八年级数学上册 等腰三角形的性质说课稿 (新版)新人教版
13.3.1等腰三角形说课稿 2023—2024学年人教版数学八年级上册
13.3.1《等腰三角形》说课稿20231121130赵兰聪尊敬的各位评委老师好,我说课的内容是《等腰三角形》,接下来我将从以下六个方面展开说课。
一、教材分析(包含教学重点分析)本节选自人教版八年级上册第十三章第三节第一课时等腰三角形,是在学习了轴对称图形及三角形全等的判定的基础上进行的,主要学习“等腰三角形的等边对等角”和“等腰三角形的三线合一”两个性质。
本节内容是对前面知识的深化和应用,性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习等腰三角形判定、线段垂直平分线和等腰梯形的预备知识。
本节内容在教材中具有非常重要的地位,起着承前启后的作用。
因此等腰三角形性质的探究及应用为本节课的重点。
二、学情分析(包含教学难点分析)我所面对的是八年级的学生,学生已经学习了三角形的内角和,三角形的中线、高线、角平分线、三角形全等及轴对称的知识,了解了等腰三角形的定义及两腰相等的特点,这为本节课的学习奠定了理论基础。
同时已经具有初步的合情推理和演绎推理能力,动手操作能力明显增强,他们喜欢动手实验,敢于大胆猜想,愿意与人合作,这些都为探究活动的顺利进行提供了保障。
但是,性质定理的证明涉及到添加辅助线,这对八年级学生来说是一个难点,可能会使学习活动受阻。
因此等腰三角形性质的证明为本节课的难点。
三、教学目标分析根据学生知识能力和心理特征的实际情况,本节课确定的教学目标是:1.理解等腰三角形的性质,会利用等腰三角形的性质进行简单的判断、推理和计算。
2.通过动手操作、观察、证明等腰三角形的性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高学生分析问题、解决问题的能力。
3.在实际动手操作中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。
四、教法学法分析爱因斯坦曾说,发现一个问题往往比解决一个问题更难,教学是引导学生把知识转化为能力的一种形式,所以在教法上我以学生为中心,采用讨论法和引导探究相结合的教学方法,通过精心设问引导学生发现问题、分析问题、解决问题,充分发挥学生的积极性和主动性。
人教版数学八年级上册第十三章13.3.1-等腰三角形说课稿
《13.3.1等腰三角形的性质》说课稿教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:一、说教材本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。
因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
二.说教学目标1.探索并证明等腰三角形的两个性质。
2.能利用性质证明两个角相等或两条线段相等。
3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用。
说重点:探索并证明等腰三角形的性质。
说难点:性质1证明中辅助线的添加和对性质2的理解。
三.说教法在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。
根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。
使学生全面参与、全员参与、全程参与,真正确立其主体地位。
而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。
四.说学法只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。
五.课标对本节课的要求探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。
六.如何利用学案是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。
七.说教学过程(一)知识回顾,导入新课(多媒体出示)学生独立思考,然后回答。
八年级数学上册 13.3.1 等腰三角形说课稿3 (新版)新人教版【教案】
《等腰三角形》说课稿一、说教材1、教材的地位与作用等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。
等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
2、教学重点和难点本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。
把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。
二、说教学目标1、学情分析我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。
2、三维目标根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征,我制定如下目标:★知识与技能目标:了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。
★过程与方法目标:通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。
★情感态度与价值观目标:通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。
在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人. 感受合作交流带来的成功感,树立自信心.三、说教法与学法1、教法根据教材分析和目标分析,我确定本课主要的教法为探究发现法。
采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。
2、学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。
本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。
四、说教学流程《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。
数学八年级上册等腰三角形说课稿
数学八年级上册等腰三角形说课稿数学八年级上册等腰三角形说课稿「篇一」人教版数学八年级上册等腰三角形说课稿老师们:大家好非常高兴能有机会在这个说课活动中与大家交流今天我说课的内容是人教版数学八年级上册第十四章第3节《等腰三角形》的第一课时,下面我将从教材分析、教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。
一、教材分析等腰三角形是一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比一般的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。
它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。
根据本班学生的特点我确定如下:(一)教学目标:1、知识与技能:能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质2、过程与方法:经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。
3、情感态度与价值观:培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的.自信心(二)教学重点与难点等腰三角形性质的探索和应用是本节课的重点。
由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探究是本节课的难点。
二、教学方法本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探究,让学生来主宰课堂,成为学习的主人。
三、学法指导及能力培养好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、表述论证的能力四、教学过程(一)情景设置首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
等腰三角形的性质说课稿范文模板5篇 初中数学等腰三角形说课稿范文模板
等腰三角形的性质说课稿范文模板5篇初中数学等腰三角形说课稿范文模板下面是整理的等腰三角形的性质说课稿5篇初中数学等腰三角形说课稿,以供参考。
等腰三角形的性质说课稿1一说教材《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。
在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。
这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。
而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。
二说教学目标根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:1掌握等腰三角形的性质2知道等腰三角形的性质的推理过程3会灵活运用等腰三角形的性质解决相关的数学问题三说教学重、难点结合八年级学生的年龄特点、心理特征和现有的知识结构。
我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。
由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。
四说教法和学法本节课我采用的教法是启发式教学法、动手操作法。
学生的学法是:自主探究法、合作讨论法。
五说教学过程本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。
1 复习导入通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。
这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。
2探究新知在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。
在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.3理解与运用为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。
人教版数学八年级上册12.3.1《等腰三角形》说课稿1
人教版数学八年级上册12.3.1《等腰三角形》说课稿1一. 教材分析等腰三角形是初中数学中的重要内容,人教版数学八年级上册12.3.1节主要介绍了等腰三角形的性质。
这部分内容是在学生已经掌握了三角形的基本概念和性质的基础上进行讲解的,为后续学习等边三角形、不等边三角形等复杂三角形的性质奠定了基础。
在本节课中,学生将学习到等腰三角形的定义、性质以及判定方法,并通过实例来加深对等腰三角形性质的理解和应用。
二. 学情分析在八年级的学生中,大部分学生已经具备了一定的观察、分析和逻辑思维能力。
他们在学习三角形的基本概念和性质时,已经初步接触到了图形的性质和判定方法。
然而,对于等腰三角形的性质,学生可能还存在一些模糊的认识,需要通过实例和练习来进一步巩固。
此外,学生对于实际问题中的等腰三角形可能还缺乏足够的认识,需要在教学过程中加强这方面的引导。
三. 说教学目标1.知识与技能目标:使学生了解等腰三角形的定义,掌握等腰三角形的性质,学会用三角板画等腰三角形。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生推理、归纳的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的观察能力、动手能力和团队协作能力。
四. 说教学重难点1.教学重点:等腰三角形的性质及其应用。
2.教学难点:等腰三角形性质的推导和证明。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、实物模型、三角板、黑板等。
六. 说教学过程1.导入新课:通过展示等腰三角形的实物模型,引导学生观察和思考等腰三角形的特征,激发学生的学习兴趣。
2.讲解等腰三角形的定义和性质:通过PPT展示等腰三角形的定义和性质,引导学生理解和记忆。
3.性质验证:让学生用三角板和黑板画出等腰三角形,并验证等腰三角形的性质。
4.应用练习:布置一些有关等腰三角形的练习题,让学生巩固所学知识。
5.课堂小结:对本节课的内容进行总结,强调等腰三角形的性质和应用。
八年级上学期数学(人教版)13.3.1等腰三角形的性质说课稿
为了辅助教学,我将使用多媒体课件、几何画板、实物模型和视频资料等资源。多媒体课件和几何画板能够直观展示等腰三角形的性质,使学生更容易理解和记忆;实物模型可以帮助学生直观感受等腰三角形的特点,增强空间想象力;视频资料则可以为学生提供丰富的学习资源,拓宽他们的知识视野。
(三)互动方式
在师生互动方面,我计划通过提问、讨论、解答等方式,引导学生积极参与课堂,培养他们的独立思考能力。在生生互动方面,我将组织学生进行小组讨论、合作探究等活动,让他们在交流与合作中共同成长。此外,我还计划利用课堂时间让学生进行实际操作,例如用剪刀和纸张制作等腰三角形,以提高他们的动手能力。通过这些互动方式,我希望能够激发学生的学习兴趣,提高他们的学习积极性,使他们能够在愉快的氛围中掌握知识。
(四)总结反馈
在总结反馈阶段,我会采取以下方式引导学生自我评价,并提供有效的反馈和建议:
1.学生自我评价:我会让学生回顾所学内容,自我评价他们对等腰三角形性质的理解和应用能力。
2.学生互评:我会组织学生进行互相评价,让他们分享自己的学习心得和经验,相互提供反馈和建议。
3.教师评价:我会根据学生的表现和作业情况,给予他们积极的评价和建设性的建议,帮助他们改进学习方法和提高学习效果。
(三)教学重难点
1.教学重点:等腰三角形的性质及其应用。
2.教学难点:等腰三角形性质的证明和灵活运用。
开始
(一)学生特点
八年级的学生正处在青春发育期,思维活跃,好奇心强,对新鲜事物充满兴趣。他们在数学学习上已经具备了一定的基础,掌握了基本的代数知识和几何知识,具备了一定的逻辑思维能力和空间想象力。但同时,他们也会面临注意力分散、自我控制力较弱等问题。因此,在教学过程中,教师需要充分考虑学生的年龄特点,采用生动有趣的教学方法,激发学生的学习兴趣,提高他们的学习积极性。
八年级数学上册 13.3 等腰三角形 13.3.1 等腰三角形 第1课时 等腰三角形的性质说课稿 (
八年级数学上册 13.3 等腰三角形 13.3.1 等腰三角形第1课时等腰三角形的性质说课稿(新版)新人教版一. 教材分析等腰三角形是八年级数学上册第13.3节的内容,这一节主要让学生掌握等腰三角形的性质。
教材通过引入等腰三角形的定义,引导学生探究等腰三角形的性质,并通过大量的例题和练习题让学生加深对等腰三角形性质的理解和应用。
二. 学情分析学生在学习这一节内容之前,已经学习了三角形的性质,平行线的性质等知识,具备了一定的几何知识基础。
但是,对于等腰三角形的性质,学生可能还没有直观的认识,需要通过实例和操作来理解和掌握。
三. 说教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能够运用等腰三角形的性质解决实际问题。
2.过程与方法目标:通过观察,操作,探究等腰三角形的性质,培养学生的观察能力,动手能力和思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点教学重点:等腰三角形的性质教学难点:等腰三角形性质的证明和应用五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生观察,操作,探究等腰三角形的性质。
2.教学手段:利用多媒体课件,展示等腰三角形的性质,并通过例题和练习题让学生加深理解。
六. 说教学过程1.导入:通过展示等腰三角形的图片,让学生观察等腰三角形的特征,引导学生思考等腰三角形的性质。
2.新课导入:介绍等腰三角形的定义,引导学生探究等腰三角形的性质。
3.性质探究:让学生分组讨论,每组探究一个等腰三角形的性质,并展示结果。
4.性质总结:根据学生的探究结果,总结等腰三角形的性质。
5.例题讲解:利用多媒体课件,讲解等腰三角形的性质的应用,让学生加深理解。
6.练习巩固:让学生做练习题,巩固对等腰三角形性质的理解。
7.课堂小结:总结本节课的内容,强调等腰三角形的性质。
8.课后作业:布置相关的作业,让学生进一步巩固等腰三角形的性质。
新人教版八年级数学上册《等腰三角形》说课稿
《等腰三角形》说课稿一、教材分析(教材的地位与作用)等腰三角形的性质是新人教版八年级数学第十二章第三节的内容,它是在认识了轴对称性以及了解了全等三角形的判定的基础上进行的。
主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。
二、教学目标:知识目标:1.了解等腰三角形的定义与概念。
2.探索等腰三角形的性质。
3.会利用等腰三角形的性质,进行简单的推理、判断、计算。
能力目标:从设置问题⇒模型演示⇒自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。
情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。
三、教学重点与难点及教具重点:等腰三角形两底角相等,等腰三角形三线合一。
因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。
难点:等腰三角形三线合一的推理应用。
教学用具电教手段:三角板多媒体课件四、教法与学法教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习。
学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受“等腰三角形的性质”通过学生自己看、想、议、练等活动,让学生自己主动“发现”几何图形的性质。
五、教学过程:(一)引入新课(利用剪纸等教学活动引入新课)活动1.让学生把一张长方形纸片按图中虚线对折,并剪去阴影部分,再把它展开,得到△ABC 思考:AC 与AB 有什么关系?这个三角形有什么特点?探索等腰三角形的定义与概念。
人教版八年级数学上册13.3.1等腰三角形的性质说课稿
4.课后拓展:布置小组合作作业,要求学生在课后继续探究,将所学知识应用于实际问题的解决中。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.利用生活实例:展示等腰三角形在生活中的应用,如埃及金字塔、北京天坛等,让学生感受到等腰三角形的美和实际意义。
人教版八年级数学上册13.3.1等腰三角形的性质说课稿
一、教材分析
(一)内容概述
本节课选自人教版八年级数学上册第十三章“三角形”的13.3.1节,主题为等腰三角形的性质。在整个课程体系中,本节课起到了承上启下的作用。学生在之前的学习中已经掌握了三角形的初步知识,为学习等腰三角形的性质奠定了基础。本节课主要知识点包括:等腰三角形的定义、等腰三角形的底角相等、等腰三角形的底边中线等于底边的一半以及等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。
1.部分学生对等腰三角形性质的理解可能不够深入。
2.学生在运用性质解决实际问题时可能遇到困难。
3.课堂互动可能不够充分,影响学生的学习积极性。
为应对这些问题,我将:
1.加强课堂讲解和引导,关注学生的理解程度。
2.设计分层练习,针对不同水平的学生提供个性化指导。
3.创设更多互动环节,激发学生的学习兴趣。
二、学情分析导
(一)学生特点
本节课面向的是八年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经能够理解并运用基本的几何知识,具备一定的逻辑推理能力。在学习兴趣方面,学生对新颖、有趣的教学内容更感兴趣,喜欢通过动手操作、合作交流等方式进行学习。然而,部分学生的学习习惯尚需培养,如自主学习能力、总结反思习惯等。
说课稿 人教版 数学 八年级 上册 《等腰三角形》 说课稿
等腰三角形一、说教材《等腰三角形》是人教版《数学》八年级上册第二章第三节,主要内容是学习等腰三角形的两条性质“等边对等角”和“三线合一”,这是在学生已经学习了全等三角形和轴对称图形的基础上学习的,本节内容不仅是对前面所学知识的运用,也是今后证明角相等、线段相等及直线垂直的重要工具。
另外,从本节内容开始,将重点训练学生会根据需要选择定理进行证明.因此,它在教材中处于非常重要的地位。
根据以上对教材的分析,我确定以下三维教学目标:1、知识与技能目标理解等腰三角形的两条性质“等边对等角”和“三线合一”,并能初步运用它们进行简单的计算和证明。
2、过程与方法目标通过归纳、证明等腰三角形的性质,学生的合情推理能力和演绎推理能力能够得到发展。
3、情感态度与价值观目标引导学生观察、发现,激发学生的好奇心和求知欲。
教学重点等腰三角形性质及应用教学难点等腰三角形性质的证明二、说学情八年级的学生已具有一定的观察和动手操作能力,只是归纳总结能力还不足。
因此,在教学中,多给学生机会归纳总结;学生在前面已接触过轴对称和全等三角形的有关知识,所以等腰三角形的这两个性质学生可以通过折叠发现,并用全等三角形的性质加以证明,只是证明题学生刚接触,基本步骤和方法不熟悉,因此在授课时需要规范格式,讲清证明的步骤。
三、说教法为了能更好地体现“学生的主体地位”我选取启发式教学法。
学生通过自己动手操作,归纳等腰三角形的特点,从而得到等腰三角形的概念;启发学生运用已经学过的全等和轴对称的知识来证明等腰三角形的性质。
整个教学过程引导学生自主探索、发现规律,真正实现“以学生为主体”的教学宗旨。
四、说学法教师的教是为了学生更好地学,所以学生的学习方法十分重要。
主要运用自主探究、合作交流的学法。
学生通过自主探究得到等腰三角形“等边对等角”“三线合一”的性质。
通过自己动手操作得到的结论,会记得更深刻。
这样既能加深学生对知识的理解,又能锻炼学生的归纳总结能力。
八年级数学上册《等腰三角形的性质》说课稿 新人教版
《等腰三角形的性质》说课稿一、设计理念《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”。
因此,在本节课的教学设计中,将始终体现以下教育教学理念:1、突出体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生。
2、学生是学习的“主人”,教学活动要遵循数学学习的心理规律,从已有的生活经验出发,让学生亲身经历将已有的实际问题抽象成数学模型,并解释和应用数学知识的过程。
3、教师是学习活动的组织者、引导者,教师应组织和引导学生在自主探索、合作交流的过程中理解和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
4、联系现实生活进行教学,让学生初步具有“数学知识来源于生活,应用于生活”的思想,增强数学知识的应用意识。
二、教材分析1、教学内容:本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。
它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。
2、在教材中的地位与作用:本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。
3、教学目标:知识技能:1、理解掌握等腰三角形的性质。
2、运用等腰三角形的性质进行证明和计算。
数学思考:1、观察等腰三角形的对称性,发展形象思维。
八年级数学《等腰三角形的性质》说课稿
《等腰三角形的性质》说课稿各位评委、老师:你们好!我是车站中学的xxx,我说课的课题是《等腰三角形的性质》,下面,我从教材、教法、学法、教学过程等几个方面对本课的设计进行说明,并就教学效果进行课后反思.一、说教材1.教学内容:《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质.2.在教材中的地位与作用:本节课是在学生已经学习了三角形的基本概念、全等三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,在培养学生的思维能力和推理能力等方面有重要的作用;而等腰三角形的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,也是后续学习等边三角形、菱形、正方形、圆等内容的重要基础.3.教学目标:知识与技能:1.了解等腰三角形的概念.2.掌握等腰三角形性质并运用其进行证明和计算.过程与方法:1.通过亲身观察、证明等腰三角形性质,锻炼推理能力.2.经历折纸活动,培养猜想、探究的能力.情感、态度及价值观:1.从动手操作中,激发数学学习的兴趣.2.从实践活动中,感受数学来源于生活,并应用于生活.4.教学重点与难点:重点:等腰三角形的性质的探索和验证.难点:等腰三角形的性质的应用.5.教学准备:教师课前准备:课件,三角板.学生课前准备:等腰三角形纸片.二、说教法《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此结合学生实际情况及教材内容,我主要采用了以下教学方法:教师启发引导、学生动手操作、观察、分析、猜想、验证得出等腰三角形的性质;教师规范板书,指导学生性质的文字语言、图形语言、符号语言;学生课堂完成练习题,教师点评并规范格式方法.针对猜想的得出,主要采用教师提问学生回答的问答法的学习方法;针对性质2的证明,主要采用类比法的教学方式;针对有难度练习题,主要采用合作探究教学方式.三、说学法《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来.通过学生动手实践,培养学生的观察能力、分析能力;通过自主探索,调动学生思维的积极性,使学生自主地获取知识;通过合作交流,学生分组讨论,使学生在沟通中创新,在交流中发展,在合作中获得新知.四、说教学过程(一)回顾与引入各小组展示各组课前准备的三角形纸片.(设计意图:通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲.)教师提问:你们的三角形纸片都是怎么剪成的?(课堂实录片段)(有的同学是先画一个等腰三角形再剪,由此回顾等腰三角形的定义)1.回顾:学生回顾等腰三角形的定义,教师归纳并板书:在△ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形.结合图形介绍“腰”、“底边”、“顶角”、“底角”等概念.(设计意图:结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象.)(课堂实录片段)(有的同学是将长方形纸片对折之后剪一个靠近对称轴的角,展开就得到一个等腰三角形.由此引出等腰三角形的轴对称性.)2.引入:教师引入课题:下面,我们利用轴对称的知识来研究等腰三角形的性质.(设计意图:在正式进行探索和发现前,让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备.)(二)猜想与证明1.猜想1:教师引导学生动手把等腰三角形ABC对折,作出等腰三角形ABC和折痕AD.找出其中重合的线段和角,并填在书上的表格中.(课堂实录片段)拿掉折痕,只关注三角形ABC的边角.①AB=AC →两条腰相等②B=∠C →两个底角相等(设计意图:将两个性质分开探究、简化进行猜想的过程.)教师引导学生用文字语言归纳出猜想1:猜想1 等腰三角形的两个底角相等;(设计意图:在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维.)2.猜想1的证明:教师引导学生根据猜想1的条件和结论画出相应的图形,写出已知和求证,师生共同分析证明思路,提出以下两个问题引导学生思考证明方法:①如何证明两个角相等?②如何构造两个全等的三角形?(课堂实录片段)(设计意图:引导学生在全等三角形的基础上完成这一证明.同时做不同的辅助线得出这一证明的三种不同方法.)3.性质1:在学生证明的基础上,教师板书性质1:等腰三角形的两个底角相等.(“等边对等角”).并强调符号语言的表达.4.猜想2:(课堂实录片段)由性质一的三种证明方法所做的三条辅助线实际是同一条线段,同时也回顾性质一的猜想过程,对剩下的相等线段、相等角进行分析,进而得出第二个猜想:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(设计意图:在性质一完全得证后探究性质二,将本节课两个重要的内容分开,降低学生的掌握难度.)5.猜想2的证明:猜想2这个命题的符号语言对学生来说有难度,于是我设计了一个填空题.如图,① 已知:AB=AC ∠BAD=∠CAD (即AD 是顶角的角平分线), 求证: ② 已知AB=AC BD=BC (即AD 是底边上的中线), 求证:③ 已知AB=AC AD ⊥BC (即AD 是底边上的高线)求证:(设计意图:弱化将这一命题条件、结论区分清楚的难度,引导学生将语言文字转化为符号文字.)(课堂实录片段)类比猜想1的证明,探究猜想2的证明.选三个明天中的一个进行证明.6.性质2:在学生证明的基础上,教师板书性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(“三线合一”).并强调符号语言的表达.(第(二)环节设计意图:等腰三角形的性质的探索与验证是本节课的重点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突出了教学重点,培养了学生的合情推理能力和演绎推理的能力.)(三)应用与提高1.课件出示:练习1(1)△ABC 中, AB =AC , ∠A =36°, 则∠B = °;(2)△ABC 中, AB =AC , ∠B =36°, 则∠A = °;(3)已知等腰三角形的一个内角为70°,则它的另外两个内角的度数分别是 .(设计意图:应用“等边对等角”,结合三角形内角和求三角形的角.第三问在第一二问的铺垫下应用分类思想.)2.课件出示:例:如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数.(设计意图:课本例题,使学生认识到从复杂图形中分解出 等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想.)B AC D3.课件出示:练习2如图,在△ABC 中,AB=AC ,D 、E 在AC 、AB 上,BC=BD,AD=DE=EB,求∠A 的度数.(设计意图:在讲解例题的基础上让学生再练习一个同类型题目,巩固解决这一题型的方法步骤,进一步培养学生数形结合能力,强化方程思想的应用.)4.课件出示:练习3如图⑴∵AB=AC ,AD ⊥BC∴∠_=∠_,_=_;⑵∵AB=AC ,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC ,AD 平分∠BAC∴_⊥_,_=_(设计意图:让学生再次理解和运用等腰三角形的“三线合一”性质,再次以填空的形式强化三线合一的符号表达形式,及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力.)5.课件出示:练习4如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE.求证:BD =CE.(设计意图:本题考察学生对“三线合一”这一性质的灵活运用,体现这一性质有时候可以代替证全等的方法证线段相等.)(第(三)环节设计意图:等腰三角形的性质的应用,是这节课的难点,本环节就是通A B CDE过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心.)(四)小结与作业请学生总结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?(通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习——总结——学习——反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心.)作业:课本77面练习1、2、3(五)板书设计13.3等腰三角形第一课时等腰三角形的性质1.定义:有两边相等的三角形叫做等腰三角形.△ABC 中,AB =AC2.三角形的性质:性质1 “等边对等角”.在△ABC 中,∵AB =AC∴∠B=∠C性质2 “三线合一”.①∵AB =AC,AD平分∠BAC∴AD平分BC,AD⊥BC②∵AB =AC,AD平分BC∴AD平分∠BAC,AD⊥BC④∵AB =AC,AD⊥BC∴AD平分BC,AD平分∠BAC五、课后反思现代数学教学观念要求学生从“学会”向“会学”转变.所以本节课在教学设计上,我尝试将两个性质的探究分开进行,降低学生自主探究的难度.先让学生通过剪纸来认识等腰三角形;再通过折纸注意等腰三角形的相等边、相等角,从而得出等腰三角形的两个底角相等之一猜想;然后运用全等三角形的知识加以论证,再由性质1的不同证明方法关注等腰三角形对折的折痕,猜想这条线段既是等腰三角形顶角的角平分线,也是底边上的高,也是底边上的中线,再类比性质1的证明进行证明得出性质2.但在教学过程中还需要注意以下几点:1.学生参与了知识的形成过程,但有些学生没有投入到自主探索过程中.改进:教师引导,学生为主体,放手让学生展示、学生说.2.师生间、学生间的互动不够多.改进:增加谈论环节,共同提高;3.由于课堂时间的原因,性质2的证明只提了思路,学生课堂上没有完全完成.改进:分组证明,集中展示.以上是我关于《等腰三角形的性质》这一节的教学设计,不足之处,请各位评委老师批评指正,谢谢大家.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形的性质各位领导、老师们:大家好!今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。
下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。
一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。
使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。
等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。
由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。
)3、教学重点与难点:重点:等腰三角形的性质的探索和应用。
难点:等腰三角形性质的推理证明。
二、教法设计:教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。
有效地启发学生的思考,使学生真正成为学习的主体。
三、学法设计:在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。
这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。
四、教学过程:根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:1、创设情景:首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗?(2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。
再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。
--板书课题。
2、动手操作,大胆猜想:①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)③分组讨论。
(看哪一组气氛最活跃,结论又对又多.)然后小组代表发言,交流讨论结果。
④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?(教师引导学生进行总结归纳得出性质1,2)性质1:等腰三角形的两底角相等。
(简写成“等边对等角” )性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。
(简称“三线合一”)(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。
也发展了学生的几何直观。
教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。
培养了学生进行合情推理的能力。
)3、证明猜想,形成定理:你能证明等腰三角形的性质吗?对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。
这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。
(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。
问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。
找到新知识的生长点,就是三角形的全等。
问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:(1)作顶角∠BAC的平分线,(2)作底边BC的中线,(3)作底边BC的高。
以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。
以达到规范学生的解题步骤的目的。
其他两种证法,让学生课下证明。
这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。
用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2 。
(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。
这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。
)(4)你能用符号语言表示性质1和性质2吗?(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
——4、性质的应用:例一:在等腰△ABC中,AB =AC, ∠A = 50°, 则∠B =_____,∠C=______变式练习:1、在等腰中,∠A =50°, 则∠B =___,∠C=___2、在等腰中,∠A =100°, 则∠B =___,∠C=___设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A =50°为顶角时,则∠B=65°,∠C=65°。
②当∠A =50°为底角时,则∠B =50°,∠C =80°;或∠B =80°,∠C =50°。
变式2①当∠A =100°为顶角时,则∠B=40°,∠C=40°。
②当∠A =100°为底角时,则△ABC不存在。
由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°, 0°<底角<90°)。
例二:在等腰△ABC中,AB =5,AC = 6,则△ABC的周长=_______变式练习:在等腰△ABC中,AB =5,AC = 12,则△ABC的周长=______(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。
如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。
变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。
此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。
例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。
本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。
)例四:在△ABC中,点D在BC上,给出4个条件:①AB=AC ②∠BAD=∠DAC ③AD⊥BC ④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。
(分组讨论抢答)(设计意图:此题是一道探究性的开放性试题,让学生能够大胆地猜想并证明自己的猜想,对于能找出几个不做硬性要求,让不同的学生在数学教育中得到不同的发展,让更多的学生得到到成功的情感体验,同时培养学生分析问题和解决问题的能力,)此题结果中①②推出③④运用等腰三角形的“三①③②④线合一”性质①④②③②③①④运用全等三角形的判定②④①③和性质(不能运用“三线合③④①②一” )5、巩固提高(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。
(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。
求∠1和∠ADC的度数。
(3)课本本章数学活动三“等腰三角形中相等的线段”设计意图:(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。
(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。
与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。
更加说明了合情推理和演绎推理是相辅相成的。
6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。
然后教师结合学生的回答完善本节知识结构。