中学数学竞赛讲座及练习(第24讲)9+代数

合集下载

高中数学竞赛培训教程 初等代数

高中数学竞赛培训教程 初等代数

高中数学竞赛培训教程初等代数第一章代数基础整数是数学中最基本的数,包括正整数、负整数和零。

在代数中,我们经常使用整数来进行运算和表示未知数。

1.2 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。

在代数中,我们常常使用有理数来计算方程的根,解方程组等。

实数是包括有理数和无理数的数集。

在代数中,我们必须了解实数的性质和运算法则,才能进行更复杂的数学运算和证明。

第二章一次方程与不等式2.1 一次方程一次方程是指最高次项为一次的代数方程。

我们需要学习如何解一次方程,并利用解方程的方法解决实际问题。

2.2 一次不等式一次不等式是指最高次项为一次的不等式。

我们需要学习如何解一次不等式,并应用不等式来解决实际问题。

2.3 一次方程与一次不等式的应用一次方程与一次不等式在实际问题中的应用非常广泛。

我们需要学会如何将实际问题转化为一次方程或一次不等式,并利用解方程和解不等式的方法得出问题的解。

第三章二次方程与不等式3.1 二次方程的定义与性质二次方程是指最高次项为平方项的代数方程。

我们需要学习二次方程的基本性质,如判别式、根的性质等。

3.2 二次方程的解法解二次方程是数学中非常重要的一部分。

我们需要学会使用求根公式、配方法等解二次方程,以及利用因式分解、完全平方式解二次方程。

3.3 二次不等式的解法解二次不等式是在二次方程的基础上进一步扩展的。

我们需要学会使用判别式、区间判断等方法来解二次不等式,并应用它们来解决实际问题。

第四章分式与分式方程4.1 分式的定义与性质分式是指一个整数与一个非零整数的比值。

我们需要学习分式的基本性质,如约分、通分、化简等。

4.2 分式的运算分式的加减乘除是数学中常见的运算。

我们需要学习如何进行分式的加减乘除,并应用它们解决实际问题。

4.3 分式方程的解法分式方程是包含分式的方程。

我们需要学会解分式方程,并利用解方程的方法解决实际问题。

第五章根式与根式方程5.1 根式的定义与性质根式是指包含根号的数。

初中数学代数竞赛试卷答案

初中数学代数竞赛试卷答案

1. 若x=2是方程2x-3=0的解,则x=3是下列方程的解是()A. 2x-3=1B. 2x+3=1C. 2x-3=-1D. 2x+3=-1答案:B解析:由题意得,2x-3=0,将x=2代入,得22-3=1,所以x=3是方程2x+3=1的解。

2. 若a+b=5,a-b=3,则ab的值为()A. 4B. 8C. 12D. 16答案:B解析:将两个方程相加得2a=8,解得a=4;将两个方程相减得2b=2,解得b=1。

所以ab=41=8。

3. 已知等差数列{an}的首项为a1,公差为d,若a1=2,d=3,则第10项an的值为()A. 27B. 28C. 29D. 30答案:C解析:由等差数列的通项公式an=a1+(n-1)d,代入a1=2,d=3,n=10,得an=2+(10-1)3=29。

4. 若x=1是方程x^2-ax+b=0的解,则a+b的值为()A. 2B. 3C. 4D. 5答案:C解析:将x=1代入方程x^2-ax+b=0,得1-a+b=0,即a-b=1。

因为x=1是方程的解,所以a=1,代入得b=0。

所以a+b=1+0=4。

5. 若x^2-2x+1=0,则x的值为()A. 1B. 2C. 3D. 4答案:A解析:这是一个完全平方公式,即(x-1)^2=0,解得x=1。

1. 若方程2x+3=0的解为x=-1.5,则方程4x+6=0的解为x=______。

答案:-1.5解析:由题意得,2x+3=0的解为x=-1.5,代入4x+6=0得4(-1.5)+6=0,解得x=-1.5。

2. 若等差数列{an}的首项为a1,公差为d,第5项an的值为15,则首项a1的值为______。

答案:5解析:由等差数列的通项公式an=a1+(n-1)d,代入an=15,n=5,得a1=5。

3. 若x^2-5x+6=0的两个解分别为x1和x2,则x1+x2的值为______。

答案:5解析:由韦达定理得x1+x2=-(-5)/1=5。

九年级数学竞赛题:代数最值

九年级数学竞赛题:代数最值

九年级数学竞赛题:代数最值数学问题中常见的一类问题是:求某个变量的最大值或最小值.在生产实践中,我们经常面对带有“最”字的问题,如投入最少、利益最高、时间最短、效益最大、耗材最少等.我们把这类问题称为“最值问题”.最值问题也是数学竞赛中的热点问题,它内容丰富,涉及面广,解法灵活,解最值问题的常见方法有:1.利用配方法求最值;2.运用不等式或不等分析法求最值;3.建立二次方程,在方程有解的条件下,利用判别式求最值;4.构造二次函数模型求最值;5.构造图形求最值.例1 某乒乓球训练馆准备购买n 副某种品牌的乒乓球拍,每副球拍配k (k ≥3)个乒乓球.已知A 、B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A 超市所有商品均打九折(接原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算?(2)当k =12时,请设计最省钱的购买方案.例2 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y 与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来; 、(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.例3已知实数a 、b 、c 满足.4,2==++abc c b a(1) 求a 、b 、c 中最大者的最小值;(2) 求||||||c b a ++的最小值.例4 某商场将进价为30元的书包以40元售出,平均每月售出600个.调查表明:这种书包的售价每上涨1元,其销售量就将减少10个. ’(1)为了实现平均每月10000元的销售利润,这种书包的售价应定为多少元?(2)10000元的利润是否为最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元?(3)请分析并回答售价在什么范围内商家就可获得利润.例5如图1,已知直线x y 21-=与抛物线6412+-=x y 交于A 、B 两点. (1)求A 、B 两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A 、B 两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A 、B 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.1.甲、乙两人进行羽毛球比赛,甲发出一枚十分关键的球,出手点为P ,羽毛球飞行的水平距离s (米)与其距地面高度h (米)之间的关系式为23321212++-=s s h .如图,已知球网AB 距原点5米.乙(用线段CD 表示)扣球的最大高度为94米,设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失误,则m 的取值范围是__________.2.已知x ,y ,z 为实数,若zx yz xy x z z y y x ++=+=+=+则,2,2,1222222的最小值为__________.3.某饮料厂为了开发新产品,用A 、B 两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:(1)假设甲种饮料需配制x 千克,请你写出满足题意的不等式组,并求出其解集;(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y 元,请写出y 与x 的函数表达式.并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?4.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利一年销售额一年销售产品总进价一年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?5.某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间存在正比例函数关系:y A =kx ,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系:y B =ax 2+bx ,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.6.已知实数a 、b 、c 满足6,0222=++=++c b a c b a ,则a 的最大值为_____________.7.若正数x 、y 、z 满足))((,4)(z y y x yz x xyz ++=+则的最小可能值为____________.8.函数4)4(1)(22+-++=x x x f 的最小值是____________.9.a 、b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是____________.10.销售某种商品,如果单价上涨m %,则售出的数量就将减少150m ,为了使该商品的销售总金额最大,那么m 的值应该确定为____________.11.已知x 、y 、z 为实数,且3,5=++=++zx yz xy z y x ,试求x 的最大值与最小值.12.有一种产品的质量可分成6种不同的档次.若工时不变,每天可生产最低档次的产品40件;如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品.(1)若最低档次的产品每件利润16元时,生产哪一种档次的产品的利润最大?(2)若最低档次的产品每件利润22元时,生产哪一种档次的产品的利润最大?(3)由于市场价格浮动,生产最低档次产品每件利润可以从8元到24元不等,那么,生产哪种档次的产品所得利润最大?13.如图,在直角坐标系中,以点A (3,0),以23为半径的圆与x 轴相交于点B 、C ,与y 轴相交于点D 、E .(1)若抛物线c bx x y ++=231经过C 、D 两点,求抛物线的解析式,并判断点B 是否在该抛物线上;(2)在(1)中的抛物线的对称轴上求一点P ,使得△PBD 的周长最小;(3)设Q 为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形?若存在,求出点M 的坐标;若不存在,说明理由.。

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

九年级数学竞赛讲座 24第二十四讲 几何的定值与最值

九年级数学竞赛讲座 24第二十四讲 几何的定值与最值

【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变(湖北赛区选拔赛试题); 思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.⌒【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.(永州市竞赛题)思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.( “宇振杯”上海市初中数学竞赛题)思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.⌒学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .(江苏省竞赛题)2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .(湖北省黄冈市竞赛题)3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .( “希望杯”邀请赛试题)4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2 D .13- (湖北省荆州市中考题) 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+(贵阳市中考题)6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定(桂林市中考题)7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225 D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.(全国初中数学联赛试题)13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.( “弘晟杯”上海市竞赛题) 14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?(河南省竞赛题)15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).(北京市数学知识应用竞赛试题)参考答案。

人教版 九年级数学 竞赛专题:代数最值问题(含答案)

人教版 九年级数学 竞赛专题:代数最值问题(含答案)

人教版 九年级数学 竞赛专题:代数最值问题(含答案)【例1】当x 变化时,分式12156322++++x x x x 的最小值是 .【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )A.719 B. 3 C. 727 D. 13 【例3】()21322+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ).【例4】(1)已知211-+-=x x y 的最大值为a ,最小值b ,求22b a +的值. (2)求使()168422+-++x x 取得最小值的实数x 的值.(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2019,求k 的最大可能值.(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.(能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 . 4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( ) 5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )A.(0,21-) B.(0,0) C.(0,611) D.(0,41-)6.正实数x ,y 满足1=xy ,那么44411y x +的最小值为( ) A.21 B. 85 C. 1 D. 45E.27.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).(1)根据图象,求一次函数b kx y +=的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为()⎥⎦⎤⎢⎣⎡+-500141x 元.(1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?B 级1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 . 3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为( )A. 0B. 4C. 8D. 105.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )A. 5B.423 C. 427 D. 4356.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )A.1B.2C.3D.47.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51==.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?9.已知为x ,y ,z 为实数,且5=++z y x ,3=++zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且bca b =,求a 的最大值和最小值,并求出此时相应的b 与c 值.11.设x 1,x 2,…,x n 是整数,并且满足: ① -1≤x i ≤2,i =1,2,…,n ② x 1+x 2+…+x n =19 ③ x 12+x 22+…+x n 2=99求x 13+x 23+…+x n 3的最大值和最小值.12.已知x 1,x 2,…,x 40都是正整数,且x 1+x 2+…+x 40=58,若x 12+x 22+…+x 402的最大值为A ,最小值为B ,求A +B 的值.参考答案例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤x ≤1,则z =2x 2+16x +3y 2=14x 2+4x +3是开口向上,对称轴为71-=x 的抛物线.例3. 分三种情况讨论:①0≤a <b ,则f (x )在a ≤x ≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f (x )在a ≤x ≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f (x )在x =0处取得最大值,即2b =f (0)=213,b =413,而f (x )在x =a 或x =b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∴f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当x =43时,y 2取得最大值1,a =1; 当21=x 或x =1时,y 2取得最小值21,b =22.故a 2+b 2=23.(2) 如图,AB =8,设AC =x ,则BC =8- x ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有224===DA EB CA BC ,从而x =AC =3831=AB .故原式取最小值时,x =38. (3)如图, 原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3x ),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∴am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设x 1≥1,x 2≥2,x k ≥k ,于是1+2+…+k ≤x 1+x 2+…+x k = 2019,即120192k(k )+≤ k (k +1)≤4006,∵62×63=3906<4006<4032=63×64,∴k ≤62. 当x 1=1,x 2=2,…x 61=61,x 62=112时,原等式成立,故k 的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-x 3的值均不是完全平方数,故cA 级1.57- 111- 2.1 3.14 提示:y =5-x ,z =4-x ,原式=3(x -3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-x +1000(500≤x ≤800) (2)①S =(x -500)(-x +1000)=-x 2+1500x -500000(500≤x ≤800);②S -(x -750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为x 1,x 2,则x 12+x 22=4(m -34)2+1034,由此得x 12+x 22最小值为1034,最大值为101. 9.设a 2-ab +b 2=k ,又a 2+ab +b 2=1②,由①②得ab =12(1-k ),于是有(a +b )2=12(3-k )≥0,∴k ≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (x 1,0),B (x 2,0),其中 x 1,x 2是方程ax 2+bx +c =0的两根,则有x 1+x 2=b a -<0,x 1x 2=ca>0,得x 1<0,x 2<0,由Δ=b 2-4ac >0,得b >|OA |=|x 1|<1,|OB |=|x 2|<1,∴-1<x 1<0,-1<x 2<0,于是ca=x 1x 2<1,c <a .由于a 是正整数,已知抛物线开口向上,且当x =-1时,对应的二次函数值大于0,即a -b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b+1,从而a +c ,则211,12>≥,于是a >4,即a ≥5,故b≥b ≥5.因此,取a =5,b =5,c =1,y =5x 2+5x +1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用x 天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++=11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即x =2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3. 提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=x ,则BB 1=2x ,B 1A 1=4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:x =s -2≥0,y =5-43s ≥0,z =1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB ,C (2125,24k k k -++-),ABC S =k 2+2k +5=(k +1)2+4≥4. 7.设此商品每个售价为x 元,每日利润为S 元.当x ≥18时,有S =[60-5(x -18)](x -10)=-5(x -20)2+500,即当商品提价为20元时,每日利润为500元;当x ≤18时,S =[60+10(18-x )](x -10)=-10(x -17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为x ,(3-x )万元,设获取利润为s ,则s 15x =s -15x 两边平方,经整理得x 2+(9-10s )x +25s 2-27=0,∵关于x 的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得x =0.75(万元),3-x =2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5-x -z ,代入xy +yx +zx =3,得x 2+(z -5)x +(z 2-5z +3)=0.∵x 为实数,∴Δ=(z -5)2-4(z 2-5z +3)≥0,解得-1≤z ≤133,故z 的最大值为133,最小值为-1. 10.设b c x a b==,则b =ax ,c =ax 2,于是,a +b +c =13,化为a (x 2+x +1)=13.∵a ≠0,∴x 2+x +1-13a =0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a-3>0,得到1≤a ≤523,为有理数,故1≤a ≤16.当a =1时,方程①化为x 2+x -12=0,解得x 1=-4,x 2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为x 2+x +316=0.解得x 1=-34,x 2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设x 1,x 2,…,x n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴x 13+x 23+…+x n 3=-r +s +8t =6t +19.∴19≤x 13+x 23+…+x n 3≤6×19+19=133.∴在t =0,s =59,r =40时,x 13+x 23+…+x n 3取得最小值19;在t =19,s =2,r =21时,x 13+x 23+…+x n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴x 12+x 22+…+x 402的最大值和最小值存在.不妨设x 1≤x 2≤…≤x 40.若x 1>1,则x 1+x 2=(x 1-1)+(x 2+1),且(x 1-1)2+(x 2+1)2=x 12+x 22+2(x 2-x 1)+2>x 12+x 22.于是,当x 1>1时,可以把x 1逐步调整到1,此时,x 12+x 22+…+x 402的值将增大.同理可以把x 2,x 3,…,x 39逐步调整到1,此时x 12+x 22+…+x 402的值将增大.从而,当x 1,x 2,…,x 39均为1,x 40=19时,x 12+x 22+…+x 402取得最大值,即A =22239111+++个+192=400.若存在两个数x i ,x j ,使得x j -x i ≥2(1≤i <j ≤40),则(x i +1)2+(x j -1)2=x i 2+x j 2-2(x i -x j -1)<x i 2+x j 2.这表明,在 x 1,x 2,…,x 40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,x 12+x 22+…+x 402的值将减小,因此,当x 12+x 22+…+x 402 取得最小值时,x 1,x 2,…,x 40中任意两个数的差都不大于1. 故 当x 1=x 2=…=x 22=1,x 23=x 24=…=x 40=2时,x 12+x 22+…+x 402取得最小值,即222111+++22个222222+++⋯+=94从而,A+B=494.。

代数竞赛试题及答案高中

代数竞赛试题及答案高中

代数竞赛试题及答案高中试题一:设\( a \)和\( b \)是实数,且满足\( a^2 - 4ab + 4b^2 = 0 \)。

求\( a \)和\( b \)的值。

答案:将给定的方程\( a^2 - 4ab + 4b^2 = 0 \)视为关于\( a \)的一元二次方程,可以写成\( (a - 2b)^2 = 0 \)。

因此,\( a - 2b = 0 \),得到\( a = 2b \)。

试题二:解不等式:\( |x - 3| + |x + 1| \geq 4 \)。

答案:根据绝对值的性质,我们可以将不等式分为三个区间进行讨论:1. 当\( x < -1 \)时,不等式变为\( -(x - 3) - (x + 1) \geq 4 \),即\( -2x + 2 \geq 4 \),解得\( x \leq -1 \)。

2. 当\( -1 \leq x < 3 \)时,不等式变为\( (x - 3) - (x + 1)\geq 4 \),即\( -4 \geq 4 \),这是不成立的,所以这个区间没有解。

3. 当\( x \geq 3 \)时,不等式变为\( (x - 3) + (x + 1) \geq 4 \),即\( 2x - 2 \geq 4 \),解得\( x \geq 3 \)。

综合以上三个区间,不等式的解集为\( x \in (-\infty, -1] \cup [3, \infty) \)。

试题三:已知\( \frac{1}{x - 1} + \frac{1}{x} = 1 \),求\( x \)的值。

答案:将方程\( \frac{1}{x - 1} + \frac{1}{x} = 1 \)进行合并,得到\( \frac{x + (x - 1)}{x(x - 1)} = 1 \)。

化简得\( 2x - 1 = x^2 - x \)。

整理后得到\( x^2 - 3x + 1 = 0 \)。

高中数学竞赛代数

高中数学竞赛代数

高中数学竞赛代数代数是高中数学竞赛中非常重要的一个分支,其重点在于解决各种含有未知量的方程、不等式、恒等式等式子的问题。

如果理解不透彻,很难在数学竞赛中取得好成绩。

下面我们将重点介绍高中数学竞赛代数的主要内容及其解题技巧。

一、基础知识首先,我们需要掌握一些基础知识。

在代数中,最基本的是方程和不等式,所以掌握这两个内容是非常重要的。

此外,我们还需要掌握一些符号和运算,如指数、对数、平方、根式、因式分解等等。

另外,在代数中,我们还需要掌握一些常见的数学定理和公式,如二项式定理、配方法、平方差公式等等。

这些都是我们在解题过程中常常用到的知识点。

二、代数方程与不等式在代数中,我们最常见的问题就是求解方程和不等式。

对于方程,我们需要了解一元一次方程、一元二次方程、二元一次方程等等;对于不等式,我们需要了解一元一次不等式、一元二次不等式、绝对值不等式等等。

在解这些问题时,我们需要熟练掌握各种解方程和不等式的方法,如辗转相除法、配方法、因式分解、根式消去、永远要保持等式两边相等等等。

三、代数恒等式除了方程和不等式外,代数恒等式也是我们在竞赛中常见的问题。

在学习恒等式时,我们需要掌握展开、化简、配凑操作等方法以及相关定理,如差化积、和差化积、奇偶性、余弦和正弦的关系等等。

四、排列组合与高斯消元法另外,在高中数学竞赛代数中,我们还需要了解一些其他的知识点,如排列组合与高斯消元法。

这两个内容都是在解决问题中非常重要的。

在排列组合中,我们需要了解全排列与组合、P、C、递推公式等;在高斯消元法中,我们需要了解初等矩阵、行列式、高斯消元法的基本原理和方法等等。

五、解题技巧最后,我们需要掌握一些解题技巧,这些技巧在竞赛中非常实用。

例如化复杂式子为简单形式处理、利用函数性质简化计算、运用均值不等式、柯西不等式等等。

总之,高中数学竞赛代数是数学竞赛中不可或缺的一个部分,它需要在实战中不断掌握。

我们需要针对各种具体情况,灵活运用各种方法和技巧,从而成功解决竞赛问题。

数学竞赛中的代数知识点总结

数学竞赛中的代数知识点总结

数学竞赛中的代数知识点总结数学竞赛作为一种重要的赛事和考试方式,在代数方面的内容难免会成为考点和难点。

本文将对数学竞赛中的代数知识点进行总结,简明扼要地介绍代数学习的要点和困难点,希望对读者有所帮助。

一、基础代数知识在代数的学习过程中,首先需要掌握基本的代数知识。

比如一次函数、二次函数、指数函数等等常见的函数形式,以及二元一次方程、二次方程、不等式、绝对值等基本的代数式子。

其中最重要的之一是一次函数——简单来说,一次函数就是自变量的线性函数关系,也即 y=ax+b 的形式。

通过一次函数的学习,我们可以了解到代数中的函数、直线、斜率等基本概念,以及在实际问题中函数的应用和解题方法。

二、高等代数知识在基础代数知识掌握后,需要进行进一步的高等代数学习。

高等代数知识主要包括了因式分解、配方法、推广恒等式等等知识点。

其中,因式分解是数学中非常重要的文化遗产。

通过因式分解可以将复杂的多项式分解成简单的乘积形式,方便运算与简化式子。

在高中阶段我们已经了解了一些基本的因式分解公式,比如(a+b)的平方、差方公式、a^2-b^2的因式分解等。

而在比赛以及进一步学习中,我们还要了解到更为复杂的因式分解方式和技巧。

比如乘法公式、终结之法、欧拉公式等等。

配方法则是一种比较常用的同时含有无理项的代数式子的求解方法。

虽然配方法通常也适用于线性代数或者微积分领域,但是在竞赛中由于时间短和难度较低,通常考查一些基本的配方法应用情况。

恒等式则是将两个拥有不同表现形式的式子变换的时候,用到的一组有效的方法。

比如,在解一般高中以及更高难度数学竞赛时候,我们通常会使用恒等式将数学式子化简,从而达到答题目的。

同时,恒等式也对于考察能力以及数学思维方式的培养都有一定的作用和意义。

三、其他代数知识在数学学科中,代数也是一个非常广泛和复杂的学科领域,因此高等代数知识的学习也不一定全面。

在数学竞赛中,也可能考查一些其他代数知识,比如多项式的连续性、变号矩阵等知识点。

初中代数竞赛题

初中代数竞赛题

初中代数竞赛题主要是考察学生的数学能力和思维能力的题目。

这些题目通常涉及到代数、方程、不等式、函数、数列等初中数学的重要知识点,同时还需要学生具备一定的逻辑思维和分析问题的能力。

下面是一些初中代数竞赛题的详细介绍:1.代数方程:代数方程是代数竞赛中最基础的知识点之一。

题目通常会给出一些复杂的方程,要求学生找出未知数的值或者证明某个方程无解。

这些题目需要学生熟练掌握代数运算和方程的解法。

2.不等式:不等式也是代数竞赛中常见的一个知识点。

题目通常会给出一些复杂的不等式,要求学生找出满足条件的值或者证明某个不等式恒成立的条件。

解决这类题目需要学生熟练掌握不等式的性质和运算法则。

3.函数:函数是初中代数中的一个重要概念。

代数竞赛中的函数题目通常会涉及到函数的性质、图像和最值等方面。

这些题目需要学生熟练掌握函数的性质和图像,并能够利用这些性质和图像来分析问题和解决问题。

4.数列:数列是代数中的一个重要概念,也是初中代数竞赛中常见的知识点之一。

题目通常会涉及到数列的通项公式、求和、找规律等方面。

解决这类题目需要学生熟练掌握数列的性质和求法,并能够利用这些性质和求法来分析问题和解决问题。

5.组合数学:组合数学是代数的一个分支,也是初中代数竞赛中常见的知识点之一。

题目通常会涉及到排列、组合、概率等方面。

解决这类题目需要学生熟练掌握组合数学的基本概念和公式,并能够利用这些概念和公式来分析问题和解决问题。

总的来说,初中代数竞赛题考察的是学生的数学能力和思维能力,需要学生具备扎实的数学基础和灵活的思维方法。

通过练习这些题目,学生可以更好地理解数学的概念和方法,提高自己的数学水平。

代数竞赛试题及答案

代数竞赛试题及答案

代数竞赛试题及答案试题一:解方程:\[ x^2 - 5x + 6 = 0 \]解答:这是一个二次方程,我们可以使用因式分解的方法来解决。

首先找到两个数,它们的乘积等于6,而它们的和等于-5。

这两个数是-2和-3。

因此,我们可以将方程分解为:\[ (x - 2)(x - 3) = 0 \]这意味着\( x - 2 = 0 \) 或 \( x - 3 = 0 \),所以解为 \( x = 2 \) 或 \( x = 3 \)。

试题二:如果 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 + b^2 = 25 \),求 \( a \) 和 \( b \) 的所有可能值。

解答:我们需要找到所有满足条件的正整数对 \( (a, b) \)。

由于 \( a \) 和 \( b \) 是正整数,我们可以从 \( a = 1 \) 开始尝试,并检查\( b \) 是否为正整数。

以下是所有可能的组合:- \( a = 1 \),\( b^2 = 24 \),没有正整数解。

- \( a = 2 \),\( b^2 = 21 \),没有正整数解。

- \( a = 3 \),\( b^2 = 16 \),\( b = 4 \)。

- \( a = 4 \),\( b^2 = 9 \),\( b = 3 \)。

因此,满足条件的正整数对有 \( (a, b) = (3, 4) \) 和 \( (4, 3) \)。

试题三:证明:如果 \( a \),\( b \),\( c \) 是实数,并且 \( a + b +c = 0 \),那么 \( a^3 + b^3 + c^3 = 3abc \)。

解答:我们可以使用已知条件 \( a + b + c = 0 \) 来简化表达式。

首先,我们可以将 \( c \) 表示为 \( -a - b \)。

将这个表达式代入\( a^3 + b^3 + c^3 \) 中,我们得到:\[ a^3 + b^3 - (a + b)^3 \]利用差立方公式 \( x^3 - y^3 = (x - y)(x^2 + xy + y^2) \),我们可以将上述表达式重写为:\[ -3ab(a + b) \]由于 \( a + b + c = 0 \),我们知道 \( a + b = -c \)。

初中数学竞赛代数教学设计

初中数学竞赛代数教学设计

初中数学竞赛代数教学设计导语: 数学竞赛对于学生的数学学习和思维能力的培养具有非常重要的作用。

在初中数学竞赛中,代数是一个重点和难点,因此合理设计代数教学是提高学生竞赛成绩的关键之一。

本文将从初中数学竞赛代数教学的目标、内容和策略等方面进行探讨。

一、教学目标1. 培养学生对代数概念的理解和掌握能力。

2. 提高学生解决代数问题的能力和方法。

3. 培养学生的逻辑思维和推理能力。

4. 提升学生在初中数学竞赛中的表现和成绩。

二、教学内容1. 代数基本概念的讲解和巩固。

a. 代数字母的含义和运算规则。

b. 代数表达式的定义和基本形式。

c. 代数方程的概念和解法。

2. 代数方程的应用训练。

a. 教师提供一系列代数方程的实际问题,引导学生进行建模和解答。

b. 学生通过解决实际问题来加深对代数概念和方法的理解。

3. 代数方程的证明和推理训练。

a. 引导学生发现代数方程内在的规律和性质。

b. 教师给予一些经典的代数方程,并引导学生通过严密的推理进行证明。

4. 代数运算与算式的运用。

a. 利用代数的运算性质进行简化与变形。

b. 通过熟练运用代数算式解决实际问题。

三、教学策略1. 引导式教学策略。

a. 教师通过提问和导引的方式引导学生发现代数概念和规律。

b. 鼓励学生积极思考和参与,培养学生的自主学习能力。

2. 问题导向式教学策略。

a. 教师针对代数方程的实际问题,引导学生深入思考和解决。

b. 学生通过解决问题掌握代数知识与技巧,加深对代数的理解。

3. 合作学习策略。

a. 学生分为小组进行代数训练与讨论,激发学生间的合作与竞争。

b. 通过小组合作学习,培养学生的团队合作能力和组织协调能力。

四、教学活动设计1. 每日十分钟代数思维操练。

a. 教师设计一些代数思维题目,进行快速训练。

b. 学生通过每日的操练,迅速提高代数思维能力。

2. 代数学习小组比赛。

a. 学生分为小组进行代数题目竞赛。

b. 通过比赛形式激发学生的学习兴趣和积极性。

初中数学竞赛代数部分

初中数学竞赛代数部分
综合法:适用于形如ax^2+bx+c=0 的方程
分式方程与无理方程的应用题
应用题类型:解分式方程和无理方程
解题步骤:设未知数,列方程,解方程
解题技巧:利用方程的性质和技巧,如因式分解、配方法等 应用题实例:求解分式方程和无理方程的实际问题,如工程问题、经济 问题等
方程的近似解法
牛顿法:通过迭代 求解方程的近似解
添加标题
添加标题
添加标题
添加标题
函数的性质:函数的性质包括单调 性、奇偶性、周期性等
函数的应用:函数在初中数学竞赛 中经常出现,是代数部分的重要内 容
一次函数与反比例函数
一次函数: y=kx+b,其 中k为斜率,b
为截距
反比例函数: y=k/x,其中k
为常数
一次函数的图 像是一条直线, 反比例函数的 图像是一条双
曲线
一次函数与反 比例函数的区 别在于斜率与 截距的关系, 以及图像的形

函数的图像与性质
函数的定义:函 数是一种映射关 系,将自变量x映 射到因变量y
函数的图像:函 数图像是函数在 平面直角坐标系 中的图形表示
函数的性质:函 数的性质包括单 调性、奇偶性、 周期性等
函数的应用:函 数在初中数学竞 赛代数部分中的 应用广泛,如求 解方程、不等式、 最大值最小值等 问题
代数表达式的应用
解方程:利用代 数表达式求解方 程
求值:计算代数 表达式的值
化简:将复杂的 代数表达式化简 为简单的形式
证明:利用代数 表达式进行数学 证明
一元一次方程
一元一次方程的解法
代入法: 将方程中 的未知数 用已知数 代替,求 解出未知 数
加减法: 将方程中 的未知数 移到一边, 另一边的 常数移到 另一边, 求解出未 知数

初中代数竞赛试题及答案

初中代数竞赛试题及答案

初中代数竞赛试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 2C. x = 3D. x = 4答案:A2. 如果一个数的平方等于其本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A3. 计算下列表达式的值:(3x^2 - 2x + 1) - (2x^2 - 4x + 3)A. x^2 - 2x - 2B. x^2 + 2x - 2C. x^2 - 6x + 4D. x^2 + 6x - 4答案:A4. 一个二次方程ax^2 + bx + c = 0的判别式为:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A5. 一个数列的前三项为2, 4, 8,那么第四项是:A. 16B. 32C. 64D. 128答案:C二、填空题(每题4分,共20分)6. 一个数的立方等于其本身,这个数是______。

答案:0, 1, -17. 一个等差数列的前三项为3, 7, 11,那么第五项是______。

答案:198. 一个等比数列的前两项为2, 8,那么第三项是______。

答案:329. 如果一个数的相反数是-5,那么这个数是______。

答案:510. 一个二次方程的系数为a = 1, b = -6, c = 9,那么这个方程的判别式是______。

答案:0三、解答题(每题10分,共60分)11. 解方程:3x^2 - 5x - 2 = 0。

答案:x = (5 ± √(5^2 - 4 * 3 * (-2))) / (2 * 3) = 2, 1/3 12. 计算数列的通项公式:数列的前三项为1, 4, 9,求第n项的公式。

答案:an = n^213. 已知一个等差数列的前三项为2, 5, 8,求这个数列的通项公式。

答案:an = 2 + 3(n - 1) = 3n - 114. 已知一个等比数列的前两项为3, 9,求这个数列的通项公式。

代数竞赛试题及答案高中

代数竞赛试题及答案高中

代数竞赛试题及答案高中一、选择题(每题5分,共20分)1. 若实数x满足方程x^2 - 5x + 6 = 0,则x的值是:A. 2B. 3C. 1或2D. 1或32. 已知函数f(x) = 2x^2 - 4x + 3,那么f(2)的值是:A. 1B. 3C. 5D. 73. 若复数z满足|z| = 1,且z^2 + z + 1 = 0,则z的值是:A. iB. -iC. 1D. -14. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数是:A. 1B. 2C. 3D. 4二、填空题(每题5分,共20分)5. 已知等差数列{a_n}的首项a_1 = 2,公差d = 3,求第10项a_10的值是______。

6. 若函数f(x) = ax^2 + bx + c满足f(0) = 1,f(1) = 3,f(2) = 7,则a的值是______。

7. 已知矩阵A = \[ \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \],矩阵B = \[ \begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array} \],求矩阵A乘以矩阵B的行列式值是______。

8. 已知向量a = (3, -4),向量b = (2, 5),求向量a与向量b的点积是______。

三、解答题(每题15分,共30分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求函数f(x)的单调区间。

10. 已知椭圆E的方程为 \[ \frac{x^2}{9} + \frac{y^2}{4} = 1 \],求椭圆E的长轴和短轴的长度。

四、证明题(每题15分,共15分)11. 证明:对于任意正整数n,等式(1^2 + 2^2 + ... + n^2) =\[ \frac{n(n + 1)(2n + 1)}{6} \] 成立。

初一数学竞赛系列讲座代数的初步知识优选版

初一数学竞赛系列讲座代数的初步知识优选版
(3)9+99+999+9999+99999+999999(4)
(5)
(6)
3.填空:(1)某工厂去年的生产总值比前年增长P%,那么前年比去年少的百分数是()。
(2)今年的鸡蛋价格比去年便宜10%,今年的价格是每千克n元,那么去年每千克是()元。
(3)甲、乙二人从A、B两地同时相向而行,在距A、B两地中点8千米处相遇,且已知甲的速度比乙的速度快,则甲比乙多走了()千米。
(4)甲乙二人同时由A地去B地,甲每小时走5千米,乙每小时走3千米,甲到达B地时,乙距B地还有10千米,则A、B两地距离是()千米?
(5)若 ,则用n表示规律为:()
(6)若 则第n式为:()
(7)用字母表示不能被7整除的自然数是:()
(8)两堆桃子,将第一堆的2个移到第二堆后,第二堆就是第一堆的2倍,设第一堆原有a个桃子ห้องสมุดไป่ตู้则第二堆原有()个桃子。
(19)某商品价格为a元,降价10%后,又降价10%,销售额猛增,又再提价20%,此时商品的价格为()元。
(20)某商店出售一种商品,有以下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%,问三种方案结果是否一样。
(21)某同学上学步行,回家坐车,共用时90分钟;若往返都坐车,只需30分钟。如果往返都步行,需要()分钟。
(9)某工厂有四个车间,第一车间有n台车床,以后各车间都比它的前一车间多2台,这个工厂共有()台车床。
(10)三袋大米,第一袋装了m千克,第二袋比第一袋少5千克,第三袋是第二袋的85%,第一袋比第三袋重()千克。
(11)一个烧杯里盛有浓度是a%的糖水200克,加热蒸发40克水后,浓度是()。

初中数学竞赛辅导讲座19讲全套.docx

初中数学竞赛辅导讲座19讲全套.docx

第一讲有理数一、冇理数的概念及分类。

二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。

三、例题示范1、数轴与大小例1、己知数轴上有A、B两点,A、B之间的距离为1,点A与原点0的距离为3, 那么满足条件的点B与原点0的距离之和等于多少?满足条件的点B有多少个?例2、将—122Z,_97 1998 98这四个数按由小到大的顺序,用连结起来。

1998 98 1999 99提示1:四个数都加上1不改变大小顺序;提示厶先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。

例3、观察图中的数轴,用字母a、b、c依次表示点A、B、C对应的数。

试确定三个数丄,丄丄的大小关系。

cib b-a c3 3分析:由点B在A右边,知b・a〉O,而A、B都在原点左边,故ab〉O,又c>l>0,故耍比较丄,丄丄的大小关系,只要比较分母的大小关系。

ab b- a c例4、在有理数a与b(b>a)之间找出无数个冇理数。

捉示:Pp + 山5为大于是的自然数) n注:P的表示方法不是唯一的。

2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。

例5、在数1、2、3、…、1990前添上“ + ”和“一”并依次运算,所得可能的最小非负数是多少?提水:造零:n-(n+1 )-(n+2)+(n+3)=0注:造零的基本技巧「两个相反数的代数和为零。

3、算对与算巧例6、计算-1-2-3— -2000-2001-2002提示:1、逆序相加法。

2、求和公式:S二(首项+末项)x项数+2。

例7、计算1+2—3—4+5+6—7-8+9+…—2000+2001+2002提示:仿例5,造零。

结论:2003o例8、计算99...9x99・・・9 + 199 (9)s_V~v_V_z x~V~'n个9 拜个9 〃个9提示1:凑整法,并运用技巧:199…9二10"+99…9, 99・・・9二10"-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四讲代数式的求值
代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.
1.利用因式分解方法求值
因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.
分析x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.
解已知条件可变形为3x2+3x-1=0,所以
6x4+15x3+10x2
=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1
=(3x2+3x-1)(2z2+3x+1)+1
=0+1=1.
说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.
例2 已知a,b,c为实数,且满足下式:
a2+b2+c2=1,①
求a+b+c的值.
解将②式因式分解变形如下

所以
a+b+c=0或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)
=a2+b2+c2=1,
所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:

前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.
2.利用乘法公式求值
例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.
解因为x+y=m,所以
m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,
所以
求x2+6xy+y2的值.
分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.
解x2+6xy+y2=x2+2xy+y2+4xy
=(x+y)2+4xy
3.设参数法与换元法求值
如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.
分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.
x=(a-b)k,y=(b-c)k,z=(c-a)k.
所以
x+y+z=(a-b)k+(b-c)k+(c-a)k=0.
u+v+w=1,①
由②有
把①两边平方得
u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,

两边平方有
所以
4.利用非负数的性质求值
若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.
例8 若x2-4x+|3x-y|=-4,求y x的值.
分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.
因为x2-4x+|3x-y|=-4,所以
x2-4x+4+|3x-y|=0,
即(x-2)2+|3x-y|=0.
所以y x=62=36.
例9 未知数x,y满足
(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.
分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.
将已知等式变形为
m2x2+m2y2-2mxy-2mny+y2+n2=0,
(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即(mx-y)2+(my-n)2=0.
5.利用分式、根式的性质求值
分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.
例10 已知xyzt=1,求下面代数式的值:
分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.
解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.
同理
分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是
分利用这种对称性,或称之为整齐性,来简化我们的计算.
同样(但请注意算术根!)
将①,②代入原式有
练习六
2.已知x+y=a,x2+y2=b2,求x4+y4的值.
3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.
5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.
8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。

相关文档
最新文档