1.2.2 函数的表示法 第2课时 分段函数及映射
人教A版必修一数学课件:1.2.2函数的表示法(第2课时分段函数及映射)
研修班
3
x+2,x≤-1 2 已知函数 f(x)=x ,-1<x<2 ,求 f(f(f(-3))) 2x,x≥2 【思路点拨】 由题目可获取以下主要信息: ①函数 f(x)是分段函数; ②本例是求值问题. 解答本题需确定 f(f(-3))的范围,为此又需 确定 f(-3)的范围,然后根据所在定义域代入相 应解析式逐步求解.
2018/12/1 研修班 8
对含有绝对值的函数,要作出其图象,首先应根据绝对值
的意义去掉绝对值符号,将函数转化为分段函数,然后分段作 出函数图象.由于分段函数在定义域的不同区间内解析式不一
样,因此画图时要特别注意区间端点处对应点的实虚之分.
2.写出下列函数的解析式并作出函数图象: (1)设函数y=f(x),当x<0时,f(x)=0;当x≥0时,f(x)=2; (2)设函数y=f(x),当x≤-1时,f(x)=x+1;当-1<x<1时,f(x)
2018/12/1
研修班
2
1.分段函数是一个函数还是几个函数?其定义域、值域各
是什么? 【提示】 分段函数是一个函数而非几个函数,其定义域是
各段定义域的并集,值域是各段值域的并集.
2.函数是映射吗? 【提示】 对比函数定义与映射定义可知,函数是特殊的映
射,是从非空数集到非空数集的映射.
2018/12/1
2018/12/1
研修班
4
【解析】 ∵-3≤-1,∴f(-3)=-3+2=-1 ∴f(f(-3))=f(-1)=1,
∵-1<1<2,
∴f(f(f(-3)))=f(1)=1.
(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相
应的解析式求得. (2)像本题中含有多层“f”的问题,要按照“由里到外”的顺序,层层
高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示
高中数学人教版A版必修一第一章集合与函数概念§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x 叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个B .2个 C .3个D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010. 9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ) A .y =50x (x >0) B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33.如果f (1x )=x1-x,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +75.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1B .15C .4D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后弹簧总长是13.5cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________________________________________________.8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________. 9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310]C .y =[x +410]D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100.∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,故选B.] 4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.]5.B [令1-2x =12,则x =14,∴f (12)=1-(14)2(14)2=15.] 6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k+12,k =12.所以所求的函数解析式为y =12x +12.8.f (x )=-x 2+23x (x ≠0)解析 ∵f (x )=2f (1x )+x ,①∴将x 换成1x ,得f (1x )=2f (x )+1x .②由①②消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x (x ≠0).9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎨⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎨⎧a =-2b =-8.10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎨⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca . 所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3.11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y … -5 0 3 4 3 0 -5 …连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2). (3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.第2课时分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应_____________________________________.2.映射的概念设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一、选择题1.已知,则f(3)为()A.2B.3C.4D.52.下列集合A到集合B的对应中,构成映射的是()3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元4.已知函数,使函数值为5的x的值是()A.-2B.2或-5 2C.2或-2D.2或-2或-5 25.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为() A.13立方米B.14立方米C.18立方米D.26立方米6.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不能表示从P到Q的映射的是()A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x二、填空题7.已知,则f(7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题 10.已知,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是() A.∅B.∅或{1}C.{1}D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.对映射认识的拓展映射f:A→B,可理解为以下三点:(1)A中每个元素在B中必有唯一的元素与之对应;(2)对A中不同的元素,在B中可以有相同的元素与之对应;(3)A中元素与B中元素的对应关系,可以是:一对一、多对一,但不能一对多.3.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”;而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计 1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.] 4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2, 若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎨⎧mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.] 7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6.8.32 {x |x ≥-1且x ≠0}解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎨⎧ x +1, -1≤x <0,-x ,0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧ -a +b =0,b =1.∴⎩⎨⎧a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2. 所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12500.∴d =12500v 2S .当d =S 2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧ S 2 (0≤v <252)12500v 2S (v ≥252).§1.2习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.1.下列图形中,不可能作为函数y=f(x)图象的是()2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.M⊆A,N=BC.M=A,N⊆B D.M⊆A,N⊆B3.函数y=f(x)的图象与直线x=a的交点()A.必有一个B.一个或两个C.至多一个D.可能两个以上4.已知函数,若f(a)=3,则a的值为()A.3B.- 3C.±3D.以上均不对5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()A.[-1,2]B.[-2,2]C.[0,2]D.[-2,0]6.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为() A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤0一、选择题1.函数f (x )=xx 2+1,则f (1x )等于( )A .f (x )B .-f (x )C.1f (x )D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( )A .[-2,2]B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是()4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)二、填空题7.设集合A=B={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为____________.8.已知f(x+1)=x+2x,则f(x)的解析式为___________________________________.9.已知函数,则f(f(-2))=______________________________.三、解答题10.若3f(x-1)+2f(1-x)=2x,求f(x).11.已知,若f(1)+f(a+1)=5,求a的值.能力提升12.已知函数f(x)的定义域为[0,1],则函数f(x-a)+f(x+a)(0<a<12)的定义域为()A.∅B.[a,1-a] C.[-a,1+a]D.[0,1]13.已知函数(1)求f(-3),f[f(-3)];(2)画出y=f(x)的图象;(3)若f(a)=12,求a的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,如果函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零.2.函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等.3.函数的表示方法有列举法、解析法、图象法三种.根据解析式画函数的图象时,要注意定义域对函数图象的制约作用.函数的图象既是研究函数性质的工具,又是数形结合方法的基础.§1.2习题课双基演练1.C[C选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义.]2.C[值域N应为集合B的子集,即N⊆B,而不一定有N=B.]3.C[当a属于f(x)的定义域内时,有一个交点,否则无交点.]4.A[当a≤-1时,有a+2=3,即a=1,与a≤-1矛盾;当-1<a<2时,有a2=3,∴a=3,a=-3(舍去);当a≥2时,有2a=3,∴a=32与a≥2矛盾.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4,∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立,当k =0时,1≠0恒成立,∴k =0符合题意.当k ≠0时,Δ=k 2-4k <0,解得0<k <4,综上,知0≤k <4.]作业设计1.A [f (1x )=1x 1x 2+1=x 1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3,∴-1≤x 2-1≤2,∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.]5.B [用分离常数法.y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞).∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎨⎧ x -y =3x +y =2,∴⎩⎪⎨⎪⎧ x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1,∴f (x )=x 2-1. 由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4,又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t ,原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25. 即f (x )=2x +25.11.解 f (1)=1×(1+4)=5,∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去).当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解.综上可知a =-1.12.B [由已知,得⎩⎨⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎨⎧-a ≤x ≤1-a ,a ≤x ≤1+a . 又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5,∴f (-3)=-3+5=2,∴f [f (-3)]=f (2)=2×2=4.(2)函数图象如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1; 当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1); 当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去. 故a 的值为-92或±22.。
必修1课件:1.2.2函数的表示法
云在漫步
§1.2.2 函数的表示方法
学习目标
第一课时
1、掌握函数的三种表示法:列表法、图象法、解析法, 、掌握函数的三种表示法:列表法、图象法、解析法, 体会三种表示方法的特点。 体会三种表示方法的特点。 2、能根据实际问题情境选择恰当的方法表示一个函数。 、能根据实际问题情境选择恰当的方法表示一个函数。 3、体会数形结合思想在理解函数概念中的重要作用, 、体会数形结合思想在理解函数概念中的重要作用, 在图形的变化中感受数学的直观美。 在图形的变化中感受数学的直观美。
2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日 云在漫步
图象法
列表法
二、由实际问题引入分段函数的概念 某市空调公交车的票价按下列规则制定: 例6 某市空调公交车的票价按下列规则制定: 公里以内(含 公里),票价 公里),票价2元 (1)5公里以内 含5公里),票价 元; ) 公里以内 公里以上, 公里, (2)5公里以上,每增加 公里,票价增加 元(不足 ) 公里以上 每增加5公里 票价增加1元 5公里的按 公里计算)。 公里的按5公里计算 公里的按 公里计算)。 如果某条线路的总里程为20公里 请根据题意, 公里, 如果某条线路的总里程为 公里,请根据题意,写出 票价与里程之间的函数解析式,并画出函数的图象。 票价与里程之间的函数解析式,并画出函数的图象。
1、正比例函数、反比例函数的一般式是怎样的? 正比例函数、反比例函数的一般式是怎样的?
y = kx( k ≠ 0)
k y = (k ≠ 0) x
S = 100t
C = 2πr
人教A版必修一1.2.2.2函数的表示法
x 2, x 0, 因此y= 5 x 2,0 x 1, x 2, x 1.
依上述解析式作出图象,如图.
由图象可以看出:所求值域为
规律方法:对含有绝对值的函数,要作出其图象,首先应根据绝对值 的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数 图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时 要特别注意区间端点处对应点的实虚之分. 变式训练2-1:已知函数f(x)=1+ (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 解:(1)当0≤x≤2时,f(x)=1+ 当-2<x<0时,f(x)=1+
类型一:分段函数及其应用
思路点拨:由题目可获取以下主要信息: ①函数f(x)是分段函数; ②本例是求值问题. 解答本题需确定f(f(-3))的范围,为此又需确定 f(-3)的范围,然后根据所在定义域代入相应解析式逐步求解.
解:∵-3<0,∴f(-3)=0, ∴f(f(-3))=f(0)=π , 又π >0,∴f(f(f(-3)))=f(π )=π +1, 即f(f(f(-3)))=π +1.
(4)是映射,因为A中每一个元素在 符合映射定义.
作用下对应的元素构成的集合
规律方法:(1)给定两集合A,B及对应关系f,判断是否是从集合A到集合B的映 射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”、“一对 一”、“一对多”,前两种对应是A到B的映射,而最后一种不是A到B的映射. (2)理解映射这个概念,应注意以下几点: ①集合A到B的映射,A、B必须是非空集合(可以是数集,也可以是其他集合); ②对应关系有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一 般是不同的; ③与A中元素对应的元素构成的集合是集合B的子集. 变式训练3-1:如图中各图表示的对应构成映射的个数是( )
2019-2020学年人教a版数学必修1课件:1.2.2 第2课时分段函数与映射
(n∈N*,n≥3).
求 f(3),f(4),f[f(4)]的值. 【解析】由题意可知 f(1)=1,f(2)=2,则
f(3)=f(2)+f(1)=2+1=3,
f(4)=f(3)+f(2)=3+2=5,
f[f(4)]=f(5)=f(4)+f(3)=5+3=8.
分段函数的图象及应用 【例 2】已知函数 f(x)=1+|x|-2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【 解 题 探 究 】 讨论x的取值范围 → 化简fx的解析式
•1.2 函数及其表示
1.2.2 函数的表示法
第2课时 分段函数与映射
目标定位
1.掌握简单的分段函数, 并能简单应用. 2.了解映射概念及它与函 数的联系.
重点难点
重点:分段函数的应用及 映射的判断. 难点:分段函数的应用.
• 1.分段函数
• 在函数的定义域内,对于自变量x的不同取值区间, 有 数着. 不对应同关的系_________,这样的函数通常叫做分段函
2a=4a,所以a=2.
• 5.某单位为鼓励职工节约用水,作出了如下规定: 每位职工每月用水不超过10立方米的,按每立方米 m元收费;用水超过10立方米的,超过部分按每立 方米2m元收费.某职工某月缴水费16m元,求该职 工这个月实际用水量.
【解析】该单位职工每月应缴水费y与实际用水量x满足的
关系式为y=m2mx,x-0≤ 10xm≤,1x0>,10.
映射的概念及应用
• 【例3】判断下列对应是不是从集合A到集合B的映 射.
• (1)A=N*,B=N*,对应关系f:x→|x-3|; • (2)A={平面内的圆},B={平面内的矩形},对应关
人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件
考点一
课堂互动讲练
考点突破 分段函数图象的画法
根据分段区间及各段解析式.常用描点法画图,注意区间 端点的虚实.
例1 已知函数 f(x)=1+|x|- 2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【思路点拨】 讨论x的取值范围
→ 化简fx的解析式
例2 从甲同学家到乙同学家的途中有一个公园 甲、乙两家到该公园的距离都是 2 km,甲 10 点钟 发前往乙家,如图表示甲从自家出发到乙家为止 过的路程 y(km)与时间 x(分钟)的关系.依图象回 下列问题:
(1)甲在公园休息了吗?若休息了,休息了多 长时间? (2)甲到达乙家是几点钟? (3)写出函数 y=f(x)的解析式. (4)计算当 x=50 分钟时,甲所走的路程.
x →y=12x.
【思路点拨】 解答本题可由映射定义出发,观察A中任何一 个元素在B中是否都有唯一元素与之对应. 【解】 (1)由于A中元素3在对应关系f作用下其与3的差的绝对 值为0,而0∉B,故不是映射. (2)因为一个圆有无数个内接矩形,即集合A中任何一个元素在 集合B中有无数个元素与之对应,故不是映射.
问题探究
x x≥0 1.y=|x|=-x x<0 可以说 y=|x|是两 个函数吗? 提示:y=|x|,x∈R,仍是一个函数,只是 x ∈[0,+∞)与 x∈(-∞,0)的对应关系不同, 对于具体 x 值,所用的对应关系是唯一的.
2.从定义上看,函数与映射有什么关系? 提示:对比函数定义与映射定义可知,函数是特殊的映射, 是从非空数集到非空数集的映射.并非所有映射都为函数.
将(60,4),(40,2)分别代入,得 k2=110,b=- 2.
必修1课件:1-2-2-2 分段函数与映射【
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
(3)解不等式f(x)>a:
x∈I , 1 f(x)>a⇔ f1x>a, x∈I , 2 或 f2x>a.
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
自主预习 1.当自变量 x 在不同的取值区间(范围)内取值时,函数 的对应法则也不同的函数为 分段函数. 分段函数是一个函数,不是几个函数,只是在定义域的 不同范围上取值时对应法则不同,分段函数是普遍存在又比 较重要的一种函数.
)
[答案]
D
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
6.某班连续进行了 5 次数学测试,其中智方同学 成绩 如表所示,在这个函数中,定义域是 {1,2,3,4,5} {85,88,86,93,95} . 次数 1 2 88 3 93 4 86 5 95 ,值域是
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
思路方法技巧
第一章
1.2
1.2.2 第2课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
1
分段函数及其应用
(浙江专版)201x-201x学年高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.2
解:(1) A 中元素 1,即 x=1,代入对应关系得2xx+1=2×11+1 =13,即与 A 中元素 1 相对应的 B 中的元素是13. (2) B 中元素49,即2xx+1=49,解得 x=4,因此与 B 中元素49相 对应的 A 中的元素是 4.
(√ )
(2)分段函数由几个+x1+,3,x≤x1>,1 是分段函数.
(√ )
(4)若 A=R,B={x|x>0},f:x→y=|x|,其对应是从 A 到 B
的映射.
(× )
2.已知 f(x)=-x2,x,x>x≤0.0, 则 f(-2)=
A.2
B.4
C.-2
[活学活用] 2.已知 f(x)=2fxx,+x2>,0,x≤0, 则 f(-5)的值等于________.
解析:f(-5)=f(-5+2)=f(-3)=f(-3+2)=f(-1)=f(-1 +2)=f(1)=2×1=2. 答案:2
x2+2,x≤2,
3.函数 f(x)=45x,x>2.
若 f(x0)=8,则 x0=________.
分段函数求值
|x-1|-2,|x|≤1, [例 2] 已知函数 f (x)=1+1 x2,|x|>1.
(1)求 f
f
1 2
的值;
(2)若 f(x)=13,求 x 的值.
[解]
(1)因为f
1 2
=12-1-2=-32,
所以f
f
1 2
=f
-32
=1+
1 -
3 2
2=143.
(2)f(x)=13,若|x|≤1,则|x-1|-2=13,
(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)
的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.
3.1.2.2 函数的表示法——分段函数(课件)-
[方法技巧] 1.求分段函数函数值的方法 (1)先确定要求值的自变量属于哪一段区间. (2)然后代入该段的解析式求值,直到求出值为止.当出现 f(f(x0))的 形式时,应从内到外依次求值.(转下页)
[方法技巧] 2.已知函数值求字母取值的步骤 (1)先对字母的取值范围分类讨论. (2)然后代入到不同的解析式中. (3)通过解方程求出字母的值. (4)检验所求的值是否在所讨论的区间内.
知 f(-5)=-5+1=-4,
f(- 3)=(- 3)2+2×(- 3)=3-2 3.
∵f
-5 2
=-52+1=-32,且-2<-32<2,
∴f
f
-5 2
=f
-3 2
=
-3 2
2+2×
-3 2
=94-3=-34.
(2)当 a≤-2 时,a+1=3,即 a=2>-2,不合题意,舍去; 当-2<a<2 时,a2+2a=3,即 a2+2a-3=0. ∴(a-1)(a+3)=0,得 a=1 或 a=-3. ∵1∈(-2,2),-3∉ (-2,2),
3.函数 y=x-2,2,x>x<0,0 的定义域为____________,值域为___________. 答案:(-∞,0)∪(0,+∞) {-2}∪(0,+∞)
4.已知函数 f(x)=x+1 1,x<1且x≠-1, 则 f(2)=________. x-1,x>1,
解析:f(2)= 2-1=1. 答案:1
[ 变式训练]
x-2,x≥0,
1.[ 求函数值] 设 f(x)= x2,x<0,
则 f(f(-2))=________.
解析:∵f(-2)=(-2)2=4,∴f(f(-2))=f(4)=4-2=2.
2020学年高中数学第一章集合与函数概念1.2.2函数的表示法第二课时分段函数与映射课时作业新人教A版必修1
第二课时分段函数与映射选题明细表基础巩固1.(2019·江苏省盱眙中学、泗洪中学高一上第一次联考)函数f(x)=则f(f(-2 018))等于( B )(A)1 (B)-1 (C)2 018 (D)-2 018解析:由题意可得f(-2 018)=1,所以f(f(-2 018))=f(1)=1-2=-1.故选B.2.函数f(x)=|x-1|的图象是( B )解析:由绝对值的意义可知当x≥1时y=x-1,当x<1时,y=1-x.故选B.3.集合A的元素按对应法则“先乘再减1”和集合B中的元素对应,在这种对应所成的映射f:A →B.若集合B={1,2,3,4,5},那么集合A不可能是( C )(A){4,6,8} (B){4,6}(C){2,4,6,8} (D){10}解析:按对应法则“先乘再减1”,结合集合B={1,2,3,4,5}可知A中的元素可以为{4,6,8,10,12}.但是不可能为2.故选C.4.若A={某中学高一年级学生},B={男,女},从A→B的对应法则f1:A中的每一个元素,在集合B 中对应其性别.又C=D=R,从C→D的对应法则f2:x→x的倒数.则以下说法正确的是( B )(A)f1,f2都是映射(B)f1是映射,f2不是映射(C)f1不是映射,f2是映射(D)f1,f2都不是映射解析:A中的每一个元素在B中都有唯一元素与其对应;C中的数0在D中没有对应元素,故f1是映射,f2不是映射.故选B.5.(2019·重庆巴蜀中学高一上期中)已知函数f(x)=若f[f(0)]=a2+1,则实数a 等于( D )(A)-1 (B)2(C)3 (D)-1或3解析:由题意得f(0)=20+1=2,所以f[f(0)]=f(2)=2a+4,又f[f(0)]=a2+1,所以2a+4=a2+1,即a2-2a-3=0,解得a=-1或a=3.故选D.6.(2019·河南林州第一中学高一调研)设f(x)=则f(5)的值为( B )(A)10 (B)11 (C)12 (D)13解析:因为f(11)=11-2=9,所以f(5)=f[f(5+6)]=f[f(11)]=f(9),因为f(15)=15-2=13,所以f(9)=f[f(9+6)]=f[f(15)]=f(13)=13-2=11.所以f(5)=11.7.(2017·山东卷)设f(x)=若f(a)=f(a+1),则f()等于( C )(A)2 (B)4 (C)6 (D)8解析:因为y=(0<x<1)和y=2(x-1)(x≥1),都是单调函数,所以0<a<1,由f(a)=f(a+1)得=2(a+1-1),所以a=,所以f()=f(4)=2×(4-1)=6.故选C.8.下列函数图象可能是分段函数图象的序号是.解析:②中的图象是y=x2的图象,④中不是函数图象.答案:①③能力提升9.国家规定个人稿费纳税办法:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11.2%纳税.已知某人出版一本书,共纳税420元,则这个人应得稿费(扣税前)为( C )(A)2 800元(B)3 000元(C)3 800元(D)3 818元解析:设纳税额为y元,稿费(扣税前)为x元,由题意,知纳税额y元与稿费(扣税前)x元之间的函数关系式为y=由于此人纳税420元,所以当800<x≤4 000时,则(x-800)×0.14=420,解得x=3 800,符合题意;当x>4 000时,0.112x=420,解得x=3 750(舍去),故这个人应得稿费(扣税前)为3 800元.故选C.10.(2019·江苏南菁高级中学高一上第一次测试)设f(x)=则使得f(m)=1成立的m值是( D )(A)10 (B)0,10(C)1,-1,11 (D)0,-2,10解析:当m<1时,f(m)=(m+1)2=1,所以m=-2或m=0,当m≥1时,f(m)=4-=1,所以m=10.综上可知,m的取值为-2,0,10.故选D.11.若f:x→x2+1是从集合A到集合B的映射,且A={-3,-2,-1,0,1,2,3},则集合B中至少有个元素.解析:因为x=±3时,y=x2+1=10,x=±2时,y=x2+1=5,x=0时,y=x2+1=1,x=±1时,y=x2+1=2,因此在对应关系f的作用下,集合B中至少含有元素1,2,5,10.答案:412.(2019·湖南浏阳六校高一期中联考)某汽配厂生产某种零件,每个零件的出厂单价为60元,为了鼓励更多销售商订购,该厂决定当一次订购超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量最少为多少时,零件的实际出厂单价恰好为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式.解:(1)设一次订购量最少为a件时,零件的实际出厂单价恰好为51元.a=100+,所以a=550(件).(2)0<x≤100且x∈N,f(x)=60,100<x<550且x∈N,f(x)=60-(x-100)×0.02=62-0.02x,x≥550且x∈N,f(x)=51,所以P=f(x)=探究创新13.(2019·广东华南师范大学附中高一上期中)设函数f(x)=若对任意的x都满足x·f(x)≤g(x)成立,则函数g(x)可以是( B )(A)g(x)=x (B)g(x)=|x|(C)g(x)=x2(D)不存在这样的函数解析:当x为无理数时,f(x)=0,xf(x)≤g(x)⇔0≤g(x),当x为有理数时,f(x)=1,xf(x)≤g(x)⇔x≤g(x),若g(x)=x,当x=-时,g(x)<0,即A不正确;若g(x)=|x|,已知对任意实数,x≤|x|,且|x|≥0,故当x为有理数或无理数时,不等式恒成立,即B正确;若g(x)=x2,当x=,则g()=,>,即C不正确.故选B.。
1.2.2函数的表示法
例题剖析
例3 某种笔记本的单价是5元,买x(x{1,2,3,4,5}) 个笔记本需要y元。试用函数的三种表示法表示函数 y=(x)。 解:这个函数的定义域是数集{1,2,3,4,5}用解 析法可将函数y=f(x)表示为y=5x,x{1,2,3,4,5}. 用列表法可将函数表示为 笔记本数x 钱数y 1 5 2 10 3 15 4 20 5 25
y 100
90 80
70
.
班♦ 平 均 分
■
▲
ቤተ መጻሕፍቲ ባይዱ. . . .
▲
.
■ ▲
王伟
♦
▲
♦ ▲
■
■
♦
♦ 张城
▲ ■
■
♦
赵磊
60 0
1
2
3
4
5
6
x
例5 画出函数y=|x|的图象. 解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.y
5
4 3 2
1 -3 -2 -1 0 1
2 3 x
有些函数在它的定义域中,对于自变量X的不同取值 范围,对应关系不同,这样函数通常称为分段函数。
第一次 第二次 王伟 张城 赵磊 班级平均分 98 90 68 88.2 87 76 65 78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
y 100
90 80
70
.
班♦ 平 均 分
■
▲
. . . .
▲
应关系f,在集合B中都有唯一的元素和它对应,那么这个
第一章 1.2.2(2)简单函数作图
1.2.2 第2课时
探究点一 :函数图象的作法
例1 画出函数 y=|x|的图象.
解 由绝对值的概念, 有
x, x≥0, y= -x,x<0.
所以,函数 y=|x|的图象如图所示.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.2.2 第2课时
探究点一 :函数图象的作法
主目录
探要点、究所然
当堂测、查疑缺
1.2.2 第2课时 (4) y
1 f ( x) x x
2
1
0
1 2
x
明目标、所然
当堂测、查疑缺
探要点、究所然
1.2.2 第2课时
探究点一 :函数图象的作法
跟踪训练 1 作出下列函数的图象: 1 (2)y=x; (1)y=1-x,x∈Z; (3)y=x2-4x+3,x∈[1,3].
1 y x (4) x
解 (1)因为 x∈Z,所以图象为一条直线上的孤立点,如图 1 所示;
明目标、知重点
第一章 集合与函数概念
§1.2 函数及其表示 1.2.2 函数的表示法
第2课时 分段函数及映射
探要点、究所然
1.2.2 第2课时
探究点一 :函数图象的作法
思考 作函数的图象通常分为哪几步?
答 通常分为三步,即列表、描点、连线.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
反思与感悟
(1)画函数图象时首先要考虑函数的定义域. (2)要标出关键
点,如图象的顶点、端点、与坐标轴的交点等,要分清这些关键点是实心 还是虚心.(3)要掌握常见函数图象的特征.(4)函数图象既可以是连续的曲 线,也可以是直线、折线、离散的点等等.
1.2.2 第二课时(分段函数)
(2)y
=
2-(22-xx1((≤yxx
< x >
-1) ≤1) 1)
(3)y
=
x2 -
-x2
2x - 3(x < -1或x > 3) + 2x + 3(-1≤x ≤3)
y
பைடு நூலகம்
1 -1 O-1 x
2 -1 O 1 x
4 -1 O 1 3 x -4
资中县龙结中学高一数学组
二、典型例题 (1)由上面所画图象你能说出函数f(x)=︱x︱
例1 画出函数y=︱x︱的图象
解:因为y
=∣x∣=
x(x≥ -x(x <
0),所以y 0)
=∣x∣的图象如右图.
y 1
-1 O 1 x
你能正确画出下列函数的图象吗?
(1)y =∣x +1∣(2)y =∣x +1∣+∣x -1∣(3)y =∣x2 - 2x - 3∣
(1)y =
x +1(x≥ -1) -x -1(x < 1)
资中县龙结中学高一数学组
三、课堂小结 1. 分段函数
像上面例题那样的函数就称为分段函数.
2. 注意事项 画函数的图象一定要在定义域范围内.
资中县龙结中学高一数学组
四、巩固提升
1. 课堂练习: 第23页第3题
2. 课堂作业: 第24页A组第7题、B组第3题. 第44页B组第4题.
资中县龙结中学高一数学组
第二课时 (分段函数)
资中县龙结中学高一数学组
一、知识回顾 1.函数有哪几种表示法? 解析法、图象法、列表法. 2.描点法画函数图象的步骤是怎样的?
列表、描点、连线(光滑的线).
人教新课标版数学高一必修1学案 函数的表示法(二)
1.2.2 函数的表示法(二)自主学习1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题. 2.了解映射的概念及含义,会判断给定的对应关系是否是映射.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.(3)作分段函数图象时,应分别作出每一段的图象. 2.映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
3.映射与函数由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是非空数集.对点讲练分段函数的求值问题【例1】 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2 (-1<x <2),2x (x ≥2).(1)求f [f (3)]的值; (2)若f (a .)=3,求a . 的值.分析 本题给出的是一个分段函数,函数值的取得直接依赖于自变量x 属于哪一个区间,所以要对x 的可能范围逐段进行讨论. 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a .≤-1时,f (a .)=a .+2,又f (a .)=3,∴a .=1(舍去);当-1<a .<2时,f (a .)=a .2,又f (a .)=3,∴a .=±3,其中负值舍去,∴a .=3;当a .≥2时,f (a .)=2a .,又f (a .)=3, ∴a .=32(舍去).综上所述,a .= 3.规律方法 对于f (a .),究竟用分段函数中的哪一个对应关系,与a . 所在范围有关,因此要对a .进行讨论.由此我们可以看到: (1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x (x <0),若f (a .)>a .,则实数a .的取值范围是________.答案 a .<-1解析 当a .≥0时,f (a .)=12a .-1,解12a .-1>a .,得a .<-2与a .≥0矛盾,当a .<0时,f (a .)=1a ,解1a>a .,得a .<-1.∴a .<-1.分段函数的图象及应用【例2】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 化简f (x )的解析式 →化简f (x )的解析式 →把f (x )表示为分段函数形式→画出f (x )的图象→求f (x )的值域 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎨⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移 2 设函数f (x )=⎩⎪⎨⎪⎧|x +1| (x <1)-x +3 (x ≥1),使得f (x )≥1的自变量x 的取值范围是______________________. 答案 (-∞,-2]∪[0,2] 解析在同一坐标系中分别作出f (x )及y =1的图象(如图所示),观察图象知,x 的取值范围是(-∞,-2]∪[0,2].映射概念及运用【例3】 判断下列对应关系哪些是从集合A 到集合B 的映射,哪些不是,为什么?(1)A={x|x 为正实数},B={y|y ∈R[},f :x →y=±x(2)A=R ,B={0,1},对应关系f :x,→y =⎩⎪⎨⎪⎧1, x ≥0;0, x<0;(3)A=Z ,B=Q ,对应关系f :x →y=1x;(4)A={0,1,2,9},B={0,1,4,9,64},对应关系f:a →b=()21a -解 (1)任一个x 都有两个y 与之对应,∴不是映射.(2)对于A 中任意一个非负数都有唯一的元素1和它对应,任意一个负数都有唯一的元素0和它对应, ∴是映射.(3)集合A 中的0在集合B 中没有元素和它对应,故不是映射. (4)在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,∴是映射.规律方法 判断一个对应是不是映射,应该从两个角度去分析:(1)是否是“对于A 中的 每一个元素”;(2)在B 中是否“有唯一的元素与之对应”.一个对应是映射必须是这两个方面都具备;一个对应对于这两点至少有一点不具备就不是映射.说明一个对应不是映射,只需举一个反例即可. 变式迁移3 下列对应是否是从A 到B 的映射,能否构成函数? (1)A=R ,B=R,f:x →y =1x +1;(2)A ={a.|a.=n ,n ∈N +},B =⎩⎨⎧⎭⎬⎫b|b =1n ,n ∈N +,f :a.→b =1a;(3)A=[)0,+∞,B=R ,f:x→y 2=x ;(4)A ={x|x 是平面M 内的矩形},B ={x|x 是平面M 内的圆},f :作矩形的外接圆. 解 (1)当x =-1时,y 的值不存在, ∴不是映射,更不是函数.(2)是映射,也是函数,因A 中所有的元素的倒数都是B 中的元素.(3)∵当A 中的元素不为零时,B 中有两个元素与之对应,∴不是映射,更不是函数. (4)是映射,但不是函数,因为A ,B 不是数集.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,主要利用映射的定义:(1)集合A 到B 的映射,A 、B 必须是非空集合(可以是数集,也可以是其他集合); (2)对应关系有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;(3)与A 中元素对应的元素构成的集合是集合B 的子集.课时作业一、选择题1.下列集合A 到集合B 的对应f 是映射的是( ) A .A ={-1,0,1},B ={-1,0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =N *,f :a .→b =(a .+1)2D .A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ) A . f:x→y =12x B. f:x→y =13xC. f:x→y =14xD. f:x→y =16x答案 A由f:x →y =12x ,集合A 中的元素6对应3∉{y |0≤y ≤2},故选项A 不是映射.3.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .5 答案 A解析 由题意知f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.4.已知f (x )=⎩⎪⎨⎪⎧ x 2 (x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]等于( )A .-xB .-x 2C .xD .x 2 答案 B解析 当x <0时,g (x )=-x 2<0, ∴f [g (x )]=-x 2. 二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.答案 π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥00,x <0,则不等式xf (x )+x ≤2的解集是__________.答案 {x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2, 解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2, 解得x ≤2,∴x <0. 综上可知x ≤1. 三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x <3)的图象. 解 作出y =[x ]的图象如下图所示.8.已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1).∵点(1,1)、(0,2)在射线上,∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2.∴左侧射线对应的函数解析式为y =-x +2 (x <1). 同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a .(x -2)2+2 (1≤x ≤3,a .<0),∵点(1,1)在抛物线上,∴a .+2=1,a .=-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为 y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).【探究驿站】9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1, 当x ∉[0,1]时,f [f (x )]=f (x -3),若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1, 若x -3∉[0,1],f (x -3)=(x -3)-3, 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。
第一章 1.2 1.2.2 第二课时 分段函数与映射
返回
解:因为 260÷ 52=5 (h),260÷ 65=4 (h), 所以,当 0≤t≤5 时,s=52 t; 当 5<t≤6.5 时,s=260; 当 6.5<t≤10.5 时,s=260+65(t-6.5). 52t,0≤t≤5, 所以 s=260,5<t≤6.5, 260+65t-6.5,6.5<t≤10.5.
因为 ABCD 是等腰梯形, 底角为 45° ,AB=2 2 cm, 所以 BG=AG=DH=HC=2 cm. 又 BC=7 cm,所以 AD=GH=3 cm.(2 分)
返回
[名师批注]
(1)当点 F 在 BG 上时, 1 2 即 x∈[0,2]时,y= x ;(4 分) 2
此时,l左侧的部分为等腰直 角三角形△BFE.
分段函数与映射
返回
分段函数 [提出问题]
某市空调公共汽车的票价按下列规则判定: (1)5 千米以内,票价 2 元; (2)5 千米以上,每增加 5 千米,票价增加 1 元(不足 5 千米的按 5 千米计算). 已知两个相邻的公共汽车站间相距 1 千米,沿途(包括 起点站和终点站)有 11 个汽车站.
返回
[解题流程] 求线l左边部分的面积y关于x的解析式 (1)欲求l 左侧的面积,应先确定形状(2)l在 AB之间,l在DC之间时,其左 侧的形状不
同,应分类讨论
l自左向右移动→确定l左侧图形形状→求图 形面积→建立所求函数解析式→画图像
返回
[规范解答] 过点 A,D 分别作 AG⊥BC,DH⊥BC,垂足分别是 G,H.
映射的定义
设A、B是两个 非空 的集合,如果按某一个确定的对应 关系f,使对于集合A中的 任意一个 元素x,在集合B中都有 唯一确定 的元素y与之对应,那么就称对应 f:A→B 为从集 合A到集合B的一个映射.
【红对勾】高中数学 1.2.2.2分段函数与映射课件 新人教版必修1
映射
设A、B是两个 非空 的集合,如果按某一个确定的 对应关系f,使对于集合Aቤተ መጻሕፍቲ ባይዱ的任意一个元素x,在集合B 中都有 唯一确定 的元素y与之对应,那么就称对应
f:A→B 为从集合A到集合B的一个映射.
4.如何判断一个对应是不是映射? 提示:只要检验对于A中的任意一个元素,按对应关系 f,是否在B中有唯一确定的元素与之对应即可.若是,则 这个对应是映射,否则,不是映射.
答案:-3
分段函数的图象及应用
2 x 已知f(x)= 1
【例2】
-1≤x≤1, x>1,或x<-1,
(1)画出f(x)的图象; (2)求f(x)的定义域和值域.
【解】
(1)利用描点法,作出f(x)的图象,如图所示.
(2)由条件知,函数f(x)的定义域为R.由图象知,当- 1≤x≤1时,f(x)=x2的值域为[0,1],当x>1或x<-1时,f(x) =1,所以f(x)的值域为[0,1].
第一章
集合与函数的概念
1.2
函数及其表示
1.2.2
函数的表示法
第2课时 预习篇
分段函数与映射
巩固篇
课堂篇
课时作业 提高篇
学习目标
1.能记住什么是分段函数,并会求分段函数的值; 2.能画出一些简单分段函数的图象,并通过图象指出 函数的某些性质如值域; 3.能说出映射的定义,并能判断一些对应是否是映射.
x+1,-1≤x<0 答案:f(x)= -x,0≤x≤1
2 x +1,x≤0, (2)已知函数f(x)= -2x,x>0,
若f(x)=10,则x=
________.
解析:当x≤0时,f(x)=x2+1=10,∴x=-3, 当x>0时,f(x)=-2x=10,∴x=-5(舍去), 综上可知,x=-3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
域是各段值域的并集.
(3)求分段函数段,就用哪一段的
解析式.
即时训练:
以下叙述正确的有( C )
(1)分段函数的定义域是各段定义域的并集.值域是各段 值域的并集. (2)分段函数在定义域的不同部分有不同的对应法则, 但它是一个函数.
(4) 集合A={x|x是新华中学的班级}, 集合B={x|x是新华中学的学生},
每一个学生都对应他的班级; 对应关系f:每一个班级都对应班里的学生;
f : B A是 集 合 B 到 集 合 A 的 映 射 吗 ? 是
结 映射是有方向的,从A到B的对应关系是映射,从B到A的对应 论 关系不一定是映射,如果是,那么两个映射往往是不一样的.
练习:
设A={x|x是锐角},B=(0,1),从A到B的映射是“求 正弦”,与A中元素60°相对应的B中的元素是什么?
2 与B中元素 相对应的A中的元素是什么? 2
提示: f
: A B
3 60 2 2 45 2
1.设A=[0,2], B=[1,2], 在下列各图中,能表示 f:A→B的函数是( D ) y
可画出函数图象,
如右图:
10 15 20
x
【变式练习】
, x 9, x 3 1.已知 f ( x) f ( f ( x 4)) , x 9.
求 f 15 , f 7 的值.
解: f 15 12,f 7 6
函数值作为 自变量
2.某质点在30s内运动速度
映射的概念
一般地,设A、B是两个非空的集合,如果按某一个确 定的对应关系f,使对于集合A中的任意一个元素x,在集 合B中都有唯一确定的元素y与之对应,那么就称对应 f:A→B为从集合A到集合B的一个映射.
注意
若对应是映射,必须满足两个条件:
针对于集 合A来说, 不管集合B
①A中任何一个元素在B中都有元素与之对应. ②A在B中所对应的元素是唯一的.
(3)若D1、D2分别是分段函数的两个不同对应法则的 值域,则D1∩D2≠∅也能成立. A.1个 B.2个 C.3个 D.0个
1.求分段函数的函数值: x+2, x≤-1;
例1
已知函数f(x)=
x 2, -1 <x < 2 ;
2x, x≥2.
1 ,f 5 的值; (1)求 f 3 ,f( ) 2
2 A. 1 1 0 y 2 C. 1 2 B. 2 1 0 y 1 2 D. 1 2 1 2
y
x
x
0
x
0
1
2
x
2.集合A={a,b,c},B={d,e},则从A到B可以建立
不同的映射个数为( C )
A.5
B.6
C.8
D.9
【解析】逐一列出所有的映射为:
c d, b d c e, a d b e c d, c e,
100 x 5750 , x ≤ 100 , x N 由已知得 y (130 0.3 x ) x 5750 , x 100 , x N
分段函数 有些函数在它的定义域中,对于自变量的 不同取值范围,对应关系不同,这种函数通常 称为分段函数.
注意 (1)分段函数是一个函数,不要把它误认为是几
因此还可以用映射的概念来定义函数: 如果A、B是非空数集,那么A到B的映射f:A→B, 就叫做A到B的函数, 记作:y=f(x) 函数是一种特殊的映射
函数 映射 对应
通过以下练习进一步掌握映射的概念,以及映射与函
数的联系与区别.
思考:以下对应是否是映射?
A B
求正弦
30
0 0 0
1 2 2 2 3 2 1
5.某市居民自来水收费标准如下:每户每月用水不 超过4吨为每吨1.80元,当用水超过4吨,超过部分 每吨3.00元,某月甲、乙两户居民共缴水费y元,已 知甲、乙两户的用水量分别为5x、3x(吨). (1)求y关于x的函数; (2)若甲、乙两户该月共缴水费26.40元,分别求出 甲、乙两户该月的用水量和水费. 4 14.4x,0≤x≤ , 【解析】(1)依题意得y=
只要你能把数报对, 我就知道是什么牌
1.通过实例体会分段函数的概念. 2.会用分段函数解决简单的实际问题.(重点) 3.了解映射的概念及表示方法,并会判断一个 对应关系是否是映射. (难点)
探究点1 分段函数
某宾馆有相同标准的床位 100 张,根据经验,当该宾馆的 床价(即每张床位每天的租金)不超过 100 元时,床位可以 全部租出,当床位高于 100 元时,每提高 10 元,将有 3 张床 位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格, 条件是:①要方便结账,床价应为 10 元的整数倍;②该宾馆 每日的费用支出为 5750 元,床位出租的收入必须高于支出, 而且高出得越多越好. 若用 x 表示床价, 用 y 表示该宾馆一天出租床位的净收入 (即 除去每日的费用支出后的收入) ,试把 y 表示成 x 的函数,
第2课时 分段函数及映射
某魔术师猜牌的表演过程是这样的,表演者手中持有 六张扑克牌,不含王牌和牌号数相同的牌,让6位观众 每人从他手里任摸一张,并嘱咐摸牌时看清和记住自 己的牌号,牌号数是这样规定的,A为1,J为11,Q为 12,K为13,其余的以牌上的数字为准,然后,表演者 让他们按如下的方法进行计算,将自己的牌号乘 2加3 后乘5,再减去25 ,把计算结果告诉表演者 ( 要求数值 绝对准确),表演者便能立即准确地猜出谁拿的是什么 牌,你能说出其中的道理吗?
vcm/s是时间t的函数,它的 图象如右图,用解析式表示 出这个函数.
v/cm·s-1 30 25 20 15 10 30 t/s
解:v(t)=
t+10, (0 ≤ t<5) O 5 10 3t,(5 ≤ t<10) 30,(10 ≤t <20) -3t+90,(20 ≤ t≤30)
20
探究点2 映射
所以甲用户的用水量为5x=7.5(吨), 缴水费4×1.8+3.5×3=17.7 (元), 乙用户用水量为3x=4.5(吨), 缴水费4×1.8+0.5×3=8.7(元).
1.分段函数
分段函数
概念
图象
求函数值
2.映射
映射
有序性
存在性
唯一性
昨天是已经走过的,明天是即将走过的, 惟有今天正在走过……
华中学的学生},对应关系f:每一个班级都对应班里的
学生. 不是
思考交流
对于课本本节例7中的(3),(4)作如下改编. (3)集合A={x|x是三角形},集合B={x|x是圆}, 对应关系f:每一个三角形都对应它的内切圆; 每一个圆都对应它的内接三角形;
f : B A是 集 合 B 到 集 合 A 的 映 射 吗 ? 不是.
填写下图中的对应关系
(1)相应国家的首都 (2)求平方
A
中 国 韩 国
(3)乘以2
A
1 2 3
B
北 京 首 尔
X的首都
A
1 - 1 2 -2 3 - 3
B
1 4 9
B
1 2 3 4 5 6
x
x
多对一
一对一
x2
x
2x 一对一
(1),(2),(3)的共同特征:集合A中的任何一个元素, 在集合B中都有唯一的元素和它对应.
例4
以下给出的对应是不是从集合A到B的映射?
(1)集合A={P|P是数轴上的点},集合B=R,对应关系
f:数轴上的点与它所代表的实数对应;是 (2)集合A={P|P是平面直角坐标系中的点},集合B= {(x,y)| x∈R,y∈R},对应关系f:平面直角坐标系 中的点与它的坐标对应;是 (3)集合A={x|x是三角形},集合B={x|x是圆},对应 关系f:每一个三角形都对应它的内切圆; 是 (4)集合A={x|x是新华中学的班级},集合B={x|x是新
5 4 3 2 1 -3 -2 -1 0 1 2 3
x
3.求分段函数的解析式 例3 某市“招手即停”公共汽车的票价按下列规则制定:
(1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足5公里
的按5公里计算).
如果某条线路的总里程为20公里,请根据题意,
写出票价与里程之间的函数解析式,并画出函数的图象.
D.
3
4.已知函数y=|x+1|+|1-x|.
(1)用分段函数形式写出函数
的解析式;
2x,当x< 1时, 【解析】 (1)函数y=|x+1|+|1-x|= 2,当 1 x 1时, 2x,当x>1时,
(2)画出该函数的大致图象.
(2)据(1)中函数的
解析式画出图象如图所示:
解:设票价为y元,里程为x公里,由题意可知,自变量x
的取值范围是(0,20]
由“招手即停”公共汽车票价的制定规定,可得到以下 函数解析式:
y 5
y=
2, 3, 4, 5,
0<x ≤ 5 5 < x ≤ 10 10 < x ≤ 15 15 < x≤20
○ ○ ○
4 3
2○ 1 O 5
根据这个函数解析式,
45 60 90
0
提示:是映射 一对一型
A B
求平方
3 -3 2 -2 1 -1
9 4 1
提示:是映射 多对一型
A B
开平方
9 4
3 -3 2 -2 1 -1
1
提示:不是 映射
A B
乘以 2
1
2 3