 21tan AA A=-3.半角公式sin2A =cos 2A =sin tan21cos A A A ==+ sin cot 21cos A A A==-4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦ ()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦ ()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦ 6.万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22tan2tan 1tan 2aa a=- 7.平方关系22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅= sec cos 1x x ⋅= c sin 1cs x x ⋅=9.商数关系sin tan cos x x x =cos cot sin xx x=10.正弦定理:R C cB b A a 2sin sin sin ===11.余弦定理:C ab b a c cos 2222-+= 12.反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ希望以上资料对你有所帮助,附励志名言3条:1、有志者自有千计万计,无志者只感千难万难。
史上最全的数学微积分公式+三角函数+定理
sin 3 3sin 4sin3
cos 3 4 cos3 3cos
tg 3
3tg tg 3 1 3tg 2
·半角公式:
sin 1 cos cos 1 cos
2
2
2
2
tg 1 cos 1 cos sin ctg 1 cos 1 cos sin
x p};参数方程: y
x0 y0
mt nt
z z0 pt
二次曲面:
1、椭球面:x a
2 2
y2 b2
z2 c2
1
2、抛物面:x2 y 2 z(, p, q同号) 2 p 2q
3、双曲面:
单叶双曲面:x 2 a2
y2 b2
z2 c2
1
双叶双曲面:x 2 a2
拉格朗日中值定理:f (b) f (a) f ( )(b a) 柯西中值定理:f (b) f (a) f ( )
F(b) F(a) F( ) 当F(x) x时,柯西中值定理就是拉格朗日中值定理。
曲率:
弧微分公式:ds 1 y2 dx,其中y tg
csc2
xdx
ctgx
C
sec x tgxdx sec x C
csc x ctgxdx csc x C a xdx a x C
ln a
shxdx chx C
chxdx shx C dx ln(x
x2 a2
x2 a2 )C
(arctgx) 1 1 x2
(arcctgx
常用微积分公式大全
常用微积分公式大全1. 导数公式1.1 基本导数公式•常数规则: 如果c是一个实数, 那么导数f(x)=c相对于x是f′(x)= 0。
•幂函数规则: 如果f(x)=x n, 其中n是常数, 那么导数f′(x)=nx n−1。
•指数函数规则: 如果f(x)=e x, 那么导数f′(x)=e x。
•对数函数规则: 如果 $f(x) = \\log_a(x)$, 那么导数 $f'(x) = \\frac{1}{x\\ln(a)}$。
•乘法法则: 如果f(x)=g(x)ℎ(x), 那么导数f′(x)=g′(x)ℎ(x)+g(x)ℎ′(x)。
•除法法则: 如果 $f(x) = \\frac{{g(x)}}{{h(x)}}$, 那么导数 $f'(x) =\\frac{{g'(x)h(x) - g(x)h'(x)}}{{(h(x))^2}}$。
1.2 常见函数导数表•常数函数: f(x)=c, 导数f′(x)=0。
•幂函数: f(x)=x n, 导数f′(x)=nx n−1。
•指数函数: f(x)=e x, 导数f′(x)=e x。
•对数函数: $f(x) = \\log_a(x)$, 导数 $f'(x) = \\frac{1}{x \\ln(a)}$。
•三角函数:–正弦函数: $f(x) = \\sin(x)$, 导数 $f'(x) = \\cos(x)$。
–余弦函数: $f(x) = \\cos(x)$, 导数 $f'(x) = -\\sin(x)$。
–正切函数: $f(x) = \\tan(x)$, 导数 $f'(x) = \\sec^2(x)$。
2. 积分公式2.1 基本积分公式•幂函数积分: 如果f(x)=x n, 其中n不等于−1, 那么积分 $\\intf(x)\\,dx = \\frac{1}{n+1}x^{n+1} + C$。
•指数函数积分: 如果f(x)=e x, 那么积分 $\\int f(x)\\,dx = e^x + C$。
(完整word版)高等数学公式(定积分微积分三角函数导函数等等应有尽有)值得搜藏
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
高等数学公式汇总
高等数学公式汇总高等数学公式汇总如下:1. 幂函数:指数函数:f(x) = cos(x) + i*sin(x)f(x) = exp(x) - 1/(2*exp(2x))f(x) = frac{1}{1-x^2}f(x) = sqrt(x)/x2. 三角函数:正弦函数:s(x) = sin(x)/cos(x)s(x) = frac{1}{sqrt{1-x^2}}s(x) = frac{cos(x) - x*sin(x)}{sqrt{1-x^2}}s(x) = frac{2*cos(x)/2}{sqrt{1-x^2}}3. 余弦函数:c(x) = cos(x)c(x) = cos(x)/s(x)c(x) = frac{1}{sqrt{1-x^2}}c(x) = frac{2*cos(x) - x*sin(x)}{sqrt{1-x^2}}4. 正切函数:tan(x) = sin(x)/cos(x)tan(x) = frac{sin(x) + cos(x)}{2*cos(x)/sin(x) -sin(x)/cos(x)}tan(x) = frac{1}{sqrt{1-sin^2(x)/cos^2(x)}}5. 指数函数和三角函数的组合:e^x = cos(x) + i*sin(x)e^x = exp(x) - 1/(2*exp(2x))e^x = frac{1}{1-x^2}e^x = sqrt(x)/x6. 对数函数:log(x) = ln(x/e) + i*π/2log(x) = ln(x) - ln(2*sqrt(x))log(x) = ln(1+x)7. 微积分中的基本公式:导数:f"(x) = lim(Δx->0)*frac{f(x+Δx) - f(x)}{Δx}f"(x) = lim(Δx->0)*frac{f(x+Δx) + f(x-Δx)}{2Δx}f"(x) = lim(Δx->0)*frac{f(x)/(x+Δx) - f(x)/(x-Δx)}{Δx/(x+Δx) + Δx/(x-Δx)}f"(x) = lim(Δx->0)*frac{f(x)/x}{1 + frac{f(x)}{x/2}} 微分中的基本公式:d/dx (a^x) = a^x*ln(a)d/dx (e^x) = e^x*ln(e)d/dx (1/x) = 1/x*ln(x)d/dx (a^x) * a^(-x) = e^xd/dx (x^n) = nx^(n-1)d/dx (sin(x)) = cos(x)d/dx (cos(x)) = -sin(x)d/dx (tan(x)) = sin(x)/cos(x)8. 积分基本公式:积分一:∫dx = x + C∫dx = 1/2*ln(|x| + 1) + C∫dx = 1/(2*sqrt(x^2 + 1)) + C∫dx = 1/(2*sqrt(x)) + C积分二:∫dx/dx = 1/x∫dx/(2x) = 1/(2*x^2)∫dx/(x^2 + z) = -1/(x^3 + z^2) + C积分三:∫e^x dx = e^x + C∫e^x dx = 1/(2*sqrt(e)*ln(e)) + C∫e^x dx = 1/(2*sqrt(e)*sin(x)) + C积分四:∫a^x dx = a^x + C∫a^x dx = 1/(2*sqrt(a^2 + 1)) + C∫a^x dx = 1/(2*sqrt(a)) + C9. 链式法则:链式法则:∫[(x+a)^2 - (x-a)^2] dx = x^3 + 3x^2*a + 3x*a^2 - (a^3 + a^2*a + a*a^2)= x^3 + 3x^2*a + 3x*a^2 - a^3 - a^2*a + a*a^2= (x-a)(x^2 + 3x*a + 3a^2) - a^310. 微积分中的常数和极限:常数:C = lim(n->无穷大)*sum(1/n)C = lim(n->无穷大)*sqrt(1+4n^2)C = lim(n->无穷大)*frac{1}{2*(1-2n^2) }C = lim(x->正无穷大)*log(1+x)C = lim(x->负无穷大)*log(1-x)极限:趋于1:s(n) = frac{1}{n} + 1/(n^2 + 2)趋于0:s(n) = frac{1}{n} + 1/(n^2)趋于正无穷:s(n) = frac{1}{n} + O(1/n^3)趋于负无穷:s(n) = frac{1}{n} + O(1/n^2)。
高数微积分公式大全(总结的比较好)
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫=⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =++九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos axe xdx ⎰令,sin ,cos ax u e x x =均可。
微积分公式大全
微积分公式大全一、基本公式:1.微分基本公式(导数):(1)常量函数导数:(k)'=0;(2)幂函数导数:(x^n)'=n·x^(n-1);(3)指数函数导数:(a^x)'= ln(a)·a^x;(4)对数函数导数:(log_a x)'= 1/(x·ln(a));(5)三角函数导数:(sin x)'=cos x, (cos x)'=-sin x, (tan x)'=sec^2 x;(6)反三角函数导数:(arcsin x)'=1/√(1-x^2), (arccos x)'=-1/√(1-x^2), (arctan x)'=1/(1+x^2);(7)复合函数导数:f(g(x))'=f'(g(x))·g'(x);2.积分基本公式:(1)不定积分:∫(k)dx=kx+C, ∫(x^n)dx= (x^(n+1))/(n+1)+C;(2)定积分:∫(a~b)f(x)dx= F(b)- F(a),其中 F(x) 是 f(x) 在[a, b] 上的一个原函数;(3)换元积分:∫f(g(x))·g'(x)dx=∫f(u)du, 其中 u = g(x);(4)分部积分:∫u·dv = u·v - ∫v·du;二、微分学公式:1.高阶导数:如果函数f(x)的n阶导数存在,则记作f^(n)(x),有以下公式:(1)常函数的n阶导数为0;(2)幂函数的n阶导数为n!(n-1)!·x^(n-m);(3)指数函数的 n 阶导数为a^x·ln^n(a);(4)对数函数的n阶导数为(-1)^(n-1)·(n-1)!/x^n;(5)三角函数的n阶导数:sin(x):n 为奇数时,n 阶导数为sin(x+ nπ/2);n 为偶数时,n 阶导数为cos(x+ nπ/2);cos(x):n 为奇数时,n 阶导数为 -cos(x+ nπ/2);n 为偶数时,n 阶导数为sin(x+ nπ/2);tan(x):n 为奇数时,n 阶导数为 (-1)^(n-1)·2^(n-1)·B_n·(2n)!·x^(2n-1),其中 B_n 为 Bernoulli 数;n为偶数时,n阶导数为0;2.泰勒展开:函数f(x)的泰勒展开式为:f(x)=f(a)+f'(a)·(x-a)+f''(a)·(x-a)^2/2!+......+f^(n)(a)·(x-a)^n/n!+......;当x接近a时,可以使用前n阶导数来估算函数的值;三、积分学公式:1.牛顿-莱布尼茨公式:设函数F(x)是f(x)在[a,b]上的一个原函数,则有∫(a~b)f(x)dx= F(b)- F(a);2.反常积分:(1)瑕积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域内发散;(2)收敛式积分:∫(1/x)dx 在曲线 y=0, x=0 和 x=1 构成的区域外收敛为 ln,x;(3)点收敛、条件收敛和绝对收敛;3.广义积分:(1)广义积分存在:∫(a~+∞)f(x)d x= A 表示对于任意定义域上的f(x),在 a 之后的任意区间上都是收敛的;(2)比较判别法:若存在p>0和M>0,使得,f(x),<=M·g(x),那么当f(x)的积分是收敛的,那么g(x)的积分也是收敛的;(3)绝对收敛:如果,f(x),在定义域上是收敛的,那么f(x)的积分是绝对收敛的;(4)积分判别法:如果积分是收敛的,但是f(x)的绝对值不是;或者f(x)的绝对值是收敛的,但是积分是发散的,那么f(x)的积分是条件收敛的;以上仅是微积分常用公式的集合,只能作为参考,实际应用仍需根据具体问题进行判断和运用。
高等数学公式(定积分 微积分 三角函数 导函数 等等 应有尽有)
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
微积分及三角函数公式合集.docx
第一部分:常用积分公式基本积分公式:kdx = kx + c庠m+c J Xf a x dx -———F c J lno [e x dx = e x + c cos xdx = sinx + c sin xdx = 一 cosx + c—\—dx - f sec 1 2 xdx = tan x + c cos x J —\— = f esc 2 xdx = -cotx + c sin" x 」 1 ]----- 7 dx = arctan x + c 1 + x 21^ = arcsinx + ctan xdx = - In cos x +c cot xdx = In sinx + c sec xdx = In sec x + tan x + c esc xdx = In esc x 一 cot x\ + c 1 , 1 X-- ----- -ax =—arctan —+ c a" + a ax-a x^a1 . • X i ・ ax = arcsin — + cj x p dx-+ c“+1形如 x n e ax dx ,令 u = x n , dv = e ax dx 形如 x n sin xdx 令 u 二 x n , dv = sin xdx 形如 x" cos xdx 令 u = x", dv = cos xdx 形如 x" arctan xdx ,令” =arctan x, dv = x n dx 形如 x n In xdx ,令 u =\nx, dv = xdx形如 j e ax sin xdx , j e ax cos xdx 令 u = e ax ,sin x,cos x 均可。
常用凑微分公式1. J/(tzx + b^lx = ~\f {ax + (^ax + Z?)J.f(lnx)・一d = ” (lnx”(lnx)f /dx = In x + \Jx 2 ±a 2JVx 2±a 219 分部积分法公式: + c2.3. 4.\f(e x \e x d x\f(e x )d(e x ) 5. 6."㈤心宀/“(刁㈤7. j f (cos x) • sin xd = (cos(cos x)”0 an %)• sec 2 xd =|jf (tanx)J(tanx) -[/(-)</(-)JX X11. j/(cot x)- esc 2 xd = j / (cot x^d (cot x)8.=^|/(\/7x(Vx)第二部分:常用微分、导数公式(C 二常数)(3) limV^(d 〉o) = ln-»ooJI(6) lim arc tanx =xty 2(9) lim e x = 0X-»-co(13) ]im 型+—/(兀)AxA2、常用等价无穷小关系(XTO )3、导数的四则运算法则(10)lim e x = ooX->+00(11)lim x v = 1x-»0+(12) limX —>00ci^x n+ i — • + ci n b^x m+ byX mi 4 ----- b mb°=< 000(系数不为0的情况)1、极限(1) lim^ = lXT O %(4) hmyfn = 1 (7) limarccotx = 0X —>CC(5) limarctanx = —XTOO2(8) lim arc cot x = TI A —sinx 〜x tan 兀〜兀 1cosx 〜—xln(l + x)〜xarcsin 兀〜x e x _ ]〜牙arctan x 〜x a x 一 1 〜丄 9—jr2Jl + xsinx -1\ll + x 2 - Vl-x 2 〜x 2(W ± v) =u±v f4、基本导数公式 ⑴(c/=0 (4) (cosx) = -sinx(5)(tanx) = sec 2x①_心一 s'V 2(3)(sinx) = cosx(6)(cot x) = - esc 2 % (7) (secx) = sec % • tan x(8) (cscx) =-cscx-cotx22sec x -1sin 3 x 〜(x)3(11)(in %)6、基本初等函数的n 阶导数公式 (1) (x w )W =n!(2)(严学)=(5) [cos @=a n(4) d (cos x) = - sin xdx(5)(1 (tan x) = sec 2xdx⑻ d (esc x) = - esc x • cot xdx(11) J (lnx) = —rfxXdx (13) d (arcsin 兀)=/ 】 dx (14) d (arccos x)=——,dx(16) d (arccot 兀)=一]】° d 兀、⑷a n -n\> \"+l ax + b)[1心+对~(-]厂目害yax + b)7、微分公式与微分运算法则 (l)d(c) = 0(2)d(x") = jLix^~l dx(-1)[ (3) cl (sin x) = cos xdx(15)(arctanx/ ='l + x 25、高阶导数的运算法则 (1)(14)( arccos 兀丫 = -- !——V 71-x 2(16)(arccot%y = _〔丨,(17)(兀)=1(18)(V^)丄2y[x)⑴土 ”⑴丫) ”⑴⑷土吩严(2)cu (兀)丁") =cd")(兀)(3) u^ax + b)⑷=a'u^ (ax + b) (4)w(x)-v(x)⑷严之”sin9 +方+ m 兰712>(6)d (cotx) = -csc 2 xdx(15) d (arctan x) = 厶 8、微分运算法则 ⑴ d ("士 u) = du ± du⑵ d (cw) = cdu第三部分:常用三角函数公式1 •和差公式sin(A + B)二 sin A cos B + cos A sin Bsin(A 一 B) = sin A cos B 一 cos A sin Bcos(A + B) = cos A cos B-s\nA sin B cos(A一 B) = cos A cos B + sin A sin Btan(A + B)= tan A + tan B1 - tan A tan Bcot(A + B)= cot A • cot B - 1 cot B + cotA2•倍角公式cos24 = cos 2 A-sin 2 A = l-2sin 2 A = 2cos 2 A-\sin (<7 +ft) cos a • cos b5•积化和差公式sin a sin b =——cos(d + b) -cos(d-/?) 2 cos a cosh = — cos(d + b) + cos(d-b) 21「・ -icos tz sin/? = — sin(a + /?)-sin(d-b)6•万能公式(3) d (wv) = vdu + uclvvdu 一 udvv 2tan(A-B)=tan A - tan B 1 + tan A tan B cot(A-B) = COtA>COtg + 1cot B - cot Asin2A = 2sin Acos Atan 2A = 2 tan A1 一伽2A3 •半角公式 .A /1-cosASin 7_V~2-A /1 + cos A cos — = J ------------------------2 V 2A11 - cos A tan7~ Vl + cosAsin A 1 + cosAA /1 + cosA sin Acot — = J -------------- = -------------2 V 1 - cos A 1-cos A4•和差化积公式• ・, r ・ ci + b a-b sin a + sin b = 2 sin ----------- cos --------2 2. c a + b a-b cos a + cos b =2 cos —— 2•cos. ・ f r a+b ・ a-bsin (7-sin/? = 2 cos ------------ s in --------2 2f c . a+h • a -bcos a 一 cos b =-2 sin --------- sin --------2 2tan a + tan /?=2 tan2 sin a = ------- —1 + tarr27 •平方关系- ? CIl-tarr —2 cos a = ----------- -1 +tarr2小 a 2 tan —2tan a = ---------- —1 一 tarr2• 22isin x + cos x = l sec 2 x-tan 2 x = 1csc 2x-cot 2x = l8 •倒数关系tan x • cot 兀=1 9 •商数关系 sinxtan x = --------cosx 10•正弦定理:—sec x • cos x = 1 cosxcot x = --------sinx c11•余弦定理:c 2 =a 2 +h 2 -2abcosC12•反三角函数性质: arcsin x = ---- arccosx2=2Rsin A sin B sin C71arctgx = ------- a rcctgx(7) d (sec 兀)= secx ・ tan xdx1 厂. -i sin <7 cos/? = — sin(d+b) + sin(d-b)。
高级数学公式(定积分微积分三角函数导函数等等搜罗万象)值得搜躲[整理版]
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠-(3)1ln ||dx x Cx =+⎰(4)2tan 1dxarl x C x=++⎰ (5)arcsin x C=+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x Cx=-+⎰ (10)sec tan sec x xdx x C=+⎰ (11)csc cot csc x xdx x C =-+⎰(12)x x e dx e C=+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且(14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+(19)ln(x C=+(20)ln |x C=+(21)tan ln |cos |xdx x C =-+⎰(22)cot ln |sin |xdx x C=+⎰(23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C=-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=,21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分:常用积分公式基本积分公式:1 kdx kx c =+⎰2 11x x dx c μμμ+=++⎰ 3ln dxx c x =+⎰4 ln xxa a dx c a=+⎰ 5 x x e dx e c =+⎰6 cos sin xdx x c =+⎰7 sin cos xdx x c =-+⎰8 221sec tan cos dx xdx x c x ==+⎰⎰9 221csc cot sin xdx x c x ==-+⎰⎰ 10 21arctan 1dx x c x=++⎰ 11arcsin x c =+12 tan ln cos xdx x c =-+⎰ 13 cot ln sin xdx x c =+⎰14 sec ln sec tan xdx x x c =++⎰ 15 csc ln csc cot xdx x x c =-+⎰162211arctan xdx c a x a a=++⎰ 172211ln 2x a dx c x a a x a-=+-+⎰ 18arcsinxc a=+19ln x c =+分部积分法公式1 形如n ax x e dx ⎰,令n u x =,axdv e dx =2 形如sin n x xdx ⎰令nu x =,sin dv xdx =3 形如cos n x xdx ⎰令nu x =,cos dv xdx = 4 形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =5 形如ln n x xdx ⎰,令ln u x =,ndv x dx =6 形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
常用凑微分公式 1.()()()1f ax b dx f ax b d ax b a+=++⎰⎰ 2.()()()11f x x dx f x d x μμμμμ-=⎰⎰3. ()()()1ln ln ln f x dx f x d x x⋅=⎰⎰4. ()()()x x x x f e e dx f e d e ⋅=⎰⎰5. ()()()1ln x x x x f a a dx f a d a a⋅=⎰⎰ 6. ()()()sin cos sin sin f x xdx f x d x ⋅=⎰⎰ 7. ()()()cos sin cos cos f x xdx f x d x ⋅=-⎰⎰ 8.()()()2tan sectan tan f x xdx f x d x ⋅=⎰⎰9.2dx f d=⎰ 10.21111()()()f dx f d x x x x =-⎰⎰11.()()()2cot csccot cot f x xdx f x d x ⋅=⎰⎰第二部分:常用微分、导数公式(c=常数)1、极限(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0x x e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→= (12)0101101lim 0n n n m m x m a n mb a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩L L (系数不为0的情况) (13)000()()limx x x xf x f x y x →+∆-∆=∆∆2、常用等价无穷小关系(0x →)sin ~x x tan ~x x arcsin ~x x arctan ~x x 211cos ~2x x - ()ln 1~x x + 1~x e x - 1~ln x a x a -()11~x x ∂+-∂ 21sec 1~2x x -211~2x2~x33sin ~()x x3、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭4、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln x a x a '=⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=5、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 6、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+7、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1log ln x a d dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+ 8、微分运算法则 ⑴()d u v du dv ±=± ⑵()d cu cdu =⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭第三部分:常用三角函数公式1.和差公式sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan AA A=-3.半角公式sin2A = cos 2A =sin tan21cos A A A ==+ sin cot 21cos A A A==- 4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦ ()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦ ()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦6.万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22tan2tan 1tan 2aa a=- 7.平方关系22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅= sec cos 1x x ⋅= c sin 1cs x x ⋅=9.商数关系sin tan cos x x x =cos cot sin xx x= 10.正弦定理:R C cB b A a 2sin sin sin ===11.余弦定理:C ab b a c cos 2222-+= 12.反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ。