2018版高考数学大一轮复习第三章导数及其应用第3讲定积分与微积分基本定理试题理北师大版

合集下载

高考数学一轮复习 第三章 导数及其应用 3.4 定积分与微积分基本定理课件 理 新人教A版

高考数学一轮复习 第三章 导数及其应用 3.4 定积分与微积分基本定理课件 理 新人教A版
a
-bf(x)dx (2)S=_____a________;
cf(x)dx-bf(x)dx (3)S=____a________c__________;
(4)S=bf(x)dx-bg(x)dx=b[f(x)-g(x)]dx.
a
a
a
5.微积分基本定理
如果F′(x)=f(x),且f(x)在[a,b]上可积,则
(1)对被积函数要先化简,再求积分; (2)求被积函数为分段函数的定积分,依据定积分“对区间 的可加性”,分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值符号 再求积分; (4)注意用“F′(x)=f(x)”检验积分的对错. 2.根据定积分的几何意义可利用面积求定积分.
1.设f(x)=x22-,xx,∈x[∈ 0,11,],2],

0
a
f(x)dx=
2af(x)dx
-a

___0_____.
(2)如果f(x)是[-a,a]上的连续的奇函数,则
a
f(x)dx=
-a
___0_____.
[典题1] 求下列定积分:
(1)1(-x2+2x)dx; 0
(2)π(sin x-cos x)dx; 0
(3)21e2x+1xdx;

b
f(x)dx中,____a____与____b____分别叫做积分下限与积
a
分上限,区间__[a_, __b_]__叫做积分区间,函数___f(_x_)___叫做被积
函数,____x____叫做积分变量,__f_(x_)_d_x__叫做被积式.
3.定积分的性质
kbf(x)dx
(1)bkf(x)dx=___a_____(k为常数);

创新设计全国通用2018版高考数学一轮复习第三章导数及其应用第3讲定积分与微积分基本定理课件理新人教A版

创新设计全国通用2018版高考数学一轮复习第三章导数及其应用第3讲定积分与微积分基本定理课件理新人教A版

y=2-x, 由 1 得交点 B(3,-1). y=-3x
故所求面积 S=

1 0

1 1 3 x+3x dx+ 2-x+3xdx
1
1 3 2 1 4 13 3 2x 1 x2 = 3 x2 1 x2 + = + + = .
1 2 1 = x d x + sin

1

1
0 1 -x - x 1 |x| x 0 0 1 x (2) e d x = e d x + + e = [ - e -(-e)]+(e e dx =- e -1 0
T 2 4.若 则常数 T 的值为________. x dx=9,
0
解析
1 3 1 3 3 T 2 x dx= x = ×T =9. ∴T =27, ∴T=3. 3 0 3
0
T
答案 3
5.已知
2 x (-1≤x≤0), 1 f(x)= 则 1 (0<x≤1), -

0
π·32 9π = = . 4 4
答案
9π (1)C (2) 4
规律方法 几点:
(1)运用微积分基本定理求定积分时要注意以下
①对被积函数要先化简,再求积分; ②求被积函数为分段函数的定积分,依据定积分“对区间 的可加性”,分段积分再求和;
③若被积函数具有奇偶性时,可根据奇、偶函数在对称区
间上的定积分性质简化运算. (2)运用定积分的几何意义求定积分,当被积函数的原函数 不易找到时常用此方法求定积分.

)
a
0
a (3)若 f(x)是奇函数,则 f(x)dx=0(

高考数学一轮复习 第三章 导数及其应用 第3讲 定积分与微积分基本定理教学案 理 北师大版-北师大版

高考数学一轮复习 第三章 导数及其应用 第3讲 定积分与微积分基本定理教学案 理 北师大版-北师大版

第3讲 定积分与微积分基本定理一、知识梳理 1.定积分的概念在⎠⎛ab f (x )d x 中,a ,b 分别叫作积分下限与积分上限,区间[a ,b ]叫作积分区间,f (x )叫作被积函数,x 叫作积分变量,f (x )d x 叫作被积式.2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫作微积分基本定理,又叫作牛顿­莱布尼茨公式.其中F (x )叫作f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ).常用结论1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有(1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、教材衍化1.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB .⎠⎛-112xd xC.⎠⎛-10x 2d x +⎠⎛012xd xD .⎠⎛-102x d x +⎠⎛01x 2d x解析:选D.由分段函数的定义及定积分运算性质, 得⎠⎛-11f (x )d x =⎠⎛-102xd x +⎠⎛01x 2d x .故选D.2.⎠⎛2e +11x -1d x =________. 解析:⎠⎛2e +11x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 答案:13.若⎠⎜⎛0π2(sin x -a cos x )d x =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )⎪⎪⎪⎪π20=1-a =2,a =-1.答案:-14.汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________m.解析:s =⎠⎛12(3t +2)d t =⎪⎪⎪⎝ ⎛⎭⎪⎫32t 2+2t 21 =32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m).答案:132一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )d x .( )答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K(1)误解积分变量致误; (2)不会利用定积分的几何意义求定积分;(3)f (x ),g (x )的图象与直线x =a ,x =b 所围成的曲边图形的面积的表达式不清致错. 1.定积分⎠⎛-12(t 2+1)d x =________.解析:⎠⎛-12(t 2+1)d x =(t 2+1)x |2-1=2(t 2+1)+(t 2+1)=3t 2+3. 答案:3t 2+3 2.⎠⎛22-x 2d x =________解析:⎠⎛22-x 2d x 表示以原点为圆心,2为半径的14圆的面积,故⎠⎛22-x 2d x =14π×(2)2=π2.答案:π23.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.解析:由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫-x 33+x 2⎪⎪⎪2=-83+4=43.答案:43[学生用书P53]定积分的计算(多维探究) 角度一 利用微积分基本定理求定积分计算下列定积分:(1)⎠⎛122xd x ;(2)⎠⎛0πcos x d x ;(3)⎠⎛13⎝⎛⎭⎪⎫2x -1x 2d x .【解】 (1)因为(ln x )′=1x ,所以⎠⎛122x d x =2⎠⎛121x d x =2ln x ⎪⎪⎪21=2(ln 2-ln 1)=2ln 2.(2)因为(sin x )′=cos x ,所以⎠⎛0πcos x d x =sin x ⎪⎪⎪π0=sin π-sin 0=0.(3)因为(x 2)′=2x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,所以⎠⎛13⎝ ⎛⎭⎪⎫2x -1x 2d x =⎠⎛132x d x +⎠⎛13⎝ ⎛⎭⎪⎫-1x 2d x =x 2⎪⎪⎪31+1x ⎪⎪⎪31=223. 角度二 利用定积分的几何意义求定积分计算下列定积分:(1)⎠⎛011-(x -1)2d x ;(2)⎠⎛-55(3x 3+4sin x )d x .【解】 (1)根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分). 故⎠⎛011-(x -1)2d x =π4.(2)设y =f (x )=3x 3+4sin x ,则f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ), 所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数. 所以⎠⎛-50(3x 3+4sin x )d x =-⎠⎛05(3x 3+4sin x )d x .所以⎠⎛-55(3x 3+4sin x )d x =⎠⎛-50(3x 3+4sin x )d x +⎠⎛05(3x 3+4sin x )d x =0.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[提醒] 当被积函数的原函数不易求,而被积函数的图象与直线x =a ,x =b ,y =0所围成的曲边梯形的面积易求时,可利用定积分的几何意义求定积分.1.⎠⎛-11e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎛-11e |x |d x =⎠⎛-10e -xd x +⎠⎛01e xd x=-e -x ⎪⎪⎪1-1+e x ⎪⎪⎪1=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C. 2.⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x d x =________.解析:⎠⎛01⎝ ⎛⎭⎪⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分求平面图形的面积(师生共研)(一题多解)求由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积. 【解】如图所示,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,得两交点的坐标分别为(2,-2),(8,4).法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和, 即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =18.法二:选取纵坐标y 为积分变量,则图中阴影部分的面积S =⎠⎛-24⎝⎛⎭⎪⎫y +4-12y 2d y =18.设阴影部分的面积为S ,则对如图所示的四种情况分别有:(1)S =⎠⎛ab f (x )d x .(2)S =-⎠⎛ab f (x )d x .(3)S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .(4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .1.已知曲线C :y =x 2+2x 在点(0,0)处的切线为l ,则由C ,l 以及直线x =1围成的区域的面积等于________.解析:因为y ′=2x +2,所以曲线C :y =x 2+2x 在点(0,0)处的切线的斜率k =y ′|x=0=2,所以切线方程为y =2x ,所以由C ,l 以及直线x =1围成的区域如图中阴影部分所示,其面积S =⎠⎛01(x 2+2x -2x )d x =⎠⎛01x 2d x =x 33⎪⎪⎪10=13.答案:132.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.解析:f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,所以a =-1. 答案:-1定积分在物理中的应用(师生共研)(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t+251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.【解析】 (1)令v (t )=0得,3t 2-4t -32=0, 解得t =4⎝ ⎛⎭⎪⎫t =-83舍去. 汽车的刹车距离是⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =[7t -32t 2+25ln(t +1)]⎪⎪⎪40 =4+25ln 5.(2)由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝ ⎛⎭⎪⎫32x 2+4x ⎪⎪⎪42=10+⎣⎢⎡⎦⎥⎤32×42+4×4-⎝ ⎛⎭⎪⎫32×22+4×2=36(J).【答案】 (1)C (2)36定积分在物理中的两个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .1.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B所用的时间t (s)为( )A .3B .4C .5D .6解析:选C.因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,因为(t 3+t -5t 2)′=3t 2+1-10t ,所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t 0=t 3+t -5t 2=5,整理得(t -5)(t 2+1)=0,解得t =5.2.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ;力的单位: N).解析:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x ,因为⎝ ⎛⎭⎪⎫13x 3+x ′=x 2+1,所以原式=342(J).答案:342[学生用书P274(单独成册)][基础题组练]1.定积分⎠⎛01(3x +e x)d x 的值为( )A .e +1B .eC .e -12D .e +12解析:选D.⎠⎛01(3x +e x)d x =⎝ ⎛⎭⎪⎫32x 2+e x ⎪⎪⎪10=32+e -1=12+e.2.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A.因为f (1)=lg 1=0,f (0)=⎠⎛0a3t 2d t =t 3⎪⎪⎪a 0=a 3,所以由f (f (1))=1得a3=1,所以a =1.3.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.因为f (x )=x 2+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x |10 =13+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =-13. 4.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B .π2+3C.π4+43D .π4+3解析:选A.⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=π2+43,故选A.5.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13 B .310 C.14D .15解析:选A.由⎩⎨⎧y =x 2,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01(x -x 2)d x =13.故选A. 6.定积分⎠⎛-11(x 2+sin x )d x =________. 解析:⎠⎛-11(x 2+sin x )d x =⎠⎛-11x 2d x +⎠⎛-11sin x d x =2⎠⎛01x 2d x =2·x 33⎪⎪⎪10=23. 答案:237.⎠⎛-11(x 2tan x +x 3+1)d x =________. 解析:因为x 2tan x +x 3是奇函数.所以⎠⎛-11(x 2tan x +x 3+1)d x =⎠⎛-111d x =x |1-1=2. 答案:28.一物体受到与它运动方向相反的力:F (x )=110e x +x 的作用,则它从x =0运动到x =1时F (x )所做的功等于________.解析:由题意知W =-⎠⎛01⎝ ⎛⎭⎪⎫110e x +x d x =-⎝ ⎛⎭⎪⎫110e x +12x 2⎪⎪⎪10=-e 10-25. 答案:-e 10-259.求下列定积分:(1)⎠⎛12⎝ ⎛⎭⎪⎫x -x 2+1x d x ; (2)⎠⎛-π0(cos x +e x)d x . 解:(1)⎠⎛12⎝⎛⎭⎪⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22⎪⎪⎪21-x 33⎪⎪⎪21+ln x ⎪⎪⎪21=32-73+ln 2=ln 2-56.(2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e xd x =sin x ⎪⎪⎪0-π+e x ⎪⎪⎪0-π=1-1e π. 10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4),O (0,0),故y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20=4-83=43. [综合题组练]1.由曲线xy =1,直线y =x ,x =3所围成的封闭平面图形的面积为( )A.329 B .4-ln 3C .4+ln 3D .2-ln 3 解析:选B.画出平面图形,根据图形确定积分的上、下限及被积函数.由曲线xy =1,直线y =x ,x =3所围成的封闭的平面图形如图所示:由⎩⎪⎨⎪⎧xy =1,y =x ,得⎩⎪⎨⎪⎧x =1,y =1 或⎩⎪⎨⎪⎧x =-1,y =-1.(舍) 由⎩⎪⎨⎪⎧y =x ,x =3,得⎩⎪⎨⎪⎧x =3,y =3. 故阴影部分的面积为⎠⎛13⎝ ⎛⎭⎪⎫x -1x d x = ⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪31=4-ln 3. 2.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝ ⎛⎭⎪⎫13ax 3+cx ⎪⎪⎪10=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33. 又因为0≤x 0≤1,所以x 0=33. 答案:333.⎠⎛-11(1-x 2+e x-1)d x =________. 解析:⎠⎛-11(1-x 2+e x-1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x . 因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积,所以⎠⎛-111-x 2d x =π2. 而⎠⎛-11(e x -1)d x =(e x -x )⎪⎪⎪1-1 =(e 1-1)-(e -1+1)=e -1e-2, 所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2. 答案:π2+e -1e-2 4.若函数f (x )在R 上可导,f(x)=x 3+x 2f ′(1),则⎠⎛02f (x )d x =________. 解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝ ⎛⎭⎪⎫x 44-x 3⎪⎪⎪20=-4. 答案:-45.如图,在曲线C :y =x 2,x ∈[0,1]上取点P (t ,t 2),过点P 作x 轴的平行线l .曲线C 与直线x =0,x =1及直线l 围成的图形包括两部分,面积分别记为S 1,S 2.当S 1=S 2时,求t 的值.解:根据题意,直线l 的方程是y =t 2,且0<t <1.结合题图,得交点坐标分别是 A (0,0),P (t ,t 2),B (1,1).所以S 1=⎠⎛0t (t 2-x 2)d x =⎝ ⎛⎭⎪⎫t 2x -13x 3⎪⎪⎪t 0 =t 3-13t 3=23t 3,0<t <1.S 2=⎠⎛t1(x 2-t 2)d x =⎝ ⎛⎭⎪⎫13x 3-t 2x ⎪⎪⎪1t =⎝ ⎛⎭⎪⎫13-t 2-⎝ ⎛⎭⎪⎫13t 3-t 3 =23t 3-t 2+13,0<t <1. 由S 1=S 2,得23t 3=23t 3-t 2+13, 所以t 2=13.又0<t <1,所以t =33. 所以当S 1=S 2时,t =33.。

高考数学一轮复习 第三章 导数及其应用 3.4 定积分与微积分基本定理课件 理

高考数学一轮复习 第三章 导数及其应用 3.4 定积分与微积分基本定理课件 理

D.不存在
解:如图,2f(x)dx=1x2dx+2(2-x)dx
0
0
1
=13x3|10+2x-12x2|21
=13+4-2-2+12=56.
故选 C.
【点拨】对分段函数 f(x)求定积分,关键是找到分段点 c 后利用定积分
性质bf(x)dx=cf(x)dx+bf(x)dx 求解.
a
a
c
12/11/2021
12/11/2021
解:由 v(t)=t2-4t+3=(t-1)(t-3)=0,得 t=1 或 3(舍
去).所以路程 s=01(t2-4t+3)dt=(13t3-2t2+3t)|10=43(m).故
填43.
【点拨】物体沿直线朝一个方向运动的路程问题,只需对 速度求定积分,积分的上、下限分别是计时结束和开始的时间.
12/11/2021
(2016·丽水模拟)曲线 y=x2 和曲线 y2=x 围 成的图形面积是________.
解:由yy=2=xx2,
得x=0,或x=1, y=0 y=1,
则所求面积
为1( x-x2)dx=23x32-13x3|10=13.故填13. 0
12/11/2021
(2016·苍南模拟)1( 1-x2-x)dx=________. 0
2.利用定积分求曲线围成图形的面积,关键是画出图形,结合图 形确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微 积分基本定理求出积分值.
3.利用定积分解决简单的物理问题,关键是要掌握定积分的物理 意义,结合物理学中的相关内容,将物理问题转化为定积分来解决.
12/11/2021
a
(3)abf(x)dx=____________________ (其中 a<c<b).

第三章导数及其应用3-4定积分与微积分基本定理(理)

第三章导数及其应用3-4定积分与微积分基本定理(理)



(4)公式法:套用公式求定积分,避免繁琐 的运算,是求定积分常用的方法. (5)定义法:用定义求定积分是最基本的求 定积分方法.

[例1] 用定积分的定义求由y=3x,x=0,x =1,y=0
[解析] (1)分割:把区间[0,1]等分成n个小区间
i-1 i 1 n ,n (i=1,2,…,n).其长度为Δx= n ,把曲边
2x
1 2 1 1-1|x|dx=2 xdx=2× x |0 =1; 解析:(1) 2
1 0
1 1 3 1 -3 2 (2) x +x4dx= 3x -3x 1
2 1

2
8 1 1 1 21 = - - + = . 3 3 3×8 3 8
=(x
2
1 3 3 32 3 +3x)|-1 - x |-1 = . 3 3
32 答案: 3

点评:利用定积分求平面图形的面积时,关 键是将待求面积的平面图形看成可求积分的 平面图形的和或差,还要注意待求面积的平 面图形在y轴上方还是下方,以确定积分的 正负.
由曲线y= x,y=x2所围成图形的面积为____.
b a b a
n -1 i =0
分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积 式.此时称函数f(x)在区间[a,b]上可积.
对定义的几点说明:
b f(x)dx是一个常数. (1)定积分
a
(2)用定义求定积分的一般方法是: ①分割区间:将区间分为n个小区间,实际应用 中常常是n等分区间[a,b]; ②近似代替:取点ξi∈[xi-1,xi];
b-a ③求和: f(ξi)· ; n i=1

第三章 导数及其应用3-4定积分与微积分基本定理(理)

第三章  导数及其应用3-4定积分与微积分基本定理(理)
9 4

2 3 1 x + x249 3 2 2
2 3 2 3 1 2 1 1 2 = ×9 - ×4 + ×9 - ×4 =45 . 3 2 3 2 2 2 6 1+cosx (4) cos dx= dx 2 2
π 0
2x
π 0
1 0
1 1 3 1 -3 2 (2) x +x4dx= 3x -3x 1
2 1

2
8 1 1 1 21 = - - + = . 3 3 3×8 3 8
(3)
9 4
1 x(1+ x)dx= (x +x)dx 2
b a b a
n -1 i =0
分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积 式.此时称函数f(x)在区间[a,b]上可积.
对定义的几点说明:
(1)定积分bf(x)dx是一个常数. a
(2)用定义求定积分的一般方法是: ①分割区间:将区间分为n个小区间,实际应用 中常常是n等分区间[a,b]; ②近似代替:取点ξi∈[xi-1,xi];
1,xi]上任取一点ζi(i=1,2,…,n),作和

n f(ζi)Δx,记λ为每个小区间Δxi=xi+1-xi i= 1

(i=0,1,2,…,n-1)中的长度最大者,当λ 趋近于0时,所有小区间的长度都趋近于0.
当λ→0时,此和式如果无限接近某个常数,这个 常数叫做函数f(x)在区间[a,b]上的定积分,记作 f(x)dx. 即 f(x)dx= lim f (ξi)Δxi,这里a与b分别叫做积 λ→0
在曲线y=x2(x≥0)上某一点A处作一切线使之 1 与曲线以及x轴所围成的面积为 .则 12 (1)切点A的坐标为________. (2)过切点A的切线方程为________.

高考数学大一轮复习 第三章 导数及其应用 3.3 定积分与微积分基本定理教案 理(含解析)

高考数学大一轮复习 第三章 导数及其应用 3.3 定积分与微积分基本定理教案 理(含解析)

§3.3 定积分与微积分基本定理最新考纲考情考向分析1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义. 利用定积分求平面图形的面积,定积分的计算是高考考查的重点.1.定积分的概念设函数y =f (x )定义在区间[a ,b ]上用分点a =x 0<x 1<x 2<…<x n =b .把区间[a ,b ]分为n 个小区间,其长度依次为Δx i =x i +1-x i ,i =0,1,2,…,n -1.记λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点ξi ,作和式I n =∑n -1i =0f (ξi )Δx i . 当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃba f (x )d x ,即ʃb af (x )d x =lim λ→0∑n =1i =0f (ξi )Δx i .其中f (x )叫做被积函数,a 叫积分下限,b 叫积分上限.f (x )d x 叫做被积式.此时称函数f (x )在区间[a ,b ]上可积. 2.定积分的性质(1)ʃb a cf (x )d x =c ·ʃba f (x )d x (c 为常数).(2)设f (x ),g (x )可积,则ʃb a [f (x )+g (x )]d x =ʃb a f (x )d x +ʃba g (x )d x . 3.微积分基本定理如果F ′(x )=f (x ),且f (x )在[a ,b ]上可积,则ʃba f (x )d x =F (b )-F (a ).其中F (x )叫做f (x )的一个原函数. 概念方法微思考ʃba f (x )d x 是否总等于曲线f (x )和直线x =a ,x =b ,y =0所围成的曲边梯形的面积? 提示 不是.函数y =f (x )在区间[a ,b ]上连续且恒有f (x )≥0时,定积分ʃba f (x )d x 表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积. 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则ʃb a f (x )d x =ʃba f (t )d t .( √ ) (2)若函数y =f (x )在区间[a ,b ]上连续且恒正,则ʃba f (x )d x >0.( √ )(3)若ʃba f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( × )(4)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × ) 题组二 教材改编2.ʃe +121x -1d x =________. 答案 1 解析 ʃe +121x -1d x =ln(x -1)|e +12=lne -ln1=1. 3.ʃ0-11-x 2d x =________. 答案π4解析 ʃ0-11-x 2d x 表示由直线x =0,x =-1,y =0以及曲线y =1-x 2所围成的图形的面积,∴ʃ0-11-x 2d x =π4. 4.汽车以v =(3t +2)m/s 作变速直线运动时,在第1s 至第2s 间的1s 内经过的位移是______m. 答案132解析 s =ʃ21(3t +2)d t =⎪⎪⎪⎝ ⎛⎭⎪⎫32t 2+2t 21=32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m).题组三 易错自纠5.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( ) A .1 B.43 C. 3 D .2答案 B解析 所求面积=ʃ20(-x 2+2x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫-13x 3+x 220=-83+4=43. 6.一物体作变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6s 间的运动路程为____m.答案494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t ≤3,13t +1,3<t ≤6.由变速直线运动的路程公式,可得s =()611122d 2t t tdt ⎰⎰=v +ʃ312d t +ʃ63⎝ ⎛⎭⎪⎫13t +1d t =2132611321|2||6t t t t ⎛⎫+++ ⎪⎝⎭=494(m). 所以物体在12s ~6s 间的运动路程是494m.7.202sin 4x dx ππ⎛⎫+ ⎪⎝⎭⎰=________.答案 2 解析 由题意得202sin 4x dx ππ⎛⎫+ ⎪⎝⎭⎰=220(sin cos )d (sin cos )|x x x x x ππ⎰+=-=⎝⎛⎭⎪⎫sin π2-cos π2-(sin0-cos0)=2. 题型一 定积分的计算利用微积分基本定理求下列定积分: (1)ʃ21(x 2+2x +1)d x ; (2)ʃπ0(sin x -cos x )d x ; (3)ʃ20|1-x |d x ; (4)ʃ21⎝ ⎛⎭⎪⎫e 2x+1x d x ;(5)ʃ1-1e |x |d x ;(6)若ʃ10(x 2+mx )d x =0,求m .解 (1)ʃ21(x 2+2x +1)d x =ʃ21x 2d x +ʃ212x d x +ʃ211d x =⎪⎪⎪x 3321+x 2|21+x |21=193. (2)ʃπ0(sin x -cos x )d x =ʃπ0sin x d x -ʃπ0cos x d x = | |(-cos x )π0-sin x π0=2.(3)ʃ20|1-x |d x =ʃ10(1-x )d x +ʃ21(x -1)d x =⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫x -12x 210+⎝ ⎛⎭⎪⎫12x 2-x 21 =⎝ ⎛⎭⎪⎫1-12-0+⎝ ⎛⎭⎪⎫12×22-2-⎝ ⎛⎭⎪⎫12×12-1=1.(4)ʃ21⎝ ⎛⎭⎪⎫e 2x +1x d x =ʃ21e 2x d x +ʃ211xd x=⎪⎪⎪⎪⎪⎪12e 2x 21+ln x 21=12e 4-12e 2+ln2-ln1 =12e 4-12e 2+ln2. (5)ʃ1-1e |x |d x =ʃ0-1e -xd x +ʃ10e xd x = | |-e-x0-1+e x 1=-1+e +e -1=2e -2. (6)∵ʃ10(x 2+mx )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 33+m 2x 210=13+m 2=0, ∴m =-23.思维升华计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积分函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分例1设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1),x 2-1,x ∈[1,2],则ʃ2-1f (x )d x 的值为________.答案π2+43解析 根据定积分性质可得ʃ2-1f (x )d x =ʃ1-11-x 2d x +ʃ21(x 2-1)d x ,根据定积分的几何意义可知,ʃ1-11-x 2d x 是以原点为圆心,以1为半径的圆面积的12,∴ʃ1-11-x 2d x =π2, ∴ʃ2-1f (x )d x =π2+⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 21=π2+43. 命题点2 求平面图形的面积例2(1)曲线y =2x与直线y =x -1,x =1所围成的封闭图形的面积为________.答案 2ln2-12解析 解方程组⎩⎪⎨⎪⎧y =2x,y =x -1,得⎩⎪⎨⎪⎧x =2,y =1,则曲线y =2x与直线y =x -1,x =1所围成的封闭图形如图所示,所求的面积S =ʃ21⎝ ⎛⎭⎪⎫2x-x +1d x =⎪⎪⎪⎝ ⎛⎭⎪⎫2ln x -12x 2+x 21=(2ln 2-2+2)-⎝ ⎛⎭⎪⎫0-12+1=2ln 2-12.(2)曲线y =14x 2和曲线在点(2,1)处的切线以及x 轴围成的封闭图形的面积为________.答案 16解析 设曲线y =14x 2在点(2,1)处的切线为l ,∵y ′=12x ,∴直线l 的斜率k =y ′|x =2=1,∴直线l 的方程为y -1=x -2,即y =x -1. 当y =0时,x -1=0,即x =1, 所围成的封闭图形如图所示, ∴所求面积S =ʃ2014x 2d x -12×1×1=⎪⎪⎪112x 320-12=16. 思维升华 (1)根据定积分的几何意义可计算定积分. (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.跟踪训练1(1)定积分ʃ309-x 2d x 的值为________. 答案9π4解析 由定积分的几何意义知,ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积.故ʃ39-x 2d x =π·324=9π4.(2)(2018·赤峰模拟)曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________.答案 23-2π3解析 令2sin x =1,得sin x =12,当x ∈[0,π]时,得x =π6或x =5π6,所以所求面积S =66(2sin 1)d x x 5ππ⎰-=(-2cos x -x )566|ππ=错误!题型三 定积分在物理中的应用例3一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离是________m. 答案 4+25ln5解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40⎝⎛⎭⎪⎫7-3t +251+t d t =⎪⎪⎪⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )40=28-24+25ln 5=4+25ln 5(m). 思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃba v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃba F (x )d x .跟踪训练2一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A.3J B.233J C.433JD .23J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x=⎪⎪⎪⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫5x -13x 3×3221=433,所以F (x )做的功为43 3 J.1.ʃ10(1-x )d x 等于( ) A .1B .-1C.12D .-12答案 C解析 ʃ10(1-x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x -12x 210=12.2.ʃ2π0|sin x |d x 等于( ) A .1B .2C .3D .4 答案 D解析 ʃ2π0|sin x |d x =2ʃπ0sin x d x =2(-cos x )|π0=2×(1+1)=4. 3.(2018·丹东质检)ʃ1-1(1-x 2+x )d x 等于( ) A .πB.π2C .π+1D .π-1答案 B解析 ʃ1-1(1-x 2+x )d x =ʃ1-11-x 2d x +ʃ1-1x d x =⎪⎪⎪π2+12x 21-1=π2. 故选B.4.(2018·大连双基测试)220sin d 2xx π⎰等于( ) A .0 B.π4-12 C.π4-14 D.π2-1 答案 B 解析222001cos sin d d 22x x x x ππ-=⎰⎰=⎝ ⎛⎭⎪⎫12x -12sin x 20|π=π4-12.5.(2018·大连调研)若ʃa 1⎝⎛⎭⎪⎫2x +1x d x =3+ln2(a >1),则a 的值是( ) A .2B .3C .4D .6 答案 A解析 由题意知ʃa 1⎝ ⎛⎭⎪⎫2x +1x d x =(x 2+ln x )|a1=a 2+ln a -1=3+ln2,解得a =2(舍负).6.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x,x ∈(1,e](其中e 为自然对数的底数),则ʃe0f (x )d x 的值为( )A.43B.54C.65D.76 答案 A解析 ʃe 0f (x )d x =ʃ10f (x )d x +ʃe 1f (x )d x =ʃ10x 2d x +ʃe 11xd x =⎪⎪⎪13x 310+ln x |e 1=13+1=43.故选A. 7.设a =ʃ10cos x d x ,b =ʃ10sin x d x ,则下列关系式成立的是( ) A .a >b B .a +b <1 C .a <b D .a +b =1答案 A解析 ∵(sin x )′=cos x ,∴a =ʃ10cos x d x =sin x |10=sin1. ∵(-cos x )′=sin x ,∴b =ʃ10sin x d x =(-cos x )|10=1-cos1.∵sin1+cos1>1,∴sin1>1-cos1,即a >b .故选A.8.已知函数y =f (x )的图象为如图所示的折线ABC ,则ʃ1-1[(x +1)f (x )]d x 等于( ) A .2 B .-2 C .1 D .-1答案 D解析 由题图易知f (x )=⎩⎪⎨⎪⎧-x -1,-1≤x ≤0,x -1,0<x ≤1,所以ʃ1-1[(x +1)f (x )]d x =ʃ0-1(x +1)(-x -1)d x + ʃ10(x +1)(x -1)d x =ʃ0-1(-x 2-2x -1)d x +ʃ10(x 2-1)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫-13x 3-x 2-x 0-1+⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 10=-13-23=-1,故选D.9.ʃ21⎝ ⎛⎭⎪⎫1x+2x d x =________.答案 ln2+2ln2解析 ʃ21⎝ ⎛⎭⎪⎫1x +2x d x =⎪⎪⎪⎝⎛⎭⎪⎫ln x +2xln221=ln2+4ln2-2ln2=ln2+2ln2. 10.(2018·锦州调研)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________. 答案3解析 所求面积S =3333cos d sin |x x x ππππ--=⎰=sin π3-⎝⎛⎭⎪⎫-sin π3= 3.11.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 答案 49解析 封闭图形如图所示,则332220022|0,33ax x a a ==-=⎰解得a =49.12.(2018·包头模拟)设函数f (x )=ax 2+b (a ≠0),若ʃ30f (x )d x =3f (x 0),x 0>0,则x 0=________. 答案3解析 ∵f (x )=ax 2+b ,ʃ30f (x )d x =3f (x 0), ∴ʃ30(ax 2+b )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13ax 3+bx 30=9a +3b ,则9a +3b =3ax 20+3b ,∴x 20=3, 又x 0>0,∴x 0= 3.13.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13 B.310C.14 D.15答案 A解析 由题意得,所求阴影部分的面积)3123120211d |,333S x x x x ⎛⎫==-= ⎪⎝⎭⎰故选A. 14.(2018·呼和浩特质检)若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1答案 B解析 方法一 S 1=⎪⎪⎪13x 321=83-13=73, S 2=ln x |21=ln2<lne =1,S 3=e x |21=e 2-e≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x,y =e x与直线x =1,x =2及x 轴围成的图形的面积,通过作图(图略)易知S 2<S 1<S 3.15.若函数f (x )在R 上可导,且f (x )=x 2+2xf ′(1),则ʃ20f (x )d x =________. 答案 -163解析 因为f (x )=x 2+2xf ′(1),所以f ′(x )=2x +2f ′(1). 所以f ′(1)=2+2f ′(1),解得f ′(1)=-2, 所以f (x )=x 2-4x . 故ʃ20f (x )d x =ʃ20(x 2-4x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 33-2x 220=-163. 16.在平面直角坐标系xOy 中,将直线y =x 与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积V 圆锥=ʃ10πx 2d x =⎪⎪⎪π3x 310=π3.据此类比:将曲线y =2ln x 与直线y =2及x 轴、y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =________. 答案 π(e 2-1)解析 类比已知结论,将曲线y =2ln x 与直线y =2及x 轴、y 轴所围成的图形绕y 轴旋转一周得到旋转体的体积应为一定积分,被积函数为22e e yy⎛⎫ππ ⎪⎝⎭=,积分变量为y ,积分区间为[0,2],即V =ʃ20πe y d y =πe y |20=π(e 2-1).。

课标通用2018年高考数学一轮复习第三章导数及其应用3.4定积分与微积分基本定理学案理2017101

课标通用2018年高考数学一轮复习第三章导数及其应用3.4定积分与微积分基本定理学案理2017101

§3.4 定积分与微积分基本定理考纲展示► 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义.考点1 定积分的计算1.定积分的定义一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1nb -anf (ξi ),当n →∞时,上述和式无限接近某个________,这个________叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x .答案:常数 常数 2.定积分的相关概念在⎠⎛ab f (x )d x 中,________与________分别叫做积分下限与积分上限,区间________叫做积分区间,函数________叫做被积函数,________叫做积分变量,________叫做被积式.答案:a b [a ,b ] f (x ) x f (x )d x 3.定积分的性质(1)⎠⎛a b kf (x )d x =________(k 为常数);(2)⎠⎛ab [f 1(x )±f 2(x )]d x =____________;(3)________=⎠⎛a c f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).答案:k ⎠⎛a b f (x )d x ⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x⎠⎛abf (x )d x 4.定积分的几何意义如图:设阴影部分面积为S . (1)S =⎠⎛ab f (x )d x ;(2)S =________; (3)S =____________;(4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .答案:(2)-⎠⎛a b f (x )d x (3)⎠⎛a c f (x )d x -⎠⎛cb f (x )d x5.微积分基本定理如果F ′(x )=f (x ),且f (x )在[a ,b ]上可积,则⎠⎛ab f (x )d x =________.其中F (x )叫做f (x )的一个原函数.可以把F (b )-F (a )记为F (x ) b a ,即⎠⎛ab f (x )d x =F (x ) ba =________.答案:F (b )-F (a ) F (b )-F (a )奇函数、偶函数的定积分.(1)如果f (x )是[-a ,a ]上的连续的偶函数,则⎠⎛-a a f (x )d x =________.(2)如果f (x )是[-a ,a ]上的连续的奇函数,则⎠⎛-aa f (x )d x =________. 答案:(1)2⎠⎛0a f (x )d x (2)0[典题1] 求下列定积分: (1)⎠⎛01(-x 2+2x )d x ;(2)⎠⎛0π(sin x -cos x )d x ;(3)⎠⎛12⎝⎛⎭⎪⎫e 2x +1x d x ; (4) ⎠⎜⎛0π21-sin 2x d x .[解] (1)⎠⎛01(-x 2+2x )d x =⎠⎛01(-x 2)d x +⎠⎛012x d x =-13x 310+x 210=-13+1=23.(2)⎠⎛0π(sin x -cos x )d x=⎠⎛0πsin x d x -⎠⎛0πcos x d x=(-cos x ) π0-sin x π0=2. (3)⎠⎛12⎝⎛⎭⎪⎫e 2x +1x d x =⎠⎛12e 2xd x +⎠⎛121xd x=12e 2x 21+ln x 21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (4) ⎠⎜⎛0 π21-sin 2x d x =⎠⎜⎛0π4|sin x -cos x |d x=⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2(sin x -cos x )d x =(sin x +cos x ) ⎪⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4=2-1+(-1+2)=22-2.[题点发散1] 若将本例(1)中的“-x 2+2x ”换为“|2x -1|”,如何求解?解:⎠⎛01|2x -1|d x =⎠⎜⎛012 (1-2x )d x +⎠⎜⎛121(2x -1)d x =(x -x 2) ⎪⎪⎪⎪12+(x 2-x ) ⎪⎪⎪⎪112=14+14=12. [题点发散2] 若将本例(1)中的“-x 2+2x ”改为“-x 2+2x ”,如何求解?解:⎠⎛01-x 2+2x d x 表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y=-x 2+2x ,得(x -1)2+y 2=1(y ≥0),故⎠⎛01-x 2+2x d x 表示圆(x -1)2+y 2=1的面积的14,即⎠⎛01-x 2+2x d x =π4.[点石成金] 1.运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; (4)注意用“F ′(x )=f (x )”检验积分的对错. 2.根据定积分的几何意义可利用面积求定积分.1.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈,2],则⎠⎛02f (x )d x =( )A.34 B .45 C.56 D .不存在答案:C 解析:如图,⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x =13x 3⎪⎪⎪10+⎝⎛⎭⎪⎫2x -12x 2⎪⎪⎪21=13+⎝⎛⎭⎪⎫4-2-2+12=56.2.定积分⎠⎛039-x 2d x 的值为________.答案:9π4解析:由定积分的几何意义知,⎠⎛039-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y=0围成的封闭图形的面积.故⎠⎛39-x 2d x =π·324=9π4.3.[2017·湖北重点中学高三阶段性统一考试]若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则⎠⎛02f (x )d x =________.答案:-4解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝ ⎛⎭⎪⎫x44-x 320=-4.考点2 运用定积分求平面图形的面积[典题2] (1)已知曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为S ,则S =________.[答案]136[解析] 由⎩⎨⎧y =x ,y =2-x得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x 得交点B (3,-1).故所求面积S =⎠⎛01⎝⎛⎭⎪⎫x +13x d x +⎠⎛13⎝⎛⎭⎪⎫2-x +13x d x=⎝ ⎛⎭⎪⎪⎫23x 32 +16x 210+⎝⎛⎭⎪⎫2x -13x 231=23+16+43=136. (2)已知曲线y =x 2与直线y =kx (k >0)所围成的曲边图形的面积为43,则k =________.[答案] 2[解析] 由⎩⎪⎨⎪⎧y =x 2,y =kx ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =k ,y =k 2,则曲线y =x 2与直线y =kx (k >0)所围成的曲边梯形的面积为⎠⎛0k (kx -x 2)d x =⎝ ⎛⎭⎪⎫k 2x 2-13x 3⎪⎪⎪k0=k 32-13k 3=43,即k 3=8,∴k =2. [点石成金] 1.利用定积分求曲线围成图形的面积的步骤: (1)画出图形; (2)确定被积函数;(3)确定积分的上、下限,并求出交点坐标;(4)运用微积分基本定理计算定积分,求出平面图形的面积.2.求解时,注意要把定积分与利用定积分计算的曲线围成图形的面积区别开:定积分是一个数值(极限值),可为正,可为负,也可为零,而平面图形的面积在一般意义上总为正.1.由曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面图形的面积是( )A .1B .π4C.223D .22-2答案:D解析:由sin x =cos x ⎝ ⎛⎭⎪⎫x ∈⎝⎛⎭⎪⎫0,π2,解得x =π4,故图中阴影部分的面积S =⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2 (sin x -cos x )d x =(sin x +cos x ) ⎪⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4=sin π4+cos π4-cos 0+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-cos π2-sin π2-⎝ ⎛⎭⎪⎫-cos π4-sin π4 =22-2.(本题也可利用图形的对称性求解)2.[2017·山东日照模拟]如图,由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的平面图形的面积为________.答案:43解析:由⎩⎪⎨⎪⎧y =-x 2,y =-1,得交点A (-1,-1),B (1,-1).由⎩⎪⎨⎪⎧y =-14x 2,y =-1得交点C (-2,-1),D (2,-1).∴面积S =2⎣⎢⎡⎦⎥⎤⎠⎛01⎝ ⎛⎭⎪⎫-14x 2+x 2d x +⎠⎛12⎝ ⎛⎭⎪⎫-14x 2+1d x =2⎣⎢⎡⎦⎥⎤x 3410+⎝ ⎛⎭⎪⎫x -x 31221=43.考点3 定积分在物理中的应用[典题3] [2017·湖北武汉调研]一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2[答案] C[解析] 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =⎠⎛04⎝ ⎛⎭⎪⎫7-3t +251+t d t=⎣⎢⎡⎦⎥⎤7t -32t 2++t 4=28-24+25ln 5=4+25ln 5(m). [点石成金] 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________焦.答案:36解析:由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x=5×2+⎝ ⎛⎭⎪⎫32x 2+4x 42=10+⎣⎢⎡⎦⎥⎤32×42+4×4-⎝ ⎛⎭⎪⎫32×22+4×2=36(焦).[方法技巧] 1.求定积分的方法(1)利用定义求定积分(定义法),可操作性不强.(2)利用微积分基本定理求定积分步骤如下:①求被积函数f (x )的一个原函数F (x );②计算F (b )-F (a ).(3)利用定积分的几何意义求定积分. 2.求曲边多边形面积的步骤(1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分.[易错防范] 1.被积函数若含有绝对值号,应先去绝对值号,再分段积分. 2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限.4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷.真题演练集训1.[2014·陕西卷]定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1答案:C解析:⎠⎛01(2x +e x )d x =(x 2+e x ) 10=(1+e)-(0+e 0)=e ,故选C.2.[2014·山东卷]直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4答案:D解析:由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02(4x -x 3)d x =⎝ ⎛⎭⎪⎫2x 2-14x 420=4.3.[2015·天津卷]曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 答案:16解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧ y =x 2,y =x ,得A (1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3|10=16. 4.[2015·湖南卷]⎠⎛02(x -1)d x =________. 答案:0解析:⎠⎛02(x -1)d x =⎝ ⎛⎭⎪⎫12x 2-x 20=(2-2)-0=0. 5.[2015·陕西卷]如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.答案:1.2解析:建立如图所示的平面直角坐标系.由抛物线过点(0,-2),(-5,0),(5,0),得抛物线的函数表达式为y =225x 2-2,抛物线与x 轴围成的面积S 1=⎠⎛5-5⎝ ⎛⎭⎪⎫2-225x 2d x =403,梯形面积S 2=+2=16.最大流量比为S 2∶S 1=1.2.课外拓展阅读探究定积分与不等式交汇问题[典例][2016·湖南长沙模拟]如图,矩形OABC 内的阴影部分是由曲线f (x )=sin x ;x ∈(0,π)及直线x =a ,a ∈(0,π)与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( )A.7π12 B .2π3 C.3π4 D .5π6[审题视角] 先运用定积分求出阴影部分的面积,再利用几何概型概率计算公式求出概率.[解析] 由已知S 矩形OABC =a ×6a=6, 而阴影部分的面积为S =⎠⎛0a sin x d x =(-cos x ) a0=1-cos a , 依题意有SS 矩形OABC =14,即1-cos a 6=14, 解得cos a =-12,又a ∈(0,π), 所以a =2π3.故选B. [答案] B定积分还可与其他知识交汇,如与二项式定理、数列等知识交汇.方法点睛。

2018版高三数学一轮复习第三章导数及其应用第三讲定积分与微积分基本定理课件理

2018版高三数学一轮复习第三章导数及其应用第三讲定积分与微积分基本定理课件理

继续学习
数学 知识全通关 4
第三章·第三讲 定积分与微积分基本定理 考点二 微积分基本定理
继续学习
数学 知识全通关 6
第三章·第三讲定积分与微积分基本定理
【规律总结】
常见被积函数的原函数
被积函数
f(x) f(x)的一个 原函数F(x) 被积函数
f(x) f(x)的一个 原函数F(x)
xα(α≠-1)
继续学习
数学 题型全突破 9
第三章·第三讲 定积分与微积分基本定理
图3-3-5
继续学习
数学 题型全突破 10
第三章·第三讲 定积分与微积分基本定理
继续学习
数学 题型全突破 11
第三章·第三讲 定积分与微积分基本定理
答案 C 点评 物体沿直线朝一个方向运动的路程问题,只需对速度求定积分,积分的上、下限分 别是计时结束和开始Biblioteka 时间.数学 题型全突破 6
考法二
第三章·第三讲 定积分与微积分基本定理 定积分的应用
考法指导 1.求图形的面积 利用定积分求曲线围成图形的面积的步骤:(1)画出图形;(2)确定被积函数;(3)求出曲线的 交点坐标,确定积分的上、下限;(4)运用微积分基本定理计算定积分,求出平面图形的面 积. 求解时,注意要把定积分与利用定积分计算的图形面积区别开:定积分是一个数值(极限 值),可为正,可为负,也可为零,而平面图形的面积在一般意义上总为正. 2.求变速运动的路程和变力做的功详见教材.定积分的物理意义. .
继续学习
谢谢
返回目录
知识全通关
数学 知识全通关 1
考点一 定积分
第三章·第三讲 定积分与微积分基本定理
_ 继续学习
数学 知识全通关 2

18版高考数学一轮复习第三章导数及其应用3.3定积分与微积分基本定理课件理

18版高考数学一轮复习第三章导数及其应用3.3定积分与微积分基本定理课件理

(2)若 f(x)为奇函数,则ʃa -af(x)dx=0.
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
b (1)设函数 y=f(x)在区间[ a,b] 上连续,则ʃb f ( x )d x = ʃ a af(t)dt.( √ )
(2)若函数 y=f(x)在区间[ a,b] 上连续且恒正,则ʃb af(x)dx>0.( √ ) (3)若ʃ b af(x)dx<0,那么由 y=f(x),x=a,x=b 以及 x 轴所围成的图形一定 在 x 轴下方.( × )
(4)微积分基本定理中的F(x)是唯一的.( × )
2 (5)曲线 y=x2 与 y=x 所围成图形的面积是ʃ1 ( x -x)dx.( × ) 0
考点自测
x 1.(2017· 福州质检) ʃ1 0(e +2x)dx 等于
答案
解析
A.1
B.e-1
C.e
D.e+1
x x 2 1 ʃ1 (e + 2 x )d x = (e + x )|0=e+1-1=e. 0
3.微积分基本定理
一般地,如果 f(x) 是区间 [a , b] 上的连续函数,且 F′(x) = f(x) ,那么
F(b)-F(a) ,这个结论叫做微积分基本定理,又叫做牛顿— ʃb af(x)dx =
莱布尼茨公式.
b F ( x )| a , 为了方便,常把F(b)-F(a)记作

ʃb af(x)dx = F ( x )
3.(教材改编)汽车以v=(3t+2)m/s作变速直线运动时,在第1 s至第2 s间
的1 s内经过的位移是 答案
13 A. m 2 B.6 m
解析
15 C. m 2
D.7 m

2018年高考数学总复习 第三章 导数及其应用 3.3 定积分与微积分基本定理

2018年高考数学总复习 第三章 导数及其应用 3.3 定积分与微积分基本定理

关闭
∴S=
2 0
(4x-x3)dx=
2������
2
-
1 4
������
4
|02 =4.
π
π
(2)
2
0
(sin x-acos x)dx=(-cos x-asin x)|02 =-a+1=2,a=-1.
(于3)依01A题(.12√意������知-x2,)题dx中=13的,B因.正16此方所形投区的域点的落C面.在14积叶为形1图2=内1D,部.阴13 的影概区域率等的于面13积,故等选关闭 D(1.)D (2)A (3)D
2.已知图形的面积求参数,一般是先画出它的草图;再确定积分的 上、下限,确定被积函数,由定积分求出其面积,然后应用方程的思 想建立关于参数的方程,从而求出参数的值.
3.与概率相交汇的问题.解决此类问题应先利用定积分求出相应 平面图形的面积,再用相应的概率公式进行计算.
考点1 考点2 考点3
-21-
(2) π 0(sin x-cos x)dx= π 0sin xdx- π 0cos xdx=(-cos x)|π 0-sin x|π 0=2.
(3)
2 1
e2������ + 1
������
dx=
2 1
e2xdx+
2 1
���1���dx=12e2x|12+ln x|12 = 12e4-12e2+ln 2-ln
A.√22
B.13
C.12
D.23
如图思,考∵怎满足样题求意定的积图分形与的概面率积的交S=汇01问���题���12d?x=23
������
3 2
|10
=

高三数学一轮复习 第三章 导数及其应用第三节 定积分及其应用课件(理)

高三数学一轮复习 第三章 导数及其应用第三节 定积分及其应用课件(理)

0
0
0
=k2-k3=0.∴k=0 或 k=1.又 k>0,∴k=1.
•答案:B
h
11
3.设函数 f(x)=xm+ax 的导函数 f′(x)=2x+1,则2f(- 1
x)dx 的值等于( )
5
1
A.6
B.2
2
1
C.3
D.6
h
12
解析:∵f′(x)=2x+1,∴m=2,a=1.即 f(x)=x2+x.
0
1
=12xdx+3(3x-x2)dx
0
1
=x2|01+(32x2-13x3)|13
=1+(32·32-13·33)-(32·12-13·13)=133.
h
34
•(2009·广东高考)已知甲、乙两车由同一起点同时出发,并沿同一路线(假 定为直线)行驶.甲车、乙车的速度曲线分别为v甲和v乙(如图所示).那么 对于图中给定的t0和t1,下列判断中一定正确的是( ) •A.在t1时刻,甲车在乙车前面 •B.t1时刻后,甲车在乙车后面 •C.在t0时刻,两车的位置相同 •D.t0时刻后,乙车在甲车前面
h
5
(2)定积分的几何意义 ①当函数 f(x)在区间[a,b]上恒为正时,定积分bf(x)dx
a
的几何意义是由直线 x=a,x=b(a≠b),y=0 和曲线 y=f(x) 所围成的曲边梯形的面积(左图中阴影部分).
h
6
②一般情况下,定积分bf(x)dx 的几何意义是介于 x 轴、 a
曲线 f(x)以及直线 x=a、x=b 之间的曲边梯形面积的代数和
h
9
1.定积分πcosxdx=( 0
A.-1
) B.0
C.1

2018届通用课标高考数学第1轮复习第三章导数及应用第4节定积分与微积分基本定理课件

2018届通用课标高考数学第1轮复习第三章导数及应用第4节定积分与微积分基本定理课件

利用定积分求平面图形面积的四个步骤
1.(2016·日照期末)由直线 x=-π3 ,x=π3 ,y=0 与曲线
y=cosx 所围成的封闭图形的面积为(
)
1
A.2
B.1
3 C. 2
D. 3
[解析] 封闭图形的面积为:
π 3
π
π
cos xdx=sin x-3π=sin 3 -sin- 3
2.(2016·宁德质检)定积分2 |x2-2x|dx=(
)

-2
A.5
B.6
C.7
D.8
[解析]
2

|x2

2x|dx

0

(x2

2x)dx

2

(2x

x2)dx




-2
-2
0
x33-x20-2+x2-x3320=83+4+4-83=8.
为(
)
A.2 3
B.9-2 3
35 C. 3
32 D. 3
[解析] 由yy= =23x-,x2,解得 x=-3 或 x=1,所以封闭图 形的面积为1-3(3-x2-2x)dx=3x-13x3-x21-3=332.
[答案] D
4.设 f(x)=x22-,xx,∈x[∈ 0,(11], ,2],则02f(x)dx 等于(
2cosx+ 4 dx 的值为
(
)
A.2
C.0
B.-2 D.1
[解析]
2cosx+π4 dx=

π94π
2sinx+ 4 π =
4
2sin9π 4 +π4 - 2sinπ4 +π4 = 2- 2=0.故选 C.

核按钮(新课标)高考数学一轮复习第三章导数及其应用3.4定积分与微积分基本定理习题理

核按钮(新课标)高考数学一轮复习第三章导数及其应用3.4定积分与微积分基本定理习题理

核按钮(新课标)高考数学一轮复习第三章导数及其应用3.4定积分与微积分基本定理习题理1.定积分的定义(1)如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i =1,2,…,n )作和式∑=-ni i f n ab 1)(ξ.当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a ,b]上的定积分,记作__________,即⎠⎛abf (x )d x =∑=∞→-ni i n f nab 1)(limξ.其中f(x)称为________,x 称为__________,f(x)dx 称为__________,[a ,b]为__________,a 为积分下限,b 为积分上限,“∫”称为积分号.(2)用化归为计算矩形面积和逼近的思想方法求出曲边梯形的面积的具体步骤为________、近似代替、求和、___________.2.定积分的性质(1)⎠⎛a b kf (x )d x =____________(k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x =____________________; (3)⎠⎛ab f (x )d x =____________(其中a <c <b ).3.微积分基本定理一般地,如果f(x)是区间[a ,b]上的连续函数,并且F ′(x)=f(x) ,那么⎠⎛ab f (x )d x =____________,这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式.常常把F (b )-F (a )记作__________,即⎠⎛ab f (x )d x=__________=__________.4.定积分在几何中的简单应用(1)当函数f(x)在区间[a ,b]上恒为正时,由直线x =a ,x =b(a≠b),y =0和曲线y =f(x)所围成的曲边梯形(图甲中阴影部分)的面积S =____________.(2)当函数f(x)在区间[a ,b]上恒为负时,由直线x =a ,x =b(a≠b),y =0和曲线y =f(x)围成的曲边梯形(图乙中阴影部分)的面积S =____________.(3)当x∈[a,b]有f(x)>g(x)>0时,由直线x =a ,x =b(a≠b),y =0和曲线y =f(x),y =g(x)围成的曲边梯形(图丙中阴影部分)的面积S =____________.一般情况下,定积分⎠⎛abf (x )d x 的几何意义是介于x 轴、曲线y =f (x )以及直线x =a ,x =b 之间的曲边梯形(图丁中阴影部分)面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.(4)若f(x)是偶函数,则⎠⎛-a a f (x )d x =__________(其中a >0);若f(x)是奇函数,则⎠⎛-aa f (x )d x =____________(其中a >0).5.定积分在物理中的简单应用(1)作变速直线运动的物体(速度函数为V(t),速度方向不变)在时间区间[a ,b]上所经过的路程S =____________.(2)在变力F =F(x)的作用下,物体沿力F 的方向作直线运动,并且由x =a 运动到x =b(a <b),则力F 对物体所做的功W =____________.(3)在变力F =F(x)的作用下,物体沿与力F 的方向成θ角的方向作直线运动,并且由x =a 运动到x =b(a <b),则力F 对物体所做的功W =____________.自查自纠1.(1)⎠⎛ab f (x )d x 被积函数 积分变量 被积式 积分区间(2)分割 取极限2.(1)k ⎠⎛a b f (x )d x (2)⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x(3)⎠⎛a c f (x )d x +⎠⎛cb f (x )d x3.F(b)-F(a) F(x)|b a F(b)-F(a) F(x)|ba 4.(1)⎠⎛ab f (x )d x (2)-⎠⎛ab f (x )d x(3)⎠⎛a b [f (x )-g (x )]d x (4)2⎠⎛0a f (x )d x 05.(1)⎠⎛a b V (t )d t (2)⎠⎛a b F (x )d x (3)⎠⎛ab F (x )cos θd x定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1解:⎠⎛01(2x +e x )d x =(x 2+e x )|10=(1+e)-(0+1)=e.故选C .已知函数f (x )=⎩⎪⎨⎪⎧1,0≤x <1,2,1≤x ≤2. 则⎠⎛02f (x )dx =( )A .0B .1C .2D .3解:⎠⎛02f (x )d x =⎠⎛011d x +⎠⎛122d x =x |10+2x |21=(1-0)+(4-2)=3.故选D .(2014·江西)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13 C.13D .1解:⎠⎛01f (x )d x 为常数,不妨设a =⎠⎛01f (x )d x . 则f (x )=x 2+2a ,∴a =⎠⎛01(x 2+2a )d x =⎝ ⎛⎭⎪⎫13x 3+2ax |10,∴a =13+2a ,∴a =-13.故选B .(2015·天津)曲线y =x 2与y =x 所围成的封闭图形的面积为________.解:由题意画出图形如图,得到积分上限为1,积分下限为0,因此直线y =x 与曲线y =x 2所围图形的面积S=⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3|10=12-13=16.故填16.从平衡位置开始,如果1 N 能拉长弹簧1 cm ,为了将弹簧拉长6 cm ,需做功________ J. 解:设F (x )=kx ,又F (0.01)=1,∴k =100,W =⎠⎛00.06100x d x =100×12x 2|0.060=0.18 J ,故填0.18.类型一 计算简单函数的定积分计算下列定积分:(1)⎠⎛-13(3x 2-2x +1)d x ;(2)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x ;(3)⎠⎛0π(sin x -cos x )d x .解:(1)⎠⎛-13(3x 2-2x +1)d x =(x 3-x 2+x ) |3-1=24.(2)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x =⎝ ⎛⎭⎪⎫12x 2-ln x |21=32-ln2.(3)⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x=(-cos x ) |π0-sin x |π0=2.【点拨】求定积分的步骤:①把被积函数变为幂函数、正弦函数、余弦函数、指数函数等与常数的和、差、积、商;②利用定积分的性质把所求的定积分化为若干个定积分的和与差;③分别用求导公式找到F(x),使得F′(x)=f(x);④利用牛顿一莱布尼兹公式求出各个定积分的值;⑤计算所求定积分的值.计算下列定积分:(1)⎠⎛02x (x +1)d x ;(2)⎠⎛12⎝ ⎛⎭⎪⎫e x +1x d x ; (3)⎠⎛0π(1-cos x )d x .解:(1)⎠⎛02x (x +1)d x =⎠⎛02(x 2+x )d x=⎠⎛02x 2d x +⎠⎛02x d x =13x 3|20+12x 2|20=⎝ ⎛⎭⎪⎫13×23-0+⎝ ⎛⎭⎪⎫12×22-0=143. (2)⎠⎛12⎝⎛⎭⎪⎫e x +1x d x =⎠⎛12e x d x +⎠⎛121xd x =e x |21+ln x |21 =e 2-e +ln2.(3)⎠⎛0π(1-cos x )d x =⎠⎛0π1d x -⎠⎛0πcos x d x=x |π0-sin x |π0 =π.类型二 计算分段函数的定积分求⎠⎛-22|x 2-2x |d x .解:∵|x 2-2x|=⎩⎪⎨⎪⎧x 2-2x ,-2≤x<0,-x 2+2x ,0≤x ≤2,∴⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x=⎝ ⎛⎭⎪⎫13x 3-x 2|0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2|20=8. 【点拨】对分段函数f(x)求定积分,关键是找到分段点c 后利用定积分性质⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cbf (x )d x 求解.求函数f(x)=⎩⎪⎨⎪⎧2x +1,|x|≤2,1+x 2,2<x≤4 在区间[-2,4]上的定积分. 解:⎠⎛-24f (x )d x =⎠⎛-22(2x +1)d x +⎠⎛24(1+x 2)d x=(x 2+x ) |2-2+⎝ ⎛⎭⎪⎫x +13x 3|42=743.类型三 利用定积分求平面图形的面积(1)⎠⎛011-(x -1)2d x =________.解:根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分).故⎠⎛011-(x -1)2d x =π4.故填π4.(2)由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________. 解:如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0).所以S =⎠⎛02|x 2-1|d x=⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝ ⎛⎭⎪⎫x -x 33|10+⎝ ⎛⎭⎪⎫x 33-x |21 =⎝ ⎛⎭⎪⎫1-13+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫83-2-⎝ ⎛⎭⎪⎫13-1=2.故填2. 【点拨】用定积分求面积的基本方法:求出交点,结合图形求面积.应注意:对于有交叉的图形,需要分段处理;对于具有对称性的图形,要利用对称性,使问题简化.(2013·北京)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43B .2C.83D.1623解:由已知得l :y =1,解方程组⎩⎪⎨⎪⎧x 2=4y ,y =1, 得交点坐标为(-2,1),(2,1).如图阴影部分,由于l 与C 围成的图形关于y 轴对称,所以所求面积S =2⎠⎛02⎝ ⎛⎭⎪⎫1-x 24d x =2⎝ ⎛⎭⎪⎫x -112x 3|20=2⎝ ⎛⎭⎪⎫2-812=83.故选C .类型四 定积分在物理中的简单应用一质点在直线上从时刻t =0开始以速度v (t )=t 2-4t +3(m/s)做减速运动,则质点初次减速到0时经过的路程为________ m.解:由v (t )=t 2-4t +3=(t -1)(t -3)=0,得t =1或3(舍去).所以路程s =⎠⎛01(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t 3-2t 2+3t |10=43(m).故填43.【点拨】物体沿直线朝一个方向运动的路程问题,只需对速度求定积分,积分的上、下限分别是计时结束和开始的时间.(2015·杭州模拟)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ,力的单位:N).解:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x=⎝ ⎛⎭⎪⎫13x 3+x |101=342(J).故填342.1.用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),可利用求导运算与求原函数运算互为逆运算的关系,由基本初等函数求导公式及导数的四则运算法则从反方向上求出F (x ).2.利用定积分求曲线围成图形的面积,关键是画出图形,结合图形确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微积分基本定理求出积分值.3.利用定积分解决简单的物理问题,关键是要掌握定积分的物理意义,结合物理学中的相关内容,将物理问题转化为定积分来解决.1.定积分⎠⎛013x d x 的值为( )A .3B .1C.32 D.12解:⎠⎛013x d x =32x 2|10=32.故选C .2.⎠⎛-21|x |d x 等于( )A .-1B .1C.32D.52解:⎠⎛-21|x |d x =⎠⎛-20(-x )d x +⎠⎛01x d x =-12x 2|0-2+12x 2|1=2+12=52.故选D .3.由直线x =12,x =2,曲线y =1x及x 轴所围成图形的面积为( )A.154B.174 C.12ln2 D .2ln2解:因为所围图形在x 轴的上方,所以S =∫2121x d x =ln x |212=ln2-ln 12=2ln2.故选D .4.(2015·大庆检测)一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度v (t )=5-t +551+t (t的单位:s ,v 的单位:m/s)紧急刹车至停止.在此期间火车继续行驶的距离是( )A .55ln10 mB .55ln11 mC .12+55ln7 mD .12+55ln6 m解:令5-t +551+t =0,注意到t >0,得t =10,即经过的时间为10 s ;行驶的距离s =⎠⎛010⎝ ⎛⎭⎪⎫5-t +551+t d t =[5t -12t 2+55ln(t +1)]|100=55ln11,即紧急刹车后火车继续行驶的路程为55ln11 m .故选B .5.若y =⎠⎛0x (sint +costsint)d t ,则y 的最大值是( )A .1B .2C .-72D .0解:y =⎠⎛0x (sin t +cos t sin t )d t =⎠⎛0x sin t d t +12⎠⎛0x sin2t d t =(-cos t ) |x0+12⎝ ⎛⎭⎪⎫-12cos2t |x 0=-cos x +1-14cos2x +14=-12(cos x +1)2+2,故当cos x =-1时,y max =2.故选B .6.(2015·衡水调研)在平面直角坐标系中,记抛物线y =x -x 2与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机投一点P ,若点P 落在区域A 内的概率为827,则k 的值为( )A.13B.23C.12D.34解:令x -x 2=0得x =0或x =1,令kx =x -x 2得x =0或x =1-k .∴M 的面积为⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3|10=16,A 的面积为⎠⎛01-k (x -x 2-kx )d x =(12x 2-13x 3-k 2x 2)|1-k 0=16(1-k )3,∴16(1-k )316=827,∴k =13.故选A . 7.(2014·河南月考)设函数f (x )=ax 2+b (a ≠0),若⎠⎛03f (x )d x =3f (x 0),则x 0=________.解:因为⎠⎛03f (x )d x =⎠⎛03(ax 2+b )d x =⎝ ⎛⎭⎪⎫13ax 3+bx |30=9a +3b ,3f (x 0)=3ax 20+3b ,所以9a +3b =3ax 20+3b ,所以x 20=3,x 0=± 3.故填±3.8.⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x d x =________. 解:⎠⎛01⎝ ⎛⎭⎪⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以计算结果是π+14.故填π+14. 9.计算下列定积分的值:(1)⎠⎛-111-x 2d x ;(2)⎠⎛-12|x 2-x |d x .解:(1)被积函数y =1-x 2,即x 2+y 2=1,y ≥0.根据定积分的几何意义,所围成的图形如图所示,⎠⎛-111-x2d x =π2.(2)⎠⎛-12|x 2-x |d x=⎠⎛-10(x 2-x )d x +⎠⎛01(x -x 2)d x +⎠⎛12(x 2-x )d x=⎝ ⎛⎭⎪⎫x 33-x 22|0-1+⎝ ⎛⎭⎪⎫x 22-x 33|10+⎝ ⎛⎭⎪⎫x 33-x 22|21 =56+16+56=116. 10.有一动点P ,在时间t 时的速度为v(t)=8t -2t 2(m /s ).求从t =0到t =4时,点P 经过的路程. 解:由v(t)=8t -2t 2=2t(4-t), 可知当0≤t≤4时,v (t)≥0.因此,路程S =⎠⎛04(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t 2-23t 3|40=643(m). 11.在曲线y =x 2(x≥0)上某一点A 处作一切线使之与曲线以及x 轴所围图形的面积为112.试求切点A 的坐标及过切点A 的切线方程.解:如图所示,设切点A (x 0,y 0),由y ′=2x ,得过点A 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.令y =0,得x =x 02,即C ⎝ ⎛⎭⎪⎫x 02,0.设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,S 曲边△AOB =⎰02x x d x =13x 3x =13x 30, S △ABC =12||BC ·||AB =12⎝ ⎛⎭⎪⎫x 0-x 02·x 20=14x 30. ∴S =13x 30-14x 30=112x 30=112.∴x 0=1,从而切点A (1,1),切线方程为y =2x -1.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.解:如图所示,所求面积S =S A +S B ,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x , 得交点坐标为(2,2),(8,-4).A 部分:由于抛物线的上半支方程为y =2x ,下半支方程为y =-2x ,所以:S A =⎠⎛02[2x -(-2x )]d x =22⎠⎛02x 12d x=22·23x 32|20=163.B 部分:S B =⎠⎛28[4-x -(-2x )]d x=⎝ ⎛⎭⎪⎫4x -12x 2+223x 32|82=383.于是S =163+383=18.故填18.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(教材习题改编题)函数f (x )=cos π2x ,则f ′(1)=( )A .-π2B .-π4C .0 D.π2解:f ′(x )=-sin π2x ·⎝ ⎛⎭⎪⎫π2x ′=-π2sin π2x .∴f ′(1)=-π2.故选A .2.已知曲线y =x 24-ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1 D.12解:y ′=x 2-1x ,令x 2-1x =-12,解得x =1或x =-2(舍去).故选C .3.(2015·皖南八校联考)函数f (x )=x e x-e x +1的单调递增区间是( )A .(-∞,e)B .(1,e)C .(e ,+∞)D .(e -1,+∞)解:f ′(x )=e x+x e x-e x +1=e x(1+x -e),由f ′(x )>0得x >e -1.故选D .4.(教材习题改编题)函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .4解:f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或2.∴f (x )在[-1,0)上是增函数,在(0,1]上是减函数.∴f (x )在区间[-1,1]上的最大值为f (0)=2.故选C .5.(2014·湖北八校第二次联考)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是( )解:f (x )=14x 2+cos x ,∴f ′(x )=12x -sin x ,令g (x )=f ′(x ),则g (x )为奇函数,排除B ,D ;由g ′(x )=12-cos x 知g (x )在⎝⎛⎭⎪⎫0,π3上单调递减,排除C.故选A .6.定积分⎠⎛04π(16-x 2)d x 的值等于( )A .半径为4的球的体积B .半径为4的四分之一球的体积C .半径为4的半球的体积D .半径为4的球的表面积解:⎠⎛04π(16-x 2)d x =⎝ ⎛⎭⎪⎫16x -x 33π|40=128π3,等于半径为4的半球的体积,故选C . 7.(2015·韶关联考)设a∈R ,若函数y =e x+ax ,x ∈R ,有大于-1的极值点,则( ) A .a <-1B .a >-1C .a <-1eD .a >-1e解:由y ′=e x +a =0得e x =-a ,∵函数有大于-1的极值点,∴a =-e x<-1e .故选C .8.已知函数f (x )在R 上可导,且f (x )=x 2+2xf ′(2),则f (-1)与f (1)的大小关系为( ) A .f (-1)=f (1) B .f (-1)>f (1) C .f (-1)<f (1)D .以上答案都不对解:∵f ′(x )=2x +2f ′(2),∴f ′(2)=4+2f ′(2),得f ′(2)=-4, ∴f (x )=x 2-8x ,∴f (-1)=9,f (1)=-7,f (-1)>f (1).故选B .9.一质点运动时速度(v )与时间(t )的关系为v (t )=t 2-t +2,质点直线运动,则此质点在时间[1,2]内的位移为( )A.176B.143C.136D.116解:质点在时间[1,2]内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t 3-12t 2+2t |21=176.故选A .10.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )解:因为函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(-2<b <0)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在x ∈(a ,-2)内的函数值为正,在区间(-2,b )内的函数值为负,由排除法可得只有选项C 符合,故选C .11.(2015·福建)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )>k >1,则下列结论中一定错误..的是( ) A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>k k -1解:令h (x )=f (x )-kx +1,则h ′(x )=f ′(x )-k >0,即h (x )在R 上单调递增,而h (0)=0,1k -1>0,∴h ⎝⎛⎭⎪⎫1k -1>0,得f ⎝ ⎛⎭⎪⎫1k -1>1k -1,∴C 项一定错误.也可用特值法(如令f (x )=2x -1及f (x )=10x -1等排除A ,B ,D).故选C . 12.(2015·全国卷Ⅰ)设函数f (x )=e x(2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1解:由a <1,易知存在整数x 0=0,使得e x 0(2x 0-1)<ax 0-a .设g (x )=e x(2x -1),h (x )=ax -a ,则g ′(x )=e x(2x +1).可得g (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增,作出g (x )与h (x )的大致图象如图所示,若存在唯一整数x 0,使得f (x 0)<0,还须满足⎩⎪⎨⎪⎧h (0)>g (0),h (-1)≤g (-1), 即⎩⎪⎨⎪⎧a <1,-2a ≤-3e , ∴32e ≤a <1.故选D .二、填空题:本大题共4小题,每小题5分,共20分.13.(2015·江西检测)已知直线y =2x -1与曲线y =ln(x +a )相切,则a 的值为________.解:∵y =ln(x +a ),∴y ′=1x +a ,设切点为(x 0,y 0),则y 0=2x 0-1,y 0=ln(x 0+a ),且1x 0+a=2,解之得a =ln22.故填ln22.14.(2014·抚顺联考)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为________.解:由y =f (x )的图象可得y =f ′(x )的大致图象如图.f ′(x )>0⇔x >1或x <-1; f ′(x )<0⇔-1<x <1.而x 2-2x -3>0的解为x >3或x <-1;x 2-2x -3<0的解为-1<x <3. ∴原不等式的解为x >3或x <-1或-1<x <1. 故填(-∞,-1)∪(-1,1)∪(3,+∞).15.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝ ⎛⎭⎪⎫12,5,C (1,0),函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.解:根据题意得f (x )=⎩⎪⎨⎪⎧10x ,0≤x ≤12,-10x +10,12<x ≤1,从而得到y =xf (x )=⎩⎪⎨⎪⎧10x 2,0≤x ≤12,-10x 2+10x ,12<x ≤1,所以函数y =xf (x )与x 轴围成的图形面积为S =∫12010x 2d x +∫112(-10x 2+10x )d x=103x 3|120+⎝⎛⎭⎪⎫5x 2-103x 3|112=54.故填54.16.(2015·福州质量检测)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是____________.解:若函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上无极值,则当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0或f ′(x )=x 2-ax +1≤0恒成立.当x ∈⎝ ⎛⎭⎪⎫12,3时,易得y =x +1x 的值域是⎣⎢⎡⎭⎪⎫2,103.当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x 恒成立,a ≤2;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在⎝ ⎛⎭⎪⎫12,3 上有极值点,实数a 的取值范围是⎝ ⎛⎭⎪⎫2,103.故填⎝⎛⎭⎪⎫2,103.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)函数f (x )=x 2+ax +1(a ∈R ).(1)若f (x )在点(1,f (1))处的切线斜率为12,求实数a 的值;(2)若f (x )在x =1处取得极值,求实数a 的值.解:(1)f ′(x )=2x (x +1)-x 2-a (x +1)2=x 2+2x -a(x +1)2,若f (x )在点(1,f (1))处的切线斜率为12,则f ′(1)=12.所以f ′(1)=3-a 4=12,得a =1.(2)若f (x )在x =1处取得极值,则f ′(1)=0,即3-a4=0,得a =3,经检验,合题意.18.(12分)已知函数y =x 3+3ax 2+3bx +c 在x =2处有极值,且其图象在x =1处的切线斜率为-3. (1)求函数的单调区间;(2)求函数的极大值与极小值的差. 解:(1)∵y ′=3x 2+6ax +3b , 由题意得y ′|x =2=12+12a +3b =0,y ′|x =1=3+6a +3b =-3,解得a =-1,b =0,所以y =x 3-3x 2+c ,y ′=3x 2-6x . 令y ′>0,得x <0或x >2,∴函数的单调递增区间是(-∞,0),(2,+∞); 单调递减区间是(0,2).(2)由(1)可知函数在x =0处取得极大值c , 在x =2处取得极小值c -4,∴函数的极大值与极小值的差为c -(c -4)=4.19.(12分)(2015·重庆)设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解:(1)f ′(x )=(6x +a )e x -(3x 2+ax )ex(e x )2=-3x 2+(6-a )x +a ex, ∵f (x )在x =0处取得极值,∴f ′(0)=0,解得a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6xex, ∴f (1)=3e ,f ′(1)=3e,∴曲线y =f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化为3x -e y =0.(2)解法一:由(1)可得f ′(x )=-3x 2+(6-a )x +ae x, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0,解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,此时函数f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,此时函数f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,此时函数f (x )为减函数. 由f (x )在[3,+∞)上为减函数,可知x 2=6-a +a 2+366≤3,解得a ≥-92.故a 的取值范围是⎣⎢⎡⎭⎪⎫-92,+∞. 解法二:由f (x )在[3,+∞)上为减函数,∴f ′(x )≤0在[3,+∞)上恒成立, 可得a ≥-3x 2+6xx -1,在[3,+∞)上恒成立.令u (x )=-3x 2+6x x -1,u ′(x )=-3[(x -1)2+1](x -1)2<0,∴u (x )在[3,+∞)上单调递减,a ≥u (x )max =u (3)=-92,故a 的取值范围是⎣⎢⎡⎭⎪⎫-92,+∞. 20.(12分)某景区为提高经济效益,现对景区进行升级改造,经过市场调查,旅游收入增加y 万元与投入x (x ≥10)万元之间满足:y =f (x )=ax 2+10150x -b ln x10,a ,b 为常数.当x =10万元时,y =19.2万元;当x =20万元时,y =35.7万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6)(1)求f (x )的解析式;(2)求该景点升级改造后利润增加的最大值(利润增加值=旅游收入增加值-投入).解:(1)由条件⎩⎪⎨⎪⎧a ×102+10150×10-b ln1=19.2,a ×202+10150×20-b ln2=35.7.解得a =-1100,b =1.则f (x )=-x 2100+10150x -ln x10(x ≥10).(2)设T (x )=f (x )-x =-x 2100+5150x -ln x10(x ≥10).则T ′(x )=-x 50+5150-1x =-(x -1)(x -50)50x.令T ′(x )=0,得x =1(舍)或x =50.T (x )在[10,50)上是增函数;在(50,+∞)上是减函数,∴x =50为T (x )的极大值点.即该景点改造升级后利润T (x )的最大值为T (50)=24.4万元.21.(12分)(2015·北京)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 解:(1)由1+x1-x >0得-1<x <1.因此f (x )=ln(1+x )-ln(1-x ),所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明:令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33, 则g ′(x )=f ′(x )-2(1+x 2)=2x41-x2,因为g ′(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增.所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x2, 所以当0<x <4k -2k时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0,4k -2k 上单调递减.当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.22.(12分)(2015·宜昌模拟)已知函数f (x )=x +1ex(e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.解:(1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0,∴f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)假设存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max (x ∈[0,1]).∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1ex, ∴φ′(x )=-x 2+(1+t )x -tex=-(x -t )(x -1)ex. ①当t ≥1时,在[0,1]上φ′(x )≤0,φ(x )在[0,1]上单调递减,∴2φ(1)<φ(0),即t >3-e2>1.②当t ≤0时,在[0,1]上φ′(x )≥0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0.③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减;若x ∈(t ,1],φ′(x )>0,φ(x )在(t ,1]上单调递增,所以2φ(t )<max{φ(0),φ(1)},即2·t +1e t <max ⎩⎨⎧⎭⎬⎫1,3-t e ,(*) 由(1)知,g (t )=2·t +1et 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e,所以不等式(*)无解. 综上所述,t 的取值范围是(-∞,3-2e )∪⎝ ⎛⎭⎪⎫3-e 2,+∞.第四章三角函数(基本初等函数(Ⅱ))1.基本初等函数Ⅱ(三角函数) (1)任意角、弧度制①了解任意角的概念和弧度制的概念. ②能进行弧度与角度的互化. (2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式,能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.③理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在⎝ ⎛⎭⎪⎫-π2,π2内的单调性. ④理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin x cos x=tan x .⑤了解函数y =A sin(ωx +φ)的物理意义;能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.2.三角恒等变换(1)两角和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②会用两角差的余弦公式推导出两角差的正弦、正切公式.③会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).3.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.。

创新设计(全国通用)2018版高考数学一轮复习 第三章 导数及其应用 第3讲 定积分与微积分基本定理 理 新人

创新设计(全国通用)2018版高考数学一轮复习 第三章 导数及其应用 第3讲 定积分与微积分基本定理 理 新人



a
c
3.微积分基本定理
一般地,如果 f(x)是在区间[a,b]上的连续函数,且 F′(x)=f(x), 那么bf(x)dx=__F_(b_)_-__F_(_a_)_.这个结论叫做微积分基本定理,

a
又叫做牛顿—莱布尼茨公式.可以把 F(b)-F(a)记为 F(x) ba, 即baf(x)dx=F(x)ba=_F_(_b_)-__F__(a_)_.
【例 2】 (1)已知曲线 y= x,y=2-x,y=-13x 所围成图形的 面积为 S,则 S=________. (2)已知曲线 y=x2 与直线 y=kx(k>0)所围成的曲边图形的面 积为43,则 k=________. 解析 (1)由yy==2-x,x 得交点 A(1,1); y=2-x, 由y=-13x 得交点 B(3,-1).

1 4
x4


2 0
=8-14×24=4,故选 D.
答案 D
4.若Tx2dx=9,则常数 T 的值为________. 0 解析 T0x2dx=13x3T0=13×T3=9. ∴T3=27, ∴T=3.
答案 3
5.已知 f(x)=x12((-01<≤x≤x≤1)0),,则- 1 1f(x)dx 的值为________.
和式
n
i1
f(ξi)Δ
x=
n
i1
b-n af(ξi),当
n→∞时,上述和式无限接
近 分于 ,某 记个 作常 __数 __ba, _f(_x这 _)d_x个 __常 _,数即叫b做f(x函)d数 x=_f(_xn_)l在 i_m_区_i_n间_1_b[_a-_n,_a_bf_(]ξ_上i_) .的定积 a

2018版高考数学大一轮复习 第三章 导数及其应用 第3讲 定积分与微积分基本定理教师用书 理 新人

2018版高考数学大一轮复习 第三章 导数及其应用 第3讲 定积分与微积分基本定理教师用书 理 新人

第三章 导数及其应用 第3讲 定积分与微积分基本定理教师用书理 新人教版(建议用时:40分钟)一、选择题1.(2017·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A.e +2B.e +1C.eD.e -1解析 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10)=1+e 1-1=e.故选C.答案 C2.若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是( )A.2B.3C.4D.6解析 ⎠⎛1a⎝ ⎛⎭⎪⎫2x +1x d x =(x 2+ln x )⎪⎪⎪a1=a 2+ln a -1,∴a 2+ln a -1=3+ln 2,则a =2. 答案 A3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( ) A.12g B.gC.32g D.2g解析 电视塔高h =⎠⎛12gt d t =⎪⎪⎪⎝ ⎛⎭⎪⎫12gt 221=32g . 答案 C4.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( ) A.⎠⎛02|x 2-1|d xB.⎪⎪⎪⎪⎠⎛02(x 2-1)d x C.⎠⎛02(x 2-1)d xD.⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x .答案 A5.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121xd x ,S 3=⎠⎛12e xd x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D.S 3<S 2<S 1解析S 2=⎠⎛121x d x =ln 2,S 3=⎠⎛12e x d x =e 2-e ,∵e 2-e =e(e -1)>e >73>ln 2,∴S 2<S 1<S 3. 答案 B 二、填空题6.已知t >0,若⎠⎛0t (2x -2)d x =8,则t =________.解析 由⎠⎛0t (2x -2)d x =8得,(x 2-2x ) ⎪⎪⎪t0=t 2-2t =8,解得t =4或t =-2(舍去).答案 47.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围成的面积为________.解析 根据f (x )的图象可设f (x )=a (x +1)·(x -1)(a <0). 因为f (x )的图象过(0,1)点, 所以-a =1,即a =-1.所以f (x )=-(x +1)(x -1)=1-x 2. 所以S =⎠⎛-11(1-x 2)d x =2⎠⎛01(1-x 2)d x=2⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10=2⎝ ⎛⎭⎪⎫1-13=43. 答案 438.(2017·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析 封闭图形如图所示,则⎠⎛0a x d x ==23a 32-0=a 2,解得a =49.答案 49三、解答题 9.计算下列定积分:(1)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x ; (2)⎠⎛02-x 2+2x d x ;(3)2sin ⎝⎛⎭⎪⎫x +π4d x ;(4)⎠⎛-11(x 2tan x +x 3+1)d x ;(5)⎠⎛-22|x 2-2x |d x .解 (1)原式=⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫12×22-ln 2-⎝ ⎛⎭⎪⎫12-ln 1=32-ln 2;(2)由定积分的几何意义知,所求定积分是由x =0,x =2,y =-x 2+2x ,以及x 轴围成的图象的面积,即圆(x -1)2+y 2=1的面积的一半,∴⎠⎛02-x 2+2x =π2;(3)原式= (sin x +cos x )d x =(-cos x +sin x )=⎝⎛⎭⎪⎫-cos π2+sin π2-(-cos 0+sin 0)=2;(4)原式=⎠⎛-11(x 2tan x +x 3)d x +⎠⎛-111d x =0+x ⎪⎪⎪1-1=2;(5)∵|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2,∴⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫13x 3-x 2⎪⎪⎪0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2⎪⎪⎪20=8. 10.求曲线y =x 2,直线y =x ,y =3x 围成的图形的面积.解 作出曲线y =x 2,直线y =x ,y =3x 的图象,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =x 2,y =x ,得交点(1,1),解方程组⎩⎪⎨⎪⎧y =x 2,y =3x ,得交点(3,9),因此,所求图形的面积为S =⎠⎛01(3x -x )d x +⎠⎛13(3x -x 2)d x=⎠⎛012x d x +⎠⎛13(3x -x 2)d x =x 2⎪⎪⎪1+⎝ ⎛⎭⎪⎫32x 2-13x 3⎪⎪⎪31=1+⎝ ⎛⎭⎪⎫32×32-13×33-⎝ ⎛⎭⎪⎫32×12-13×13=133.能力提升题组 (建议用时:20分钟)11.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.-13C.13D.1解析 由题意知f (x )=x 2+2⎠⎛01f (x )d x ,设m =⎠⎛01f (x )d x ,∴f (x )=x 2+2m ,⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝ ⎛⎭⎪⎫13x 3+2mx ⎪⎪⎪1=13+2m =m ,∴m =-13. 答案 B12.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是()A.1+25ln 5B.8+25ln 113C.4+25ln 5D.4+50ln 2解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪4=28-24+25ln 5=4+25ln 5(m). 答案 C13.(2017·郑州调研)⎠⎛-11(1-x 2+e x-1)d x =________.解析 ⎠⎛-11(1-x 2+e x-1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x-1)d x .因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积,则⎠⎛-111-x 2d x =π2,又⎠⎛-11(e x -1)d x =(e x -x )|1-1=(e 1-1)-(e -1+1)=e -1e-2,所以⎠⎛-11(1-x 2+e x-1)d x =π2+e -1e -2.答案π2+e -1e-214.在区间[0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 S 1面积等于边长分别为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-⎠⎛0t x 2d x =23t 3.S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形边长分别为t 2,1-t 的面积,即S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13.所以阴影部分的面积S (t )=S 1+S 2=43t 3-t 2+13(0≤t ≤1).令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0,得t =0或t =12.t =0时,S (t )=13;t =12时,S (t )=14;t =1时,S (t )=23.所以当t =12时,S (t )最小,且最小值为14.。

高考数学一轮复习 第三章 导数及其应用 3.4 定积分与微积分基本定理真题演练集训 理 新人教A版(

高考数学一轮复习 第三章 导数及其应用 3.4 定积分与微积分基本定理真题演练集训 理 新人教A版(

定理真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第三章导数及其应用3.4 定积分与微积分基本定理真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第三章导数及其应用3.4 定积分与微积分基本定理真题演练集训理新人教A版的全部内容。

本定理真题演练集训理新人教A版1.[2014·陕西卷]定积分错误!(2x+e x)d x的值为( )A.e+2 B.e+1C.e D.e-1答案:C解析:错误!(2x+e x)d x=(x2+e x)错误!错误!=(1+e)-(0+e0)=e,故选C。

2.[2014·山东卷]直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为() A.2错误!B.4错误!C.2 D.4答案:D解析:由4x=x3,解得x=0或x=2或x=-2(舍去),根据定积分的几何意义可知,直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为错误!(4x-x3)d x=错误!错误!错误!=4.3.[2015·天津卷]曲线y=x2与直线y=x所围成的封闭图形的面积为________.答案:错误!解析:如图,阴影部分的面积即为所求.由错误!得A(1,1).故所求面积为S=错误!(x-x2)d x=错误!|错误!=错误!。

4.[2015·湖南卷]错误!(x-1)d x=________.答案:0解析:错误!(x-1)d x=错误!错误!错误!=(2-2)-0=0。

5.[2015·陕西卷]如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.答案:1.2解析:建立如图所示的平面直角坐标系.由抛物线过点(0,-2),(-5,0),(5,0),得抛物线的函数表达式为y=225x2-2,抛物线与x轴围成的面积S1=错误!-5错误!d x=错误!,梯形面积S2=错误!=16。

[推荐学习]2018版高考数学一轮复习第三章导数及其应用3.3定积分与微积分基本定理理

[推荐学习]2018版高考数学一轮复习第三章导数及其应用3.3定积分与微积分基本定理理

第三章导数及其应用 3.3 定积分与微积分基本定理理1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(2)若f(x)为奇函数,则ʃa-a f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.( √)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.( √)(3)若ʃb a f(x)d x<0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.( ×)(4)微积分基本定理中的F(x)是唯一的.( ×)(5)曲线y =x 2与y =x 所围成图形的面积是ʃ10(x 2-x )d x .( × )1.(2017·福州质检)ʃ10(e x+2x )d x 等于( ) A .1 B .e -1 C .e D .e +1 答案 C解析 ʃ10(e x +2x )d x =(e x +x 2)|10=e +1-1=e.2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4 答案 D解析 如图,y =4x 与y =x 3的交点为A (2,8),图中阴影部分即为所求图形面积.S 阴=ʃ20(4x -x 3)d x=(2x 2-14x 4)|20=8-14×24=4,故选D.3.(教材改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是( )A.132 m B .6 m C.152 m D .7 m 答案 A解析 s =ʃ21(3t +2)d t =(32t 2+2t )|21=32×4+4-(32+2) =10-72=132(m).4.若ʃT 0x 2d x =9,则常数T 的值为________.答案 3解析 ʃT 0x 2d x =13x 3|T 0=13T 3=9,∴T =3.5.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x,x ,e](e 为自然对数的底数),则ʃe0f (x )d x 的值为________.答案 43解析 ʃe 0f (x )d x =ʃ10x 2d x +ʃe 11xd x=13x 3|10+ln x |e1=13+ln e =43.题型一 定积分的计算例1 (1)(2016·九江模拟)若ʃ10(2x +λ)d x =2(λ∈R ),则λ等于( ) A .0 B .1 C .2 D .-1 (2)定积分ʃ2-2|x 2-2x |d x 等于( ) A .5 B .6 C .7 D .8 答案 (1)B (2)D解析 (1)ʃ10(2x +λ)d x =(x 2+λx )|10=1+λ=2, 所以λ=1. (2)ʃ2-2|x 2-2x |d x=ʃ0-2(x 2-2x )d x +ʃ20(2x -x 2)d x =(x 33-x 2)|0-2+(x 2-x 33)|20 =83+4+4-83=8. 思维升华 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分.(1)若π20(sin cos )d 2x a x x ⎰-=,则实数a 的值为( )A .-1B .1C .- 3 D. 3(2)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ,2],则ʃ20f (x )d x 等于( )A.34B.45C.56D.67 答案 (1)A (2)C 解析 ππ220(1)(sin cos )d (cos sin )|x a x x x a x ⎰-=--=0-a -(-1-0)=1-a =2, ∴a =-1.(2)ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x =13x 3|10+(2x -12x 2)|21 =13+(4-12×4)-(2-12) =56. 题型二 定积分的几何意义命题点1 利用定积分的几何意义计算定积分 例2 (1)计算:ʃ313+2x -x 2d x =________. (2)若ʃm -2-x 2-2x d x =π4,则m =________. 答案 (1)π (2)-1解析 (1)由定积分的几何意义知,ʃ313+2x -x 2d x 表示圆(x -1)2+y 2=4和x =1,x =3,y =0围成的图形的面积,∴ʃ313+2x -x 2d x =14×π×4=π. (2)根据定积分的几何意义ʃm-2-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y =0围成的图形的面积,又ʃm -2-x 2-2x d x =π4为四分之一圆的面积, 结合图形知m =-1. 命题点2 求平面图形的面积例3 (2017·青岛月考)由曲线xy =1,直线y =x ,y =3所围成的封闭平面图形的面积为______. 答案 4-ln 3解析 由xy =1,y =3可得交点坐标为(13,3).由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3得交点坐标为(3,3),由曲线xy =1,直线y =x ,y =3所围成图形的面积为1312311113311(3)d (3)d (3ln )|(3)|2x x x x x x x x -+-=-+-⎰⎰ =(3-1-ln 3)+(9-92-3+12)=4-ln 3.思维升华 (1)根据定积分的几何意义可计算定积分; (2)利用定积分求平面图形面积的四个步骤①画出草图,在直角坐标系中画出曲线或直线的大致图象; ②借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; ③把曲边梯形的面积表示成若干个定积分的和; ④计算定积分,写出答案.(1)定积分ʃ39-x 2d x 的值为( ) A .9π B .3π C.94π D.92π (2)由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________. 答案 (1)C (2)163解析 (1)由定积分的几何意义知ʃ309-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故ʃ39-x 2d x =π·324=94π,故选C.(2)由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为ʃ1-1(2x 2+4x +2)d x =(23x 3+2x 2+2x )|1-1=(23×13+2×12+2×1)-[23×(-1)3+2×(-1)2+2×(-1)]=163. 题型三 定积分在物理中的应用例4 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln 113C .4+25ln 5D .4+50ln 2答案 C解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =ʃ40(7-3t +251+t )d t =[7t -32t 2+25ln(1+t )]|4=28-24+25ln 5=4+25ln 5. 思维升华 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =ʃba v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =ʃba F (x )d x .一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( ) A. 3 J B.233 J C.433 J D .2 3 J答案 C解析 ʃ21F (x )cos 30°d x =ʃ2132(5-x 2)d x =⎪⎪⎪⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫5x -13x 3×3221=433,∴F (x )做的功为43 3 J.4.利用定积分求面积典例 由抛物线y =x 2-1,直线x =0,x =2及x 轴围成的图形面积为________. 错解展示解析 所求面积S =ʃ20(x 2-1)d x =(13x 3-x )|20=23.答案 23现场纠错解析 如图所示,由y =x 2-1=0,得抛物线与x 轴的交点分别为(-1,0)和(1,0). 所以S =ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x =(x -x 33)|1+(x 33-x )|21=(1-13)+[83-2-(13-1)]=2.答案 2纠错心得 利用定积分求面积时要搞清楚定积分和面积的关系;定积分可正可负,而面积总为正.1.π220sin d 2xx ⎰等于( ) A .0 B.π4-12 C.π4-14 D.π2-1 答案 B 解析ππ222001cos sin d d 22x x x x -=⎰⎰π2011π1(sin )|.2242x x =-=- 2.ʃ101-x 2d x 的值为( ) A.14 B.π4 C.12 D.π2 答案 B解析 ʃ11-x 2d x 的几何意义为以(0,0)为圆心, 以1为半径的圆位于第一象限的部分,圆的面积为π, 所以ʃ101-x 2 d x =π4. 3.(2016·南昌模拟)若ʃa1(2x +1x)d x =3+ln 2(a >1),则a 的值是( )A .2B .3C .4D .6 答案 A解析 由题意知ʃa 1(2x +1x)d x =(x 2+ln x )|a 1=a 2+ln a -1=3+ln 2,解得a =2.4.定积分ʃ20|x -1|d x 等于( ) A .1 B .-1 C .0 D .2 答案 A解析 ʃ20|x -1|d x =ʃ10|x -1|d x +ʃ21|x -1|d x =ʃ10(1-x )d x +ʃ21(x -1)d x =(x -x 22)|10+(x 22-x )|21=(1-12)+(222-2)-(12-1)=1.5.由曲线f (x )=x 与y 轴及直线y =m (m >0)围成的图形的面积为83,则m 的值为( )A .2B .3C .1D .8 答案 A解析 22333200228(()|,333m m S m x mx x m m ==-=-=⎰解得m =2.6.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1答案 B解析 方法一 S 1=13x 3|21=83-13=73,S 2=ln x |21=ln 2<ln e =1,S 3=e x |21=e 2-e≈2.72-2.7=4.59,所以S 2<S 1<S 3.方法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x,y =e x与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3.7.π)d 4x x +=________.答案 2解析 依题意得π)d 4x x +ππ220(sin cos )d (sin cos )|x x x x x =+=-⎰=(sin π2-cos π2)-(sin 0-cos 0)=2.8.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为________.答案3解析 所求面积ππ33ππ33cos d sin |S x x x --==⎰=sin π3-(-sin π3)= 3.*9.(2016·湖北省重点中学高三阶段性统一考试)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则ʃ20f (x )d x =________.答案 -4解析 因为f (x )=x 3+x 2f ′(1), 所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3. 所以f (x )=x 3-3x 2.故ʃ2f (x )d x =ʃ20(x 3-3x 2)d x =(x 44-x 3)|20=-4.10.已知f (a )=ʃ10(2ax 2-a 2x )d x ,则函数f (a )的最大值为________.答案 29解析 f (a )=ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=-12a 2+23a ,由二次函数的性质可得f (a )max =-232-12=29. 11.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 由⎩⎨⎧y =x ,y =2-x得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x 得交点B(3,-1).故所求面积S =ʃ10⎝ ⎛⎭⎪⎫x +13x d x +ʃ31⎝⎛⎭⎪⎫2-x +13x d x32123201211()|(2)|363x x x x =++- =23+16+43=136. 12.(2016·武汉模拟)如图,矩形OABC 的四个顶点依次为O (0,0),A (π2,0),B (π2,1),C (0,1),记线段OC ,CB 以及y =sin x (0≤x ≤π2)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC 内任意投一点M ,求点M 落在区域Ω内的概率.解 阴影部分的面积为π20π(1sin )d 1,2x x -=-⎰生活的色彩就是学习K12的学习需要努力专业专心坚持 矩形的面积是π2×1=π2, 所以点M 落在区域Ω内的概率为π2-1π2=1-2π. *13.已知函数y =F (x )的图象是折线段ABC ,其中A (0,0),B (12,5),C (1,0),求函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积.解 由题意,F (x )=⎩⎪⎨⎪⎧ 10x ,0≤x ≤12,-10x +10,12<x ≤1, 则xF (x )=⎩⎪⎨⎪⎧ 10x 2,0≤x ≤12,-10x 2+10x ,12<x ≤1,所以函数y =xF (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为11122323122101022101010d (1010)d |(5)|33x x x x x x x x +-+=+-⎰⎰ =103×18+(5-103)-(54-103×18)=54.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 导数及其应用 第3讲 定积分与微积分基本定理试题 理 北师大版(建议用时:40分钟)一、选择题1.(2017·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A.e +2B.e +1C.eD.e -1解析 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10)=1+e 1-1=e.故选C.答案 C2.若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则a 的值是( )A.2B.3C.4D.6解析 ⎠⎛1a⎝ ⎛⎭⎪⎫2x +1x d x =(x 2+ln x )⎪⎪⎪a1=a 2+ln a -1,∴a 2+ln a -1=3+ln 2,则a =2. 答案 A3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( ) A.12g B.gC.32g D.2g解析 电视塔高h =⎠⎛12gt d t =⎪⎪⎪⎝ ⎛⎭⎪⎫12gt 221=32g . 答案 C4.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( ) A.⎠⎛02|x 2-1|d xB.⎪⎪⎪⎪⎠⎛02(x 2-1)d x C.⎠⎛02(x 2-1)d xD.⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即⎠⎛02|x 2-1|d x .答案 A5.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121xd x ,S 3=⎠⎛12e xd x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D.S 3<S 2<S 1解析S 2=⎠⎛121x d x =ln 2,S 3=⎠⎛12e x d x =e 2-e ,∵e 2-e =e(e -1)>e >73>ln 2,∴S 2<S 1<S 3. 答案 B 二、填空题6.已知t >0,若⎠⎛0t (2x -2)d x =8,则t =________.解析 由⎠⎛0t (2x -2)d x =8得,(x 2-2x ) ⎪⎪⎪t0=t 2-2t =8,解得t =4或t =-2(舍去).答案 47.已知二次函数y =f (x )的图像如图所示,则它与x 轴所围成的面积为________. 解析 根据f (x )的图像可设f (x )=a (x +1)·(x -1)(a <0). 因为f (x )的图像过(0,1)点, 所以-a =1,即a =-1.所以f (x )=-(x +1)(x -1)=1-x 2. 所以S =⎠⎛-11(1-x 2)d x =2⎠⎛01(1-x 2)d x=2⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10=2⎝ ⎛⎭⎪⎫1-13=43. 答案 438.(2017·合肥模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析 封闭图形如图所示,则⎠⎛0a x d x ==23a 32-0=a 2,解得a =49. 答案 49三、解答题 9.计算下列定积分:(1)⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x ; (2)⎠⎛02-x 2+2x d x ;(3)2sin ⎝ ⎛⎭⎪⎫x +π4d x ;(4)⎠⎛-11(x 2tan x +x 3+1)d x ;(5)⎠⎛-22|x 2-2x |d x .解 (1)原式=⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫12×22-ln 2-⎝ ⎛⎭⎪⎫12-ln 1=32-ln 2;(2)由定积分的几何意义知,所求定积分是由x =0,x =2,y =-x 2+2x ,以及x 轴围成的图像的面积,即圆(x -1)2+y 2=1的面积的一半,∴⎠⎛02-x 2+2x =π2;(3)原式= (sin x +cos x )d x =(-cos x +sin x )=⎝⎛⎭⎪⎫-cos π2+sin π2- (-cos 0+sin 0)=2;(4)原式=⎠⎛-11(x 2tan x +x 3)d x +⎠⎛-111d x =0+x ⎪⎪⎪1-1=2;(5)∵|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x ,-2≤x <0,-x 2+2x ,0≤x ≤2, ∴⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫13x 3-x 2⎪⎪⎪0-2+⎝ ⎛⎭⎪⎫-13x 3+x 2⎪⎪⎪20=8.10.求曲线y =x 2,直线y =x ,y =3x 围成的图形的面积.解 作出曲线y =x 2,直线y =x ,y =3x 的图像,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y =x 2,y =x ,得交点(1,1),解方程组⎩⎪⎨⎪⎧y =x 2,y =3x ,得交点(3,9),因此,所求图形的面积为S =⎠⎛01(3x -x )d x +⎠⎛13(3x -x 2)d x=⎠⎛012x d x +⎠⎛13(3x -x 2)d x =x 2⎪⎪⎪1+⎝ ⎛⎭⎪⎫32x 2-13x 3⎪⎪⎪31=1+⎝ ⎛⎭⎪⎫32×32-13×33-⎝ ⎛⎭⎪⎫32×12-13×13=133.能力提升题组 (建议用时:20分钟)11.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.-13C.13D.1解析 由题意知f (x )=x 2+2⎠⎛01f (x )d x ,设m =⎠⎛01f (x )d x ,∴f (x )=x 2+2m ,⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝ ⎛⎭⎪⎫13x 3+2mx ⎪⎪⎪1=13+2m =m ,∴m =-13. 答案 B A.1+25ln 5 B.8+25ln 113C.4+25ln 5D.4+50ln 2解析 令v (t )=0,得t =4或t =-83(舍去),∴汽车行驶距离s =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪4=28-24+25ln 5=4+25ln 5(m). 答案 C13.(2017·郑州调研)⎠⎛-11(1-x 2+e x-1)d x =________.解析 ⎠⎛-11(1-x 2+e x-1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x-1)d x .因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积,则⎠⎛-111-x 2d x =π2,又⎠⎛-11(e x -1)d x =(e x -x )|1-1=(e 1-1)-(e -1+1)=e -1e-2,所以⎠⎛-11(1-x 2+e x-1)d x =π2+e -1e -2.答案π2+e -1e-2 14.在区间[0,1]上给定曲线y =x 2.试在此区间内确定点t 的值,使图中的阴影部分的面积S 1与S 2之和最小,并求最小值.解 S 1面积等于边长分别为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-⎠⎛0t x 2d x =23t 3.S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形边长分别为t 2,1-t 的面积,即S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13.所以阴影部分的面积S (t )=S 1+S 2=43t 3-t 2+13(0≤t ≤1).令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0,得t =0或t =12.t =0时,S (t )=13;t =12时,S (t )=14;t =1时,S (t )=23.所以当t =12时,S (t )最小,且最小值为14.。

相关文档
最新文档