函数的概念第二课时教学设计
《3.1函数的概念》教学设计教学反思-2023-2024学年中职数学高教版21基础模块上册
《函数的概念》教学设计方案(第一课时)一、教学目标1. 理解函数的概念,掌握函数的三要素。
2. 能够正确描述函数关系,理解自变量和因变量的关系。
3. 培养运用函数观点看待问题的意识。
二、教学重难点1. 教学重点:理解函数的概念,掌握描述函数关系的方法。
2. 教学难点:理解自变量和因变量的关系,掌握函数的三要素。
三、教学准备1. 准备教学用具:黑板、白板、笔、函数图表等。
2. 准备教学内容:设计案例,帮助学生理解函数概念。
3. 复习相关知识:在讲授新课前,简要复习方程、等式、变量等预备知识。
4. 确定教学方法:采用案例教学、小组讨论、课堂互动等方法,引导学生积极参与,加深理解。
四、教学过程:本节课的主要教学目标是帮助学生理解函数的概念,培养他们的数学思维能力和抽象思维能力。
在教学过程中,我们将通过以下几个环节来实施:1. 引入环节:首先,我们会通过一些具体的实例,让学生直观地了解函数的概念和性质。
这些实例可以包括商品价格与时间的关系、路程与时间的关系等等。
通过这些实例,学生可以初步感受到函数在现实生活中的应用,从而激发他们的学习兴趣。
2. 讲解环节:在引入环节之后,我们将进入讲解环节。
在这个环节中,我们会详细解释函数的定义,包括定义域、值域、对应法则等概念。
同时,我们还会引导学生理解函数的三要素,即定义域、值域和对应法则。
通过这些讲解,学生可以更加深入地理解函数的概念。
3. 探究环节:为了帮助学生更好地理解和掌握函数的概念,我们将组织学生进行探究活动。
这些活动可以包括小组讨论、案例分析等等。
通过这些活动,学生可以更加深入地思考函数的问题,从而培养他们的数学思维能力和抽象思维能力。
4. 反馈与评价:在教学过程中,我们会及时收集学生的反馈,了解他们对知识的掌握情况。
同时,我们还会通过课堂小测验、课后作业等方式,对学生的掌握情况进行评估。
根据学生的反馈和评估结果,我们会及时调整教学策略,确保教学效果的优化。
新课程《3.1 函数的概念及其表示》教学设计(2课时)
3.1.1 函数的概念1.通过丰富的买例进一步体会函数是描述变量之间的依赖关系的重要数学模型;2.用集合与对应的思想理解函数的概念;3.理解函数的三要素及函数符号的深刻含义;4.会求函数的定义域。
1.教学重点:函数的概念,函数的三要素;2.教学难点:函数的概念及符号()y f x =的理解。
一、函数的概念:设A 、B 是 的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作:y=f(x) x ∈A .x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合{ f(x)| x ∈A }叫做函数的 . 二、区间三、函数的三要素: 、 、 。
四、判断函数相等的方法: 、 。
一、复习回顾,温故知新1. 初中学习的函数的定义是什么?定义 名称 符号 数轴表示{|}x a x b ≤≤ 闭区间 [a,b] {|}x a x b << 开区间 (a,b) {|}x a x b ≤<半开半闭区间 [a,b){|}x a x b <≤ 半开半闭区间 (a,b] {|}x x a ≥ {|}x x a > {|}x x b < {|}x x b ≤2.回顾初中学过哪些函数?二、探索新知探究一函数的概念问题1. 某“复兴号”高速列车到350km/h后保持匀速运行半小时。
这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为 S=350t。
1.思考:根据对应关系S=350t,这趟列车加速到350km/h后,运行1h就前进了350km,这个说法正确吗?问题2 某电气维修告诉要求工人每周工作至少1天,至多不超过6天。
如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w(单位:元)是他工作天数d的函数吗?2.思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?问题3 如图,是北京市2016年11月23日的空气质量指数变化图。
《函数的概念》教学教案
《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。
2. 掌握函数的表示方法,包括列表法、图象法、解析式法。
3. 能够判断两个变量之间的关系是否为函数。
4. 理解函数的性质,如单调性、奇偶性等。
二、教学内容1. 函数的定义及概念。
2. 函数的表示方法:列表法、图象法、解析式法。
3. 判断两个变量之间的关系是否为函数。
4. 函数的性质:单调性、奇偶性。
三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。
2. 教学难点:函数的性质的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。
2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。
3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。
2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。
3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。
4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。
5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。
6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
7. 总结本节课的主要内容,布置课后作业,巩固所学知识。
六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。
2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。
3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。
2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。
3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。
八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。
《函数的概念》教学设计
《函数的概念》教学设计【课时目标】了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;理解:函数概念的本质;抽象的函数符号的意义; (为常数与的区别与联系;会求一些简单函数的定义域;经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.【重点】函数概念的形成,正确理解函数的概念.【难点】发展学生的抽象思维能力,对函数概念本质的理解.【教法】问题导向式教学【学法】探究式学法【教学用具】黑板板书为主结合多媒体来辅助教学。
【教学过程】2020年6月23日,我国著名的北斗三号压轴卫星成功发射,我们时刻关注着北斗系统的第30颗卫星离地面的距离随时间是如何变化的,数学上可以用来描述这种运动变化中的数量关系.1.回忆旧知,引出困惑问题一:初中函数的定义是什么?是函数吗?学生活动:学生思考并回答.2.创设情境,形成概念实例一:一枚炮弹发射后,经过落到地面击中目标.炮弹的射高为,且炮弹距地面的高度(单位:)随时间(单位:)变化的规律是:.问题二:1.的范围是什么?的范围是什么?2.和有什么关系?这个关系有什么特点(师生共同完成)实例二:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.时间(年)1991199219931994199519961997199819992002001恩格尔系数(%53.852.950.149.949.948.646.444.541.939.237.9)通过先对两个实例的学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题三:实例一、实例二、实例三的对应关系在呈现方式上有什么不同?问题四:以上三个实例有什么相同的特征?学生活动:学生分组讨论交流,总结归纳出:共同特点:①都有两个非空数集;②两个数集之间都有一种确定的对应关系;③对于数集中的每一个,按照某种对应关系,在数集中都有唯一确定的值和它对应.问题五:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(学生回答老师补充)引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数.你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?函数概念:设是非空的数集,如果按某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应,那么就称为集合到集合的一个函数,记作 .其中,叫做自变量,的取值范围叫做函数的定义域;与的值相对应的的值叫做函数值,函数值的集合叫做函数的值域.显然,值域是集合B的子集.问题六:请同学们根据现在函数的定义说说前面三个实例是否表示两个集合的函数关系?问题七:是函数吗?问题八:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时让学生判断这些平移和旋转中的弧是否表示函数图象.方法引导:如何判断给定的两个变量间是否具有函数关系?依据定义中的哪几个要点?要注意函数概念中的哪些关键词?3.质疑解惑,剖析概念问题九:请同学们画出概念中的关键词,并用简洁的语言说明.通过交流得出以下几点:①都是非空的数集;②任意性与唯一性;③确定的对应关系,对应关系可以是解析式、图象、表格.问题十:函数由几部分组成?怎样理解符号 ?三要素:定义域、值域、对应法则,缺一不可.在法则下,所对应的函数值,并结合生活实例说明.4.讨论研究,深化理解【例1】已知函数,(1)求函数的定义域;(2)求的值;(3)当时,求的值.想一想:函数的定义域该怎么求?符号 (为常数)与有哪些区别与联系? (学生思考、计算,老师提问,师生共同完成)5.即时训练,巩固新知练习1.求函数的定义域:练习2.已知函数求的值.学生活动:两位学生板书后,师生共同评价完善.6.总结反思,提高认识(学生思考并回答,老师补充.)我们在初中函数定义的基础上,运用集合与对应的语言重新刻画了函数,比较两个函数的定义,同学们有什么新的认识.7.分层作业,自主探究作业:一、举出生活中函数的例子(两个以上),并用集合与对应的语言来描述函数;二、必做:P24 1、2、3;选做:P25 1题.5。
《函数的概念》的教学设计
《函数的概念》的教学设计教学设计:《函数的概念》一、教学目标1.知识目标:学生理解函数的基本概念,能够正确地定义函数、自变量、因变量、函数表达式等;了解函数的特性和性质,如定义域、值域、奇偶性等;能够分析函数的图像、特征和变化趋势。
2.能力目标:培养学生分析和解决问题的能力,能够利用函数的概念进行数学推理和运算;发展学生观察能力和图像思维,能够图示和描述函数的特性;加强学生的数学文字表达和逻辑思维能力。
3.情感目标:引导学生对函数学习的兴趣,增强对数学的积极态度和自信心;培养学生合作学习和分享学习成果的能力,增进相互合作关系。
二、教学内容1.函数的概念和基本性质;2.函数的图像表示及其性质;3.函数的符号表示及其应用。
三、教学步骤步骤一:导入新知(10分钟)1.教师出示各种实际问题,引导学生分析实际问题的自变量和因变量,并引导出函数的概念。
2.引入函数的定义,并让学生理解并配对“自变量-因变量”、“输入-输出”等概念。
步骤二:学习函数的基本概念(30分钟)1.教师通过实例引导学生定义函数、自变量、因变量、定义域、值域等概念,并进行概念解释。
2.教师设计问题引导学生尝试构造函数表达式,并通过实例让学生理解函数表达式的意义和用法。
步骤三:探究函数的图像表示(30分钟)1.教师简要回顾直角坐标系的概念,并提醒学生如何在坐标系中画出已知函数的图像。
2.学生分组进行小组合作,利用已学函数的概念和知识来推测和分析一些未知函数的特性及其图像。
3.小组展示并讨论分析结果,教师点拨和补充相关知识。
步骤四:函数的符号表示及其应用(30分钟)2.教师设计应用题,引导学生分析问题,提取函数模型,并通过函数的符号表示进行求解。
步骤五:课堂小结和拓展(20分钟)1.教师对学生完成的探究活动进行总结,强调函数的基本概念和特性。
2.教师设计拓展问题,引导学生思考和探索更复杂的函数问题。
四、教学方法1.情境导入法:通过实际问题激发学生对函数的认识和兴趣。
八年级数学下册《函数的概念》教案、教学设计
-设计一系列具有实际背景的问题,如最佳投资方案、最短路径问题等,引导学生运用函数知识构建模型,解决实际问题。
2.针对教学难点,我计划采取以下措施:
-采用“从特殊到一般”的教学方法,先通过具体的一次函数、二次函数等案例,让学生感知函数的单调性、奇偶性等性质,再推广到一般函数。
4.针对不同学生的学习特点,教师应采用差异化教学策略,关注学生的个体差异,激发学生的学习潜能,使他们在函数学习中获得成就感。
5.注重培养学生的合作意识和团队精神,通过小组合作、讨论交流等形式,引导学生相互学习、共同进步。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握函数的定义,能从实际问题中抽象出函数关系,识别函数的三种表示方法(解析式、表格、图象)。
请同学们按时完成作业,并在作业中体现出自己的思考过程。在完成作业的过程中,如遇到问题,可随时与同学、老师交流,共同解决。期待大家在作业中展现出对本节课知识的深刻理解和运用能力!
2.函数图象的分析和识别,特别是对于不同类型函数图象的特点和性质的理解。
3.运用函数知识解决实际问题,特别是将现实问题转化为函数模型的能力。
4.函数单调性、奇偶性等性质的深入理解及其应用。
(二)教学设想
1.对于教学重点的突破,我设想采用以下策略:
-通过引入生活中的实例,如气温变化、物体运动等,让学生感受函数的实际意义,从而加深对函数定义的理解。
2.根据课堂所学的一次函数、二次函数等基本初等函数的性质,分析以下问题:
a.一次函数图象的特点及其在现实生活中的应用。
b.二次函数图象的开口方向、顶点、对称轴等性质,并举例说明。
冀教版数学八年级下册《函数的概念》教学设计2
冀教版数学八年级下册《函数的概念》教学设计2一. 教材分析冀教版数学八年级下册《函数的概念》是学生在学习了初中数学基础知识后,进一步深入研究数学的重要内容。
本节课的主要内容是函数的概念,包括函数的定义、函数的性质和函数的表示方法等。
教材通过丰富的实例和生动的语言,帮助学生理解和掌握函数的概念,培养学生的数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了初中数学的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但是,对于函数这一概念,学生可能还比较陌生,难以理解函数的本质和意义。
因此,在教学过程中,需要注重引导学生通过实例来理解和掌握函数的概念,逐步建立函数的知识体系。
三. 教学目标1.了解函数的定义和性质,理解函数的概念。
2.学会用函数的表示方法,能够准确地表示简单的函数。
3.培养学生的数学思维能力,提高学生的问题解决能力。
四. 教学重难点1.函数的定义和性质的理解。
2.函数表示方法的掌握。
五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握函数的概念。
2.问题驱动法:通过提出问题,激发学生的思考,引导学生主动探索和解决问题。
3.合作学习法:学生进行小组讨论和合作,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括函数的定义、性质和表示方法等。
2.实例材料:准备一些具体的实例,用于引导学生理解和掌握函数的概念。
3.练习题:准备一些练习题,用于巩固学生对函数概念的理解和应用。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如温度随时间的变化、物体运动的速度等,引导学生思考这些实例背后的数学规律。
2.呈现(10分钟)通过PPT呈现函数的定义和性质,让学生初步了解函数的概念。
同时,给出一些具体的函数例子,让学生能够直观地感受函数的表达方式。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试用函数的表示方法来描述这个实例。
《函数的概念》教学设计
《函数的概念》教学设计人教版《普通高中课程标准实验教科书数学Ⅰ必修本(A 版)》第一章概述:《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.如何上好一节概念课,概念不是由老师讲出,而是让学生去发现,并归纳概括出概念呢?从而让学生更好的理解概念,熟练的去应用概念解决问题.在本节课的教学中,我以学生作为活动的主体,创设恰当的问题情境,引导学生积极思考,大胆探索,从而去发现问题、提出问题和解决问题.注重培养他们的观察、分析和解决问题的能力,培养他们的逻辑思维能力及抽象概括能力.运用新课标的理念,我从以下几个方面加以说明:教材内容分析、教学目标分析、教法学法分析、教学过程分析、教学评价分析【教材内容分析】1.教材的地位及作用函数的概念是人教版数学必修①第一章第二节的内容,它不仅对前面研究的集合作了巩固和发展,而且是学好后继知识的基础和工具.本节的主要内容就是函数的概念和函数的三个要素,研究了本小节后,为以后研究其他类型的函数打下扎实的基础。
由于函数反映出的数学思想渗透到数学的各个领域并且它在物理﹑化学及生物等其他领域也有广泛的应用.因此,函数概念是中学数学最重要的基本概念之一。
2.学情分析在学生研究用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,且比较惯的用解析式表示函数,但这是对函数很不全面的认识。
由于函数的概念比较抽象,学生思维不成熟、不严密,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
【教学目标分析】根据上述教材内容分析,并结合学生的研究心理和认知结构,我将教学目标分成三部分进行说明:知识与技能:1、从集合与对应的观点动身,加深对函数观点的理解2、理解函数的三要素:定义域、值域和对应法则3、理解函数符号的含义。
过程与方法:在丰富的实例中,通过关键词的强调和引导,使学生发现、概括出它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
函数教案(教学设计)
函数【教学目标】1.使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。
2.能分清实例中的常量与变量,了解自变量与函数的意义,了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系。
3.掌握用描点法画出一些简单函数的图象。
4.理解解析法和图象法表示函数关系的相互转换。
【教学重难点】1.重点:能找出一个变化过程中的变量与常量。
2.难点:结合实际问题,经历探索用图象表示函数的过程。
【教学过程】2课时【教学过程】【第一课时】情景引入:在学习与生活中,经常要研究一些数量关系,先看下面的问题。
例1:如图是某地一天内的气温变化图。
看图回答:(1)这天的6时、10时和16时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温。
(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?解:(1)这天的6时、10时和14时的气温分别为-1℃、2℃、4℃;(2)这一天中,最高气温是5℃最低气温是-4℃;(3)这一天中,3时~14时的气温在逐渐升高,0时~3时和14时~24时的气温在逐渐降低。
从图中我们可以看到,随着时间t (时)的变化,相应地气温T (℃)也随之变化那么在生活中是否还有其它类似的数量关系呢?例2:下表是某市2017年统计的该市男学生各年龄组的平均身高。
(1)从表中你能看出该市16岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?解:(1)平均身高是162.9cm ;(2)约从14岁开始身高增加特别迅速;(3)反映了该市男学生的平均身高和年龄这两个变量之间的关系,其中年龄是自变量,平均身高是因变量。
例3:写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C 与半径r 的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s (千米)和所用时间t (时)的关系式。
函数的概念第二课时教学设计
函数的概念第二课时教学设计函数的概念第二课时教学设计A【教学目标】1.进一步加深对函数概念的理解,掌握同一函数的标准;2.了解函数值域的概念并能熟练求解常见函数的定义域和值域.3.经历求函数定义域及值域的过程,培养学生良好的数学学习品质。
B【教学重难点】教学重点能熟练求解常见函数的定义域和值域.教学难点对同一函数标准的理解,尤其对函数的对应法则相同的理解.C【教学过程】1、创设情境下列函数f(x)与g(x)是否表示同一个函数?为什么?(1)f(x)= (x-1) 0;g(x)=1 ;(2) f(x)=x;g(x)=x;、(3)f(x)=x 2;g(x)=(x + 1) 2 ;(4) f(x) =|x|;g(x)=.2、讲解新课总结同一函数的标准:定义域相同、对应法则相同3、典例例1 求下列函数的定义域:(1)y?x?1?x?1;(2)y?1x2?3?5?x2;分析:一般来说,如果函数由解析式给出,则其定义域就是使解析式有意义的自变量的取值范围.当一个函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.解:(1)由??x?1?0,?x?1,得?即x?1,故函数y?x?1?x?1的定义域是[1,??). x?1?0,x??1,??2x?3?0,?x??,(2)由?得?即?5≤x≤5且x≠±,25?x?0,x?5,故函数的定义域是{x|?≤x≤且x≠±3}.点评:求函数的定义域,其实质就是求使解析式各部分有意义的x的取值范围,列出不等式(组),然后求出它们的解集.其准则一般来说有以下几个:① 分式中,分母不等于零.② 偶次根式中,被开方数为非负数.③ 对于y?x0中,要求x≠0.(专业的、优秀的、实惠的教育辅导机构)y?(x?1)0x|?xy?2x?3?12?x?变式练习1求下列函数的定义域:(1);(2)1x.x?1?0,?x??1,(x?1)0解(2)由?得? 故函数y?是{x|x<0,且x≠?1}. x|?x?x?0,?|x|?x?0,3?x??,??2x?3?0,2?3? (4)由?2?x?0,即?x?2, ∴?≤x<2,且x≠0,2?x?0?x?0,故函数的定义域是{x|?3≤x<2,且x≠0}. 2说明:若A是函数y?f(x)的定义域,则对于A中的每一个x,在集合B都有一个值输出值y与之对应.我们将所有的输出值y组成的集合称为函数的值域.因此我们可以知道:对于函数f:AB而言,如果如果值域是C,那么C?B,因此不能将集合B当成是函数的值域.我们把函数的`定义域、对应法则、值域称为函数的三要素.如果函数的对应法则与定义域都确定了,那么函数的值域也就确定了.例2.求下列两个函数的定义域与值域:(1)f (x)=(x-1)2+1,x∈{-1,0,1,2,3};(2)f (x)=( x-1)2+1.解:(1)函数的定义域为{-1,0,1,2,3},f(-1)= 5,f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以这个函数的值域为{1,2,5}.(2)函数的定义域为R,因为(x-1)2+1≥1,所以这个函数的值域为{y∣y≥1}点评:通过对函数的简单变形和观察,利用熟知的基本函数的值域,来求出函数的值域的方法我们称为观察法.变式练习2 求下列函数的值域:2y?x?4x?6,x?[1,5);(1)(2)y?3x?1x?1;解:(1)y?(x?2)2?2.x?[1,5)的图象,作出函数y?x2?4x?6,由图观察得函数的值域为{y|2≤y<11}.(专业的、优秀的、实惠的教育辅导机构)(2)解法一:y?的值域为{y|y≠3}.解法二:把y?3x?1看成关于x的方程,变形得(y-3)x+(y+1)=0,该方程在原函数x?13(x?1)?444,显然可取0以外的一切实数,即所求函数?3?x?1x?1x?1定义域{x|x≠-1}内有解的条件是y-3≠0,y+1,解得y≠3,即即所求函数的值域为{y|y≠3}.-≠-1??y-3点评:(1)求函数值域是一个难点,应熟练掌握一些基本函数的值域和求值域的一些常用方法;(2)求二次函数在区间上的值域问题,一般先配方,找出对称轴,在对照图象观察.4、课堂小结(1)同一函数的标准:定义域相同、对应法则相同(2)求解函数值域问题主要有两种方法:一是根据函数的图象和性质(或借助基本的函数的值域)由定义域直接推算;二是对于分式函数,利用分离常数法得到y的取值范围.。
中职数学基础模块3.1.1函数的概念教学设计教案人教版
一、函数概念
答教师提出的问题.
突出本课重难点而设
计.
1.问题1辆汽车在段平坦的道路
上以100km/h的速度匀速行驶2小时.
深度挖掘教材提
(1)在这个问题中,路程、时间、速度
出的两个问题,在回
这三个量,哪些是常量?哪些是变量?
顾了初中的函数知识 的基础上,进一步讨
(2)如何用数学付号表示行驶的路程s
课时教学设计首页
授课时间:年 月日
课题
第几
3.1.1函数的概 念课型 新授 第时1〜2
课 时 教 学 目 标(三维)
1.理解函数的概念,会求简单函数的定义域.
2.理解函数符号y—f (x)的意义,会求函数在x—a处的函 数值.
3.通过教学,渗透一切事物相互联系和相互制约的辩证唯 物主义观点.
教学 重点 与
(km)与行驶时间t(h)的关系?
论自变量的取值范
(3)行驶时间t(h)的取值范围是什么?
围,以及自变量与因
(4)对于行驶时间中的每一个确定的t
变量的对应关系,为
值,能求出汽车行驶的路程吗?
顺利引出函数定义做
(5)根据初中知识,关系式s=100t
准备.
(0wtw2)表示的是函数关系吗?
2.问题2如果一个圆的半径用r表
第1页(总页)
☆补充设计☆
教师行为
学生行为
设计意图
导入:
师:事物都是运动变化的, 女口:气温随时间在悄悄变化;
我国的国内生产总值在逐年增
1•试举出各类学过的一些函数例子.
长等.在这些变化中,都存在
为知识迁移做准
着两个变量,当一个变量变化
备.在阅读适量的例
《函数的概念》教学设计(精品)
函数的概念(一)教学目标1.知识与技能(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富.(2)初步了解函数的定义域、值域、对应法则的含义.2.过程与方法(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化.3.情感、态度与价值观在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.(二)教学重点与难点重点:理解函数的概念;难点:理解函数符号y = f (x)的含义.(三)教学方法回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.(四)教学过程示例3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,五”计划以来,我国城镇居民的生活质量发生了显著.备选例题例1 函数y = f (x)表示( C )A.y等于f与x的乘积B.f (x)一定是解析式C.y是x的函数D.对于不同的x,y值也不同例2 下列四种说法中,不正确的是( B )A.函数值域中每一个数都有定义域中的一个数与之对应B.函数的定义域和值域一定是无限集合C.定义域和对应关系确定后,函数的值域也就确定了D.若函数的定义域只含有一个元素,则值域也只含有一个元素例3 已知f (x) = x2 + 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .例4 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是 平方 ,它是 R → R 的函数.例5 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( B )【解析】取水深2H h ,注水量V ′>2V ,即水深为一半时,实际注水量大小水瓶总水量的一半,A 中V ′<2V,C 、D 中V ′=2V ,故排除A 、C 、D.。
函数的概念教学设计
函数的概念教学设计教学设计:函数的概念一、教学目标1.了解函数的定义。
2.掌握函数的基本性质。
3.能够根据给定的函数及其图象进行解析,理解函数与图象的关系。
4.能够利用函数的性质及其图象进行问题求解。
5.培养学生的抽象思维和解决问题的能力。
二、教学内容1.函数的定义及其表示方法。
2.函数的性质。
3.函数与图象的关系。
4.函数的应用。
三、教学过程1.导入(10分钟)教师出示一张函数的图象,让学生观察并谈谈自己对函数的认识与理解。
引导性问题:这个图象有什么特点?我们能够从中看出什么规律?根据学生的回答,引出函数的概念。
2.概念解释(20分钟)教师清楚地解释函数的定义及其表示方法。
教师向学生展示一些函数的例子,使学生更加直观地理解函数的概念。
例子:(1)f(x)=x+2(2)y=x^2(3)f(x) = sin(x)3.函数的性质(30分钟)教师介绍函数的性质,包括:(1)定义域与值域。
(2)奇偶性。
(3)单调性。
(4)最值与极值。
教师通过具体的例子,帮助学生理解函数的性质,并提供一些练习题让学生进行练习。
4.函数与图象的关系(30分钟)教师通过一些具体的例子和实践让学生理解函数与图象的关系。
教师给出一个函数的图象,让学生根据图象找出函数的一些性质。
例子:(1)根据函数的图象确定定义域与值域。
(2)根据函数的图象判断函数的奇偶性。
(3)根据函数的图象确定函数的单调性。
学生通过观察与推理,找出给定函数的性质,并在图象上加以解释。
5.函数的应用(30分钟)教师通过一些具体的例子,让学生学会如何利用函数的性质进行问题求解。
例子:(1)根据函数的性质,求函数在一些区间上的最值。
(2)根据函数的性质,确定方程的解。
(3)根据函数的性质,确定几何问题中的一些关系。
学生通过解决实际问题,并利用函数的性质进行分析,加深对函数的理解。
6.拓展与巩固(20分钟)教师布置一些拓展与巩固的练习题,让学生对所学知识进行巩固与拓展。
《函数的概念与性质》教案设计范例
《函数的概念与性质》教案设计范例一、教学目标1. 了解函数的概念,理解函数的性质,能够运用函数的性质解决实际问题。
2. 掌握函数的表示方法,包括解析式、表格和图象等。
3. 学会运用函数的性质分析问题,提高解决问题的能力。
二、教学内容1. 函数的概念:函数的定义、函数的表示方法、函数的性质。
2. 函数的性质:单调性、奇偶性、周期性。
3. 函数的图像:函数图像的画法、函数图像的特点。
三、教学重点与难点1. 教学重点:函数的概念、函数的性质、函数的图像。
2. 教学难点:函数的单调性、奇偶性、周期性的理解与应用。
四、教学方法与手段1. 教学方法:讲授法、案例分析法、讨论法、实践活动法。
2. 教学手段:多媒体课件、黑板、教学卡片、练习题。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念与性质。
2. 讲解与示范:讲解函数的概念,举例说明函数的表示方法,展示函数的图像,引导学生理解函数的性质。
3. 互动环节:分组讨论函数的性质,分享各自的观点和理解。
4. 练习与巩固:布置练习题,让学生运用函数的性质解决问题。
5. 总结与反思:对本节课的内容进行总结,引导学生思考函数的概念与性质在实际生活中的应用。
教案设计范例仅供参考,具体实施时可根据学生的实际情况进行调整。
六、教学评价1. 评价目标:学生能理解函数的概念,掌握函数的性质,能够运用函数的性质解决实际问题。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业。
3. 评价内容:函数的概念、函数的表示方法、函数的性质、函数的图像。
七、教学拓展1. 函数与方程的关系:引导学生思考函数与方程的联系,理解函数的图像与方程的解的关系。
2. 函数的实际应用:举例说明函数在实际生活中的应用,如线性规划、最优化问题等。
八、教学资源1. 教材:《数学教材》2. 多媒体课件:函数的图像、案例分析3. 练习题:针对函数的概念、性质和图像的练习题4. 教学卡片:用于小组讨论和分享九、教学进度安排1. 第一课时:函数的概念与表示方法2. 第二课时:函数的性质(单调性、奇偶性)3. 第三课时:函数的性质(周期性)4. 第四课时:函数的图像5. 第五课时:函数的图像分析与应用十、课后作业1. 作业内容:针对本节课的内容,布置相关的练习题,巩固所学知识。
《函数的概念》教学设计
《函数的概念》教学设计教学设计-《函数的概念》一、教学目标:1.了解函数的概念及其在数学中的作用;2.能够正确地识别函数和非函数的关系集合;3.掌握函数的图像和函数的性质;4.能够用函数描述实际问题并解决相关问题。
二、教学重点与难点:1.函数的定义和图像;2.函数的性质和应用;3.非函数的概念。
三、教学内容与过程:1.引入函数的概念(10分钟)1.2提问:这个图形中的x和y之间是否存在确定的对应关系?能否将它表示为一个集合?1.3引导学生通过讨论,得出函数的概念:函数是一种特殊的集合间关系,它将一个集合的每个元素与另一个集合的唯一元素对应起来。
1.4出示函数的标准形式f(x)=x^2,推导出函数的定义。
2.函数的图像(10分钟)2.1出示函数f(x)=x^2的图像,并解释坐标系和曲线的意义;2.2让学生观察曲线的变化情况,总结并给出x的变化规律;2.3出示其他函数图像,引导学生分析其特点,如线性函数、指数函数等。
3.函数的性质(20分钟)3.2解释函数性质的重要性;3.3引导学生通过观察图像和计算,总结函数性质,如单调性、奇偶性等;3.4提醒学生注意特殊函数,如常数函数、恒等函数等。
4.函数的应用(30分钟)4.1出示一些实际问题,如车行驶问题、物品销售问题等;4.2引导学生通过列方程和绘制函数图像,解决相关问题;4.3让学生思考其他实际问题,并用函数解决。
5.非函数的概念(10分钟)5.2引导学生观察图像,总结非函数的特点;5.3提醒学生非函数的情况,如一个x对应多个y值、两个x对应同一个y值等。
6.小结与拓展(10分钟)6.1小结函数的概念、图像和性质;6.2提醒学生多观察和思考函数相关问题。
四、教学手段1.投影仪和幻灯片;2.黑板和彩色粉笔;3.相关练习题和实例;4.学生参与讨论。
五、课后作业1.完成课堂上的练习;2.独立思考并解决两个与函数相关的实际问题;3.预习下一节课内容。
《函数的概念及其表示第二课时》示范公开课教学设计【高中数学人教版】
《函数的概念及其表示(第二课时)》教学设计◆教学目标1.能求简单函数的定义域,会求函数值,提升学生的数学运算素养.2.在理解函数概念的基础上,理解相同函数的含义,掌握相同函数的判定步骤,提升学生的数学抽象素养.3.了解区间的含义,能进行区间、不等式与数轴表示的相互转化,提升学生的直观想象素养.◆教学重难点◆教学重点:在理解函数概念的基础上,理解相同函数的含义,掌握相同函数的判定步骤.教学难点:体会函数记号的含义.◆课前准备PPT课件.◆教学过程一、复习引入问题1:在上一小节里,我们重新学习了函数的概念,请你默写这个概念.师生活动:学生可能并不能逐字逐句默写,但是只要抓住它的三个要素就予以肯定.预设的答案:对于数集A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.设计意图:通过默写为本节课的学习奠定基础.引语:函数是本章乃至整个高中数学的核心内容,概念就是它的基石,稳定的基石是搭建知识大厦的前提,我们这节课继续深入研究函数的概念.(板书:函数的概念)二、新知探究1.研读课本,理解区间的概念(1)求函数f (x )的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.师生活动:学生独立完成,老师挑选有代表性的解答进行投影点评,最后用PPT 演示教师点拨:在同时研究两个或多个函数时,常用不同符号表示不同的函数,除用符号f (x )外,还常用g (x )、F (x )、G (x )等符号来表示.设计意图:通过例1的学习,让学生对函数的定义域、对应关系、以及符号“y =f (x )”有具体的感受,能更透彻的理解,并且在求解定义域过程中,熟悉区间的使用.例2 下列函数中哪个与函数y =x 是同一个函数? (1)y =(x )2; (2)u =3v 3; (3)y =x 2;(4)m =n 2n.师生活动:老师先引导学生思考同一个函数的含义,然后让学生尝试判断,在判断中发现问题:正确化简解析式,定义域优先原则的应用以及函数记号的理解等,老师应该给予及时的解答与帮助.预设的答案:解:(1)y =(x )2=x (x ∈[0,+∞)),它与函数y =x (x ∈R )虽然对应关系相同,但是定义域不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.(2)u =3v 3=v (v ∈R ),它与函数y =x (x ∈R )不仅对应关系相同,而且定义域也相同,所以这个函数与函数y =x (x ∈R )是同一个函数.(3)y =x2=|x |=⎩⎪⎨⎪⎧-x ,x <0,x ,x ≥0,,它与函数y =x (x ∈R )虽然定义域都是实数集R ,但是当x <0时,它的对应关系与y =x (x ∈R )不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.(4)m =n 2n=n (n ∈(-∞,0)∪(0,+∞)),它与函数y =x (x ∈R )的对应关系相同但定义域不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.追问1:两个函数相等的含义是什么?(函数的三要素都相等.值域是由定义域和对应关系决定的,所以只要两个函数的定义域和对应关系一致,这两个函数就相等.)追问2:你能总结判断两个函数是否相同的步骤吗?(先求函数的定义域,如果定义域不相同,则不是相同函数,结束判断;如果相等,则判断对应关系是否相同,定义域和对应关系均相等才能得出相等的结论.高中阶段对应关系一般都是以解析式的形式给出,我们一般需要先考虑化简解析式再判断,若解析式也相等,则是相同函数,若否,则不是相同函数.)追问3:你如何理解函数u =3v 3的对应关系?(因为u ==v (v ∈R ),所以对于R 中的任一实数v ,通过对应关系u =v ,在R 中都有唯一的一个实数u 与之对应,因为u =v ,所以就是任一实数与它本身的对应.)追问4:你能结合函数的图象验证你的判断吗?(能.老师PPT 投影图象,让学生论述.比如在(1)中,y =(x )2的图象为一条射线,对应定义域为[0,+∞),对比y =x 的图象,缺少第三象限的部分.)yx–1–2–3123456–1–2–3–4123456O(1)y =(x )2y x–1–2–3–41234–1–2–3–41234O(2)u =3v 3v u教师点拨:对于同一个自变量,对应的函数值相同,就是对应关系一致,这与用什么符号表示无关,再比如:y =x 2(x ∈R ),y =u 2(u ∈R )是同一个函数.设计意图:通过判断函数是否相同来认识函数的整体性,进一步加深对函数概念的理解.借助信息技术从图象角度体会函数的三要素,提高学生解析式与图象表示间的转化能力.三、归纳小结,布置作业问题3:请同学们回顾本节课的内容,回答下列问题: (1)区间是表示什么的符号?(2)在判断两个函数是否相同时,我们需要注意什么?师生活动:学生先独立思考,再由学生代表回答,其他学生依次补充,老师最后总结.预设的答案:(1)区间是用于表示连续数集的符号;(2)定义域相同是函数相等的先决条件,需要优先判断;对应关系相等与否不在于解析式用什么字母符号表示,而在于同一自变量对应的函数值是否相等.设计意图:引导学生对关键内容进行小结,进一步加深对函数概念的理解. 四、目标检测设计 1.求下列函数的定义域:(1)f (x )=14x +7; (2)f (x )=1-x +x +3-1.设计意图:考查函数定义域的求解. 2.已知函数f (x )=3x 3+2x ,(1)求f (2),f (-2),f (2)+f (-2)的值; (2)求f (a ),f (-a ),f (a )+f (-a )的值.yx–1–2–3123456–1–2–3–4–512345O(3)y =x 2 yx–1–2–3–41234–1–2–3–41234O(4)m =n 2nm n。
《函数的概念》教学设计
《函数的概念》教学设计第一篇:《函数的概念》教学设计《函数的概念》教学设计教材分析:函数作为初等数学的核心内容,贯穿于整个初等数学体系之中函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段对函数的概念加入“对应”,这一章内容渗透了函数的思想、特殊到一般,数形结合思想,从感性到理性,数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响教学目标:知识与技能:(1)理解函数的概念,;(2)能够正确使用“区间”的符号表示某些集合。
2过程与方法:通过学生自身对实际问题分析、抽象与概括,培养了抽象、概括、归纳知识以及建模等方面的能力;3情感与价值观:以熟知的生活实例引入,激发了学习数学的兴趣,增强其数学应用意识、创新意识。
相互合作学习,增强其合作意识体会合作学习的重要性。
教法:启发探究为主,讨论法为辅学法:观察分析、自主探究、合作交流教学重点:理解函数的实际背景,用集合与对应的语言来刻画函数教学难点:理解函数的实际背景,用集合与对应的语言来刻画函数教学过程:一、复习引入:.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和,对于x的每一个值,都有唯一确定的值与之对应,此时是x的函数,x是自变量,是因变量。
表示方法有:解析法、列表法、图象法二、概念情景引入:思考1:(本P1)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为84米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见本P1图).国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念第二课时教学设计
A【教学目标】
1.进一步加深对函数概念的理解,掌握同一函数的标准;
2.了解函数值域的概念并能熟练求解常见函数的定义域和值域. 3.经历求函数定义域及值域的过程,培养学生良好的数学学习品质。
B【教学重难点】
教学重点
能熟练求解常见函数的定义域和值域.
教学难点
对同一函数标准的理解,尤其对函数的对应法则相同的理解.
C【教学过程】
1、创设情境
下列函数f(x)与g(x)是否表示同一个函数?为什么?
(1)f(x)=(x-1)0;g(x)=1;(2)f(x)=x;g(x)=x;
、(3)f(x)=x2;g(x)=(x+1)2;(4)f(x)=|x|;g(x)=. 2、讲解新课
总结同一函数的标准:定义域相同、对应法则相同
3、典例
例1求下列函数的定义域:
(1)y?x?1?x?1;(2)y?1
x2?3?5?x2;
分析:一般来说,如果函数由解析式给出,则其定义域就是使解析式有意义的自变量的取值范围.当一个函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.
解:(1)由??x?1?0,?x?1,得?即x?1,故函数y?x?1?x?1的定义域是[1,??).x?1?0,x??1,??
2???x?3?0,?x??,(2)由?得?即?5≤x≤5且x≠±,
2???5?x?0,???x?5,
故函数的定义域是{x|?≤x≤且x≠±3}.
点评:求函数的定义域,其实质就是求使解析式各部分有意义的x的取值范围,列出不等式(组),然后求出它们的解集.其准则一般来说有以下几个:
①分式中,分母不等于零.
②偶次根式中,被开方数为非负数.
③对于y?x0中,要求x≠0.
(专业的、优秀的、实惠的教育辅导机构)
y?(x?1)0
x|?xy?2x?3?1
2?x?
变式练习1求下列函数的定义域:(1);(2)1x.
?x?1?0,?x??1,(x?1)0解(2)由?得?故函数y?是{x|x<0,且x ≠?1}.x|?x?x?0,?|x|?x?0,
3?x??,??2x?3?0,2?3?(4)由?2?x?0,即?x?2,∴?≤x<2,且x ≠0,2?x?0?x?0,???
故函数的定义域是{x|?3≤x<2,且x≠0}.2
说明:若A是函数y?f(x)的定义域,则对于A中的每一个x,在集合B都有一个值输出值y与之对应.我们将所有的输出值y组成的集合称为函数的值域.
因此我们可以知道:对于函数f:A
B而言,如果如果值域是C,那么C?B,因此不能将集合B 当成是函数的值域.
我们把函数的定义域、对应法则、值域称为函数的三要素.如果函数的对应法则与定义域都确定了,那么函数的值域也就确定了.例2.求下列两个函数的定义域与值域:
(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};
(2)f(x)=(x-1)2+1.
解:(1)函数的定义域为{-1,0,1,2,3},
f(-1)=5,f(0)=2,f(1)=1,f(2)=2,f(3)=5,
所以这个函数的值域为{1,2,5}.
(2)函数的定义域为R,因为(x-1)2+1≥1,所以这个函数的值域为{y∣y≥1}
点评:通过对函数的简单变形和观察,利用熟知的基本函数的值域,来求出函数的
值域的方法我们称为观察法.
变式练习2求下列函数的值域:
2y?x?4x?6,x?[1,5);(1)
(2)y?3x?1
(1)y?(x?2)2?2.x?[1,5)的图象,作出函数y?x2?4x?6, x?1;解:
由图观察得函数的值域为{y|2≤y<11}.
(专业的、优秀的、实惠的教育辅导机构)
(2)解法一:y?
的值域为{y|y≠3}.解法二:把y?3x?1看成关于x的方程,变形得(y-3)x+(y+1)=0,该方程在原函数x?13(x?1)?444,显然可取0以外的一切实数,即所求函数?3?x?1x?1x?1
定义域{x|x≠-1}内有解的条件是
??y-3≠0,
?y+1,解得y≠3,即即所求函数的值域为{y|y≠3}.-≠-1??y-3
点评:(1)求函数值域是一个难点,应熟练掌握一些基本函数的值域和求值域的一些常用方法;
(2)求二次函数在区间上的值域问题,一般先配方,找出对称轴,在对照图象观察.
4、课堂小结
(1)同一函数的标准:定义域相同、对应法则相同
(2)求解函数值域问题主要有两种方法:一是根据函数的图象和性质(或借助基本的函数的值域)由定义域直接推算;二是对于分式函数,利用分离常数法得到y的取值范围.。