2015年春学期初三数学5月模拟考试卷

合集下载

2015年春实验中学九年级5月月清数学试卷参考答案

2015年春实验中学九年级5月月清数学试卷参考答案

2015年春实验中学九年级5月月清考试数学参考答案及评分标准2015-5-14二、填空题(每小题3分,共18分)17、(本题8分) 解:(1)将点(-3,4)代入解析式得,-3k -2=4,解得k=-2,…………………………………3分∴这个一次函数的解析式为y=-2x -2.…………………………………4分(2)由(1)知则所求不等式为-2x -(-2)≤6,即-2x +2≤6,………………………5分 解得x ≥-2,…………………………………………………………7分∴关于x 的不等式kx -k ≤6的解集为x ≥-2. …………………………………8分18、(本题8分) 证明:(1)∵CF=CD ,∴∠CFD=∠CDF ,∴∠AFC=∠EDC ,又∵AC=CE ,∴∠CAF=∠CED ,∴△AC F ≌△ECD. ………………4分(说明:没有用大括号将三个条件摆放在一起的不扣分,如果是边边角证明全等的不给分。

) (2)∵A B ∥CE ,∴△CD E ∽△BDA ,……………………………………………5分∴BACEBD CD =,……………………………………………7分 又AC=CE ,∴BAACBD CD =………………………………………8分 (说明:直接由平行得到线段成比例,没有写出两个三角形相似的扣1分) 19、(本题8分) 解:(1)20;5;8;3 …………………………………………………………………4分(2)设A 等级学生中3名女生分别为A 1,A 2,A 3,2名男生分别为a 1,a 2,D 等级学生中1名女生为D ,2名男生分别为d ,d ,列表如下:(画树状图也可以)由图表知,一共有15种等可能结果,其中选出的两人恰好是性别相同的(记作A 事件)有7种结果,……………………………7分∴P (A )=157…………………………………………………………………8分xH20、(本题8分) 解:(1)如图所示……………………………………………………2分 (2)B 2(0,-2),C 2(-2,-1)…………………………5分(说明:画图1分,两个坐标各1分。

2015中考数学模拟试题含答案(精选5套)

2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2015年中考模拟考数学试卷附答案

2015年中考模拟考数学试卷附答案

2015年中考模拟考数学试卷(2015.5.25)(本卷共26小题,考试时间:120分钟,满分:150分)一、选择题(本题有10小题,每小题3分,共30分) 1. 关于m 的不等式-m >1的解为( )A .m >0B .m<0C .m<-1D .m >-1 2、下列电视台的台标,是中心对称图形的是( ) A ...3. 下列运算正确的是( )4、支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为( ) A 、104.7310⨯ B 、1047.310⨯ C 、94.7310⨯ D 、 947.310⨯ 5、如图,AB ∥CD ,BC ∥DE ,若∠B =40°,则∠D 的度数是( ) A .40°B .140°C .160°D .60°6、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数7. △ABC 中,a 、b 、c 分别是∠A ,∠B ,∠C 的对边,如果222a b c +=,那么下列结论正确的是( ) A 、cos b B c =B 、sin c A a =C 、tan a A b =D 、tan b B c =8. 如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么DEF ∆与ABC∆的周长比为( ) A .4︰1 B .3︰1C .2︰1D ︰1 9、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是( )A .34π B .38π C .32π D .316π10.二次函数y =ax 2+bx +c 的图象如图5所示,反比例函数y = ax与正比例函数CAB(第8题)EDF 9题图y =(b +c )x 在同一坐标系中的大致图象可能是( )图5 A B C D二,填空题(本题有10小题,每小题3分,共30分)11. 若代数式23-x 有意义,则x 的取值范围是 ▲ . 12、 若a -b =3,ab =2,则a 2b -ab 2= ▲ .13、从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 ▲ . 14.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 ▲ .15. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得432014x x -+值是 ▲ .16.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿 x 轴向右平移,当点 C 落在直线 y =2x -6上时, 线段BC 扫过的面积为 ▲ .三,解答题(本题有10小题,共96分)17.(本题满分7()011π2015()6tan302--+-︒; 18.(本题满分8分)先化简再求值:35222x x x x +⎛⎫÷+- ⎪--⎝⎭,其中x 是不等式组3(3)1,4253x x x x --≥⎧⎨-<-⎩的一个整数解.19(本题满分7分)、如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,A F ∠=∠,AB FD =。

【中考模拟】山东省济南市长清区2015年九年级数学5月模考试题

【中考模拟】山东省济南市长清区2015年九年级数学5月模考试题

山东省济南市长清区九年级数学2015年5月模考试题注意事项:1. 本试题分第I 卷(选择题)和第II 卷(非选择题)两部分,共6页,满分120分。

考试用时120分钟。

答题前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考号填写在答题卡和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2 B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2的绝对值等于 A .-2B .- 1 2C . 12D .22. 下列计算正确的是A .+=B .(ab 2)2=ab 4C .2a+3a=6aD .a•a 3=a 43.如图,∠1=40°,如果CD ∥BE ,那么∠B 的度数为A .160°B .140°C .60°D .50° 4.若分式 1x -1有意义,则x 的取值范围是A .x >1B .x <1C .x ≠1D .x ≠05.下列关于x 的方程有实数根的是A . x2﹣x+1=0B . x2+x+1=0C .(x ﹣1)(x+2)=0D .(x ﹣1)2+1=0 6.一种微粒的半径是0.00004米,这个数据用科学记数法表示为 A . 4×106 B . 4×10﹣6 C . 4×10﹣5 D . 4×105 7.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为 A . 8 B . 5 C . D . 3.8.已知是方程组的解,则a ﹣b 的值是A . ﹣1B . 2C . 3D . 4 9.一次函数y =﹣2x +1的图象不经过下列哪个象限A .第一象限B .第二象限C .第三象限D .第四象限10.如图所示的立体图形,它的主视图是A .B .C .D .11.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°, B第11题此时点B到了点B ,则图中阴影部分的面积是A.6πB.5πC.4πD.3π12. 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF 交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是A.1B.2C.3D.413.如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2 )D.(50°,2 )14.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=A.6 B.8 C.10 D.1215.如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是GHE(F)ABCD题图152015年5月初三年级学业水平考试 数 学 测 试 题 注意事项:第II 卷必须用0.5毫米黑色签字笔作答,答案写在试卷区域内相应的位置,;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

2015中考数学模拟考试试卷+答案

2015中考数学模拟考试试卷+答案

山西省2015年高中阶段教育学校招生统一考试数学模拟考试试题1.2-的绝对值是(▲)A.2±B.2 C.12D.12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320、万人次.数据1320万用科学计数法表示正确的是(▲)A.113210⨯万B.213.210⨯万C.31.3210⨯万D.41.3210⨯万3.某几何体的三视图如图所示,这个几何体是(▲)A.圆柱B.三棱柱C.长方体D.圆锥4.下列等式一定成立的是(▲)A.22a a a⋅=B.22=÷aa C.22423a a a+=D.()33aa-=-5.如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,那么∠A的度数为(▲)A.140°B.60°C.50°D.40°6.一个多边形的每一个内角均为108°,那么这个多边形是(▲)A.七边形B.六边形C.五边形D.四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是(▲)A.85,90 B.85, 87.5 C.90,85 D.95,908.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1 ,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时..发光的概率为(▲)A.31B.32C.21D.619.如图,AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,那么sin∠ABD的值是(▲)A.43B.34C.35D.4510.如图,一个半径为r的圆形纸片在边长为a(a≥)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是(▲)A.23rπB.23rπC.2)rπD.2rπ二、填空题(每题3分,共18分)11.实数4的算术平方根是▲。

2015中考模拟考试试题数学科参考答案

2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。

(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。

2015届九年级中考模拟考试数学试题及答案

2015届九年级中考模拟考试数学试题及答案

2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分...为试题...卷和答...题.卷,答案要求......写.在答..题.卷上,在....试题..卷上作答不.....给.分... 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是 A .3B .31 C .3- D . 31-2.下列运算正确的是A . 523x x x =+B .x x x =-23C .623x x x =⋅D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是A .①③B .②④C .③④D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为 A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --= 二、填空题(本大题共8小题,每小题3分,共24分)7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .①正方体 ②圆锥体 ③球体9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分)三、(本大题共4小题,每小题6分,共24分) 15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2(第12题图) CBA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l 2交于点E, BD 与l 4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2).根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;FEA(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少?六、(本大题共2小题,每小题10分,共20分) 23. 已知抛物线22232y x mx m m =-++.(1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁 7%21~30岁 39%31~40岁 20%16~20岁 16%61~65岁 3% 41~50岁 15% 图(1)24.已知:如图(1),△OAB是边长为2的等边三角形,0A在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B 运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b10、25゜ 11、8 12、74 13、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分) 15、解:原式=1212222+⨯-+…………………………………………………3分 =222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1……………………………………………4分 将2=x 代入得:221=x………………………………………………………6分 17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上 手背向上 ……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r .∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C =90° ∴OD ∥AC ∴△OBD ∽△ABC . …………………………2分∴OD AC = OBAB ,即12128r r -= 解得:524=r∴⊙O 的半径为524………………………4分(2)四边形OF DE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF =∠B .∵∠DEF =12∠DOB ∴∠B =12∠DOB .∵∠ODB =90° ∴∠DOB +∠B =90° ∴∠DOB =60°∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形∴OD =DE ∵OD =OF ∴DE =OF ∴四边形OFDE 是平行四边形 ………7分∵OE =OF ∴平行四边形OFDE 是菱形. …………………………………8分20、(1) ∵l 2∥l 4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分 ∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分(2)(批改时注意若学生用计算器计算,中间答案会有少许不同,但最终答案一样) 过A 作AG ⊥l 4,交l 2于H ∵α=25° ∴∠ABE=25°∴ sin 0.42AHABE AB∠=≈ 解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜ ∴91.0cos ≈=∠ADAGDAG 解得:AD ≈43.96 ………………7分 ∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分 五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人) 31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分 (3) 31~40岁年龄段被抽人数是2040080100⨯=(人) 总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分 41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人, F EGHA总体印象的满意率是5388.3%88%60=≈ …………………………………8分 ∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分 根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分n =(1-m )(50+10×m 0.2)+(5-3-m )(20+10×m0.2) 即 n =-100m 2+80m +90 =-100(m -0.4)2+106. ……………………………7分∴当m =0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分) 23、解:∵()m m m x m m mx x y 222322222++-=++-=∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分 当m=0时,顶点坐标为(0,0) 当m=32-时,顶点坐标为(32-,94-) ……………………………………3分 ∵第三象限的平分线所在的直线为y=x ∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分 (2)∵m>0时,m m 222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m mn ∴当21-=m 时,n 有最小值21- …………………………………10分 24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒.∵OC AC =,CD OA ⊥, ∴1OD DA ==. 在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-; 过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t ∆=⋅=-⋅=-+. 即23142S t t =-+ .………………………………………2分 (图①)(2)当23t <时,(如图②) OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒. ∴2113(32)222OPQ S OQ OP t t t t ∆=⋅=⋅-=-.即232S t t =-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t =-……………4分(2),0)或2(,0)3 …………………6分 (3)BMN ∆的周长不发生变化.延长BA 至点F ,使AF OM =,连结CF .(如图③)∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。

2015届九年级数学中考模拟考试试题_新人教版

2015届九年级数学中考模拟考试试题_新人教版

2015年学业考试模拟考试 数学试题卷(含答案)本试卷共6页.全卷满分120分.考试时间为120分钟.一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.若2=+a ,则a 的值为A .2B .-2C .±2D .22.化简16 的结果是A .4B .-4C .±4D .±83. 2012年恩施机场和火车站的客流总量达到824000人次,这个数用科学记数法表示为 A.824×104 B. 8.24×105 C. 8.24×106 D. 0.824×107 4.如果事件A 发生的概率是1100,那么在相同条件下重复试验,下列陈述中,正确的是 A .说明做100次这种试验,事件A 必发生1次 B .说明事件A 发生的频率是 1100C .说明做100次这种试验中,前99次事件A 没发生,后1次事件A 才发生D .说明做100次这种试验,事件A 可能发生1次5. 右图是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是B6.如图:在直角坐标系中,直线x y -=6与函数)0(4>=x x y 的图象相交于点A 、B,设点A 的坐标为),(11y x ,那么长为1x ,宽为1y 的矩形面积和周长分别为A .4,12; B. 8 , 12; C 、4,6; D 、 8,6;7.某班每位学生上、下学期各选择一个社团,下表分别为该班学生上、下学期各社团 的人数比例.若该班上、下学期的学生人数不变,关于上学期,下学期各社团的学 生人数变化,下列叙述正确的是A .文学社增加,篮球社不变B .文学社不变,篮球社不变C .文学社增加,篮球社减少 D. 文学社不变,篮球社减少8.用一把带有刻度的直尺,①可以画出两条平行的直线a与b ,如图⑴;②可以画出∠AOB 的平分线OP ,如图⑵所示;③可以检验工件的凹面是否为半圆,如图⑶所示;④可以量出一个圆的半径,如图⑷所示.这四种说法正确的个数有 ( ) A .1个 B .2个 C .3个 D .4个9.小翔在如图2所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到 点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2,刚这个固定位置可能是图1的( )A .点MB .点NC .点PD .Q图1 图210.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB=15°,则∠AOB ′的度数是( )A. 25°B. 30°C. 35°D. 40° 11. 已知BD 是⊙O 的直径,点A 、C 在⊙O 上,=,∠AOB=60°,则∠BDC 的度数是( )A. 40°B. 30°C. 25°D. 20°12.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为A .4B .8C .D .16二、填空题(本大题共4小题,每小题3分,共12分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.不等式 3-2-3x 5≤1+x2的解集为 ▲ .14.如图,平面上有两个全等的正十边形,其中A 点与A ′点重合,C 点与C ′点重合.∠BAJ ′为 ▲ °.15. 如图,将2个正方形并排组成矩形OABC, OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M 、N 的二次函数的图象也过矩形的顶点B 、C,若三个正方形边长均为1,则此二次函数的的关系式为 ▲ .16.规定22),(b ab a b a T ++=下列说法:①)4,3()4,3(--=T T ; ②),(),(n m kT kn km T =;③)1,(x T 和)1,(-x T 的最小值都是43;④方程)5,()1,2(x T x T =的两个实数根为2331,233121-=+=x x其中正确的结论有___▲ ______________(填写所有正确的序号)三、解答题(本大题共8小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)先化简,再求值:)2()113(2-÷---x x xx x 其中x 满足012=--x x18. (8分)已知:如图,在△ABC 中,∠ACB=90°,AD 平分∠CAB , DE ⊥AB ,垂足为E , CD=ED .连接CE ,交AD 于点H . (1)求证:△ACD ≌△AED ;(2)点F 在AD 上,连接CF ,EF . 现有三个论断:①EF ∥BC ;②EF =FC ;③CE ⊥AD . 请从上述三个论断中选择一个论断作为条件,证明四边形CDEF 是菱形.19. (8分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ; (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少? 20、(8分)九年级一班数学兴趣小组在社会实践活动中,进行了如下的课题研究,用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架的面积最大,小组讨论后,同学们做了以下三种实验:请根据以上图案回答下列问题:(1)在图(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6m ,当ABAC BDHE F(第20题)为1m,长方形框架ABCD的面积是___________2 m.(2)在图(2)中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,设AB为x m,长方形框架ABCD的面积为S=__________________(用含x的代数式表示);当AB=______________m时,长方形框架ABCD的面积S最大;在图(3)中,如果铝合金材料总长度(图中所有黑线的长度和)为l m,设AB为x m,当AB=______________m时,长方形框架ABCD的面积S最大;(3)经过这三种情形的试验,他们发现对于图(4)这种情形也存在着一定的规律。

2015年数学中考模拟试卷5

2015年数学中考模拟试卷5

2015年中考数学模拟试卷五一、选择题(3*10=30分) 1.-(2)21的倒数是( )A . 4B .-41 C .41D .-4 2.下列计算正确是( )A.632a a a =B.a a a =-23C.623)(a a = D.a a a =÷452 3.用科学记数法表示0.0000210,结果是( )A .2.10×10-4B .2.10×10-5C . 2.1×10-4D .2.1×10-5右图是由4个相同的小正方体组成的几何体,其俯视图为A .B .C .D .4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为A .37B .35C .33.8D .325.关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <26.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A .B .C .D .7.下列命题中,假命题的是A .经过两点有且只有一条直线B .平行四边形的对角线相等C .两腰相等的梯形叫做等腰梯形D .圆的切线垂直于经过切点的半径8.两圆的半径R,r 分别是方程0652=+-x x 的两根,两圆圆心距为5,则两圆位置关系是( )A.外离 B.内含 C. 相交 D. 相切(第3题)(第4题)9.如图,已知AD ∥BC ,∠B =30º,DB 平分∠ADE ,则∠CED 的度数为A .30ºB .60ºC .90ºD .120º10.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD=BE=1.沿直线DE 将△BDE 翻折,点B 落在点B ′处.则点B ′的坐标为A .(1,2)B .(2,1)C .(2,2)D .(3,1)二填空题(4*8=32分)11.不等式2x+1>0的解集是 .12.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠l=58°,则∠2= ___________ .13.某种商品的标价为200元,为了吸引顾客,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是 元.14.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为 .15.如图,已知菱形ABCD 的边长为5,对角线AC ,BD 相交于点O ,BD =6,则菱形ABCD 的面积为 .16.如图,将三角板的直角顶点放在⊙O 的圆心上,两条直角边分别交⊙O 于A 、B 两点,点P 在优弧AB 上,且与点A 、B 不重合,连结PA 、PB .则∠APB 的大小为 °.(第16题)(第9题)(第10题)第12题图OB DCA(第15题)17.双曲线1y 、2y 在第一象限的图像如图,14y x=, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B , 交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 . 18.若111a m=-,2111a a =-,3211a a =-,… ;则2011a 的值为 .(用含m 的代数式表示)三、解答题:本大题共10小题,共88分.请在题后空白区域内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本题满分6分)计算:01121)2sin 30()2--++︒-20.(本题满分6分)已知三个一元一次不等式:2x >4,2x ≥x -1,x -3<0.请从中选择你喜欢的两个不等式组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是⎩⎨⎧_______________①_______________②;(2)解:21.(本题满分6分).如图,A 、B 是⊙O 上的两点,∠AOB =120°,C 是的中点,求证四边形OACB 是菱形.B22. (本题满分8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m)第20题图23.(本题满分8分)2011年7月1日,中国共产党90华诞,某校组织了由八年级700名学生参加的建党90周年知识竞赛.李老师为了了解学生对党史知识的掌握情况,从中随机抽取了部分同学的成绩作为样本,把成绩按优秀、良好、及格、不及格4个级别进行统计,并绘制成了如图的条形统计图和扇形统计图(部分信息未给出)请根据以上提供的信息,解答下列问题:(1)求被抽取的部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;(3)请估计八年级的700名学生中达到良好和优秀的总人数.24.(本题满分8分)为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.(1)求y与x之间的函数关系式;(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?25.(本题满分8分)某市为争创全国文明卫生城,2012年市政府对市区绿化工程投入的资金是2000万元,2014年投入的资金是2420万元,且从2012年到2014年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2016年需投入多少万元?26 (本题满分8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.27.(10分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用,则应缴费 150 元;(2)若调价后每月支出的燃气费为y (元),每月的用气量为x (m 3),y 与x 之间的关系如图所示,求a 的值及y 与x 之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m 3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?28.(本小题8分)如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠.(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当108AB BC ==,时,求BD 的长.29.(本题满分12分)如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_ ),点C的坐标为(_ );(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.图1 图2。

2015年中考模拟考试数学试题及答案(绝密)

2015年中考模拟考试数学试题及答案(绝密)

2015年中考模拟考试数学试题时间:120分钟,满分150分, 2015.5.29一、选择题(每小题3分,共24分)1.在1,﹣2,4,3这四个数中,比0小的数是(▲ ) A.﹣2 B.1 C.3 D.42.如图是由6个大小相同的小正方体组成的几何体,它的左视图是(▲ )3.2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为(▲ ) A .8108.3⨯ B .9108.3⨯ C .10108.3⨯ D .12108.3⨯ 4.下列计算正确的是( ▲ )A .22254a a a =⋅B .a a a 23=-.C .326a a a =÷D .623)(a a -=- 5.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( ▲ )A .100只B .150只C .180只D .200只6.左下图是双曲线)0(≠=k k xky 为常数,,则一次函数k kx y -=的图象大致是(▲)7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x ,可列方程为(▲) A .1500)1(20162=-x B .2160)1(15002=-xA .B .C .D .C B A第6题图C .2160)1(15002=+xD .2160)1(1500)1(150015002=++++x x 8.如图,已知正方形的边长为1,若圆与正方形的四条边都相切, 则阴影部分的面积与下列各数最接近的是( ▲ ) A .0.1 B .0.2 C .0.3 D .0.4二、填空题(每小题4分,共32分)9.因式分解:a a 43-= ▲ .10.五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是 ▲ . 11.关于x 的一元二次方程022=+-k x x 有两个不相等的实数根,则k 的取值范围是 ▲ .12.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4,2),则点A 1的坐标是 ▲ .13.如图,CD 是△ABC 的中线,点E ,F 分别是AC 、DC 的中点,EF=2,则BD= ▲ .14.已知直线b ax y +=与双曲线xy 6=相交于A )(11y x ,,B )(22y x ,两点,则2211y x y x + 的值为 ▲ .15.有一组单项式:,4,3,2,5432a a a a --….观察它们构成规律,用你发现的规律写出第12个单项式为 ▲ .16. 如图,正方向ABCD 的边长为6cm ,E 为CD 边上一点,∠DAE=30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ=AE ,则AP 等于 ▲ cm .三、解答题(第17、18小题各8分,第19-22小题每题10分.23.24每题12分,25题14分共94分)17.先化简,再求值:xx x x x x 239)3)(2(22--⋅-+-,其中2-=x .A F C EB D 第13题图 第8题图第12题图 第16题图D E C18.如图,∠ABC=90°,D 、E 分别在BC 、AC 上,AD⊥DE,且AD=DE ,点F 是AE 的中点,延长AB 交FD 的延长线于点M ,连接MC . 求证:FM=FC.19.在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(请直接写出结果) (2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法求两次取出相同颜色球的概率.20.为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A .只愿意就读普通高中;B .只愿意就读中等职业技术学校;C .就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:第18题图(1)本次活动一共调查的学生数为 ▲ 名; (2)补全图一,并求出图二中A 区域的圆心角的度数;(3)若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.21.某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B 点测得旗杆顶端E 点的仰角为45°,小军站在点D 测得旗杆顶端E 点的仰角为30°,已知小明和小军相距(BD )6米,小明的身高(AB )1.5米,小军的身高(CD )1.75米,求旗杆的高EF 的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)第21题图第20题图22.如图,点C 是⊙O 的直径AB 延长线上的一点,且有BO=BD=BC . (1)求证:CD 是⊙O 的切线; (2)若半径OB=2,求AD 的长.23.甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y (km )与时间x (h )之间的函数关系,折线BCDE 表示轿车离甲地距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题: (1)线段CD 表示轿车在途中停留了 ▲ h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.第22题图第23题图24.如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,∠EAF=45°,连接EF. 延长CD 至G ,使GD=EB ,连接AG ,易证△AFG≌△AF E.所以EF ,BE ,DF 之间的数量关系为 EF=DF+BE.(1)如图2,点E ,F 分别在正方形ABCD 的边BC ,CD 的延长线上,∠EAF=45°,连接EF. 试猜想EF ,BE ,DF 之间的数量关系;(直接写出结果,不需证明) (2)如图3,点E ,F 分别在正方形ABCD 的边CB ,DC 的延长线上,∠EAF=45°,连接EF. 试猜想EF ,BE ,DF 之间的数量关系,并加以证明;(3)如图4,点E ,F 在正方形ABCD 的对角线BD 上,∠EAF=45°,若BE=2,DF=1,请直接写出EF 的长.图3A图4A图1F题图25.定义:如图1,过△ABC 的三个顶点分别作与水平线垂直的三条直线,外侧两直线之间的距离OA 叫做△ABC 的“水平宽”,中间直线处于△ABC 内部的线段BD 的长度叫做△ABC 的“铅垂高”.性质:三角形的面积等于水平宽与铅垂高乘积的一半.理解:例如:如图1,OA=3,BD=1.6,则4.26.1321=⨯⨯=∆ABC S应用:(1)如图2,在平面直角坐标系中,已知点A (4,0),B(3,4),D(3,1).则△A BC 的面积为 ▲ ;(2)如图3,在平面直角坐标系中,抛物线c bx x y ++-=2过A (4,0),C(0,4)两点,点M 在第一象限的抛物线上运动,在点M 的运动过程中,求△AMC 面积的最大值;(3)在(2)的条件下,如图4,点P 在抛物线上,①求以AC 为底边的等腰三角形PAC 的顶点P 的坐标; ②直接写出以AC 为底边的等腰三角形PAC 的面积.M图4图3第25题图OCD 图1B A参考答案及评分标准一、选择题(每小题3分,共24分) 1——4ACCB 5——8 DBCB 二、填空题(每小题4分,共32分)9.)2)(2(-+a a .10.80.11. 1<k 12.(–4,–2).13.4.14.12 .15.1213a -.16.2或4 .三、解答题(第17、18小题各8分,第19小题10分.共26分) 17.先化简,再求值:xx x x x x 239)3)(2(22--⋅-+-,其中2-=x .解:原式=xx x x x x x x 1)2(3)3)(3()3)(2(=--⋅-++-………6分当2-=x 时,原式=21. ……………8分18.证明:∵△ADE 是等腰直角三角形,F 是AE 中点, ∴DF⊥AE,DF=AF=EF , ……………………2分 又∵∠ABC=90°,∠DCF,∠AMF 都与∠MAC 互余, ∴∠DCF=∠AMF, ……………………4分∴△DFC≌△AFM(AAS ), ……………………6分 ∴MF =CF. …………………………………………8分19. 解:(1); ………………………………………………………3分 (2)画树状图得:………7分∵共有9种等可能的结果,两次取出相同颜色球的有3种(红,红)、(白,白)、(黑,黑)情况,(没具体列出3种情况不扣分,无等可能扣1分)…………8分 ∴两次取出相同颜色球的概率为:=.……………………………10分四、(每小题10分,共20分)20. 解:(1)根据题意得: 800, ……………………3分(2)A 占的度数为216360800480=⨯, …………………5分 补全统计图,如图所示:240第一次第二次(3)根据题意得:8402800800240=⨯,……………………………………9分 所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.………10分 21. 解答: 解:过点A 作AM⊥EF 于M ,过点C 作CN⊥EF 于N , ………………1分 ∴MN=0.25m ,∵∠EAM=45°, ∴AM=ME, …………………3分 设AM=ME=xm ,则CN=(x+6)m ,EN=(x ﹣0.25)m ,……………4分 ∵∠ECN=30°, ∴tan∠ECN===, ……………6分解得:x ≈8.8, ……………………………………7分则EF=EM+MF≈8.8+1.5=10.3(m ). (9)答:旗杆的高EF 约为10.3m .………………………10分 五、(本题10分)22. 证明:连结OD , …………………………1分 如图,∵BO=BD=BC,∴∠BOD=∠BDO,∠BCD=∠BDC, ∴∠BDO+∠BDC =∠BCD+∠BOD=90°…………3分 即∠ODC=90°,∴OD⊥CD, ………………4分 而OD 为⊙O 的半径,∴CD 是⊙O 的切线; ………………………5分……………………7分(2)解:∵AB 为⊙O 的直径,∴∠BDA=90°,…6分∵BO=BD=2,∴AB=2BD=4, ………………………………8分AD=3281622=-=-BD AB .……10分六、(本题12分)23.解:(1)0.5. ……………………………………………………………………………3分(2)设线段DE 对应的函数解析式为b kx y +=(2.5≤x ≤4.5), (4)分∵D 点坐标为(2.5,80),E 点坐标为(4.5,300),∴代入b kx y +=,得: 80 2.5k b 300 4.5k b =+⎧⎨=+⎩,解得:k 110 b 195=⎧⎨=-⎩. ∴线段DE 对应的函数解析式为:195110-=x y (2.5≤x ≤4.5). ………………………9分(3)设线段OA 对应的函数解析式为mx y =(0≤x ≤5),∵A 点坐标为(5,300),代入解析式mx y =得,300=5m ,解得:m=60.∴线段OA 对应的函数解析式为x y 60=(0≤x ≤5) … …………………………………10分由19511060-=x ,解得:9.3=x ………………………………………………11分∴货车从甲地出发经过3.9小时与轿车相遇,即轿车从甲地出发后经过2.9小时追上货车.答:轿车从甲地出发后经过 2.9小时追上货车. ………………………………………………12分七、(本题满分12分)24. (1) BE=DF+EF …………………………2分(2)DF=EF+BE …………………………3分在CD上取一点G使GD=BE,连接AG,……4分由正方形ABCD知AB=AD,∠A BE=∠A DC=90°,∴△A BE≌△A DG ………………………5分∴∠EA B=∠GADAE=AG …………………………6分∵∠EAF=45°∴∠BAF+∠GAD=45°∵∠BAD=90°∴∠G AF=45°∴∠G AF=∠EAF …………………………7分∴△A EF≌△A GF………………………8分∴EF=GF…………………………9分∵DF=GF+GD∴DF=EF+BE…………………………10分(3)5………………………………12分八、(本题14分)25. 解:(1)6…………………………………………………………4分答案图A(1) 把点A (4,0),C(0,4)带入c bx x y ++-=2,则抛物线的解析式是:432++-=x x y ; ………………………5分直线AC 的解析式为4+-=x y做MD⊥x 轴,交AC 于点D ,则MD 的长度为x x x x x 4)4(4322+-=+--++- ………6分4)4(212⨯+-=∆x x S AMC x x S AMC 822+-=∆ …………………………………………………7分 当2)2(28=-⨯-=x 时, △ABC 的面积的最大值为8 …………………………………………8分(3)①由题意可知,点P 在∠AOC 的平分线上,也在线段AC 的垂直平分线上,此直线LO 的解析式为x y =,把x y =带入432++-=x x y 求出511+=x ,512-=x 所以定点P 的坐标为()51,51(++)或)51,51(--………12分②△APC 的面积为454-或454+ ……………………………14分LD。

2015年中考数学模拟考试试题和答案

2015年中考数学模拟考试试题和答案

2015年中考数学模拟数学试卷总分:120分 时间:120分钟一、选择题:(每小题3分,共36分)1、若分式52-x 有意义,则x 的取值范围是( ) A .5≠x B .5-≠x C .5>x D .5->x2、关于x 的一元二次方程0222=+-k x x 有实数根,则k 的取值范围是( ) A .21<k B.21≤k C.21>k . D.21≥k 3、下面与3是同类二次根式的是( )A.2B.12C.13-D.18 4、下列运算正确的是( )A.624a a a =⋅ B 23522=-b a b a C.523)(a a =- D.63329)3(b a ab =5、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同, 但乙的成绩比甲的成绩稳定,那么两者的方差的大小关系是( )。

A.22乙甲S S <B.22乙甲S S >C.22乙甲S S = D.不能确定6、如图,已知直线a ∥b,直线c 与a 、b 分别交于A 、B ,且1201=∠,则=∠2( ) A .60B .150C . 30D .1207、在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43 D. 55 8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A . 等边三角形 B . 平行四边形 C . 正方形 D . 等腰梯形9、已知关于x 的一元二次方程02=+-c bx x 的两根分别为,2,121-==x x 则b 与c 的值分别为( )A .2,1=-=c bB .2,1-==c bC .2,1==c bD .2,1-=-=c b10、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )。

11、如图,直线)0(>=t t x 与反比例函数xy x y 1,2-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆ABC 的面积为( ) A .3 B .t 23 C .23D .不能确定12、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④a b S S BCG EOF =∆∆.其中结论正确的个数是( )A . 4个B . 3个C . 2个D . 1个二、选择题:(每小题3分,共18分)13、因式分解:=-a a 43.14、某市棉花产量约378000吨,将378000用科学计数法表示应是______________吨. 15、已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= . 16、如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若cm AB 52=,cm OC 1=,则⊙O 的半径长为 。

2015年中考模拟数学试题及答案

2015年中考模拟数学试题及答案

(第6题)2015年中考模拟数学试题时间120分钟. 满分150分 2015.5.9一、选择题(每小题4分,共40分)1.2-的相反数是 ( ▲ ) A .2B .2-C .12D .12-2.用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是( ▲ )AB C D3.小星同学参加体育测试的五次立定跳远的成绩(单位:米)是: 1.2,1.3,1.2,1.0,1.1.这组数据的众数是 ( ▲ )A .1.0B .1.1C .1.2D .1.3 4.中国航母辽宁舰(如图)是中国人民海军第一艘可以 搭载固定翼飞机的航空母舰,满载排水量为67500吨, 这个数据用科学记数法表示为 ( ▲ ) A .6.75×103吨 B .6.75×104吨 C .6.75×105吨D .6.75×10-4吨5.掷一枚质地均匀的硬币10次,则下列说法正确的是 ( ▲ ) A .掷2次必有1次正面朝上 B .必有5次正面朝上 C .可能有5次正面朝上 D .不可能10次正面朝上6.如图,在地面上的点A 处测得树顶B 的仰角α=75º,若AC =6米,则树高BC 为 ( ▲ ) A .6 sin75º米 B . 6cos 75︒米C .6tan 75︒米 D .6 tan75º米7.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的 百分率都为x ,那么x 满足的方程是 ( ▲ )A .81)1(1002=+xB . 81)1(1002=-xC .81)21(100=-xD . 811002=x8.已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的 三角形与已知三角形不一定...全等的是( ▲ ) A .两个角是α,它们的夹边为4 B .三条边长分别是4,5,5 C .两条边长分别为4,5,它们的夹角为α第4题D .两条边长是5,一个角是α9.学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样 的方法研究函数y=xx 13+,从而得出以下命题: (1)当x >0时,y 的值随着x 的增大而减小;(2)y 的值有可能等于3; (3)当x >0时,y 的值随着x 的增大越来越接近3; (4)当y >0时,0>x 或31-<x . 你认为真命题是 ( ▲ )A .(1)(3)B .(1)(4)C .(1)(3)(4)D .(2)(3)(4) 10.如图,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上,顶点C 、D 在圆内,将正方形ABCD 沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C 运动的路径长为 ( ▲ ) A .π22B .()π12+C .()π22+D .π⎪⎭⎫⎝⎛+1232二、填空题(每小题5分,共30分)11.212.在函数=y x 的取值范围是 ▲. 13.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α= ▲ 度.14.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸取一个小球然后放回,再随机地摸出一个小球,则两次取出的小球的标号相同的概率是 ▲ .15.已知函数222---=k x kx y 的图象与坐标轴...有两个交点,则k 的值 为 ▲ .16.如图,点O 为弧AB 所在圆的圆心,OA ⊥OB ,点P 在弧AB 上,AP 的延长线与OB 的延长线交于点C ,过点C 作CD ⊥OP 于D .若OP=3,PD=1,则OC= ▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12 分,第24题14分,共80分)ABCD 第10题第13题PODCBA第16题17.(1)计算:0)12(45sin 2--︒; (2)化简:2)2()2)(1(-++-x x x .18.图①、图②均为7×6的正方形网格,点A 、B 、C 在格点上.(1)在图①中确定格点D ,并画出以A 、B 、C 、D 为顶点的四边形, 使其为轴对称图形.(画一个即可)(2)在图②中确定格点E ,并画出以A 、B 、C 、E 为顶点的四边形, 使其为中心对称图形.(画一个即可)19.某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如图1、图2所示:解答下列问题: (1)求a 和b 的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.图220.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的 直线b x y +=交x 轴于点B . (1)求k 和b 的值; (2)求△OAB 的面积.21.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平 分∠DAB .(1)求证:AD ⊥CD ;(2)若AD =2,A C =5,求AB 的长.22.某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件. (1)若生产第3级产品,则每天产量为 ▲ 件,每件利润为 ▲ 元;·(第21题)ABCDO(第20题)(2)若生产第x 级产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(3)若生产第x 级的产品一天的总利润为1120元,求该产品的质量等级.23.如图,已知抛物线4732--=x x y 与x 轴交于A 、B 两点. (1)点A 的坐标是 ▲ ,点B 的坐标是 ▲ ,抛物线的对称轴是直线 ▲ ; (2)将抛物线向上平移m 个单位,与x 轴交于C 、D 两点(点C 在点D 的左边).若CD :AB=3:4,求m 的值;(3)点P 是(2)中平移后的抛物线上y 轴右侧部分的点,直线y=2x+b (b <0)与 x 、y 轴分别交于点E 、F .若以EF 为直角边 的三角形PEF 与△OEF 相似,直接写出点P 的坐标.第23题24. 定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD 中,对角线AC ,BD 相交于点O . ①如图1,若BD=CO ,求tan ∠BCD 的值. ②如图2,若∠DA C=∠BCD=72º,求AD :CD 的值.(3)如图3,把△ABD 沿着对角线BD 翻折,A 点落在对角线AC 上的E 点.如果△AOD 中,一个内角是另一个内角的2倍,且阴影部 分图形的面积等于四边形ABED 的面积,直接写出CDAD的值.图2BA图1图3数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11. (3)(3)a a +- 12.2x ≥ 13. 20 14. 4115. 0或-1或-2 16. 23三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17. 解: (1)0)12(45sin 2--︒解:原式=21-……………………………………2分1- ……………………………………2分(2)2)2()2)(1(-++-x x x解:原式=222244x x x x x +--+-+ …………………2分 = 2232x x -+ ………………………2分18. 解:(1)略 ……………………4分(2)略 ……………………4分 19.解:(1)a=30 ……………………2分b=24 ……………………2分(2) 300120361000=⨯……………………4分 20.解:(1)把x =2,y =5代入ky x=,得 k =2×5=10 ……………2分把x =2,y =5代入b x y +=,得3=b …………2分 (2)3+=x y∴当y =0时,x =-3,∴OB=3 ……………1分S ∴=5321⨯⨯=7.5 ……………3分21.(1)证:连接OC∵OA=OC∴∠OAC=∠OCA ………………1分∵AC 平分∠DAB ∴∠OAC=∠DAC ∴∠OCA=∠DAC∴AD ∥OC …………………2分∵直线CD 与⊙O 相切 ∴OC ⊥CD …………………1分 ∴AD ⊥CD ………………1分 (2) 连接CB ∵AB 是⊙O 直径∴∠ACB=090 …………………1分 由(1)知AD ⊥CD ∴∠ADC=090 ∴∠ADC=∠ACB ∵∠DAC=∠CAB∴△DAC ∽△CAB …………………2分 ∴ABACAC DA =∴AB 552= …………………1分 ∴AB=2.5 …………………1分22.解:(1)10 85…………………2分(2)∵第一级的产品一天能生产95件,每件利润6元,每提高一个级别,每件利润加2元,但一天生产量减少5件.∴第x 级别,提高的级别是(x ﹣1)档. ∴y =[6+2(x ﹣1)][95﹣5(x ﹣1)],·ABC D(第21题)O· ABCD(第21题) O即y =﹣10x 2+180x +400(其中x 是正整数,且1≤x ≤10)…………………5分(3)由题意可得:﹣10x 2+180x +400=1120整理得:x 2﹣18x +72=0 解得:x 1=6,x 2=12(舍去).答:该产品的质量级别为第6级.…………………5分23.解:(1)A (-21,0), B (27,0) 23=x …………………………3分(2)由(1)知,AB=4 ∵CD:AB=3:4 ∴CD=3∵个单位向上平移m x x y 4732--=∴C (0,0), D(3,0) …………………………3分x x y 32-=∴∴47=m …………………………2分 (3)⎪⎭⎫⎝⎛-45,21、⎪⎭⎫⎝⎛-1611,411、 ()2,2-、⎪⎭⎫⎝⎛-2526,513……4分24.(1)性质:①筝形有一组对角相等;…………………………………………… 1分 ②筝形有一条对角线垂直平分另一条对角线; ③筝形有一条对角线平分一组对角.判定:①有一条对角线垂直平分另一条对角线的四边形是筝形;②有一条对角线平分一组对角的四边形是筝形.……………………………1分证明略…………………………………………………………………………………4分 (2)①解:设OC=2OD=2OB=a ,则CD=BD ,第23(3)题 第23(2)BCD 211S =CD CBsin 2211)sin 2222BCD BD COBCD a a ∆⋅∠=⋅∴∠=⨯⨯可得:sin ∠BCD=45,即:tan ∠BCD=43.…………………………………………2分 ②作∠BCD 的平分线交AC 于点E . ∵∠BCD=72º, ∴∠2=12∠BCD=36º, ∵∠DAC=72º, ∴∠ADC=72º,∠1=36º ∴△DAE ∽△CDA ∴AD DCAE DA=, DC=AC,AE=AC-CE=CD-AD即:AD CDCD AD AD=-,去分母得:AD 2+CD·AD-CD 2=0,解得AD =,AD=(舍去),∴AD :CD分 ③或或.…………………………………………………3分AC。

2015年初三一模数学试卷及答案

2015年初三一模数学试卷及答案

2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。

分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。

2015年春初三数学中考模拟复习试卷

2015年春初三数学中考模拟复习试卷

2015年数学中考模拟试卷(本卷共 4 页,三大题,共 22 小题;满分 150 分,考试时间 120 分钟) 友情提示:所有答案都必须填涂在答题卡的相应位置上,答在本试卷一律无效.一,选择题(每题4分,共40分)1. -5的相反数是( )A. 5B. -5C.51 D. 51- 2. 2012年第14届“海交会”参观总人数达489000万人次,用科学记数法表示为( ) A.31089.4⨯ B. 41089.4⨯ C. 51089.4⨯ D. 610489.0⨯ 3. 如图,由4个正方体组成的几何体的主视图是( )A.B.C. D. 4. 已知反比例函数xy 2-=,当x >0时,它的图象在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5. 一元一次不等式组⎪⎩⎪⎨⎧≤->+01111x x 的解集在数轴上表示为( )A. B. C. D.6. 下列由两个圆组成图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.7. 下列方程中有两个相等..的实数根的是( ) A. 12=x B. 0)1(2=+x C. 012=+x D. 0)1(2=+x8. 有一个从袋子中摸球的游戏,小红根据游戏规则,作出了如下图所示的树形图,则此次摸球的游戏规则是( )A. 随机摸出一个球后放回,再随机摸出1个球B. 随机摸出一个球后不放回,再随机摸出1个球C. 随机摸出一个球后放回,再随机摸出3个球D. 随机摸出一个球后不放回,再随机摸出3个球红 红 黄 蓝 黄 红 黄 蓝 蓝 红 黄 蓝 第一次 第二次9. 用直尺和圆规作一个菱形,如图,能得到四边形ABCD 是菱形的依据是( ) A. 一组邻边相等的四边形是菱形 B. 四边相等的四边形是菱形C. 对角线互相垂直的平行四边形是菱形D. 每条对角线平分一组对角的平行四边形是菱形10. 如图,在4×4正方形网格中,以格点为顶点的△ABC 的 面积等于3,则点A 到边BC 的距离为( ) A.3 B. 22 C.4 D . 3二,填空题(每题4分,共20分)11. 分解因式:=-x x 42 .12. 如图所示的三角板中的两个锐角的和等于 度. 13. 如图是一个可以自由转动的转盘,如果转动一次转盘, 停止后指针指向阴影部分的概率是31,则转盘中阴影部分 的扇形的圆心角度数为 . 14. 方程xx 312=-的解是 . 15. 如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线 为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物 线k x y +=221与扇形OAB 的边界总有两个..公共点,则实数k 的 取值范围是 .三,解答题16.(每小题7分,共14分)(1)计算:9)2013(50++--π. (2)化简:)1)(1()1(2+--+a a a .17.(每小题8分,共16分)(1)如图,△ABC 中,AB=AC ,点D 、E分别是AB 、AC 的中点. 求证:BE=CD .(2)“五一”节假日期间,春夏旅行社组织200人到三坊七巷和鼓山旅游,到三坊七巷的人数是到鼓山的人数的2倍少1人,到两地旅游的人数各是多少?AB DC18.(10分)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成图(1)频数分布折线图. (1)请根据图(1)甲,回答下列问题:①这个班共有________名学生,发言次数是5次的男生有_______人,女生有______人; ②男、女生发言次数的中位数分别是________次和______次;(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图(2),求第二天发言次数增加3次的学生人数和全班增加的发言总次数.(1) (2)19.(11分)如图,在正方形网格中建立平面直角坐标系,格点O 为原点,格点A 的坐标为(-1,3).(1)画出点A 关于y 轴对称的格点B ,并写出点B 的坐标( , ); (2)将线段OA 绕着原点O 顺时针旋转90°,点A 落在格点C 处,画出线段OA 扫过的平面区域(用阴影表示),则的长为 ; (3)过点C 作AC 的切线CD ,D 为格点,设直线CD 的解析式为b kx y +=,y 随x 的增大而 ; (填“增大”或“减小”)(4)连接BC ,则tan ∠BCD 的值等于 .20.(12分)如图,△ABC 中,∠C=90°,点O 在AB 上, 以点O 为圆心,OA 为半径的半圆O 与直角边BC 相切于 点F ,分别交AC 、AB 于点D 、E . (1)求证:OF 平分∠DOE ;(2)若CD=1,CF=3,求图中阴影部分面积的和.21.(13分)如图,在△ABC 中,AB=AC=10,sin A =2524,点D 在AB 边上以每秒1个单位长度的速度从点A 向点B 方向运动(点D 不与点A ,B 重合),DE ∥BC 交AC 于点E ,点F 在线段EC 上,且AE EF 41=,以DE 、EF 为邻边作□DEFG ,连接BG .设运动时间为t 秒. (1)AC 边上的高等于 ,=EF (用含t 的式子表示);(2)△DBG 的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值; (3)如果△DBG 是等腰三角形,求t 的值.22.(14分)如图,经过原点O 的抛物线ax ax y 42-=交x 轴于点A ,顶点B 在正比例函数x y 2=的图象上.(1)求抛物线的解析式;(2)在抛物线上取点P ,使得点B 关于直线OP 对称的对称点B '刚好在x 轴上,求点P 的坐标;(3)若点M 在直线OB 上,点N 在x 轴上,求PM +MN +PN 的最小值.(备用图)2013年数学中考模拟试卷1·答题卡三,解答题(共90分)16.(每小题7分,共14分)(1)计算:9)2013(50++--π. (2)化简:)1)(1()1(2+--+a a a .(2)。

2015年5月数学模拟试题及答案

2015年5月数学模拟试题及答案

2015年学业水平考试模拟数学试题2015.5注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷,为选择题,36分;第Ⅱ卷,为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将自己的姓名、准考证号、考试科目、试卷类型填涂在答题纸上。

考试结束,试题和答题纸一并收回。

3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

4.第Ⅱ卷的答案和解题过程,必须用蓝黑钢笔或圆珠笔答在答题纸的有效范围内。

第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,涂在答题纸上,每小题选对得3分. 错选、不选或多选均记零分.)1.下列四个实数中,绝对值最大的数是().A.﹣5 B.-C.2D.42.下列问题中,不适合用全面调查的是().A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱3.把右图中的三棱柱展开,所得到的展开图是().4.下列根式化简后被开方数是3的是().A B C D5.下列等式从左到右的变形,属于因式分解的是().A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)6.一组数据按从大到小的顺序排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据的众数为( ).A .6B .8C .9D .107.如图,一副分别含有30°和45°角的两个直角三角板,拼成如 下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度 数是( ).A .15°B .25°C .30°D .10°8.某河堤的横断面如图所示,堤高BC=6米,迎水坡AB的坡度为1:,则AB 的长为( ).A .12B .4米C .5米D .6米9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( ).A .23π B .23πC .πD .π 10.如果一个三角形的两边长分别是方程x 2﹣8x+15=0的两个根,那么连结这个三角形三边的中点,得到的三角形的周长可能是( ).A .5.5B .5C .4.5D .4 11.如图,的顶点与坐标原点重合,,AO =3BO ,当A 点在反比例函数()图象上移动时,B 点坐标满足的函数解析式是( ).A .1(0)y x x =-<B . 3(0)y x x =-<C . 1(0)3y x x =-<D . 1(0)9y x x=-< 12.如图,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( ).A .45 B .1 C .712D .94第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)13.已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4,﹣1)的对应点D 的坐标为___________. 14.不等式组的解集中,整数解的个数是 __________个.15.如图,梯形ABCD 中,AD ∥BC ,AD=4,AB=5,BC=10,CD 的垂直平分线交BC 于E ,连结DE ,则四边形ABED 的周长等于 .16.如图,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向 依次在射线上描点并连线,若将各条射线所描的点依 次记为1,2,3,4,5,6,7,8,…,那么所描的 第2013个点在射线 上.17.如图,以点P (2,0)M (a ,b )是⊙P 上的一点,则ba的最大值是 .18.如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在格点..上(小正方形的顶点).P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D 构成的三角形与△ABC 相似.写出所有..符合条件的三角形 .三、解答题(本大题共6小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)为了提高学生书写汉字、识别汉字的能力,进一步提高汉语水平,我区举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:(1)求出表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G . (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证CDADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDADCF DE =成立?并证明你的结论.21.(本题满分11分)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.E FG ABCD第24题图①第24题图②ABCDF GE如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连结P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?第22题图①第22题图②如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)过点C的直线与以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE 的解析式.2015中考数学二模试题答案及评分标准一、选择题:ADBCD DAABA AB二、填空题:13.(1,2) 14.6 15.19 16.OE 1718.△DP 2P 5、△DP 2P 4、△DP 4P 5(每个1分)三、解答题 19.解:(1)表中a 的值是:a =50﹣4﹣8﹣16﹣10=12(名).------------------------------------3分(2)根据题意画图如下:---------------------------------------------------------------------------------5分(3)本次测试的优秀率是%44%100501012=⨯+. 答:本次测试的优秀率是44%.------------------------------------------------------------------7分(4)用A 表示小宇B 表示小强,C 、D 表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,--------------------9分则小宇与小强两名男同学分在同一组的概率是61122=.----------------------------------10分 20.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∵DE ⊥CF ,∴∠ADE+∠DFG=90°,又∵∠DCF+∠DFG=90°,∴∠ADE =∠DCF ,--------------------------------------------------------------------------------2分∴△ADE ∽△DCF ,∴DCADCF DE =.------------------------------------------------------------4分(2)当∠B+∠EGC =180°时,DCADCF DE =成立,证明如下: ------------------------------5分在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .-------------------------6分∵AB ∥CD ,∴∠A =∠CDM ,-------------7分∵∠B+∠EGC =180°,∴∠BEG+∠FCB =180°, 又∵∠AED+∠BEG =180°,∴∠AED =∠FCB , ∴∠CMF =∠AED .--------------------------------------------------------------------------------8分∴△ADE ∽△DCM ,∴DCADCM DE =,即DC AD CF DE =.-------------------------------------10分21.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:,--------------------------------------------------------------------3分解得:,答:A 、B 两种型号电风扇的销售单价分别为250元、210元;-------------------------4分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,-------------------------------------------------------7分解得:a ≤10.答:A 种型号的电风扇最多采购10台;------------------------------------------------------8分(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,---------------------- ------10分解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.--------------------11分22.解:(1)证明:∵AB =AC ,∠BAC =∠BPC =60°.∴△ABC 为等边三角形.------------------------------------------------------------- ----------1分∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,--------------- ---------2分又∠APC =∠ABC =60°,∴∠BAC =90°, ------------------------------------ ----------3分∴AC =A P ·tan60°=3AP .--------------------------------------------------------- -------4分ME GF D C B A 第24题图②(2)解:连结AO 并延长交PC 于E ,交BC 于F ,过点E 作EG ⊥AC 于G ,连结OC . ------------------------------------------------------ ---------5分∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF .--------------------------------6分∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a ,∴OF =7a ,AF =32a .----------------------------------8分在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a . 在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aa EG a EG 402432=-,∴EG =12a .-------------------------------------------------------10分 ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF . ---------------------------------------------11分23.解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,---------------------------------1分300×(12﹣10)=300×2=600,即政府这个月为他承担的总差价为600元.---------------------------------------------3分 (2)依题意得,w=(x ﹣10)(﹣10x+500)---------------------------------------------------4分=﹣10x 2+600x ﹣5000=﹣10(x ﹣30)2+4000---------------------------------------------5分 ∵a=﹣10<0,∴当x=30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.-------------------------7分 (3)由题意得:﹣10x 2+600x ﹣5000=3000,解得:x 1=20,x 2=40.------------------------------------8分 ∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000. 又∵x ≤25,∴当20≤x ≤25时,w ≥3000.--------------9分 设政府每个月为他承担的总差价为p 元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.---11分 ∵k=﹣20<0,∴p 随x 的增大而减小, ∴当x=25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.---------12分24.解:(1)由题意,设抛物线的解析式为y=a (x ﹣4)2﹣(a ≠0)∵抛物线经过点(0,2),∴a (0﹣4)2﹣=2,解得a= ∴y=(x ﹣4)2﹣,即:y=x 2﹣x+2.----------2分 当y=0时,x 2﹣x+2=0,解得x=2或x=6GE FAP O第22(2)题图∴A(2,0),B(6,0).-----------------------------3分(2)存在.---------------------------------------------------------4分如图,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小.------------6分∵B(6,0),C(0,2),∴OB=6,OC=2,∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2.--------------------------8分(3)如图,连接ME,∵CE是⊙M的切线,∴ME⊥CE,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE.∵在△COD与△MED中,∴△COD≌△MED(AAS),∴OD=DE,DC=DM.--------------------------------10分设OD=x,则CD=DM=OM﹣OD=4﹣x,则Rt△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2,∴x=,∴D(,0).----------------------------------------------11分设直线CE的解析式为y=kx+b,∵直线CE过C(0,2),D(,0)两点,则,解得:∴直线CE的解析式为y=﹣+2.-----------------------------------------------------------12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.0.8形中,既是中心对称图形又是轴对称图形的是
A B C D
3.如图,直线a,b被直线c所截,a∥b,
∠2=∠3,若∠1=80°,则∠4等于
A.20°B.40°
C.60°D.80°
4.下列计算正确的是
A.2a+3a=6aB.a2+a3=a5C.a8÷a2=a6D. (a3)4=a7
A.x≥ B.x≤3C.x≤ D.x≥3
10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是
A.乙的速度是4米/秒B.离开起点后,甲、乙两人第一次相遇时,距离起点12米C.甲从起点到终点共用时83秒D.乙到达终点时,甲、乙两人相距68米
7.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是
A. 3 B. 4 C. 5 D. 6
(第7题)(第8题)(第9题)(第10题)
8.如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于A.3.5B.4C.7D.14
9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为
5.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是
A.平均数B.中位数C.众数D.方差
6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,及它们所代表的奖项:
颜色
数量(个)
奖项
红色
5
一等奖
黄色
6
二等奖
蓝色
9
三等奖
白色
10
四等奖
为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为A. B. C. D.
16.如图,二次函数 的图象经过点,那么一元二次方程 的根是__________.
17.在函数y=- 的图象上有三个点为(x1,y1)、(x2,y2)、(x3,y3),若y1<0<y2<y3,则x1,x2,x3的大小关系是
18.一组按规律排列的式子: , , , , ,…,其中第7个式子是,第 个式子是(用含的 式子表示, 为正整数).
(1)小军从中任意抽取一张,抽到偶数的概率是;
(2)小红从中同时抽取两张.规定:抽到的两张卡片上的数字之和为奇数,则小军胜,否则小红胜.你认为这个游戏公平吗?请用树状图或表格说明你的理由.
25. (10分)“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:
方案 :每件商品涨价不超过5元;
方案 :每件商品的利润至少为16元.
请比较哪种方案的最大利润更高,并说明理由.
27 . (10分)如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O
切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.
(1)求证:∠BAD=∠DAE;
(2)若AB=6,AD=5,求DF的长.
2015年初中毕业生学业模拟考试
一、选择题:本题共36分,每小题3分,每小题均有四个选项,其中只有一个是符合题意的.
1.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为
(1)求加固后坝底增加的宽度AF;
(2)求完成这项工程需要土石多少立方米?
(结果保留根号)
四、解答题(二),本题共5小题,共50分,解答时,应写必要的文字说明,证明过程或验算步骤。
24. (8分)桌面上有5张背面相同的卡片,正面分别写着数字“1”、“2”、“3”、“4 ”、“5”.将卡片背面朝上洗匀.
28.(12分)已知抛物线与 轴交于点 ,与 轴交于 、 ,其中 , 为方程 的两个根.
(1)求该抛物线的解析式;
(2)点 是线段 上的动点,过点 作 ∥ ,交 于点 ,连结 ,设 的面积为 ,求 关于 的函数关系式及 的面积的最大值;
(3)点 的坐标为 ,问:在直线 上,是否存在点 ,使得 是等腰三角形?若存在,请求出点 的坐标,若不存在,请说明理由.
26. (10分)某商品的进价为每件20元,售价为 每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.
(1)求出每天所得的销售利润 (元)与每件涨价 (元)之间的函数关系式;
(2)求销售单价为多少元时,该商品每天的销售利润最大;
(3)商场的营销部在调控价格方面,提出了 , 两种营销方案.
分组前学生学习兴趣分组后学生学习请结合图中信息解答下列问题:
(1)求出分组前学生学习兴趣为“高”的所占的百分比为_________;
(2)补全分组后学生学习兴趣的统计图;(3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.
二、填空题:本题共32分,每小题4分,把答案写在答题卡中的横线上。
11.若分式 有意义,则x的取值范围是.
12.分解因式: =.
13.一个正多边形的一个外角是40°,这个正多边形的边数是.
14.如图,⊙O的直径CD垂直于弦AB,∠AOC=40°,则∠CDB的度数为.
15.如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=2cm.则图中阴影部分面积为.
A(-2,0)、B(4,0)、C(0,2).(1)请用尺规作出
△ABC的外接圆⊙P(保留作图痕迹,不写作法);
(2)求出(1)中外接圆圆心P的坐标;
23.(10分)如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:√3.
三、解答题(一),本大题共5小题,共38分,解答时,应写必要的文字说明,证明过程或验算步骤。
19.(6分)计算:
20.(6分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.
求证:AC=ED.
21.(8分)先化简,再求值:
22.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为
相关文档
最新文档