(完整word版)七年级数学整式易错题整理
人教版七年级数学上册 第2章 整式的加减 拔高题及易错题(Word版附答案)
绝密★启用前人教版七年级数学上册 第2章 整式的加减 拔高题及易错题(Word 版附答案)试卷副标题考试范围:xxx ;考试时间:78分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,阴影部分的面积是( )A .xy B .xy C .6xy D .3xy2、计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 33、单项式 −a 2n −1b 4 与 3a 2m b 8m 是同类项 , 则 (1+n )100⋅(1−m )102= ( )A .无法计算B .C .D .4、已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y-s+3n的化简结果是单项式,那么mns=( )A .6B .-6C .12D .-125、若A 和B 都是五次多项式,则( )A .A +B 一定是多式 B .A -B 一定是单项式C .A -B 是次数不高于的整式D .A +B 是次数不低于的整式6、a -b=5,那么3a +7+5b -6(a +b)等于( )A .-7B .-8C .-9D .107、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( )A .B .C .D .8、一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( ) A .x 2-4xy -2y 2 B .-x 2+4xy +2y 2 C .3x 2-2xy -2y 2 D .3x 2-2xy9、当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( ) A .-16 B .-8 C .8 D .1610、一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利( )A .0.125a 元B .0.15a 元C .0.25a 元D .1.25a 元第II卷(非选择题)二、填空题(题型注释)11、单项式的系数是__________,次数是__________.12、已知单项式与单项式的差是,则abc=________.13、当x=1时,代数式ax5+bx3+cx+1=2017,当x=-1时,ax5+bx3+cx+1=_________.14、已知,代数式的值为_________.15、已知a,b,c在数轴上的位置如图所示,化简:|a-b|+|b+c|+|c-a|=_________.16、平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是_________.三、解答题(题型注释)17、已知数轴有A、B、C三点,位置如图,分别对应的数为x、2、y,若,BA=BC,求4x+4y+30的值。
七年级数学上册第二章整式的加减易错题集锦
(名师选题)七年级数学上册第二章整式的加减易错题集锦单选题1、要使多项式mx2−2(x2+3x−1)化简后不含x的二次项,则m的值是()A.2B.0C.−2D.3答案:A分析:先将原式化简,再根据题意判断m的值即可;解:原式=mx2−2x2−6x+2=(m−2)x2−6x+2∵原式化简后不含x的二次项,∴m−2=0,∴m=2,故选:A.小提示:本题主要考查代数式的应用,掌握相关运算法则是解题的关键.2、下列去括号或添括号的变形中,正确的是()A.2a-(3b-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)答案:C分析:由去括号和添括号的法则可直接判断各个选项的正误,进而得到答案.解:2a−(3b−c)=2a−3b+c,故选项A错误,不符合题意;3a+2(2b−1)=3a+4b−2,故选项B错误,不符合题意;a+2b−3c=a+(2b−3c),故选项C正确,符合题意;m−n+a−b=m−(n−a+b),故选项D错误,不符合题意;故选:C.小提示:本题考查去括号和添括号,熟练掌握相关知识是解题的关键.3、把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9答案:C分析:根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),算出第⑥个图案中菱形个数即可.解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),∴则第⑥个图案中菱形的个数为:1+2×(6−1)=11,故C正确.故选:C.小提示:本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4、若x+y=2,z−y=−3,则x+z的值等于()A.5B.1C.-1D.-5答案:C分析:将两整式相加即可得出答案.∵x+y=2,z−y=−3,∴(x+y)+(z−y)=x+z=−1,∴x+z的值等于−1,故选:C.小提示:本题考查了整式的加减,熟练掌握运算法则是解本题的关键.5、古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为()A.55B.220C.285D.385答案:B分析:“三角形数”可以写为:1,3=1+2,6=1+2+3,10=1+2+3+4,15=1+2+3+4+5,所以第n层“三角形数”为n(n+1)2,再把n=10代入计算即可.解:∵“三角形数”可以写为:第1层:1,第2层:3=1+2,第3层:6=1+2+3,第4层:10=1+2+3+4,第5层:15=1+2+3+4+5,∴第n层“三角形数”为n(n+1)2,n层时,垛球的总个数为:12+22+⋯+n22+1+2+⋯+n2=n(n+1)(2n+1)12+n(n+1)4∴若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为10×11×2112+10×114=220故选:B.小提示:本题考查了等腰三角形的性质以及数字变化规律,得出第n层“三角形数”为n(n+1)2是解答本题的关键.6、将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为()A.x3+x2y−3xy2−9B.−9+3xy2−x2y+x3C.−9−3xy2+x2y+x3D.x3−x2y+3xy2−9答案:D分析:根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.解:多项式−9+x3+3xy2−x2y按x的降幂排列为x3−x2y+3xy2−9.故选D.小提示:此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.7、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.8、下面图案是用长度相同的火柴棒按一定规律拼搭而成,若第n个图案需要y根火柴棒,则y与n的函数关系式为()A.y=3n B.y=3n+3C.y=4n+3D.y=4n−1答案:A分析:根据题意可得第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......由此发现规律,即可求解.解:根据题意得:第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......第n个图,火柴棒个数是3+3+3+3+......+3=3n;故选:A.小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.9、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x -(y -z )-m -n =x -y +z -m -n ;第3种:x -(y -z )-(m -n )=x -y +z -m +n ;第4种:x -(y -z -m )-n =x -y +z +m -n ;第5种:x -(y -z -m -n )=x -y +z +m +n ;第6种:x -y -(z -m )-n =x -y -z +m -n ;第7种:x -y -(z -m -n )=x -y -z +m +n ;第8种:x -y -z -(m -n )=x -y -z -m +n ;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.10、代数式1x , 2x +y , 13a 2b , x−y π, 5y 4x , 0.5 中整式的个数( ) A .3个B .4个C .5个D .6个答案:B分析:根据单项式和多项式统称为整式.单项式是字母和数的乘积,单个的数或单个的字母也是单项式.多项式是若干个单项式的和,再逐一判断可得答案.解:整式有2x +y , 13a 2b , x−y π,0.5共有4个;故选:B .小提示:本题考查了整式.解题的关键是掌握整式的定义:单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式.填空题11、若34x m −1y 3与−5x 2y 2n −1的和是单项式,则m +n =___.答案:5分析:根据34x m−1y3与−5x2y2n−1的和是单项式,可知34x m−1y3与−5x2y2n−1是同类项,可得m-1=2,2n-1=3,据此即可解答.解:∵34x m−1y3与−5x2y2n−1的和是单项式,∴34x m−1y3与−5x2y2n−1是同类项,∴m-1=2,2n-1=3,解得m=3,n=2,∴m+n=3+2=5,所以答案是:5.小提示:本题考查了同类项概念的应用,熟练掌握同类项的定义是解题的关键.12、计算:3a−a=_____________.答案:2a分析:按照合并同类项法则合并即可.3a-a=2a,所以答案是:2a.小提示:本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.13、多项式4x3y3−5x4y3−3x2−y2+5x+2的次数是________次.答案:七分析:根据多项式的次数的定义解答即可.解:根据多项式以及次数的定义,多项式4x3y3−5x4y3−3x2−y2+5x+2含4x3y3,−5x4y3,−3x2,−y2,5x,2这六项,次数分别为6、7、2、2、1、0,∴多项式4x3y3−5x4y3−3x2−y2+5x+2的次数是七次.所以答案是:七.小提示:本题主要考查多项式的次数的定义.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数.熟练掌握多项式的次数的定义是解题的关键.14、若x3m y2与−2x6y n是同类项,则m+n=______.答案:4分析:根据同类项定义求出m、n值,代入m+n计算即可.解:由题意,得3m=6,2=n,∴m=2,n=2,∴m+n=2+2=4,所以答案是:4.小提示:本题考查同类项,代数式求值,所含字母相同,相同字母指数相同的项叫同类项,根据同类项定义求出m、n值是解题的关键.15、若2x2−3x−2=0,则代数式3−4x2+6x的值为________.答案:-1分析:将2x2−3x−2=0变形为2x2-3x=2,再将3−4x2+6x变形为3-2(2x2-3x),然后整体代入计算即可.解:∵2x2−3x−2=0∴2x2-3x=2,∴3−4x2+6x=3-2(2x2-3x)=3-2×2=-1,所以答案是:-1.小提示:本题考查代数式求值,将式子恒等变形,利用整体思想求解是解题的关键.解答题16、(1)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯131=13,132=169,133=2197,134=28561,135=371293,136=4826809,⋯根据你发现的规律回答下列问题:①32022的个位数字是___________;1399的个位数字是___________;②4399的个位数字是___________;4355的个位数字是___________;(2)自主探究回答问题:①799的个位数字是___________,755的个位数字是___________;②5299的个位数字是___________,5255的个位数字是___________.(3)若n是自然数,则n99−n55的个位上的数字()A.恒为0 B.有时为0,有时非0 C.与n的末位数字相同D.无法确定答案:(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A分析:(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知n99与n55个位上的数字相同即可得出答案.解:(1)①∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯∴3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵2022÷4=505 (2)∴32022的个位数字是9;∵131=13,132=169,133=2197,134=28561,135=371293,136=4826809,⋯∴13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵99÷4=24 (3)∴1399的个位数字是7;所以答案是:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴4399的个位数字是7,4355的个位数字是7;所以答案是:7;7;(2)①∵71=7,72=49,73=343,74=2401,75=16807,76=117649...∴7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴799的个位数字是3,755的个位数字是3所以答案是:3;3②∵21=2,22=4,23=8,24=16,25=32,26=64...∴2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环∴52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环∵99÷4=24...3,55÷4=13 (3)∴5299的个位数字是8,5255的个位数字是8所以答案是:8;8(3)由(1)(2)中的结论可知n99与n55个位上的数字相同∴n99−n55的个位上的数字恒为0故选A.小提示:本题考查数字的变化规律,找出数字之间的规律是解题的关键.17、如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是答案:(1)甲对乙错(2)①-6n+25 ;②4(3)3或5分析:(1)由题意知,甲只能向东移动才有可能停在数轴正半轴上,则只需考虑①与②的情形即可确定对错;(2)①根据题意乙猜对n次,则乙猜错了(10-n)次,利用平移规则即可推算出结果;②根据题意乙猜对n次,则乙猜错了(10-n)次,利用平移规则即可推算出结果;(3)由题意可得刚开始两人的距离为8,根据三种情况下计算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.(1)解:∵甲、乙两人(看成点)分别在数轴-3和5的位置上,∴甲乙之间的距离为8.∵若甲乙都错,则甲向东移动1个单位,在同时乙向西移动1个单位,∴第一次移动后甲的位置是-3+1=-2,停在了数轴的负半轴上,∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴第一次移动后甲的位置是-3+4=1,停在了数轴的正半轴上.所以答案是:甲对乙错;(2)解:①∵乙猜对n次,∴乙猜错了(10-n)次.∵甲错乙对,乙向西移动4个单位,∴乙猜对n次后,乙停留的位置对应的数为:5-4n.∵若甲对乙错,乙向东移动2个单位,∴乙猜错了(10-n)次后,乙停留的位置对应的数为:m=5-4n+2(10-n)=25-6n;②∵n为正整数,∴当n=4时该位置距离原点O最近.所以答案是:4;(3)解:k=3 或k=5.由题意可得刚开始两人的距离为8,∵若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位,∴若都对或都错,移动后甲乙的距离缩小2个单位.∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴若甲对乙错,移动后甲乙的距离缩小2个单位.∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴若甲错乙对,移动后甲乙的距离缩小2个单位.∴甲乙每移动一次甲乙的距离缩小2个单位.∵甲与乙的位置相距2个单位,∴甲乙共需缩小6个单位或10个单位.∵6÷2=3,10÷2=5,∴k的值为3或5.所以答案是:3或5.小提示:本题主要考查了列代数式,数轴,本题是动点型题目,找出移动后甲乙距离变化的规律是解题的关键.18、如图,用字母表示图中阴影部分的面积.答案:阴影部分的面积为mn−pq分析:根据阴影部分面积=大长方形面积-空白部分长方形面积进行求解即可.解:由题意得:S阴影=S大长方形−S空白长方形=mn−pq,∴阴影部分的面积为mn−pq.小提示:本题考查列代数式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
新人教七年级数学上册第二章整式的加减易错题训练
第二章整式的加减易错题练习一.选择题1.下列说法正确的是( )A . b 的指数是0B . b 没有系数C . -3是一次单项式D . -3是单项式2.多项式632234267x y x y x x -+--的次数是( )A . 15次B . 6次C . 5次D . 4次 3.下列式子中正确的是( )A . 527a b ab +=B . 770ab ba -=C . 22245x y xy x y -=-D . 235358x x x += 4.把多项式233524x x x +--按x 的降幂排列后,它的第三项为( ) A . -4 B . 4x C . -4x D . -2x 3 5.整式---[()]a b c 去括号应为( ) A . --+a b cB . -+-a b cC . -++a b cD . ---a b c6.当k 取( )时,多项式2213383x kxy y xy --+-中不含xy 项A . 0B .13C . 19D . 19-7.若A 与B 都是二次多项式,则A -B :(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。
上述结论中,不正确的有( ) A . 2个 B . 3个 C . 4个 D . 5个 8.在()()[()][()]a b c a b c a a -++-=+-的括号内填入的代数式是( ) A . c b c b --, B . b c b c ++, C . b c b c +-, D . c b c b -+,9.下列整式中,不是同类项的是( ) A . 22133x y yx -和B . 1与-2C . 2m n 与22310nm ⨯D .221133a b b a 与10. 下列式子中,二次三项式是( ) A .221223xy y x++B . 22x x -C . 222x xy y -+D . 43x y +-11. 下列说法正确的是( ) A . 35a -的项是35a 和B . 22238a c a ab b +++与是多项式 C . 22333x y xy z ++是三次多项式D .118816x xy x++和都是整式12. --x x 合并同类项得( ) A . -2x B . 0 C . -2x 2 D . -2 13. 下列运算正确的是( ) A . 22232a a a -= B . 22321a a -= C . 2233a a -= D . 2232a a a -= 14. ()a b c -+的相反数是( )A . ()a b c +-B . ()a b c --C . ()-+-a b cD . ()a b c ++15. 已知关于x 的多项式ax 2-abx +b 与bx 2+abx +2a 的和是一个单项式,则a 、b 的关系是( )A . a =bB . a = -b 或b = -2aC . a =0或b =0D . ab =116. 多项式9x 2-6x -5与10x 2-2x -7的差为( ) A . x 2-4x -2 B . -x 2-4x +2 C . x 2+4x +2 D . - x 2+4x +2 二.填空题17.单项式-2πab 4x 6,-2x 2y 2z ,-x 的次数分别为: ;系数分别为: .18.多项式2x 3-3xy 3+25是 次 项式.19. 一个三位数,百位、十位、个位上的数字分别为a 、b 、c ,则这个三位数是: . 20. 已知-x +2y =6,则5(x -2y )2-3(x -2y )-60的值为: .21. 已知多项式x 2+2axy -xy 2与多项式3xy -axy 2-y 3的和不含xy 项,则其和为: . 22. 当a <3时,|a ﹣3|+a = _________ .23. 有理数a ,b 满足a <0<b ,且|a |>|b |,则代数式|a +b |+|2a ﹣b |化简后结果为 _________ . 24.小明从报社以每份0.6元的价格购进了a 份报纸,以每份1.0元的价格出售了b 份,剩下的以0.3元/份退回报社,则小明卖报纸收入 元。
(完整word版)初中数学易错题集锦及答案
初中数学易错题及答案(A)2 (B(C)2±(D)解:2,2的平方根为2.若|x|=x,则x一定是()A、正数B、非负数C、负数D、非正数答案:B(不要漏掉0)3.当x_________时,|3-x|=x-3。
答案:x-3≥0,则x34.22___分数(填“是”或“不是”)答案:22是无理数,不是分数。
5.16的算术平方根是______。
答案:16=4,4的算术平方根=26.当m=______时,2m-有意义答案:2m-≥0,并且2m≥0,所以m=07分式4622--+xxx的值为零,则x=__________。
答案:226040x xx⎧+-=⎪⎨-≠⎪⎩∴122,32x xx==-⎧⎨≠±⎩∴3x=-8.关于x的一元二次方程2(2)2(1)10k x k x k---++=总有实数根.则K_______答案:[]2202(1)4(2)(1)0kk k k-≠⎧⎪⎨----+≥⎪⎩∴3k≤且2k≠9.不等式组2,.xx a>-⎧⎨>⎩的解集是x a>,则a的取值范围是.(A)2a<-,(B)2a=-,(C)2a>-,(D)2a≥-.答案:D10.关于x 的不234a≤<等式40x a -≤的正整数解是1和2;则a 的取值范围是_________。
答案:234a ≤< 11.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______. 答案:分式总有意义,即分母不为0,所以分母240x x c ++=无解,∴C 〉412.函数y 中,自变量x 的取值范围是_______________. 答案:1030x x -≥⎧⎨+≠⎩∴X ≥113.若二次函数2232y mx x m m =-+-的图像过原点,则m =______________.220m m m ≠⎧⎨-=⎩∴m =2 14.如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求此函数解析式________________________.答案:当26119x x y y =-=⎧⎧⎨⎨=-=⎩⎩时,解析式为:26911x x y y =-=⎧⎧⎨⎨==-⎩⎩时,解析式为 15.二次函数y=x 2-x+1的图象与坐标轴有______个交点。
(完整word版)初中数学易错题集锦及标准答案
初中数学易错题及答案(A)2 (B(C)2±(D)解:2,2的平方根为2.若|x|=x,则x一定是()A、正数B、非负数C、负数D、非正数答案:B(不要漏掉0)3.当x_________时,|3-x|=x-3。
答案:x-3≥0,则x34.22___分数(填“是”或“不是”)答案:22是无理数,不是分数。
5.16的算术平方根是______。
答案:16=4,4的算术平方根=26.当m=______时,2m-有意义答案:2m-≥0,并且2m≥0,所以m=07分式4622--+xxx的值为零,则x=__________。
答案:226040x xx⎧+-=⎪⎨-≠⎪⎩∴122,32x xx==-⎧⎨≠±⎩∴3x=-8.关于x的一元二次方程2(2)2(1)10k x k x k---++=总有实数根.则K_______答案:[]2202(1)4(2)(1)0kk k k-≠⎧⎪⎨----+≥⎪⎩∴3k≤且2k≠9.不等式组2,.xx a>-⎧⎨>⎩的解集是x a>,则a的取值范围是.(A)2a<-,(B)2a=-,(C)2a>-,(D)2a≥-.答案:D10.关于x 的不234a≤<等式40x a -≤的正整数解是1和2;则a 的取值范围是_________。
答案:234a ≤< 11.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______. 答案:分式总有意义,即分母不为0,所以分母240x x c ++=无解,∴C 〉412.函数y 中,自变量x 的取值范围是_______________. 答案:1030x x -≥⎧⎨+≠⎩∴X ≥113.若二次函数2232y mx x m m =-+-的图像过原点,则m =______________.220m m m ≠⎧⎨-=⎩∴m =2 14.如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求此函数解析式________________________.答案:当26119x x y y =-=⎧⎧⎨⎨=-=⎩⎩时,解析式为:26911x x y y =-=⎧⎧⎨⎨==-⎩⎩时,解析式为 15.二次函数y=x 2-x+1的图象与坐标轴有______个交点。
洛阳市七年级数学上册第二章整式的加减易错题集锦
洛阳市七年级数学上册第二章整式的加减易错题集锦单选题1、下列去括号或添括号不正确的是( )A .a −b +c =a −(b −c )B .a −b +c =a +(c −b )C .a −2(b −c )=a −2b +2cD .a −2(b −c )=a −2b +c答案:D分析:根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.进行分析即可. 解:A. a −b +c =a −(b −c ),正确,故A 不符合题意;B. a −b +c =a +(c −b ),正确,故B 不符合题意;C. a −2(b −c )=a −2b +2c ,正确,故C 不符合题意;D. a −2(b −c )=a −2b +c ,∵a −2(b −c )=a −2b +2c ,∴计算不正确,故D 符合题意;故选:D小提示:本题考查了去括号和添括号的方法,注:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.2、数学家华罗庚曾经说过:“数形结合百般好,隔裂分家万事休”.如图,将一个边长为1的正方形纸板等分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的长方形,如此继续进行下去,根据图形的规律计算:12+(12)2+(12)3+⋯+(12)10的值为( )A .(12)10B .1-(12)10C .(12)11D .1-(12)11答案:B分析:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可. 解:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即为所求.最后一个小长方形的面积= (12)n故12+(12)2+(12)3+⋯+(12)n=1−(12)n即12+(12)2+(12)3+⋯+(12)10=1−(12)10故选B.小提示:本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.3、下列各式书写符合要求的是()A.a−1÷−b B.312xy C.ab×5D.−x2y2答案:D分析:根据代数式的书写要求判断各项即可.解:A、原书写不规范,应写为a−1−b,故此选项不符合题意;B,原书写不规范,应写为72xy,故此选项不符合题意;C、书写不规范,应写为5ab,故本选项不符合题意;D、书写规范,故此选项符合题意.故选:D.小提示:本题考查了代数式,解题的关键是掌握代数式的书写要求:(l)在代数式中出现的乘号,通常简写成“·”或者简略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写,而分数要写成假分数的形式.4、已知a+b=3,c−d=2,则(a+c)−(−b+d)的值是()A.5B.-5C.1D.-1答案:A根据整式的加减运算法则即可求出答案.分析:解:原式=a+c+b﹣d=a+b+c﹣d,当a+b=3,c﹣d=2时,∴原式=3+2=5,故选:A.小提示:本题考查整式的加减中的化简求值,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5、某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元答案:D分析:分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.解:∵20立方米中,前17立方米单价为a元,后面3立方米单价为(a+1.2)元,∴应缴水费为17a+3(a+1.2)=20a+3.6(元),故选:D.小提示:本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.6、在下列各式子中:π,x2+2x+1,x+xy,3x2+5x+4,−x,3,5xy,yx,整式共有()A.7个B.6个C.5个D.4个答案:B分析:根据多项式与单项式统称为整式,判断即可.解:在代数式π(单项式),x2+2x+1(分式),x+xy(多项式),3x2+5x+4(多项式),−x(单项式),3(单项式),5xy(单项式),yx(分式)中,整式共有6个,故选:B.小提示:此题考查了整式,解题的关键是弄清整式的概念.7、如果单项式2a2m−5b n+2与ab3n−2可以合并同类项,那么m和n的值分别为()A.2,3B.3,2C.-3,2D.3,-2答案:B分析:根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可.解:由题意得:2m-5=1,n+2=3n-2,∴m=3,n=2,故选:B.小提示:本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.8、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论解:A. 23πa3的次数是3次,故本选项错误,不符合题意;B.mn-12是整式,故本选项错误,不符合题意;C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.9、下列各式符合代数式书写规范的是()A.18×b B.114x C.−ba2D.m÷2n答案:C分析:根据代数式的书写规则,数字与字母之间的乘号应省略,分数不能为带分数,不能出现除号,对各项的代数式进行判定,即可求出答案.解:A、正确书写格式为18b,故此选项不符合题意;B、正确书写格式为54x,故此选项不符合题意;C、是正确的书写格式,故此选项符合题意;D、正确书写格式为m2n,故此选项不符合题意.故选:C.小提示:本题考查了代数式的书写规则,能够根据代数式书写的标准规则对各项进行分析,得出答案是解题的关键.10、已知单项式3a m+1b与−b n−1a3可以合并同类项,则m,n分别为()A.2,2B.3,2C.2,0D.3,0答案:A分析:根据同类项的定义得出关于m,n的式子,计算求出m,n即可.解:∵单项式3a m+1b与−b n−1a3可以合并同类项,∴m+1=3,n-1=1,∴m=2,n=2,故选:A.小提示:本题考查了合并同类项及同类项的定义,如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.11、单项式mxy3与x n+2y3的和是5xy3,则m−n(()A.﹣4B.3C.4D.5答案:D分析:根据单项式的和是单项式,可得两个单项式是同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.解:解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=−1,m=4,∴m−n=4−(−1)=5,故选:D.小提示:本题考查了同类项的概念,同类项定义中的两个“相同”:字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.12、下列算式中正确的是()A.4x−3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2−3x2=−2x2答案:D分析:根据合并同类项的法则计算即可得出正确结论.解:A. 4x−3x=x,故本选项错误,不符合题意;B. 2x与3y不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;C. 3x2与2x3不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;D. x2−3x2=−2x2,本选项正确,符合题意;故选:D小提示:本题主要考查了合并同类项,熟记同类项的概念是解题的关键.13、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.14、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.15、为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100−x)元C.8(100−x)元D.(100−8x)元答案:C分析:根据题意列求得购买乙种读本(100−x)本,根据单价乘以数量即可求解.解:设购买甲种读本x本,则购买乙种读本(100−x)本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100−x)元故选C小提示:本题考查了列代数式,理解题意是解题的关键.填空题16、张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a本笔记本,b支笔,她还剩___________________元钱(用含a,b的代数式表示).答案:(100-3a-2b)分析:根据题意表示出a本笔记本的钱,b支笔的钱,用总钱数-笔记本和笔的钱即可.解:由题意得:100-3a-2b,所以答案是:(100-3a-2b).小提示:此题主要考查了列代数式,关键是根据题意表示出a本笔记本的钱,b支笔的钱.17、关于整式4x3﹣3x3y+3x3﹣(7x3﹣3x3y)的值有下列几个结论:(1)与x,y有关(2)与x有关(3)与y有关(4)与x,y无关其中说法正确的结论是______.(直接填写序号)答案:(4)分析:把整式进行化简,再判断即可.4x3﹣3x3y+3x3﹣(7x3﹣3x3y)=4x3﹣3x3y+3x3﹣7x3+3x3y=0.则整式的值与x,y无关.所以答案是:(4).小提示:本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握.18、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.19、已知a2−2a=1,则3a2−6a−4的值为________答案:−1分析:将a2−2a=1作为整体代入计算即可得.解:∵a2−2a=1,∴3a2−6a−4=3(a2−2a)−4=3×1−4=−1,所以答案是:−1.小提示:本题考查了代数式求值,熟练掌握整体代入思想是解题关键.20、观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为a n ,且满足1a n +1a n+2=2a n+1.则a 4=________,a 2022=________.答案: 15 13032分析:由题意推导可得an =23(n−1)+1,即可求解.解:由题意可得:a 1=2=21,a 2=12=24,a 3=27,∵1a 2+1a 4=2a 3, ∴2+1a 4=7, ∴a 4=15=210, ∵1a 3+1a 5=2a 4, ∴a 5=213,同理可求a 6=18=216,⋯∴an =23(n−1)+1, ∴a 2022=26064=13032,所以答案是:15,13032.小提示:本题考查了数字的变化类,找出数字的变化规律是解题的关键.。
《易错题》七年级数学上册第二单元《整式加减》-解答题专项知识点复习(含答案)
一、解答题1.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.2.若单项式21425m n x y +--与413n m x y +是同类项,求这两个单项式的积 解析:10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩,∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.3.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.4.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
七下第三章整式的乘除易错题
杭州育才中学七年级下册第三章整式的乘除易错题整理班级姓名一、选择题1.下列计算正确的是().A.2x2·3x3=6x6B.2x2+3x3=5x5C.(-3x2)·(-3x2)=9x4D.54x n·25x m=12x mn2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1 B.5y3-3y2-2y-6C.5y3+3y2-2y-1 D.5y3-3y2-2y-13.下列运算正确的是().A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a44.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=05.下列说法中正确的是().A.-13xy2是单项式B.xy2没有系数C.x-1是单项式D.0不是单项式6.若(x-2y)2=(x+2y)2+m,则m等于().A.4xy B.-4xy C.8xy D.-8xy 7.(a-b+c)(-a+b-c)等于().A.-(a-b+c)2B.c2-(a-b)2C.(a-b)2-c2D.c2-a+b28.计算(3x2y)·(-43x4y)的结果是().A.x6y2B.-4x6y C.-4x6y2D.x8y9.等式(x+4)0=1成立的条件是().A.x为有理数B.x≠0 C.x≠4 D.x≠-410.下列多项式乘法算式中,可以用平方差公式计算的是().A.(m-n)(n-m)B.(a+b)(-a-b)C.(-a-b)(a-b)D.(a+b)(a+b)11.下列等式恒成立的是().A.(m+n)2=m2+n2B.(2a-b)2=4a2-2ab+b2C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2-912.若A=(2+1)(22+1)(24+1)(28+1),则A-2003的末位数字是().A.0 B.2 C.4 D.6二、填空题13.x·_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.14.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,若坐飞机飞行这么远的距离需_________小时.15.a 2+b 2+________=(a+b )2 ; a 2+b 2+_______=(a -b )2 ;(a -b )2+______=(a+b )216.若x 2-3x+a 是完全平方式,则a=_______.17.用科学记数法表示-0.000000059=________.18.若-3x m y 与0.4x 3y 2n+1是同类项,则m+n=______.19.如果(2a+2b+1)(2a+2b -1)=63,那么a+b 的值是________.20.若x 2+kx+14=(x -12)2,则k=_______;若x 2-kx+1是完全平方式,则k=______. 21.(-1615)-2=______;(x -k )2=_______. 22.22005×(0.125)668=________.23.有三个连续的自然数,中间一个是x ,则它们的积是_______.24. 2 )(81104=y x ;(2a-b )2-(2a+b)2= ;(x-y-z)2=(2×104)(6×103)·107 = ;(2y-x-3z )(-x-2y-3z)=三、计算题25. (—1)2004+(—21)—2—(3.14—π)0 26. [(—a 2)3—a 2(—a 2)]÷(—a)227. (3x+2y —4)(4+2y —3x ) 28. (x 2-2x+1-y 2)÷(x+y-1)29.(2x 2y -3xy 2)-(6x 2y -3xy 2) 30.(-32ax 4y 3)÷(-65ax 2y 2)·8a 2y31. (45a 3-16a 2b+3a )÷(-13a ) 32. (23x 2y -6xy )·(12xy )33. (x -2)(x+2)-(x+1)(x -3) 34. (1-3y )(1+3y )(1+9y 2)35. 2222221061054321-++-+- 36. 311)2(21)21()2(----+⨯---37.(5+1)(52+1)(54+1)(58+1)+2 38.(ab+1)2-(ab -1)2四、先化简,再求值34. (x+4)(x -2)(x -4),其中x=-1.35. [(xy+2)(xy -2)-2x 2y 2+4],其中x=10,y=-125.36. [(x+y)2(x-y)2-(x+y)(x-y)(x 2+y 2)]÷2y 2,其中x=21,y=2五、解答题7、已知20052x ,01232++=-+x x x 求。
《易错题》七年级数学上册第二单元《整式加减》-解答题专项习题(含解析)
一、解答题1.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.解析:(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab ,答:绿化的面积是(5a 2+3ab )平方米;(2)当a =20,b =12时5a 2+3ab =5×202+3×20×12=2000+720=2720,答:当a =20,b =12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 2.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492 【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.3.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 4.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可.【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元)答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元;当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元);当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩. 【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.5.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.6.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.7.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
《易错题》七年级数学上册第二单元《整式加减》-解答题专项知识点复习(含解析)
一、解答题1.已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.2.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 3.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.4.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.5.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.6.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.解析:(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.7.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.8.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a 2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a 2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.9. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440,②1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2),(2)1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),则1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=14n(n+1)(n+2)(n+3);(3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯=14×10×11×12×13=4290.【点睛】本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.10.一种商品每件成本a元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a元;(2)每件盈利0.037a元.【分析】(1)根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;(2)用原价的85%减去成本a元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a=1.22a(元),答:每件售价1.22a元;(2)根据题意,得:1.22a×85%-a=0.037a(元).答:每件盈利0.037a元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.11.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.12.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.13.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.14.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求P的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点P的距离(用P表示)解析:(1) x<5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x.解答:解:(1)由折纸过程可知0<5x<26,∴0<x<5.2.(2)∵图④为轴对称图形,∴AM=2652x+x=13-1.5x,即点M与点A的距离是(13-1.5x)cm.点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度.15.若关于x,y的多项式my3+3nx2y+2y3-x2y+y不含三次项,求2m+3n的值.解析:-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m、n的值后代入进行计算即可.【详解】my3+3nx2y+2y3-x2y+y=(m+2)y3+(3n-1)x2y+y,∵此多项式不含三次项,∴m+2=0,3n-1=0,∴m=-2,n=13,∴2m+3n=2×(-2)+3×13=-4+1=-3.【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m、n的值.16.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B”看成“2A+B”,算得结果为4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a2b+ab2+2abc;(2) 8a2b﹣5ab2;(3)对,0.【分析】(1)根据B=4a2b﹣3ab2+4abc-2A列出关系式,去括号合并即可得到B;(2)把A与B代入2A-B中,去括号合并即可得到结果;(3)把a与b的值代入计算即可求出值.【详解】解:(1)∵2A+B=4a2b﹣3ab2+4abc,∴B=4a2b﹣3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc;(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2;(3)对,由(2)化简的结果可知与c无关,将a=18,b=15代入,得8a2b-5ab2=8×218⎛⎫⎪⎝⎭×15-5×18×21()5=0.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a,个位数字为b,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a,个位数字为b,则原来两位数为10a+b,交换后的新两位数为10b+a,(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知多项式-13x2y m+1+12xy2-3x3+6是六次四项式,单项式3x2n y2的次数与这个多项式的次数相同,求m2+n2的值.解析:13【解析】试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n的值,把m,n的值代入到m2+n2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.20.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.21.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.22.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12 23 ab(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.解析:(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,求出A、B的值,再计算4A﹣(3A﹣2B)的值即可;(2)把(1)结果变形,根据结果与a的值无关求出b的值即可.【详解】(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,∴A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+12ab+23)=2a2+3ab﹣2a﹣1﹣2a2+ab+4 3=4ab﹣2a+13;(2)因为4ab﹣2a+1 3=(4b﹣2)a+13,又因为4ab﹣2a+13的值与a的取值无关,所以4b﹣2=0,所以b=12.【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.23.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m元的价格购进100个手机充电宝,然后每个加价n元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m,n的式子表示)?(2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 解析:(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 24.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.25.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.26.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a1-b1|,……,|a1010-b1010|中一个数大于1010,一个数不大于1010,∴|a1-b1|+|a2-b2|+…+|a1010-b1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.27.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n﹣1)(n+1)+1=n2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n﹣1)(n+1)+1=n2的规律,并熟练加以运用.28.设A=2x2+x,B=kx2-(3x2-x+1).(1)当x= -1时,求A的值;(2)小明认为不论k取何值,A-B的值都无法确定.小红认为k可以找到适当的数,使代数式A-B的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A=1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A进行计算即可得;(2)先计算出A-B,根据结题即可得.试题(1)当x=-1时,A=2x2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x2+x)-[kx2-(3x2-x+1)]=(5-k)x2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.29.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 解析:(1)①7;②206;(2)256a =或256a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=, 解得256a =或256a =-.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 30.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.。
七年级数学易错题总结(含答案)
七年级数学易错题总结(含答案)一、选择题(本大题共9小题,共27.0分)1.观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2…已知按一定规律排列的一组数:250、251、252.…、298、299.若250=a,用含a的式子表示这组数的和是().A. a2−aB. a2−2a−2C. a2−2aD. a2+a【答案】A【解析】【分析】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+⋯+2n=2n+1−2.由等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2,得出规律:2+22+23+⋯+2n=2n+1−2,那么250+251+252+⋯+299=(2+22+23+⋯+ 299)−(2+22+23+⋯+249),将规律代入计算即可.【解答】解:∵2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;…∴2+22+23+⋯+2n=2n+1−2,∴250+251+252+⋯+299,=(2+22+23+⋯+299)−(2+22+23+⋯+249)=(2100−2)−(250−2)=2100−250,∵250=a,∴2100=(250)2=a2,∴原式=a2−a,故选A.2.三条直线两两相交于同一点时,对顶角有m对;交于不同的三点时,对顶角有n对,则m与n的关系是()A. m<nB. m=nC. m>nD. m+n=10【答案】B【解析】【分析】本题考查对顶角,掌握对顶角相关概念是解答本题的关键.直线相交形成的对顶角的对数,只与有多少对直线相交有关,三条直线两两相交,每对相交的直线就会形成2对对顶角,这三条直线每两条都相交,相交直线的对数,与是否交于同一点无关,因而m=n.【解答】解:因为三条直线两两相交形成的对顶角的个数与是否交于同一点无关,所以m=n,故选B.3.两条直线相交形成的两个角为∠α和∠β,且∠α=(x+10)∘,∠β=(2x−25)∘,则∠α的度数为()A. 45°B. 75°C. 45°或75°D. 45°或55°【答案】C【解析】解:由题意可知∠α+∠β=180°或∠α=∠β,∵∠α=(x+10)°,∠β=(2x−25)°,∴x+10+2x−25=180或x+10=2x−25,解得:x=65或x=35,∴∠α=75°或45°,故选C.根据两直线相交得到对顶角与邻补角,从而得出两角相等或互补,得出方程,求出即可.本题考查了对顶角与邻补角,x−a=3x−14,若a为正整数时,方程的解也为正整数,则4.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14,又a也为正整数,则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则5.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【试题解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则6.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】Bx=a−14,【解析】解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A. 1个B. 2C. 3个D. 4个【答案】C【解析】解:①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中点到线段的两个端点的距离相等,说法正确.故选C.根据直线的性质判断①;根据线段的性质判断②;根据垂线的性质判断③;根据线段的中点的定义判断④.本题考查了直线的性质,线段的性质,垂线的性质,线段的中点的定义,是基础知识,需牢固掌握.8.下列角度换算错误的是()A. 10.6°=10°36″B. 900″=0.25°C. 1.5°=90′D. 54°16′12″=54.27°【答案】A【解析】【分析】本题考查了度、分、秒之间的换算关系:1°=60′,1′=60″,难度较小.根据度、分、秒之间的换算关系求解.【解答】解:A.10.6°=10°36′,错误;B.900″=0.25°,正确;C.1.5°=90′,正确;D.54°16′12″=54.27°,正确;故选:A.9.若M和N都是3次多项式,则M+N为()A. 3次多项式B. 6次多项式C. 次数不超过3的整式D. 次数不低于3的整式【答案】C【解析】【分析】本题主要考查整式加减.多项式的次数即为多项式中次数最高项的次数.由M和N都是3次多项式,得到M+N的次数为3或2或1或0,即M+N的次数不一定为3次,不可能超过3次,即可得到正确的选项.【解答】解:∵M和N都是3次多项式,∴M+N为次数不超过3的整式.故选C.二、填空题(本大题共8小题,共24.0分)10.有三个互不相等的有理数,既可表示为−1,a+b,a的形式,又可表示为0,−ba,b的形式,则b2021a2020的值为.【答案】−1【解析】略11.德国数学家莱布尼兹证明了π=4×(1−13+15−17+19−111+113−115+⋯),由此可知:13−15+17−19+111−113+115−⋯=________.【答案】1−π4【解析】【分析】本题考查了有理数运算的运用.根据所给条件,观察题目所给条件,可将π=4×(1−13+1 5−17+19−111+113−115+⋯)整理变形,使之与所求的原式一致。
《易错题》初中七年级数学上册第二章《整式的加减》经典复习题(专题培优)
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B 解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.6.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.7.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.8.下列各式中,符合代数书写规则的是( ) A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误;【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.下列说法正确的是()A.单项式34xy-的系数是﹣3 B.单项式2πa3的次数是4C.多项式x2y2﹣2x2+3是四次三项式D.多项式x2﹣2x+6的项分别是x2、2x、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.如图所示,直线AB、CD相交于点O,“阿基米德曲线”从点O开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()A.射线OA上B.射线OB上C.射线OC上D.射线OD上C解析:C由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.11.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B 解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 1.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 3.化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 4.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.5.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.6.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.7.已知|a|=-a ,b b =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.10.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=- 故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 11.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.1.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+314A)﹣(2b+37B)的值.解析:(1)(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)﹣312.【分析】(1)先化简原式,再分别代入A和B的表达式,去括号并合并类项即可;(2)先代入A和B的表达式并去括号并合并类项,由题意可令x和x2项的系数为零,求解出a和b的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.2.已知有理数a和b满足多项式A,且A=(a﹣1)x5+x|b+2|﹣2x2+bx+b(b≠﹣2)是关于x 的二次三项式,求(a﹣b)2的值.解析:16或25【解析】试题分析:根据有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,求得a、b的值,然后分别代入计算可得.试题解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1)当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2)当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3)当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.3.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.4.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.。
(完整版)七年级下数学第3章整式的乘除经典易错题带答案可直接打印2013浙教版新教材
第3章整式的乘除1.计算:(1)(-2)×(-2)2×(-2)3;(2)(-x)9·x5·(-x)5·(-x)3;(3)a n+4·a2n-1·a;(4)4m-3·45-m·4.解:(1)26(2)-x22(3)a3n+4(4)432.如果x m-3·x n=x2,则n等于(D) A.m-1B.m+5C.4-m D.5-m【解析】x m-3·x n=x m+n-3=x2,∴m+n-3=2,∴n=5-m.选D.3.(1)已知x3·x a·x2a+1=x31,求a的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x11.解:(1)x3a+4=x31,3a+4=31,a=9.(2)x11=x6·x5=x3·x3·x5=m·m·n=m2n.4.计算-(-3a)2的结果是(B) A.-6a2B.-9a2C.6a2D.9a25.计算:(1)-p2·(-p)4·[(-p)3]5;(2)(m-n)2·[(n-m)3]5;(3)25×84×162.解:(1)原式=-p2·p4·(-p)15=p21;(2)原式=(m-n)2·(n-m)15=-(m-n)17;(3)原式=25×(23)4×(24)2=25×212×28=225.6.已知10m=2,10n=3,求103m+2n的值.解:103m+2n=(10m)3·(10n)2=23×32=8×9=72. 7.计算:(1)(-ab2)2(-a4b3)3(-3a2b);(2)(-x n)2(-y n)3-(x2y3)n;(3)[(a+b)3]4·[(a+b)2]3;(4)(a4)5-(-a2·a3)4+(-a2)10-a·(-a2)5·(-a3)3. 解:(1)原式=a2b4(-a12b9)(-3a2b)=3a16b14;(2)原式=-x2n y3n-x2n y3n=-2x2n y3n;(3)原式=(a+b)12·(a+b)6=(a+b)18;(4)原式=a20-a20+a20-a20=0.8.求值:(1)已知2×8n×16n=222,求n的值;(2)若q m=4,q n=16,求q2m+2n的值;(3)已知x3n=2,求x6n+x4n·x5n的值.解:(1)21×23n×24n=222,27n+1=222,∴7n=21,n=3.(2)q2m+2n=(q m)2×(q n)2=42×162=16×256=4096.(3)x6n+x4n·x5n=x6n+x9n=22+23=4+8=12. 9.计算:(1)4y·(-2xy2);(2)(3x2y)3·(-4x);(3)(-2a)3·(-3a)2;(4)(-3×106)×(4×104)(结果用科学记数法表示).解:(1)原式=-8xy3;(2)原式=27x6y3·(-4x)=-108x7y3;(3)原式=-8a 3·9a 2=-72a 5;(4)原式=-12×1010=-1.2×1011.10.计算:(1)(-4x 2)·(3x +1);(2)⎝ ⎛⎭⎪⎫23ab 2-2ab ·12ab ; (3)a (3+a )-3(a +2).解:(1)原式=(-4x 2)·(3x )+(-4x 2)·1=-12x 3-4x 2;(2)原式=23ab 2·12ab +(-2ab )·12ab =13a 2b 3-a 2b 2; (3)原式=3a +a 2-3a -6=a 2-6.11.[2012·杭州]化简:2[(m -1)m +m (m +1)]·[(m -1)m -m (m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m (m +1)][(m -1)m -m (m +1)]=2(m 2-m +m 2+m )(m 2-m -m 2-m )=2·2m 2·(-2m )=-8m 3,即原式=(-2m )3,表示任意一个偶数的立方.12.计算:(1)[2012·安徽](a +3)(a -1)+a (a -2);(2)(a 2+3)(a -2)-a (a 2-2a -2).解:(1)(a +3)(a -1)+a (a -2)=a 2+2a -3+a 2-2a =2a 2-3;(2)原式=a 3-2a 2+3a -6-a 3+2a 2+2a=5a -6.13.已知a +b =m ,ab =-4,则计算(a -1)(b -1)的结果是( D ) A .3B.mC.3-mD.-3-m【解析】(a-1)(b-1)=ab-(a+b)+1=-4-m+1=-3-m.选D.14.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M,N的大小关系是(B) A.M>NB.M<NC.M=ND.无法确定【解析】M-N=(a+3)(a-4)-(a+2)(2a-5)=(a2-a-12)-(2a2-a-10)=a2-a-12-2a2+a+10=-a2-2<0,∴M<N.选B.15.[2012·吉林改编]先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b=2. 解:原式=a2-b2+2a2=3a2-b2.当a=1,b=2时,3a2-b2=3×1-22=-1.16.已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.解:原式=3x2+x-3x-1-x2-2x-1=2x2-4x-2.当x2-2x=1时,原式=2(x2-2x)-2=2×1-2=0.16.解方程:(x-2)2-(x+3)(x-3)=4x-1.解:(x-2)2-(x+3)(x-3)=4x-1,去括号,得x2-4x+4-x2+9=4x-1,合并同类项,得8x=14,系数化为1,得x=74.17.李老师刚买了一套2室2厅的新房,其结构如图3-3-5所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地砖板每平方米m元,那么李老师至少要花多少钱?图3-3-5解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积.列式为:5b·5a-(5b-3b)·(5a-3a)-(5a-3a)·2b,化简得17ab,即他至少需要17ab平方米的地板砖.(2)所花钱数:17ab×m=17abm(元).18.运用平方差公式计算:(1)31×29;(2)498×502.解:(1)31×29=(30+1)×(30-1)=900-1=899;(2)498×502=(500-2)×(500+2)=5002-22=249996.19.[2012·无锡]计算:3(x2+2)-3(x+1)(x-1).解:原式=3x2+6-3(x2—1) =3x2+6-3x2+3=9.20.(1)[2012·遵义]已知x + y =-5 ,xy =6,则x 2 +y 2=__13__.(2)若x +y =3,xy =1,则x 2+y 2=__7__,x 2-xy +y 2=__6__.(3)[2012·江西]已知(m -n )2=8,(m +n )2=2,则m 2+n 2=__5__.(4)已知ab =-1,a +b =2,则代数式b a +a b 的值为__-6__.(5)已知x +1x =3,则代数式x 2+1x 2的值为__7__.(6)已知a -b =1,ab =6,则a 2+b 2=__13__.21.有两个正方形的边长的和为20 cm ,面积的差为40 cm 2.求这两个正方形的面积分别是多少?解:设这两个正方形的边长分别为x cm ,y cm(x >y ),则⎩⎪⎨⎪⎧x +y =20, ①x 2-y 2=40, ②由②得(x +y )(x -y )=40,∴x -y =2. ③由①③得方程组⎩⎪⎨⎪⎧x +y =20,x -y =2,解得⎩⎪⎨⎪⎧x =11,y =9,故这两个正方形的面积分别为121 cm 2,81 cm 2.22.[2012·泉州]先化简,再求值:(x +3)2+(2+x )(2-x ),其中x =-2. 解:原式=x 2+6x +9+4-x 2 = 6x +13.当x =-2时,原式=6×(-2)+13=1.23.[2011·衡阳]先化简,再求值:(x +1)2+x (x -2),其中x =-12.解:原式=x 2+2x +1+x 2-2x =2x 2+1,当x =-12时,原式=2×⎝ ⎛⎭⎪⎫-122+1=12+1=32.24.[2011·绍兴]先化简,再求值:a (a -2b )+2(a +b )(a -b )+(a +b )2,其中a =-12,b =1.解:a (a -2b )+2(a +b )(a -b )+(a +b )2=4a 2-b 2,当a =-12,b =1时,原式=0.25.如果a -b =5,ab =32,求a 2+b 2和(a +b )2的值.解:a 2+b 2=(a -b )2+2ab =52+2×32=25+3=28;(a +b )2=(a -b )2+4ab=52+4×32=25+6=31. 26.如果a (a -1)+(b -a 2)=-7,求a 2+b 22-ab 的值.解:∵a (a -1)+(b -a 2)=-7,∴a 2-a +b -a 2=-7,∴b -a =-7,∴a -b =7,∴a 2+b 22-ab =(a -b )22=722=492. 27.计算:(1)(x 2y )5÷(x 2y )2;(2)(a 10÷a 2)÷a 3;(3)a 2·a 5÷a 5.解:(1)原式=(x 2y )3=x 6y 3;(2)原式=a 8÷a 3=a 5;(3)原式=a 7÷a 5=a 2.28.求值:(1)已知5m =6,5n =3,求5m -n 的值;(2)若2x =3,4y =5,求2x -2y 的值;(3)若10m =20,10n =15,求9m ÷32n 的值.解:(1)5m -n =5m ÷5n =6÷3=2;(2)2x -2y =2x ÷22y =2x ÷4y=35;(3)∵10m ÷10n =10m -n =20÷15=100, ∴m -n =2.∴9m ÷32n =32(m -n )=34=81.29.[2012·威海]计算:(2-3)0-⎝ ⎛⎭⎪⎫12-1-⎝ ⎛⎭⎪⎫13-12=__-56__. 30.用科学记数法表示下列各数:0.00001;0.00002;0.000000567;0.000000301.解:0.00001=10-5;0.00002=2×10-5;0.000000567=5.67×10-7;0.000000301=3.01×10-7.31.计算:(1)⎪⎪⎪⎪⎪⎪-12+2-1-20130; (2)[2012·义乌]|-2|+(-1)2012-(π-4)0;(3)||-2+(-1)2012×(π-3)0-⎝ ⎛⎭⎪⎫12-1+(-2)-2. 解:(1)原式=12+12-1=0.(2)原式=2+1-1=2.(3)原式=2+1×1-2+14 =54.32.已知x 2-7x +1=0,求x 2+x -2的值.解:因为x 2-7x +1=0,所以x ≠0,则等式两边都除以x ,得x -7+x -1=0,即x +x -1=7,所以(x +x -1)2=x 2+2+x -2=49,所以x 2+x -2=47.33.计算:(1)(-24x 2y 3)÷(-8y 3);(2)⎝ ⎛⎭⎪⎫3x 2y -xy 2+12xy ÷⎝ ⎛⎭⎪⎫-12xy . 解:(1)原式=3x 2;(2)原式=-6x +2y -1.34.计算:(1)16x 3y 3÷12x 2y 3·⎝ ⎛⎭⎪⎫-12xy 3; (2)(-ab )·⎝ ⎛⎭⎪⎫0.25a 2b -12a 3b 2-16a 4b 3÷(-0.5a 2b ); (3)[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y .解:(1)原式=32x ·⎝ ⎛⎭⎪⎫-12xy 3 =-16x 2y 3.(2)原式=⎝ ⎛⎭⎪⎫-0.25a 3b 2+12a 4b 3+16a 5b 4 ÷(-0.5a 2b )=12ab -a 2b 2-13a 3b 3.(3)原式=(x 2+y 2-x 2+2xy -y 2+2xy -2y 2)÷4y=(4xy -2y 2)÷4y=x -12y .35.先化简,再求值:[(x +3y )(x -3y )-(x +3y )2]÷4y ,其中x =6,y =2.解:[(x +3y )(x -3y )-(x +3y )2]÷4y=(x 2-9y 2-x 2-6xy -9y 2)÷4y=(-6xy -18y 2)÷4y=-32x -92y .当x =6,y =2时,原式=-32×6-92×2=-9-9=-18.36.先化简,再求值:(a 2b 2-2ab 3-b 4)÷b 2-(a +b )(a -b ),其中a =12,b =-1.解:原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab ,当a =12,b =-1时,原式=-2×12×(-1)=1.37.计算:⎝ ⎛⎭⎪⎫12-1-2-2-()π-20130+||-1.解:原式=2-14-1+1=74.38.[2012·南宁]芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约重0.00000201千克,用科学记数法表示为( A ) A .2.01×10-6千克B .0.201×10-5千克C .20.1×10-7千克D .2.01×10-7千克39.已知x +1x =4,求:(1)x 2+1x 2;(2)⎝ ⎛⎭⎪⎫x -1x 2.解:(1)⎝ ⎛⎭⎪⎫x +1x 2=16, 即x 2+1x 2+2·x ·1x =16, ∴x 2+1x 2=14. (2)⎝ ⎛⎭⎪⎫x -1x 2=x 2+1x 2-2=12.。
初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)
初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)⑶已知│a+5│=1,│b-2│=3,求a-b的值. ⑷若|a|=4,|b|=2,且|a+b|=a+b,求a- b的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值.⑾已知a <0,b <0,c >0,判断(a +b )(c -b )和(a +b )(b -c )的大小.⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵12133344⎛⎫---+---- ⎪⎝⎭ ⑶77(35)9-÷+ ⑷523120001999400016342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ ⑸221.430.57()33⨯-⨯- ⑹6(5)(6)()5-÷-÷-⑺91118×18 ⑻-15×12÷6×5 ⑼24221(10.5)2(3)3⎡⎤---⨯÷---⎣⎦ ⑽-24-(-2)4⑾33(32)32-⨯+⨯有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______;此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择 (1)若a 是负数,则a________-a ;a --是一个________数; (2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________;若=-<2,2a a 化简____ ; (3)有理数a 、b 在数轴上的对应的位置如图所示: 则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0(4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
《易错题》七年级数学上册第二单元《整式加减》-解答题专项经典练习(含解析)
一、解答题1.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键. 2.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492 【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.3.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.4.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.5.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.6.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.7.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+, ∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +, 故答案为:()22n +;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.8.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.9. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440,②1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2),(2)1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),则1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=14n(n+1)(n+2)(n+3);(3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯=14×10×11×12×13=4290.【点睛】本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.10.一种商品每件成本a元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a元;(2)每件盈利0.037a元.【分析】(1)根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;(2)用原价的85%减去成本a元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a=1.22a(元),答:每件售价1.22a元;(2)根据题意,得:1.22a×85%-a=0.037a(元).答:每件盈利0.037a元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.11.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.12.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是 .(用含a ,b 的代数式表示)(2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识. 13.让我们规定一种运算a bad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335xx =-(2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.14.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x=﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),则f (﹣1)=﹣7.已知f (x )=ax 5+bx 3+3x+c ,且f (0)=﹣1(1)c=_____.(2)若f (1)=2,求a+b 的值;(3)若f (2)=9,求f (﹣2)的值.解析:(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(2)把x=1,代入f (x )=ax 5+bx 3+3x+c ,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题;详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.16.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式;(2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a 2b+ab 2+2abc ;(2) 8a 2b ﹣5ab 2;(3)对,0.【分析】(1)根据B =4a 2b ﹣3ab 2+4abc -2A 列出关系式,去括号合并即可得到B ;(2)把A 与B 代入2A-B 中,去括号合并即可得到结果;(3)把a 与b 的值代入计算即可求出值.【详解】解:(1)∵2A +B =4a 2b ﹣3ab 2+4abc ,∴B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc)=4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc=-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc)=6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc=8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得 8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0. 【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】根据因式分解,首先将整式提取公因式12ab,在采用完全平方公式合,在代入计算即可.【详解】解:原式=12a3b+a2b2+12ab3=12ab(a2+2ab+b2)=12ab(a+b)2,∵a+b=2,ab=2,∴原式=12×2×4=4.【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.18.已知有理数a和b满足多项式A,且A=(a﹣1)x5+x|b+2|﹣2x2+bx+b(b≠﹣2)是关于x 的二次三项式,求(a﹣b)2的值.解析:16或25【解析】试题分析:根据有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,求得a、b的值,然后分别代入计算可得.试题解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1)当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2)当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3)当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a=1,b=﹣3时,(a﹣b)2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a、b的值,题目中重点渗透了分类讨论思想.19.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12 23 ab(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.解析:(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可; (2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.20.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.21.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.22.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.23.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 24.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
人教版七年级数学第二章《整式的加减》易错题训练 (1)含答案解析
第二章《整式的加减》易错题训练 (1) 一、选择题(本大题共15小题,共45.0分)1.在下列式子中:3xy−2、3÷a、12(a+b)、a⋅5、−314abc中,符合代数式书写要求的有()A. 1个B. 2个C. 3个D. 4个2.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是()A. 3B. 9C. 6D. 83.下列选项中的整式,次数是5的是()A. x4+x2y3B. x5+x3y3C. x5yD. 5x4.下列选项中,不是单项式的式子是A. −3B. 12x3y C. 2a3−1 D. m5.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个6.已知下列各式:mn−15,−3,−π2,2m3−7n,4m2n,π+x6,其中是单项式的是()A. 2个B. 3个C. 4个D. 5个7.在代数式3x2y4、7(x+1)8、13(2n+1)、y2+y+1y中,多项式的个数是()A. 1B. 2C. 3D. 48.已知下列各式:5abf,1π,x+3y,6,x−y5,5b,其中是单项式的有()A. 2个B. 5个C. 3个D. 4个9.在代数式:34x2,3ab,x+5,y5x,−1,y3,a2−b2,a中,整式有()A. 5个B. 6个C. 7个D. 8个10.已知:2xy23,1x,−a,0,4x+1,1+x2,中单项式有()A. 6个B. 5个C. 4个D. 3个11.在式子:2xy,−12ab,x+y2,1,2x2y3,1x,x2+2xy+y2中,整式的个数是()A. 3B. 4C. 5D. 612.已知正方形的边长为a,若边长增加50%,则它的面积增加()A. 0.5a2B. 1.5a2C. 1.25a2D. 0.25a213.代数式12a ,4xy,a+b3,a,2014,12a2bc,−3mn4中单项式的个数有()A. 3个B. 4个C. 5个D. 6个14.下列式子中代数式的个数有()个.−2a−5,−3,2a+1=4,b,x+y>2,1y,3x3+2x2y4A. 2B. 3C. 4D. 515.一个长20分米的方木的横截面是边长为m分米的正方形,将它锯掉8分米后,方木的体积比原来减少()。
《易错题》七年级数学上册第二单元《整式加减》-解答题专项经典习题(含答案)(1)
一、解答题1.已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.2.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 3.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键. 5.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.6.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系.(3)试说明原理.解析:(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析.【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系. (2)选择如下图的九宫格,验证他们的关系即可.(3)设九宫格中央这个数为a ,列等式进行验证即可.【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍.理由如下:6228202828414+++=+=⨯.(2)如图,9112325174+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=.即四个角上的四个数之和等于九宫格中央这个数的4倍.【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键.7.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.8.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.9.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.10.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.11.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a 2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a 2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.12. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】 (1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440, ②1×2+2×3+3×4+…+n (n+1)=13n (n+1)(n+2), (2)1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), 则1×2×3+2×3×4+3×4×5+…+n (n+1)(n+2)=14n (n+1)(n+2)(n+3); (3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯=14×10×11×12×13 =4290.【点睛】 本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.13.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.14.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.已知多项式2x 2+25x 3+x ﹣5x 4﹣13. (1)请指出该多项式的次数,并写出它的二次项和常数项;(2)把这个多项式按x 的指数从大到小的顺序重新排列.解析:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13;(2)﹣5x 4+25x 3+2x 2+x ﹣13. 【分析】 (1)根据多项式的次数、项等定义解答即可;(2)按x 得降幂排列多项式即可.【详解】解:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13; (2)这个多项式按x 的指数从大到小的顺序为:432215253x x x x -+++-. 【点睛】本题考查的是多项式的概念及应用.16.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值; (2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得; (2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.17.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.18.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.19.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.20.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.21.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.22.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.23.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.24.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键.25.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.26.已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.27.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的运算经典难题易错题1、若x m ·x 2m =2,求x 9m =___________。
2、若a 2n =3,求(a 3n )4=____________。
3、已知a m =2,a n =3,求a 2m+3n =___________.4、若644×83=2x ,求x= 。
5、已知a 2m =2,b 3n =3,求(a 3m )2-(b 2n )3+a 2m ·b 3n 的值.6、若2x =4y+1,27y =3x- 1,试求x 与y 的值.7、已知a 3=3,b 5=4,比较a 、b 的大小.8.已知x n =5,y n =3,求(xy )3n 的值.9计算:2200320052003200320032004222-+10.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .11. x m = 2 , x n =3,求下列各式的值:(1)x m+n (2) x 2m x 2n (3) x 3m+2n12.若有理数a,b,c 满足(a+2c-2)2+|4b-3c-4|+|2a -4b-1|=0,试求a 3n+1b 3n+2- c 4n+213.14.若:,求:的值.0x x x 132=+++200432x x x x ++++Λ35,335,311,377,a abcd b c d +====+=已知求证:15、已知a=355,b=444,c=533,请把a ,b ,c 按大小排列.16.已知a -b=b -c=53,a 2+b 2+c 2=1则ab +bc +ca 的值等于 .17. 3(22+1)(24+1(28+1)……(232+1)+1的个位数是多少?练习题1、=++++++1)12)(12)(12)(12)(12(16842 。
2、=-+22001200120011999200120002223、=----)200011)(199911()311)(211(2222Λ4已知014642222=+-+-++z y x z y x,则=++z y x5、若a+b+2c=1,568222=+-+c c b a ,那么ab -bc -ca=一、 比较大小1、若0≠x ,且)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小关系是( )A 、M>N B 、M=N C 、M<N D 、无法确定2、已知a 、b 满足等式2022++=b a x ,)2(4a b y -=则的大小关系是( )A 、y x ≤B 、y x ≥C 、y x <D 、y x >二、 最值1、 多项式251244522+++-x y xy x 的最小值为三、 解不定方程1、如果正整数x 、y 满足方程6422=-y x 则这样的正整数x 、y 的个数有 组2、满足)4(222+=-y y x 的整数解(x ,y )是典型拓展题目讲解1、若0)3(42=-+-+xy y x ,则=+22y x 。
2.若10m n +=,24mn =,则22m n += .3.已知9ab =,3a b -=-,求223a ab b ++的值. 4、化简()()()()131********++++得( ) A 、()2813+ B 、()2813- C 、1316- D 、()132116- 5.已知x +y =10,xy =24,则22y x +的值为=_________.6.已知9mx x 2++是一个多项式的平方,则m =__________.7.已知2xy 2-=,则)y xy y x (xy 322---的值为__________.8.已知15a a +=,则221aa +=____________.441a a +=______________. 1.)200711)(200611()411)(311)(211(22222-----ΛΛ 2.已知:x 2-x -2=0, 求(2x +3)(2x -5)+2的值3.观察下列式子:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……(1) 写出第2010行的式子_________________________.(2) 写出第n 行的式子_____________________________.4.已知x 2+y 2+4x-6y+13=0,求x 、y 的值. 5.已知x 2+3x+5的值为7,那么3x 2+9x-2的值是____6.已知a 是方程x 2-5x+1= 0的解,则221aa +的值为_________.7.已知x -y=4;y -z=5,求xz yz xy z y x ---++222的值。
8.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 .9.若200942,03222++=++x x x x 则=10.已知0106222=+-++y y x x ,求x ,y 的值.12.若代数式2237x x ++的值是8,则代数式2469x x +-的值是 。
13.下图是某同学在沙滩上用石于摆成的小房子:观察图形的变化规律,写出第n 个小房子用了 块石子.14.已知a 是方程x 2-5x+1= 0的解,则221a a +的值为_________.1. 432))(()()(c b a b a c b a c c b a -+--+---+;2. ))((2111--+-+++-n n n n n n a a a a a a ;3. ΛΛΛΛ+++++-+++++++---21132132121)(())((a a a a a a a a a a a a n n n n )n a +。
4.若32=a ,62=b ,122=c ,求证:c a b +=2。
5.现规定:b a ab b a -+=*,其中a 、b 为有理数,求b a b b a *-+*)(的值。
6.已知:65312=-+x x ,715=++c b a ,试求:)1()1()1(222++++++++x x c x x b x x a 的值。
7.已知:02=+b a ,求证: 04)(233=+++b b a ab a8.已知:2232b ab a A -+=,ab B 21-=,42334181b a b a C -=,求:C B A -⋅22。
9.当)3)(8(22n x x mx x +-++展开后,如果不含2x 和3x 的项,求n m 3)(-的值。
10.试证明代数式165)3(6)23)(32(+++-++x x x x x 的值与x 的值无关。
11.已知xy 8-除某一多项式所得的商式是-22474921xy y x xy -+,余式是233y x ,则这个多项式的值是()。
(A )32232214134y x y x y x --; (B )32232214154y x y x y x +-;(C )33232214154y x y x y x --; (D )32332214154y x y x y x --。
12.已知:c x b x x a x x --++-=++)1()2)(1(4232 求c b a ,,的值。
13.观察下列各式:1)1)(1(2-=+-x x x ; 1)1)(1(32-=++-x x x x ;1)1)(1(423-=+++-x x x x x ;(1)、根据前面各式的规律可得:=++++--)1)(1(1x x x x n n Λ 。
(其中n 是正整数);(2)、运用(1)中的结论计算:103222221+++++Λ的值。
整式的乘法提高练习知识点一:乘法公式和因式分解1.当a ,b 取任意有理数时,代数式(1)22)12()1(2-++a a ;(2)1272+-a a ; (3)22)4()34-+-b a (;(4)131234232+-+--a a b a 中,其值恒为正的有( )个. A.4个 B.3个 C.2个 D.1个2.已知四个代数式:(1)n m n m n m n m -+-+2)4(;2)3(;)2(;.当用n m 22乘以上面四个式子中的两个之积时,便得到多项式32234224n m n m n m --.那么这两个式子的编号是( )A.(1)与(2) B.(1)与(3) C.(2)与(3) D.(3)与(4)3.已知334422,4,3xy y x y x xy y x y x +++=-+=+则的值为____.4.当422334331y xy y x y x xy x y x ++---=-时,的值是____.5.已知a ,b ,c ,d 为非负整数,且1997=+++bc ad bd ac ,则=+++d c b a ___.6.若199973129,132343+--+=-x x x x x x 则的值等于____. 7.已知=-+-=--22)1998()2000(,1999)1998)(2000(a a a a 那么,____. 8.已知则,51=+a a =++2241a a a ______. 知识点二:幂的运算 9.已知yx y x 11,200080,200025+==则等于____. 10.满足3002003)1(>-x 的x 的最小正整数为____. 11.化简)2(2)2(2234++-n n n 得______. 12.计算220032003])5[()04.0(-⨯得______.知识点三:特殊值13.4)(z y x ++的乘积展开式中数字系数的和是____.14.若多项式7432+-x x 能表示成c x b x a ++++)1()1(2的形式,求a ,b ,c .知识点:整体思想的运用15.若=-+=-+=+-c b a c b a c b a 13125,3234,732则( )A.30 B.-30 C.15 D.-1516.若=-+-=-+=++z y x z y x z y x 则,473,6452____.17.如果代数式2,635-=-++x cx bx ax 当时的值是7,那么当2=x 时,该代数式的值是 . 知识点四:最值问题和乘法公式18.多项式12+-x x 的最小值是 .19.已知zx yz xy z y x y z a y x ---++=-=-222,10,则代数式的最小值等于_五、其它:20.已知222222324,c b a B c b a A ++-=-+=.若0=++C B A ,则C= .21.已知x 和y 满足532=+y x ,则当x =4时,代数式22123y xy x ++的值是 . 22.已知=-+=++-++==-+z y x yz xz xy z y x xyz z y x 则,12,4,96222333_七年级 拔高型压轴经典题目1.用符号“⊕”定义一种运算:对于有理数a , b (a≠0,a ≠1).有220032004||,20042,a b a b x x a a +⊕=⊕=-如果那么的值等于2.5554443333,4,5比较的大小3.2,34b c a b c +-==a 已知求23a-b+c4.已知24214,1x x x x x +=++则5.若2410,a a -+=求1a a +6.计算222()()()()()()a b c b c a c a b a b a c b c b a c b c a ------++------7.当3999,3,21000ab bc ac a b b c c a ===+++.求abc ab bc ca ++8.已知,2226100a b a b +-++=,求100123a b --的值9. 已知,::2:3:4,x y z =且104xy yz xz ++=,求2222129x y z +-的值。