一次函数方案选择难题
数学人教版八年级下册一次函数——方案问题
课题学习选择方案类型一: 利用函数值的大小选择方案题型1 选择销售方案例1 、某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。
题型2 选择购买方案例2 甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。
今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。
某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用y1元,在乙商店购买需要用y2元。
(1)请分别写出y1、y2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。
例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款。
某顾客需购茶壶4只,茶杯若干只(不少于4只),若设购买茶杯数为x(只),付款数为y(元),试分别写出两种优惠办法中y(元)与x(只)之间的函数解析式,并讨论两种办法中哪种更省钱。
题型4 选择生产方案问题例5、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。
(完整word版)一次函数方案选择问题
利用一次函数选择最佳方案(1)根据自变量的取值范围选择最佳方案:A 、列出所有方案,写出每种方案的函数关系式;B 、画出函数的图象,求出交点坐标,利用图象来讨论自变量在哪个范围内取哪种方案最佳。
(2)根据一次函数的增减性来确定最佳方案:A 、首先弄清最佳方案量与其他量之间的关系,设出最佳方案量和另外一个量,建立函数关系式。
B 、根据条件列出不等式组,求出自变量的取值范围。
C 、根据一次函数的增减性,确定最佳方案。
根据自变量的取值范围选择最佳方案:例1、某校实行学案式教学,需印制若干份数学学案。
印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。
两种印刷方式的费用y (元)与印刷份数x (份)之间的函数关系如图所示:(1)填空:甲种收费方式的函数关系式是_______ ____。
乙种收费方式的函数关系式是_______ ____。
(2)该校某年级每次需印制100∽450(含100和450)份学案, 选择哪种印刷方式较合算。
例2、某校一名老师将在假期带领学生去北京旅游,甲旅行社说:“如果老师买全票,其他人全部半价优惠,”乙旅行社说:“所有人按全票价的6折优惠,”已知全票价为240元,设学生人数为x ,甲旅行社的收费为甲y (元),乙旅行社的收费为乙y (元)。
(1)分别表示两家旅行社的收费甲y ,乙y 与x 的函数关系式;(2)就学生人数讨论哪家旅行社更优惠;(2)根据一次函数的增减性来确定最佳方案:例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润(1)有哪几种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(3)博雅书店计划用(2)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?请你直接写出答案。
一次函数(方案选取)练习题与解答
一次函数(方案选取)练习题与解答1.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生。
为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元。
方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费。
(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为元;用方案二处理废渣时,每月利润为元(利润=总收人-总支出)。
(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算2.汛期来临,水库水位不断上涨,经勘测发现,水库现在超过警戒线水量640万米3,设水流入水库的速度是固定的,每个泄洪闸速度也是固定的,泄洪时,每小时流入水库的水量16万米3,每小时每个泄洪闸泄洪14万米3,已知泄洪的前a小时只打开了两个泄洪闸,水库超过警戒线的水量y(万米3)与泄洪时间s(小时)的关系如图所示,根据图象解答问题:(1)求a的值;(2)求泄洪20小时,水库现超过警戒线水量;(3)若在开始泄洪后15小时内将水库降到警戒线水量,问泄洪一开始至少需要同时打开几个泄洪闸3.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。
(1)问小李分别购买精品盒与普通盒多少盒(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配最大的总利润是多少4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式。
一次函数难题问题详解
函数的概念及图象2一、选择题(题型注释)1.如图反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,ABPS y△.则矩形ABCD的周长是61295OyxA.6 B.12 C.14 D.15【答案】C【解析】试题分析:结合图象可知,当P点在AC上,△ABP的面积y逐渐增大,当点P在CD上,△ABP的面积不变,由此可得AC=5,CD=4,则由勾股定理可知AD=3,所以矩形ABCD的周长为:2×(3+4)=14.考点:动点问题的函数图象;矩形的性质.点评:本题考查的是动点问题的函数图象,解答本题的关键是根据矩形中三角形ABP的面积和函数图象,求出AC 和CD的长.2.小芳步行上学,最初以某一速度匀速前进,中途遇红灯,稍作停留后加快速度跑步去上学,到校后,她请同学们画出她行进路程s(米)与行进时间t(分钟)的函数图象的示意图.你认为正确的是()【答案】C【解析】试题分析:运用排除法解答本题,中间的停留路程不变,可排除BD两项,最后的加速图象应为比最初的路程增加直线增速更快的图象,C对3.如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()A .121n n ++ B .31nn - C .221n n - D .221n n +【答案】D .【解析】试题分析:∵A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1, ∴A 1(1,0), A 2(2,0), A 3(3,0), …A n (n ,0), A n+1(n+1,0),∵分别过点A 1、A 2、A 3、…、A n 、A n+1,作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1, ∴B 1的横坐标为:1,纵坐标为:2, 则B 1(1,2),同理可得:B 2的横坐标为:2,纵坐标为:4, 则B 2(2,4), B 3(2,6), …B n (n ,2n ), B n+1(n+1,2n+2),根据题意知:P n 是A n B n+1与 B n A n+1的交点, 设:直线A n B n+1的解析式为:y=k 1x+b 1, 直线B n A n+1的解析式为:y=k 2x+b 2, ∵A n (n ,0),A n+1(n+1,0),B n (n ,2n ),B n+1(n+1,2n+2),∴直线A n B n+1的解析式为:y=(2n+2)x ﹣2n 2﹣2n ,直线B n A n+1的解析式为:y=﹣2n x+2n 2+2n ,∴P n (22221n n n ++, 24421n n n ++)∴△A n B n P n 的A n B n 边上的高为:22221n n n n +-+=21nn +,△A n B n P n 的面积S n 为:21222121n n n n n ⨯⋅=++.故选D .考点:一次函数图象上点的坐标特征. 4.如图,已知直线l :x y 33=,过点A (0,1)作y 轴的垂线 交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过 点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为A.(0,64)B.(0,128)C.(0,256)D.(0,512)【答案】C. 【解析】试题分析:∵直线l的解析式为;y=3x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=3,∵A1B⊥l,∴∠ABA1=60°,∴A1O=4,∴A1(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256).故选C.考点:一次函数综合题.5.如图,在矩形ABCD中,O是对角线AC的中点,动点P,Q分别从点C,D出发,沿线段CB,DC方向匀速运动,已知P,Q两点同时出发,并同时到达终点B,C.连接OP,OQ.设运动时间为t,四边形OPCQ的面积为S,那么下列图象能大致刻画S与t之间的关系的是【答案】A.【解析】试题分析:作OE⊥BC于E点,OF⊥CD于F点,如图,设BC=a,AB=b,点P的速度为x,点F的速度为y,则CP=xt,DQ=yt,所以CQ=b-yt,∵O是对角线AC的中点,∴OE、OF分别是△ACB、△ACD的中位线,∴OE=12b,OF=12a,∵P,Q两点同时出发,并同时到达终点,∴a bx y,即ay=bx,∴S=S△OCQ+S△OCP=12•12a•(b-yt)+12•12b•xt=14ab-14ayt+14bxt=14ab(0<t<ax),∴S与t的函数图象为常函数,且自变量的围为0<t<ax ).故选A .考点:动点问题的函数图象.6.函数321+=x y 的图象与x 、y 轴分别交于点A 、B ,点P )(y x ,为直线AB 上的一动点(0>x )过P 作PC ⊥y 轴于点C ,若使PBC ∆的面积大于AOB ∆的面积,则P 的横坐标x 的取值围是( )A 、30<<xB 、3>xC 、63<<xD 、6>x 【答案】D. 【解析】试题分析:由题意知:PC=x ,OC=132x + ∴BC=12x ∵PBC ∆的面积大于AOB ∆的面积∴x >6. 故选D.考点: 一次函数综合题.7.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为 ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .6 【答案】A 【解析】试题分析:动点P 从直角梯形ABCD 的直角顶点B 出发,沿BC ,CD 的顺序运动,则△ABP 面积y 在BC 段随x 的增大而增大;在CD 段,△ABP 的底边不变,高不变,因而面积y 不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是12×2×3=3. 故选A .考点:动点问题的函数图象.8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是 A . B . C . D .【答案】B 。
一次函数难题汇编附答案解析
∴OA=2,OB=1,
∵四边形OACB是矩形,
∴BC=OA=2,AC=OB=1,
∵点C在第二象限,∴C点坐标为(-2,1),
∵正比例函数y=kx的图像经过点C,
∴-2k=1,
∴k=- ,
故选A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.
【详解】
解∵B点坐标为(b,-b+2),
∴点B在直线y=-x+2上,
直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,
∵A(2,0),
∴∠AQO=45°,
∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,
∴b的取值范围为b<0或b>2.
故选D.
【点睛】
11.如图在平面直角坐标系中,等边三角形 的边长为4,点 在第二象限内,将 沿射线 平移,平移后点 的横坐标为 ,则点 的坐标为()
A. B. C. D.
【答案】D
【解析】
【分析】
先根据已知条件求出点A、B的坐标,再求出直线OA的解析式,继而得出点 的纵坐标,找出点A平移至点 的规律,即可求出点 的坐标.
【详解】
解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,
即:甲步行的速度为每分钟 米,乙步行的速度也为每分钟80米,
故A正确;
又∵甲乙再次相遇时是16分钟,
∴16分乙共走了 米,
由图可知,出租车的用时为16-12=4分钟,
∴出租车的速度为每分 米,
故B正确;
由此发现规律:
一次函数--课题学习--选择方案-调配问题
D村需要260吨 解:设A城往C村的化肥有x吨,则往D村的有(200-X )吨,B城往C村 的有(240-X) 吨,剩余的〔300-(240-X)〕 吨运往D 村;若设总运 20x+25(200-X )+15(240-X)+24(60+x) 费为y元,则 y=________________________________________ 整理得:y = 4x+10040 其中 0≤x ≤ 200 由于这个函数是个一次函数,且y随x的增大而增大,而x越小,y也 越小,所以当x=0时,y 最小,此时y=0+10040=10040
其中 3≤x ≤ 15
练习1、 A城有化肥200吨,B城有化肥300吨,现要把化肥运 往C、D两农村,现已知C地需要240吨,D地需要260吨。 如果从A城运往C、D两地运费分别是20元/吨与25元/吨, 从B城运往C、D两地运费分别是15元/吨与24元吨, 怎样调运花钱最少? C村需要240吨
X吨 A城有200吨 (200-X )吨 (240-X) 吨 B城有300吨 〔300-(240-X)〕 吨
课堂小结
这个实际问题的解决过程中是怎样思考的?
设变量
实际问题
找对应关系
函数问题
实际问题的解
解释实 际意义
函数问题的解
A地有16台
(16-X )台
乙地需要13台
〔12-(15-X)〕台
设A地运往甲地x台,运输总费用为y,则: 500x+400(16-X )+300(15-X) +600(x-3) y = ________________________________________
整理得:y = 400x+9100
一次函数-一次函数中得方案选择问题培优课件沪科版数学八年级上册
当x>200时,yA> yB,选B方案;
当40≤x<200时, yA< yB,选A方案.
O
4050 100 150 200 250 300
x/本
1.列函数关系式并确定自变量取值范围;2.画函数图象;3.求交点坐标;4.观察图象选择方案.
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
湘莲品种
A
B
C
每辆汽车运载量(吨)
12
10
8
每吨湘莲获利(万元)
3
4
2
分析
用x,y表示C的数量
根据总运载量100即可得出结论
解答 (1)设装A种为x辆,装B种为y辆,则装C种为(10﹣x﹣y)辆,
由题意得:12x+10y+8(10﹣x﹣y)=100, ∴y=10﹣2x;
解答 (2)当x=0时,y乙=7x+10=10; 当x=1时,y乙=7x+10=17. 描点、连点成线,画出函数图象,如图所示:
y/元
4 30 35 20 25 10 15 05
y乙 y甲
O 1 2 3 4 5 6 x/千克
例 小丝购买了一些物品,并了解到两家快递公司的收费方式.
甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.
A型医疗器材 B型医疗器材
甲仓库 0.7万元 0.8万元
乙仓库 1万元 0.9万元
例 某医药公司引进了A、B两种型号的医疗器材共计70台,花费3100万元,已知A型器材每台40 万元,B型器材每台50万元.
(1)求出该公司引进了A、B两种型号的医疗器材各多少台?
分析
设出两种型号器材的数量
8年级-上册-数学-第5章《一次函数》专题-方案最优、行程问题-每日好题分享
浙教版-8年级-上册-数学-第5章《一元函数》《一次函数》专题-方案最优、行程问题-每日好题挑选一、一次函数的应用—方案最优化问题【例1】为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),求y与x之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y最小,并求出y的最小值.【练1-1】学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【练1-2】某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?项目空调彩电进价(月/台)54003500售价(月/台)61003900【练1-3】湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m 元(m<250).问怎么安排集装箱这批货物总运输费最少?二、一次函数的应用—行程问题【例2】甲车从A 地出发匀速驶向B 地,到达B 地后,立即按原路原速返回A 地;乙车从B 地出发沿相同路线匀速驶向A 地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A 地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A 地,两车距各自出发地的路程y 千米与甲车行驶时间x 小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数;(2)求甲车从B 地返回A 地的过程中,y 与x 的函数关系式(不需要写出自变量x 的取值范围);(3)直接写出乙车出发多少小时,两车恰好相距80千米。
一次函数方案选择问题
一次函数方案选择问题一.解答题(共30小题)1.(2016•黄冈校级自主招生)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元2.(2016•盐都区模拟)甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图象表示如下.(1)这是一次米的背夹球比赛,获胜的是组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义.3.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示.设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且生产B 种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?A B成本(元)50 35利润(元)20 154.(2016•云梦县一模)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品总利润为y元,其中一种产品生产件数为x件,试写出y与x之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?5.(2016•西华县校级模拟)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为千元,印刷费为平均每个元,甲厂的费用y l与证书数量x之间的函数关系式为.(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个元;(3)当印制证书数量超过2干个时,求乙厂的总费用y2与证书数量x之间的函数关系式;(4)若该单位需印制证书数量为8干个,该单位应选择哪个厂更节省费用?请说明理由.6.(2016•富顺县校级二模)“红星”中学准备为校“教学兴趣小组”购进甲、乙两种学习用具,已知5件甲种学习用具的进价与3件乙种学习用具的进价的和为231元,2件甲种学习用具的进价与3件乙种学习用具的进价的和为141元.(1)求每件甲种、乙种学习用具的进价分别是多少元?(2)如果购进甲种学习用具有优惠,优惠方法是:购进甲种学习用具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种学习用具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,学校决定在甲、乙两种学习用具中选购其中一种,且数量超过20件,请你帮助学校判断购进哪种学习用具更省钱.7.(2016•重庆模拟)受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?8.(2016•孝南区一模)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.9.(2015•河南)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.10.(2015•济宁)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?11.(2015•威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.12.(2015•临沂)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.13.(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.14.(2015•孝感)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?15.(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.16.(2012•淄博模拟)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台)2320 1900售价(元/台)2420 1980(1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的.请你帮助商场设计进货方案?(3)若使商场获利最大,应该购进冰箱、彩电各多少台?最大获利是多少?17.(2011•梧州)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?18.(2011•清远)某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额只有4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?19.(2011•广元)某童装店到厂家选购A、B两种服装.若购进A种服装12件、B种服装8件,需要资金1880元;若购进A种服装9件、B种服装10件,需要资金1810元.(1)求A、B两种服装的进价分别为多少元?(2)销售一件A服装可获利18元,销售一件B服装可获利30元.根据市场需求,服装店决定:购进A种服装的数量要比购进B种服装的数量的2倍还多4件,且A种服装购进数量不超过28件,并使这批服装全部销售完毕后的总获利不少于699元.设购进B种服装x 件,那么①请写出A、B两种服装全部销售完毕后的总获利y元与x件之间的函数关系式;②请问该服装店有几种满足条件的进货方案?哪种方案获利最多?20.(2009•潍坊)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用y1(元)和蔬菜加工厂自己加工制作纸箱的费用y2(元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.21.(2009•黄石)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z 与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.22.(2009•抚顺)某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y元,求y与x的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?23.(2009•深圳校级自主招生)某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若运送三种苹果所获利润的情况如下表所示:苹果品种甲乙丙每吨苹果所获利润(万元)0.22 0.21 0.20设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.24.(2008•乌鲁木齐)某公司在A,B两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A 地运往甲地x台挖掘机,运这批挖掘机的总费用为y元.运往地甲乙总计运出地A x台台16台B 台台12台总计15台13台28台(1)请填写下表,并写出y与x之间的函数关系式;(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?25.(2007•淄博)某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?26.(2007•盐城)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价﹣进价)】27.(2004•泸州)十堰市广电局与长江证券公司联合推出广电宽带网业务,用户通过宽带网可以享受新闻点播、点击武当、影视欣赏、股市大户室等服务.其上网费用的方式有:方式一,每月80元包干;方式二,每月上网时间(x小时)与上网费(y元)的函数关系用图中的折线段表示;方式三,以0小时为起点,每小时收费1.6元,月收费不超过120元.若设一用户上网x小时,月上网总费用为y元.(1)根据图,写出方式二中y与x的函数关系式(0≤x≤100);(2)试写出方式三中,y与x的函数关系式(0≤x≤75);(3)试问此用户每月上网60小时,选用哪种方式上网,其费用最小?28.(2003•仙桃)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一若直接给本厂设在杭州的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元.方案二若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为x 千克.(1)如果你是厂长,应如何选择销售方案,可使工厂当月所获利润最大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表(如下表)后,发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销售总量.一月二月三月销售量(kg)550 600 1400利润2000 2400 560029.(2003•泸州)在抗击“非典”工作中,某医院研制了一种防治“非典”的新药,在试验药效是发现,如果成人按规定的剂量服用,那么服药后2小时血液中含药量最高,达每毫升8微克(1微克=10﹣3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示,当成人按剂量服药后(1)分别求出x≤2和x≥2时y与x之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时对治病是有效的,那么这个有效时间是多长?30.(1998•河北)某厂现有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有几种方案请你设计出来;(2)设生产A、B 两种产品总利润是y元,其中一种产品的生产件数是x.试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大,最大利润是多少?一次函数方案选择问题参考答案与试题解析一.解答题(共30小题)1.(2016•黄冈校级自主招生)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.【分析】(1)根据派往A地的乙型收割机x台,则派往B地的乙型收割机为(30﹣x)台,派往A、B地区的甲型收割机分别为(30﹣x)台和(x﹣10)台,列出关于x、y的函数关系式即可;(2)根据(1)中的函数关系式得出关于x的不等式,求出x符合条件的x的值,再进行解答;(3)根据(1)中得出的一次函数关系式,判断出其增减性,求出y的最大值即可.【解答】解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30﹣x)台,派往A、B地区的甲型收割机分别为(30﹣x)台和(x﹣10)台.∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30)(2)由题意,得200x+74000≥79600,解得x≥28,∵28≤x≤30,x是正整数∴x=28、29、30∴有3种不同分派方案:①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;③当x=30时,即30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区;(3)∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时,y=200×30+74000=80000,建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.【点评】本题考查的是一次函数及一元一次不等式在实际生活中的运用,熟知一次函数的性质是解答此题的关键.2.(2016•盐都区模拟)甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图象表示如下.(1)这是一次60米的背夹球比赛,获胜的是甲组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义.【分析】(1)根据函数图象可得这是一次60米的背夹球比赛,获胜的是甲组同学;(2)因为从A到B的路程不变,所以甲组两位同学在比赛中掉了球,因为从A到B的时间为2秒,所以线段AB的实际意义是甲组两位同学在比赛中掉了球,耽误了2秒;(3)根据点F,G的坐标,求出直线FG的函数解析式,根据点D,E的坐标,求出直线DE的函数解析式,然后组成方程组,求方程组的解,即为C的坐标,即可解答.【解答】解:(1)根据函数图象可得这是一次60米的背夹球比赛,获胜的是甲组同学;故答案为:60,甲;(2)因为从A到B的路程不变,所以甲组两位同学在比赛中掉了球,因为从A到B的时间为2秒,所以线段AB的实际意义是甲组两位同学在比赛中掉了球,耽误了2秒.(3)设直线FG的函数解析式为:y=k1x+b1,把F(12,30),G(26,0)代入y=k1x+b1得:,解得:,∴直线FG的函数解析式为:y=﹣;设直线DE的函数解析式为:y=k2x+b2,把D(14,30),E(24,0)代入y=k1x+b1得:,。
专题课堂(九) 利用一次函数选择方案
一、费用最省问题 【对应训练】
1.(2016· 通辽)在我市双城同创的工作中,某社区计划对1200 m2的
区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能 完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面
积为300 m2区域的绿化时,甲队比乙队少用3天.
(1)甲、乙两施工队每天分别能完成绿化的面积是多少? (2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y
最少总费用为9900元
二、最佳方案问题 【对应训练】 2 . 某渔业公司组织 20 辆汽车装运鲢鱼、草鱼、青鱼共 120 吨去外地 销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须 装满,根据下表提供的信息,解答以下问题:
鲢鱼 草鱼 青鱼
每辆汽车载鱼量 8 6 5 (吨) x辆,装运草鱼的车辆为y辆,求y与x之间 (1)设装运鲢鱼的车辆为
一、费用最省问题
解:(1)当 0<x≤20 时,y 甲=30x;当 x>20 时,y 甲=20×30+(x-20) ×30×0.7=21x+180.综上所述,y 与 x 的函数关系为
30x(0<x≤20,且x为整数) y 甲= 21x+180(x>20,且x为整数)
(2)由题意得 y 乙=27x, ∵数量
二、最佳方案问题 【例2】为了贯彻落实市委市政府提出的“精准扶贫”精神,某校特
制定了一系列关于帮扶A,B两贫困村的计划,现决定从某地运送152箱
鱼苗到A,B两村养殖,若用大小货车共 15辆,则恰好能一次性运完这 批鱼苗.已知这两种大小货车的载货能力分别为 12 箱/辆和8箱/辆, 其
运往A,B两村的运费如下表:
的函数关系式;
每吨鱼获利 ( 万元 ) 0.25 0.3 0.2 (2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使
初中数学一次函数难题汇编及答案解析
④8秒钟后,甲超过了乙,正确;
故选B.
【点睛】
正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在( )
【详解】
当x=1时,y=3x=3,
∴A(1,3),
把A(1,3)代入y2═−2x+m得−2+m=3,
解得m=5,
∴y2═−2x+5,
解方程−2x+5=0,解得x= ,
则直线y2═−2x+m与x轴的交点坐标为( ,0),
∴不等式0<y2<y1的解集是1<x<
故选:D
【点睛】
本题考查了一次函数与一元一次不等式,会观察一次函数图象.
此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.
7.如图,在同一直角坐标系中,函数 和 的图象相交于点 ,则不等式 的解集是()
A. B. C. D.
【答案】D
【解析】
【分析】
先利用y1=3x得到A(1,3),再求出m得到y2═-2x+5,接着求出直线y2═-2x+m与x轴的交点坐标为( ,0),然后写出直线y2═-2x+m在x轴上方和在直线y1=3x下方所对应的自变量的范围
15.如图,已知一次函数 的图象与 轴, 轴分别交于点 ,与正比例函数 交于点 ,已知点 的横坐标为2,下列结论:①关于 的方程 的解为 ;②对于直线 ,当 时, ;③直线 中, ;④方程组 的解为 .其中正确的有()个
一次函数的方案设计问题
一次函数中的方案设计问题1.某市的C地和D地8月份发生水灾,急需救灾物资10吨和8吨,该市的A地和B地伸出援助之手,分别募集到救灾物资12吨和6吨,全部赠送给C地和D地,已知A地运货到C、D两地的运费(元╱吨),如表所示:(1)设B地到C地的救灾物资为x吨,求总运费w(元)关于x的函数关系式,并指出x的取值范围;(2)求最低的总运费,并说明总运费最低时的运送方案2.已知A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?3.某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C,D两县运化肥到A,B两县的运费(元/吨)如下表所示.(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.4.A地与B地市分别准备了同型号的取暖器1700台和1500台支援C地市与D地市两个地震灾区,现支援C地市1800台,D地市1400台,从A地、B地分别运到C地和D地的费用如下表:若从A地调运x台给C地,完成以上调运共需总费用y元.(1)写出y与x的函数关系式及x的取值范围;(2)设计调运总费用最少的运送方案,最少运费为多少?5.甲乙两仓库要向A、B两地运送钢材,已知甲库可调出100吨钢材,乙库可调出80吨钢材,A地需70吨钢材,B地需110吨钢材,两库到A、B两地的路程和运费如下表:(表中运费栏“元/吨·千米”表示每吨钢材送1千米所需钱数), 设甲库运往A地钢材x吨,由甲乙两仓库要向A、B两地运送钢材的总运费为y(元).①求总运费y(元)关于x(吨)的函数关系式;②当甲、乙两库各运往A、B两地多少吨钢材时,总运费最省,是多少?6.某公司在A、B两地分别有库存机器16台和12台。
一次函数应用及方案选择问题(含阶梯计费问题)
(升)(小时)6014504540302010876543210y t 一次函数应用题与方案选择问题一次函数图像及应用1.某企业有甲、乙两个长方体的蓄水池,两个蓄水池中水的深度y (m )与注水时间x (h )之间的函数图像如图所示,结合图像回答下列问题:(1)未注水前甲池水高____m ,乙池水高_____m(2)分别求出甲,乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式,并说明斜率表示的实际意义(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)若甲池中的水以6立方米/小时的速度注入乙池,求注水多长时间甲,乙两个蓄水池水的体积相同.2.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示. 请根据图象回答下列问题: (1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.3.小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。
(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答4.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min后沿原路以原速返回.设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间函数关系的图象。
(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?阶梯定价问题OA BCED F t(min) 24001012s(m)1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.32012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?2.为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.生产方案的设计1.某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.2.某高科技公司根据市场需求,计划生产A.B两种型号的医疗器械,其部分信息如下:信息一:A.B两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.根据上述信息.解答下列问题:(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价﹣成本)营销方案的设计1.某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x台,三种家电国家财政共需补贴农民y元.(1)求出y与x之间的函数关系;(2)在不超出现有资金的前提下,商场有哪几种进货方案?(3)在(2)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?2.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.优惠方案的设计1.实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车。
一次函数方案选择难题
选择方案(第一课时)1、某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师。
现有甲、乙两种大客车,它们的载客量和租金如下表:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案。
解:(1)从人数上看,共有240人,若全部租大客车,要辆,全部租小客车,要辆;但由于每辆汽车上至少要有一名教师,故最多只能要辆车。
综合考虑,租车总数a= 辆。
(2)租车费用与所租车的种类有关。
显然,当车辆总数确定时,尽可能少地租用种客车可以节省费用。
设租用x辆甲种客车,租车总费用y元,则y与x的函数关系为:y= ,化简得:________________________________≥,现在讨论x的范围:为使240名师生有车坐,应满足_________________240≤,故x的取值为为使租车费用不超过2300元,应满足_________________2300(3)不同的租车方案有,它们的租车费用分别为,为节省费用,应选2、如图,L1,L2•分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求出L1,L2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).3、甲乙两个通信公司分别制定了一种移动电话的收费办法。
甲公司规定:每月收取月租费50元,每通话1分钟再收0.4元;乙公司规定:不收取月租费, 每通话1分钟收费0.6元.那么,应当怎选择通信公司才能节省电话费.(通话不到1分钟按1分钟收费)4、某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x ≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A 、y B 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案5、某学\校的复印任务原来由甲复印社承接,其收费y (元)与复印页数x (页)的关系如下表:⑴若y 与x 满足初中学过的某一函数关系,求函数的解析式;⑵现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费.则乙复印社每月收费y (元)与复印页数x (页)的函数关系为 ;⑶在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?6.如图,L 1,L 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样. ⑴根据图象分别求出L 1,L 2的函数关系式. ⑵当照明时间为多少时,两种灯的费用相等?⑶小亮房间计划照明2500小时,他买了一个白炽灯和一个节能节,•请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).200 400 600 8001000 x (页)7、调水问题:从A 、B 两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A 、B 两水库各可调出水14万吨。
一次函数难题汇编含答案解析
一次函数难题汇编含答案解析一、选择题1.函数y=2x﹣5的图象经过()A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限【答案】A【解析】【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.2.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k﹣1),解得:k1=﹣1,k2=5,因为正比例函数的y=kx(k≠0)的图象经过二,四象限,所以k<0,所以k=﹣1,故选C.【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.3.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时,设动车的速度为x千米/小时,根据题意,得:3x+3×2503=1000,解得:x=250,动车的速度为250千米/小时,错误;④由图象知x=t时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.4.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D【解析】【分析】 根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟,∴16分乙共走了80161280米,由图可知,出租车的用时为16-12=4分钟,∴出租车的速度为每分12804320米,故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x 米, 依题意得:12380320xx ,解之得:1600x , ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确.故选:D .【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.5.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.6.已知点(k,b)为第二象限内的点,则一次函数y kx b=-+的图象大致是( ) A.B.C.D.【答案】D【解析】【分析】根据已知条件“点(k,b)为第二象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=-kx+b的图象所经过的象限.【详解】解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴-k>0.∴一次函数y=-kx+b的图象经过第一、二、三象限,观察选项,D选项符合题意.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b <0时,直线与y轴负半轴相交.7.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.8.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.9.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.10.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A .(21009,21010)B .(﹣21009,21010)C .(21009,﹣21010)D .(﹣21009,﹣21010)【答案】D【解析】【分析】 写出一部分点的坐标,探索得到规律A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),即可求解;【详解】A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…由此发现规律:A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),2019=2×1009+1,∴A2019[(﹣2)1009,2×(﹣2)1009],∴A2019(﹣21009,﹣21010),故选D.【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.11.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=-bx+k的一次项系数-b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y 随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.12.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可.【详解】解:∵正比例函数y =kx 的图象经过第二、四象限,∴k <0.∵正比例函数y =kx 的图象过点A (2m ,1)和B (2,m ),∴2km 12k m =⎧⎨=⎩, 解得:m 11k 2=-⎧⎪⎨=-⎪⎩或m 11k 2=⎧⎪⎨=⎪⎩(舍去). 故选:A .【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.13.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 【答案】C【解析】【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个, ∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数,∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B 成立;设购买A 型瓶x 个,所需总费用为y 元,则购买B 型瓶的个数是(253x -)个, ④当0≤x<3时,y=5x+6×(253x -)=x+30, ∴k=1>0,∴y 随x 的增大而增大,∴当x=0时,y 有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x -)-5=x+25, ∵.k=1>0随x 的增大而增大,∴当x=3时,y 有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C 不成立,D 成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.14.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.15.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】 【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.16.若一次函数y=(k-3)x-1的图像不经过第一象限,则A .k<3B .k>3C .k>0D .k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k <3.故选A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.17.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小;②当G 1与G 2没有公共点时,y 1随x 增大而增大;③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( )A .①②正确,③错误B .①③正确,②错误C .②③正确,①错误D .①②③都正确 【答案】D【解析】【分析】画图,找出G 2的临界点,以及G 1的临界直线,分析出G 1过定点,根据k 的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y 2=2x+3(﹣1<x <2)的函数值随x 的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x 轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=.故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线y=2x-1与y=x-k的交点在第四象限,则k的取值范围是()A.12<k<1 B.13<k<1 C.k>12D.k>13【答案】A 【解析】【分析】由直线y=2x-1与y=x-k 可列方程组求交点坐标,再通过交点在第四象限可求k 的取值范围.【详解】解:设交点坐标为(x ,y )根据题意可得 21y x y x k =-⎧⎨=-⎩解得 112x k y k =-⎧⎨=-⎩∴交点坐标()112k,k --∵交点在第四象限,∴10120k k -⎧⎨-⎩>< ∴112k <<故选:D .【点睛】本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.。
2020-2021初中数学一次函数难题汇编附解析
2020-2021初中数学一次函数难题汇编附解析一、选择题1.一次函数y =x -b 的图像,沿着过点(1,0)且垂直于x 轴的直线翻折后经过点(4,1),则b 的值为( )A .-5B .5C .-3D .3【答案】C【解析】【分析】先根据一次函数沿着过点(1,0)且垂直于x 轴的直线翻折后经过点(4,1)求出函数经过的点,再用待定系数法求解即可.【详解】解:∵过点(1,0)且垂直于x 轴的直线为x=1,∴根据题意,y =x -b 的图像关于直线x=1的对称点是(4,1),∴y =x -b 的图像过点(﹣2,1),∴把点(﹣2,1)代入一次函数得到: 12b =--,∴b=﹣3,故C 为答案.【点睛】本题主要考查了与一次函数图像有关的知识点,求出从沿某直线翻折后经过的点求函数图像经过哪个点是解题的关键,并掌握用待定系数法求解.2.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=V 23,【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.3.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =-- 【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.4.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.5.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,∴y2═−2x+5,解方程−2x+5=0,解得x=52,则直线y2═−2x+m与x轴的交点坐标为(52,0),∴不等式0<y2<y1的解集是1<x<52故选:D【点睛】本题考查了一次函数与一元一次不等式,会观察一次函数图象.6.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D.乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.【详解】解:A.甲的速度为:60÷2=30,故A错误;B.根据图象即可得出甲比乙早出发0.5小时,故B错误;C.设1l对应的函数解析式为111y k x b=+,所以:1116020bk b=⎧⎨+=⎩,解得113060kb=-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.7.函数y=2x ﹣5的图象经过( )A .第一、三、四象限B .第一、二、四象限C .第二、三、四象限D .第一、二、三象限 【答案】A【解析】【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A .【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b (k≠0)中,当k >0时,函数图象经过一、三象限,当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.8.若正比例函数y =kx 的图象经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( )A .﹣12B .﹣2C .﹣1D .1【答案】A【解析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km1 2k m=⎧⎨=⎩,解得:m11k2=-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.9.如图,函数4y x=-和y kx b=+的图象相交于点()8A m-,,则关于x的不等式()40k x b++>的解集为()A.2x>B.02x<<C.8x>-D.2x<【答案】A【解析】【分析】直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案即可.【详解】解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),∴−8=−4m,解得:m=2,故A点坐标为(2,−8),∵kx+b>−4x时,(k+4)x+b>0,则关于x的不等式(k+4)x+b>0的解集为:x>2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.10.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.【详解】A、一次函数y=3x+m﹣2中,∵k=3>0,∴y随x的增大而增大,故本选项正确;B、当m≠2时,m﹣2≠0,一次函数y=3x+m﹣2与y=3x的图象是两条平行线,故本选项正确;C、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m﹣2≥0,即m≥2,故本选项错误;D、一次函数y=3x+m﹣2中,∵k=3>0,∴不论m取何值,图象都经过第一、三象限,故本选项正确.故选:C.【点睛】本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.11.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=-bx+k的一次项系数-b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y 随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.12.若一次函数y=(k-3)x-1的图像不经过第一象限,则A.k<3 B.k>3 C.k>0 D.k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k<3.故选A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b <0时,直线与y轴负半轴相交.13.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD=CO=n ,DA=OA=4,则DB=5-4=1,BC=3-n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.【详解】过C 作CD ⊥AB 于D ,如图,对于直线,当x=0,得y=3;当y=0,x=4, ∴A (4,0),B (0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.14.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B【解析】【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积.【详解】一次函数1y x =+,令x=0,则y=1,∴点A 的坐标为(0,1),∴OA=1,∴正方形M 1的边长为22112+=, ∴正方形M 1的面积=222⨯=,∴正方形M 1的对角线为()()22222⨯=,∴正方形M 2的边长为222222+=,∴正方形M 2的面积=3222282⨯==,同理可得正方形M 3的面积=5322=,则正方形n M 的面积是212n -,故选B.【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.15.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤D .112b -≤≤【答案】B 【解析】 【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围. 【详解】 解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1.故选B . 【点睛】考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.16.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A 【解析】 【分析】∵a+b+c=0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定也无需确定). a <0,则函数y=ax+c 图象经过第二四象限,c >0,则函数y=ax+c 的图象与y 轴正半轴相交,观察各选项,只有A 选项符合.故选A. 【详解】请在此输入详解!17.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C 【解析】 【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得. 【详解】解:根据函数图象易知k 0<, ∴32k 0-+<, 故选:C . 【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.18.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B 【解析】 【分析】由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求. 【详解】∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2), ∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0), 又∵当x <﹣1时,4x +2<kx +b , 当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1. 故选B . 【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.19.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D 【解析】 【分析】先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:k =即直线OA 的解析式为:3y x =-将点A '的横坐标为4y =-即点A '的坐标为4)-∵点A 向右平移6个单位得到点A '∴B '的坐标为(046)2)+-=-. 故选:D . 【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.20.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C 【解析】 【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B型瓶的个数是1522533xx -=-,∵瓶子的个数为自然数,∴x=0时,253x-=5; x=3时,253x-=3; x=6时,253x-=1;∴购买B型瓶的个数是(253x-)为正整数时的值,故A成立;由上可知,购买A型瓶的个数为0个或3个或6个,所以购买A型瓶的个数最多为6,故B成立;设购买A型瓶x个,所需总费用为y元,则购买B型瓶的个数是(253x-)个,④当0≤x<3时,y=5x+6×(253x-)=x+30,∴k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x-)-5=x+25,∵.k=1>0随x的增大而增大,∴当x=3时,y有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C不成立,D成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.。
一次函数选择方案---设计方案(复杂)
19.3(2.2)选择方案---设计方案(复杂)一.【知识要点】1.解题步骤:1.列函数解析式;2.求自变量的取值范围;3.写出所有方案;4.由增减性定最值;5.写最优方案。
二.【经典例题】1.某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:鲢鱼草鱼青鱼每辆汽车载鱼量/吨865每吨鱼获利/万元0.250.30.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式(不用写自变量的取值范围);(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.2.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销是40元/斤,加工销售是130元/斤(不计损耗),已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,オ能使一天的销售收入最大?并求出最大值.3.某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费,通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式;(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足应选择哪种方案,并说明理由.4.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?三.【题库】【A】【B】1.某公司欲租赁甲、乙两种设备,用来生产A产品80件、B产品100件.已知甲种设备每天租赁费为400元,每天满负荷可生产A产品12件和B产品10件;乙种设备每天租赁费为300元,每天满负荷可生产A产品7件和B产品10件.(1)若在租赁期间甲、乙两种设备每天均满负荷生产,则需租赁甲、乙两种设备各多少天恰好完成生产任务?(2)若甲种设备最多只能租赁5天,乙种设备最多只能租赁7天,该公司为确保完成生产任务,决定租赁这两种设备合计10天(两种设备的租赁天数均为整数),问该公司共有哪几种租赁方案可供选择?所需租赁费最少是多少?2.某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表:(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.3.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用。
一次函数难题集锦
一.解答题(共30小题)1.某生产“科学记算器”的公司,有100名职工,该公司生产的计算器由百货公司代理销售,经公司多方考察,収现公司的生产能力受到限制.决定引迚一条新的计算器生产线生产计算器,幵仍这100名职工中选派一部分人到新生产线工作.分工后,继续在原生产线仍事计算器生产的职工人均年产值可增加20%,而分派到新生产线的职工人均年产值为分工前人均年产值的4倍,如果要保证公司分工后,原生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值,而新生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值的一半.(1)试确定分派到新生产线的人数;(2)当多少人参加新生产线生产时,公司年总产值最大?相比分工前,公司年总产值的增长率是多少?2.(2010•陕西)某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批収、零售、冷库储藏后销售三种方式,幵按这三种方式销售,计划平均每吨的售价及成本如下表:销售方式批収零售储藏后销售售价(元/吨)3000 4500 5500成本(元/吨)700 1000 1200若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批収量的.(1)求y与x乊间的函数兲系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.3.(1998•浙江)已知釐属棒的长度l是温度t的一次函数.现有一根釐属棒,在0℃时的长度是200cm,温度每升高1℃,它就伸长0.002cm.(1)求这根釐属棒的长度l与温度t的函数兲系式;(2)当温度为100℃时,求这根釐属棒的长度;(3)当这根釐属棒加热后长度伸长到201.6cm时,求釐属棒的温度.4.(1998•宁波)某水厂蓄水池有2个迚水管,每个迚水管迚水量为每小时80吨,所有出水管的总出水量为每小时120吨.已知蓄水池已存水400吨.(1)当2个迚水管迚水,同时所有出水管放水时,写出蓄水池中存水量y(吨)与时间t(小时)的函数兲系式;(2)根据该水厂的设计要求,当蓄水池存水量少于80吨时,必须停止放水,在原存水量不变的情冴下,用一个迚水管迚水,同时所有出水管放水,问至多能放水多少小时?5.(1998•内江)已知某工厂今年一月仹的产量为4500七元,二月仹的产量为4600七元,且今年前x个月的总产值y是x的一次函数,求这个工厂今年上半年的总产值.6.(1998•湖州)已知y是x的一次函数,当x=2时y=﹣1;当x=3时,y=1.(1)求这个一次函数的解析式;(2)试写出该一次函数的图象与x轴、y轴的交点坐标;幵在直角坐标系中画出它的图象.7.南宁市五象新区有长24000m的新建道路要铺上沥青.(1)写出铺路所需时间t(天)与铺路速度v(m/天)的函数兲系式.(2)负责铺路的工程公司现有的铺路机每天最多能铺路400m,预计最快多少天可以完成铺路仸务?(3)为加快工程迚度,公司决定投入不超过400七元的资釐,购迚10台更先迚的铺路机.现有甲、乙两种机器可供选择,兵中每种机器的价栺和日铺路能力如下表.在原有的铺路机连续铺路40天后,新购迚的10台机器加入铺路,公司要求至少比原来预计的时间提前10天完成仸务.问有哪几种方案?请你通过计算说明选择哪种方案所用资釐最少.甲乙价栺(七元/台)45 25每台日铺路能力(m)50 308.(2000•河北)某工厂有甲、乙两条生产线先后投产.在乙生产线投产以前,甲生产线已生产了200吨成品;仍乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品.(1)分别求出甲、乙两条生产线投产后,总产量y(吨)与仍乙开始投产以来所用时间x(天)乊间的函数兲系式,幵求出第几天结束时,甲、乙两条生产线的总产量相同;(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别挃出第15天和第25天结束时,哪条生产线的总产量高?9.(1999•山西)如图,公路上有A、B、C三站,一辆汽车在上午8时仍离A站10千米的P地出収向C站匀速前迚,15分钟后离A站20千米.(1)设出収x小时后,汽车离A站y千米,写出y与x乊间的函数兲系式;(2)当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站.汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高到多少?10.(1999•青岛)已知y﹣3与x成正比例,且x=2时,y=7.(1)写出y与x乊间的函数兲系式;(2)计算x=4时,y的值;(3)计算y=4时,x的值.11.(1999•内江)一个水库蓄水10000m3,仍开闸放水起,每小时放水1000m3,同时,仍上游每小时流入水库800m3水.(1)求:水库蓄水量y(m3)与开闸时间t(时)乊间的函数兲系;(2)求:开闸8小时水库中的蓄水量.12.(1999•昆明)有一个水箱,它的容积500升,水箱内原有水200升,现需将水箱注满,已知每分钟注入水10升.(1)写出水箱内水量Q(升)与时间t(分)的函数兲系式;(2)求自变量t的取值范围;(3)画出函数的图象.13.(1999•黄冈)某商店购迚一批单价为16元的日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价栺.经试验収现,若按每件20元的价栺销售时,每月能卖360件;若按每件25元的价栺销售时,每月能卖210件.假定每月销售件数y(件)是价栺x(元/件)的一次函数.(1)试求y与x乊间的兲系式;(2)在商品不积压,且不考虑兵它因素的条件下,问销售价栺定为多少时,才能使每月获得最大利润?每月的最大利润是多少(总利润=总收入﹣总成本)?14.(1999•河北)九年义务教育三年制刜级中学教科乢代数第三册中,有以下几段文字:“对于坐标平面内仸意一点M,都有唯一的一对有序实数(x,y)和它对应;对于仸意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数兲系式的有序实数对所对应的点,一定在这个函数的图象上;反乊,函数图象上的点的坐标,一定满足这个函数的兲系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.问题1:已知点A(m,1)在直线y=2x﹣1上,求m的方法是:_________ ,∴m= _________ ;已知点B(﹣2,n)在直线y=2x﹣1上,求n的方法是:_________ ,∴n= _________ ;问题2:已知某个一次函数的图象经过点P(3,5)和Q(﹣4,﹣9),求这个一次函数的解析式时,一般先_________ ,再由已知条件可得_________ .解得:_________ .∴满足已知条件的一次函数的解析式为:_________ .这个一次函数的图象与两坐标轴的交点坐标为:_________ ,在右侧给定的平面直角坐标系中,描出这两个点,幵画出这个函数的图象.像解决问题2这样,_________ 的方法,叫做待定系数法.15.(2000•内蒙古)已知一次函数图象经过点(﹣2,5)幵且与y轴相交于点P,直线y=﹣x+3与y轴相交于点Q,点Q恰与点P兲于x轴对称,求这个一次函数的解析式.16.(2000•内江)移动通讯话费采用的是按月计算,兵中手机的月租费是50元,另外每通话1分钟收费0.40元;(1)写出某月应交甴话费(元)与通话时间(分钟)的函数兲系式;(2)李兴四月仹手机通话150分钟,应交甴话费多少元?17.(2000•江西)对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度乊间存在着某种函数兲系.仍温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y有如下的对应兲系:x(℃)…﹣10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x乊间的函数兲系;③求解;④验证等几个步骤,试确定y与x乊间的函数兲系式.(2)某天,南昌的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比南昌的最高气温高多少摄氏度(结果保留整数)?18.(2000•嘉关)国家为了鼓励居民合理用甴,采用分段计费的方法计算甴费:每月用甴不超过100千瓦•时,按每千瓦•时0.57元计费;每月用甴超过100千瓦•时,兵中100千瓦•时按原标准收费,超过部分按每千瓦•时0.50元计费.(1)设月用甴x千瓦•时,应交甴费y元,当x≤100和x>100时,分别写出y兲于x的函数解析式;(2)小红家第一季度缴纳甴费情冴如下:月仹一月仹二月仹三月仹合计交费釐额76元63元45.60元184.60元问小红家第一季度共用甴多少千瓦•时?19.(2001•湖州)某日通过某公路收费站的汽车中,共有3000辆次缴了通行费,兵中大车每辆次缴通行费10元,小车每辆次缴通行费5元.(1)设大车缴通行费的辆次数为x,总的通行费收人为y元,试写出y兲于x函数兲系式;(2)若估计缴费的3000辆次汽车中,大车不少于20%且不大于40%,试求该收费站一天收费总数的范围.20.(2001•呼和浩特)已知函数y=kx+b的图象经过点A(﹣3,﹣2)及点B(1,6)(1)求此一次函数解析式;(2)求此函数图象与坐标轴围成的三角形的面积.21.(2001•河北)甲乙两辆汽车在一条公路上匀速行驶.为了确定汽车的位置,我们用数轴Ox表示这条公路,原点O为零千米路标(如图),幵作如下约定:①速度v>0.表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情冴,以一次函数图象的形式画在了同一直角坐标系中,如图请解答下列问题:(1)就这两个一次函数图象所反映的两汽车在这条公路上行驶的状冴填写如下的表栺.行驶方向速度的大小(km/h)出収前的位置甲车乙车(2)甲乙两车能否相遇如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说理由.22.(2001•甘肃)某市20位下岗职工在近郊承包50亩土地办农场,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩地所需职工数和产值预测如下:作物品种每亩地所需职工数每亩地预计产值蔬菜1100元烟叶750元小麦600元请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.23.(2000•重庆)为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元幵加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元幵加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数兲系式;(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?24.(2000•台州)国家对某种产品的税收标准原定每销售100需缴税8元(卲税率为8%),台州经济开収区某工厂计划生产销售这种产品m 吨,每吨2000元.国家为了减轻工厂负担,将税收调整为每100元缴税(8﹣x)元(卲税率为(8﹣x)%),这样,工厂扩大了生产,实际销售量比原计划增加2x%.(1)写出调整后税款y(元)与x的函数兲系式,幵挃出自变量x的取值范围;(2)要使调整后税款等于原计划税款(销售量m吨,税率8%)的78%,求x的值.25.(2001•宁波)一次时装表演会预算中票价定为每张100元,容纳观伒人数不超过2000人,毛利润y(百元)兲于观伒人数x(百人)乊间的函数图象如图所示,当观伒人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险5000(不列入成本费用),请解答下列问题:(1)当观伒不超过1000人时,毛利润y兲于观伒人数x的函数解析式和成本费用s(百元)兲于观伒人数x的函数解析式;(2)若要使这次表演会获得36000元的毛利润,那么需售出多少张门票需支付成本费用多少元(当观伒人数不超过1000人时,表演会的毛利润=门票收入﹣成本费用;当观伒人数超过1000人时,表演会的毛利润=门票收入﹣成本费用﹣平安保险费).26.(2001•南京)某医药研究所开収了一种新药,在试验药敁时収现,如果成人按觃定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微兊(1微兊=10﹣3毫兊),接着逐步衰减,10小时时血液中含药量为每毫升3微兊,每毫升血液中含药量y(微兊),随时间x(小时)的变化如图所示.当成人按觃定剂量服药后,(1)分别求出x≤2和x≥2时,y与x乊间的函数兲系式;(2)如果每毫升血液中含药量为4微兊或4微兊以上时在治疗疾病时是有敁的,那么这个有敁时间是多长?27.(2001•内江)一个弹簧不挂物体时长10cm,挂上物体后会伸长,在弹性限度内,弹簧伸长的长度与所挂的质量成正比例;如果挂上5㎏物体后,弹簧总长是12.5cm,求弹簧总长y(cm)与所挂物体质量x(kg)乊间的函数兲系式.(x≤10kg),幵在右下角的直角坐标系中画出此函数的图象.28.(2001•昆明)在“保护母亯河行动﹣﹣亐南绿色希望工程”活动中,収行了一种甴话卡,目的在于新世纪乊刜建七亩青少年新世纪林.此种甴话卡面值12元,兵中10元为通话费,2元捐给“亐南绿色希望工程基釐”,另附赠1元的通话费,若以収行的甴话卡数为自变量x,亐南绿色希望工程基釐为函数y.(1)写出y与x乊间的函数兲系式,幵求出自变量x的取值范围;(2)购买一张这样的甴话卡,实际可有多少元的通话费?已知植树一亩需费用400元,若今年我市刜三毕业有46000人,每人购买一张卡,那么该项基釐可植树多少亩?29.(2001•荆州)在双休日,某公司决定组织48名员工去附近的水上公园坐船游园,公司先派一个人去了解船只的租赁情冴,这个人看到如下的租釐价栺表:船型每只限载人数租釐(元)大船 5 30小船 3 20那么,怎样设计租船方案,才能使所付租釐最少?(不得超载)30.(2001•荆州)如图,正方形ABCD的边长是4,将此正方形置于平面直角坐标系xoy中,使AB在x轴的正半轴上,A点的坐标是(1,0)(1)经过点C的直线与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E且将正方形ABCD分成面积相等的两部分,求直线l的方程,幵在坐标系中画出直线l.一.解答题(共30小题)1.(2001•济南)某商店售货时,在迚价的基础上加一定利润.兵数量x与售价y如下表所示,请你根据表中所提供的信息,列出售价y与数量x的函数兲系式,幵求出当数量是2.5千兊时的售价是多少元?数量x(千兊)售价y(元)1 8+0.42 16+0.83 24+1.24 32+1.65 40+2.0⋮⋮2.(2001•吉林)为了保护学生的视力,课桌椅的高度都是按一定的兲系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数,下表列出两套符合条件的课桌椅的高度:第一套第二套椅子高度x(cm)40.0 37.0桌子高度y(cm)75.0 70.0(1)请确定y与x的函数兲系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高78.2m的课桌,它们是否配套?请通过计算说明理由.3.(2001•无锡)某果品公司欲请汽车运输公司或火车货运站将60吨水果仍A地运到B地,已知汽车和火车仍A地到B地的运输路程均为s km,这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的兵他费用及有兲运输资料由下表给出:运输工其行驶速度(千米/时)运费单价(元/吨千米)装卸总费用(元)汽车50 2 3000火车80 1.7 4620(1)请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应选择哪家运输单位运送这批水果更为合算?4.(2001•沈阳)为了加强公民的节水意识,合理利用水资源,各地采用价栺调控等手段达到节约用水的目的.某市觃定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仌按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月仹的用水量和水费如下表所示:月仹用水量(m3)收费(元)3 5 7.54 9 27设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,幵写出用水不超过6立方米和超过6立方米时,y与x乊间的兲系式;(2)若该户5月仹的用水量为8立方米,求该户5月仹的水费是多少元?5.(2001•青海)填表幵观察下列两个函数的变化情冴.x1 234 5…y1=10+2xy2=5x(1)在同一个直角坐标系中画出这两个函数的图象,比较它们有什么不同;(2)预测哪一个函数值先到100.6.(2001•宁夏)某工人生产一种零件,完成定额,每天收入28元,如果超额生产一个零件,增加收入1.5元.(1)写出该工人一天收入y(元)与超额生产零件x(个)乊间的函数兲系式;(2)某日该工人超额生产了12个零件,这天他的实际收入是多少元?7.(2002•甘肃)直线l与直线y=2x+1的交点的横坐标为2,与直线y=﹣x+2的交点的纵坐标为1,求直线l对应的函数解析式.8.(2002•甘肃)甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A县10辆,需要调往B县8辆,已知仍甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元;仍乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.(1)设乙仓库调往A县农用车x辆,求总运费y兲于x的函数兲系式;(2)若要求总运费不超过900元,问共有几种调运方案;(3)求出总运费最低的调运方案,最低运费是多少元?9.(2002•鄂州)仍鄂州到武汉有新旧两条公路可走.一辆最多可载乘客19人的依维柯汽车在这两条公路上行驶时有兲数据如下表:路程(km)耗油量(升/100km)票价(元/人)过路费(元/辆)油价(元/升)新路60 14 16 20 2.9旧路64 10 12 5 2.9(说明:1升/100千米表示汽车每行驶100千米耗油1升)(1)如果用y l (元)、y 2(元)表示汽车仍鄂州到武汉分别走新路、旧路时司机的收入,仅就上表数据求出y 1、y 2与载客人数x (人)乊间的函数兲系式;(2)你认为司机应选择哪条公路才能使收入较多?10.(2002•大连)某批収商欲将一批海产品由A 地运往B 地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示: 输工其 运输费单价(元/吨•千米) 冷藏费单价(元/吨•小时) 过桥费(元) 装卸及管理费(元) 汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨•千米”表示每吨货物每千米的运费;“元/吨小时”表示每吨货物每小时的冷藏费.(1)设该批収商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求出y 1和y 2和与x 的函数兲系式;(2)若该批収商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?11.(2002•常州)阅读函数图象,幵根据你所获得的信息回答问题:(1)折线OAB 表示某个实际总是的函数图象,请你编写一道符合该图象意义的应用题;(2)根据你给出的应用题分别挃出x 轴,y 轴所表示的意义,幵写出A ,B 两点的坐标;(3)求出图象AB 的函数解析式,幵注明自变量x 的取值范围.12.(2002•黄石)中国移动通信已于2001年3月21日开始在所属18个省、市移动公司陆续推出“全球通”移动甴话资费“套餐”,这个“套餐”的最大特点是针对不同用户采用了不同的收费方法,其体方案如下: 方案代号 基本月租(元) 克费时间(分钟) 超过克费时间花费(元/分钟)1 30 48 0.60298 170 0.60 3168 330 0.50 4 268 600 0.455 388 1000 0.40原计费方案的基本月租为50元,每通话一分钟付0.40元.我市某中学外籍教师马兊根据自己每月实际收入水平,选中上图表中方案3.请问:(1)“套餐”中第3种收费方式的月话费y 与月通话量t (月通话量是挃一个月内每次通话用时乊和)的函数兲系式;(2)取第3种话费方式,通话量多少时比原收费方式的月通话费省钱?13.(2002•黄冈)通过甴脑拨号上“因特网”的费用是由甴话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为甴话费0.18元/3分钟,上网费为7.2元/小时.后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为甴话费0.22元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的觃定,将每月上“因特网”的费用y (元)表示为上网时间x (小时)的函数;(2)资费调整前,网民晓刚在兵家庨经济预算中,一直有一笔每月70小时的上网费用支出.“因特网”资费调整后,晓刚要想不超过兵家庨经济预算中的上网费用支出,他现在每月至少可上网多少小时?(3)仍资费调整前后的角度分析,比较我市网民上网费用的支出情冴.14.(2002•呼和浩特)等腰三角形周长为10cm ,底边BC 长为ycm ,腰AB 长为xcm .(1)写出y 兲于x 的函数兲系式;(2)求x 的取值范围;(3)求y 的取值范围.15.(2002•黑龙江)某气象研究中心观测一场沙尘暴仍収生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,兵风速平均每小时减小1千米/时,最终停止.结合风速与时间的图象,回答下列问题:(1)在y 轴( )内填入相应的数值;(2)沙尘暴仍収生到结束,共经过多少小时?(3)求出当x ≥25时,风速y (千米/时)与时间x (小时)乊间的函数兲系式;(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?16.(2002•黑龙江)为了迎接2002年世界杯足球赛的到来,某足球协会丽办了一次足球联赛,兵记分觃则及奖励方案如下表胜一场平一场负一场积分 3 1 0奖励(元/每人)1500 700 0当比赛迚行到第12轮结束(每队均需比赛12场)时,A队共积分19分.(1)请通过计算,判断A队胜、平、负各几场;(2)若每赛一场,每名参赛队员均得出场费500元,设A队兵中一名参赛队员所得的奖釐与出场费的和为W(元),试求W的最大值.17.(2002•海南)我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3七元,每吨芒果售价为人民币0.5七元.现设销售这两种水果的总收入为人民币y七元,荔枝的产量为x吨(0<x<200).(1)请写出y兲于x的函数兲系式;(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%.请求出y值的范围.18.(2002•贵阳)甲、乙两家体育用品商店出售同样的乑乒球拍和乑乒球,乑乒球拍每付定价20元,乑乒球每盒定价5元.现两家商店搞促销活动.甲店:每买一付球拍赠一盒乑乒球;乙店:按定价的9折伓惠.某班级需购球拍4付,乑乒球若干盒(不少于4盒).(1)设购买乑乒球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乑乒球盒数x乊间的函数兲系式.(2)就乑乒球盒数讨论去哪家商店买合算?19.(2002•哈尔滨)无锡市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付甴话费0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均挃市内通话).若一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x乊间的函数兲系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算?20.(2002•辽宁)随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:年仹(x)2000 2001 2002 …入学儿童人数(y)2520 2330 2140 …(1)求入学儿童人数y(人)与年仹x(年)的函数兲系式;(2)利用所求函数兲系式,预测试地区仍哪一年起入学儿童的人数不超过1000人?21.(2002•兰州)已知一次函数y=kx+2k+4,当x=﹣1时的函数值为1.(1)求一次函数的解析式;(2)这个函数的图象不经过第几象限?(3)求这个一次函数的图象与y轴的交点坐标.22.(2002•昆明)某同学在做甴学实验时,记彔下甴压y(伏特)与甴流x(安培)有如下对应兲系:X(安培)… 2 4 6 8 10 …Y(伏特)…15 12 9 6 3 …请在平面直角坐标系中:(1)观察表中数据幵求出y与x乊间的函数兲系式(不要求确定自变量x的取值范围);(2)当甴流是5安培时,甴压是多少伏特?23.(2002•荆州)一报刊销售亭仍报社订购某晚报的价栺是每仹0.7元,销售价是每仹1元,卖不掉的报纸还可以以0.2元的价栺退还给报社,在一个月内(以30天计算)有20天每天可卖出100仹,兵余10天每天只能卖出60仹,但每天报亭仍报社订购的仹数必须相同,若以报亭每天仍报社订购的报纸仹数为自变量x,每月所获得的利润为函数y.。
专题08 一次函数与反比例函数的实际应用-2023年中考数学二轮复习核心考点拓展训练(解析版)
专题08 一次函数与反比例函数的实际应用(解析版)类型一一次函数的实际应用(1)方案选择问题1.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.思路引领:(1)设某商店购进A种纪念品每件需a元,购进B种纪念品每件需b元,根据条件建立二元一次方程组求出其解即可;(2)设某商店购进A种纪念品x个,购进B种纪念品y个,根据条件的数量关系建立不等式组求出其解即可;(3)设总利润为W元,根据总利润=两种商品的利润之和列出函数解析式,再根据函数的性质求值即可.解:(1)设该商店购进A种纪念品每件需a元,购进B种纪念品每件需b元,由题意,得10a+5b=1000 5a+3b=550,解得a=50b=100,∴该商店购进A种纪念品每件需50元,购进B种纪念品每件需100元;(2)设该商店购进A种纪念品x个,购进B种纪念品y个,根据题意,得50x+100y=10000,由50x+100y=10000得x=200﹣2y,把x=200﹣2y代入x≥6y,解得y≤25,∵y≥20,∴20≤y≤25且为正整数,∴y可取得的正整数值是20,21,22,23,24,25,与y相对应的x可取得的正整数值是160,158,156,154,152,150,∴共有6种进货方案;(3)设总利润为W元,则W=20x+30y=﹣10y+4000,∵﹣10<0,∴W随y的增大而减小,∴当y=20时,W有最大值,W最大=﹣10×20+4000=3800(元),∴当购进A种纪念品160件,B种纪念品20件时,可获得最大利润,最大利润是3800元.总结提升:本题考查了一次函数、一元一次不等式解实际问题的运用,解答时求出A,B两种纪念品的单价是关键.2.(2021•东莞市校级二模)某移动通讯公司推出两种移动电话计费方式:方式一:月租费60元,主叫150分钟内不再收费,超过限定时间的部分a元/分钟;被叫免费.方式二:月租费100元,主叫380分钟内不再收费,超过限定时间的部分0.25元/分钟;被叫免费.两种方式的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数图象如图.(1)求a的值;(2)结合题意和函数图象,分别求出函数图象中,射线BC和射线EF对应的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数关系式,并写出对应的t的取值范围;(3)通过计算,写出当月主叫通话时间y(单位:分钟)满足什么条件时,选择方式一省钱.思路引领:(1)利用待定系数法可求出BC的解析式,再根据“方式一”的计费方式,也可求得BC的解析式,比较系数即可.(2)根据两种计费方式可求出射线BC和射线EF对应的月计费y(单位:元)关于主叫时间t(单位:分钟)的函数关系式.(3)根据(2)所求即可得出结论.解:(1)由题图可知,M(350,100),设BC所在直线为y=kt+b,把B(150,60),M(350,100)代入,得:150k+b=60 350k+b=100,解得:k=15b=30.∴y=15t+30(t≥150).当t>150时,y=a(t﹣150)+60=at+60﹣150a,∴a=0.2.(2)由(1)可知射线BC对应的月计费y关于主叫时间t的关系式为,y1=0.2t+30,t≥150min,又∵方式二中超过限定时间的部分0.25元/分钟,∴y2=0.25(t﹣380)+100=0.25t+5.∴射线EF对应的月计费y关于主叫时间t的关系式为,y2=0.25t+5,t≥380min.(3)①0≤t≤150min时,y1=60<y2=100;②150≤t≤350min时,y1=0.2t+30<y2=100;③t≥500min时,y1=0.2t+30<y2=0.25t+5.综上所述,通话时间0≤t≤350min或t≥500min时,方式一省钱.总结提升:考查了一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.(2)最大利润问题3.(2022•襄阳)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.思路引领:(1)分当0≤x≤2000时,当x>2000时,利用待定系数法求解即可;(2)根据题意可知,分当1600≤x≤2000时,当2000<x≤4000时,分别列出w与x的函数关系式,根据一次函数的性质可得出结论;(3)根据题意可知,降价后,w与x的关系式,并根据利润不低于15000,可得出a的取值范围.解:(1)当0≤x≤2000时,设y=k′x,根据题意可得,2000k′=30000,解得k′=15,∴y=15x;当x>2000时,设y=kx+b,根据题意可得,2000k+b=30000 4000k+b=56000,解得k=13b=4000,∴y=13x+4000.∴y=15x(0≤x≤2000)13x+4000(x>2000).(2)根据题意可知,购进甲种产品(6000﹣x)千克,∵1600≤x≤4000,当1600≤x≤2000时,w=(12﹣8)×(6000﹣x)+(18﹣15)•x=﹣x+24000,∵﹣1<0,∴当x=1600时,w的最大值为﹣1×1600+24000=22400(元);当2000<x≤4000时,w=(12﹣8)×(6000﹣x)+18x﹣(13x+4000)=x+20000,∵1>0,∴当x=4000时,w的最大值为4000+20000=24000(元),综上,w=―x+24000(1600≤x≤2000) x+20000(2000<x≤4000);当购进甲产品2000千克,乙产品4000千克时,利润最大为24000元.(3)根据题意可知,降价后,w=(12﹣8﹣a)×(6000﹣x)+(18﹣2a)x﹣(13x+4000)=(1﹣a)x+20000﹣6000a,当x=4000时,w取得最大值,∴(1﹣a)×4000+20000﹣6000a≥15000,解得a≤0.9.∴a的最大值为0.9.总结提升:本题考查了一次函数的应用,解题的关键是找准等量关系,正确列出函数关系式.4.某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过10.57万元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于12.32万元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?思路引领:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,根据总进价不超过105700元和销售额不低于123200元建立不等式组,求出其解即可;(2)根据利润等于售价﹣进价的数量关系分别表示出购买A型电脑的利润和B型电脑的利润就求其和就可以得出结论.解:(1)设A型电脑购进x台,则B型电脑购进(40﹣x)台,由题意,得2500x+2800(40―x)≤1057003000x+3200(40―x)≥123200,解得:21≤x≤24,∵x为整数,∴x=21,22,23,24∴有4种购买方案:方案1:购A型电脑21台,B型电脑19台;方案2:购A型电脑22台,B型电脑18台;方案3:购A型电脑23台,B型电脑17台;方案4:购A型电脑24台,B型电脑16台;(2)由题意,得y=(3000﹣2500)x+(3200﹣2800)(40﹣x),=500x+16000﹣400x,=100x+16000.∵k=100>0,∴y随x的增大而增大,∴x=24时,y最大=18400元.答:采用方案4,即购A型电脑24台,B型电脑16台的利润最大,最大利润是18400元.总结提升:此题考查一次函数的应用以及一元一次不等式组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.(3)行程问题5.(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B 地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为 米/分钟,乙的速度为 米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x 的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.思路引领:(1)利用速度=路程÷时间,找准甲乙的路程和时间即可得出结论;(2)根据(1)中的计算可得出点G的坐标,设直线FG的解析式为:y=kx+b,将F,G的坐标代入,求解方程组即可;(3)根据题意可知存在三种情况,然后分别计算即可.解:(1)根据题意可知D(1,800),E(2,800),∴乙的速度为:800÷1=800(米/分钟),∴乙从B地到C地用时:2400÷800=3(分钟),∴G(6,2400).∴H(8,2400).∴甲的速度为2400÷8=300(米/分钟),故答案为:300;800;(2)设直线FG的解析式为:y=kx+b(k≠0),且由图象可知F(3,0),由(1)知G(6,2400).∴3k+b=06k+b=2400,解得,k=800b=―2400.∴直线FG的解析式为:y=800x﹣2400(3≤x≤6).(3)由题意可知,AB相距800米,BC相距2400米.∵O(0,0),H(8,2400),∴直线OH的解析式为:y=300x,∵D(1,800),∴直线OD的解析式为:y=800x,当0≤x≤1时,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,即甲乙朝相反方向走,∴令800x+300x=600,解得x=6 11.∵当2≤x≤3时,甲从B继续往C地走,乙从A地往B地走,∴300x+800﹣800(x﹣2)=600解得x=185(不合题意,舍去)∵当x>3时,甲从B继续往C地走,乙从B地往C地走,∴300x+800﹣800(x﹣2)=600或800(x﹣2)﹣(300x+800)=600,解得x=185或x=6.综上,出发611分钟或185分钟或6分钟后,甲乙两人之间的路程相距600米.总结提升:本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,将图象中的信息转化为实际行程问题,属于中考常考题型.6.(2022•长春)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m= ,n= ;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.思路引领:(1)由甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇可求出m=2,根据以另一速度继续匀速行驶4小时到达B地知n=6;(2)用待定系数法可得y=60x+80,(2≤x≤6);(3)求出乙的速度,即可得乙到A地所用时间,即可求得甲车距A地的路程为300千米.解:(1)由题意知:m=200÷100=2,n=m+4=2+4=6,故答案为:2,6;(2)设y=kx+b,将(2,200),(6,440)代入得:2k+b=2006k+b=440,解得k=60 b=80,∴y=60x+80,(2≤x≤6);(3)乙车的速度为(440﹣200)÷2=120(千米/小时),∴乙车到达A地所需时间为440÷120=113(小时),当x=113时,y=60×113+80=300,∴甲车距A地的路程为300千米.总结提升:本题考查一次函数的应用,解题的关键是读懂题意,能正确识图.类型二反比例函数的实际应用7.(2022•广州)某燃气公司计划在地下修建一个容积为V(V为定值,单位:m3)的圆柱形天然气储存室,储存室的底面积S(单位:m2)与其深度d(单位:m)是反比例函数关系,它的图象如图所示.(1)求储存室的容积V的值;(2)受地形条件限制,储存室的深度d需要满足16≤d≤25,求储存室的底面积S的取值范围.思路引领:(1)设底面积S与深度d的反比例函数解析式为S=Vd,把点(20,500)代入解析式求出V的值;(2)由d的范围和图像的性质求出S的范围.解:(1)设底面积S与深度d的反比例函数解析式为S=Vd,把点(20,500)代入解析式得500=V20,∴V=10000.(2)由(1)得S=10000d,∵S随d的增大而减小,∴当16≤d≤25时,400≤S≤625,总结提升:此题主要考查反比例函数的性质和概念,解答此题的关键是找出变量之间的函数关系,难易程度适中.8.(2022•台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式.(2)若火焰的像高为3cm,求小孔到蜡烛的距离.思路引领:(1)根据待定法得出反比例函数的解析式即可;(2)根据解析式代入数值解答即可.解:(1)由题意设:y=k x ,把x=6,y=2代入,得k=6×2=12,∴y关于x的函数解析式为:y=12 x;(2)把y=3代入y=12x,得,x=4,∴小孔到蜡烛的距离为4cm.总结提升:此题考查反比例函数的应用,关键是根据待定系数法得出反比例函数的解析式解答.类型三一次函数与反比例函数的综合运用9.(2022•卧龙区模拟)通过心理专家实验研究发现:初中生在数学课上听课注意力指标指标)随上课时间的变化而变化,指标达到36为认真听讲,学生注意力指标y随时间x(分钟)变化的函数图象如图所示.当0≤x<10和10≤x<20时,图象是线段,当20≤x≤45时是反比例函数的一部分.(1)求点A对应的指标值.(2)李老师在一节课上讲一道数学综合题需17分钟,他能否经过适当安排.使学生在认真听讲时,进行讲解,请说明理由.思路引领:(1)设反比例函数的解析式为y =k x,由C (20,45)求出k ,可得D 坐标,从而求出A 的指标值;(2)求出AB 解析式,得到y ≥36时,x ≥325,由反比例函数y =900x可得y ≥36时,x ≤25,根据25―325=935>17,即可得到答案.解:(1)设当20≤x ≤45时,反比例函数的解析式为y =k x,将C (20,45)代入得:45=k 20,解得k =900,∴反比例函数的解析式为y =900x ,当x =45时,y =20,∴D (45,20),∴A (0,20),即A 对应的指标值为20;(2)设当0≤x <10时,AB 的解析式为y =mx +n ,将A (0,20)、B (10,45)代入得:20=n 45=10m +n ,解得m =52n =20,∴AB 的解析式为y =52x +20,当y ≥36时,52x +20≥36,解得x ≥325,由(1)得反比例函数的解析式为y =900x,当y ≥36时,900x≥36,解得x ≤25,∴325≤x ≤25时,注意力指标都不低于36,∵指标达到36为认真听讲,而25―325=935>17,∴李老师能经过适当的安排,使学生在认真听讲时,进行讲解.总结提升:本题考查函数图象的应用,涉及一次函数、反比例函数及不等式等知识,解题的关键是求出0≤x <10和20≤x ≤45时的解析式.10.(2021秋•东平县校级月考)教室里的饮水机接通电就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y (℃)与开机后用时x (min )成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电,水温y (℃)与时间x (min )的关系如图所示:(1)分别写出水温上升和下降阶段y 与x 之间的函数关系式并注明自变量的取值范围;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待 min ?思路引领:(1)根据题意和函数图象可以求得a 的值;根据函数图象和题意可以求得y 关于x 的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.解:(1)观察图象,可知:当x =7(min )时,水温y =100(℃),当0≤x ≤7时,设y 关于x 的函数关系式为:y =kx +b ,b =307k +b =100,解得k =10b =30,即当0≤x ≤7时,y 关于x 的函数关系式为y =10x +30,当x >7时,设y =a x ,100=a7,得a=700,即当x>7时,y关于x的函数关系式为y=700 x,当y=30时,x=70 3,∴y与x的函数关系式为:y=30(0≤x≤7)(7<x≤703),y与x的函数关系式每703分钟重复出现一次;(2)将y=50代入y=10x+30,得x=2,将y=50代入y=700x,得x=14,∵14﹣2=12,703―12=343,∴怡萱同学想喝高于50℃的水,她最多需要等待343min,故答案为:34 3.总结提升:本题考查反比例函数的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.第二部分专题提优训练1.(2019•淮安)当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是( )A.B.C.D.思路引领:根据题意得到xy=矩形面积(定值),故y与x之间的函数图象为反比例函数,且根据x、y 实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=矩形面积(定值),∴y是x的反比例函数,(x>0,y>0).故选:B.总结提升:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2.(2021•宜昌)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=mV,能够反映两个变量p和V函数关系的图象是( )A.B.C.D.思路引领:直接利用反比例函数的性质,结合p,V的取值范围得出其函数图象分布在第一象限,即可得出答案.解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=mV(V,p都大于零),∴能够反映两个变量p和V函数关系的图象是:.故选:B.总结提升:此题主要考查了反比例函数的应用,正确掌握反比例函数图象分布规律是解题关键.3.(2022•鄂州一模)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)a= ,b=.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地90千米处时,求甲、乙两车之间的路程.思路引领:(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定a、b的值;(2)运用待定系数法解得即可;(3)求出甲车到达距B地90千米处时行驶的时间,代入(2)的结论解答即可.解:(1)乙车的速度为:(270﹣60×2)÷2=75千米/时,a=270÷75=3.6,b=270÷60=4.5.故答案为:3.6;4.5;(2)60×3.6=216(千米),当2<x≤3.6时,设y=kx+b,根据题意得:2k+b=03.6k+b=216,解得k=135b=―270,∴y=135x﹣270(2<x≤3.6);当3.6<x≤4.5时,y=60x,∴y=135x―270(2<x≤3.6) 60x(3.6<x≤4.5).(3)∵甲车到达距B地90千米处时,x=270―9060=3,∴将x=3代入y=135x﹣270,得y=135×3﹣270=135,即当甲车到达距B地90千米处时,甲、乙两车之间的路程是135千米.总结提升:本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.4.(2022春•孝感期末)民生超市计划购进甲、乙两种商品共90件进行销售,有关信息如表,商品甲乙进价(元/件)6050售价(元/件)100100(其中一次性销售超过20件时,超出部分每件再让利20元)设乙种商品有x(件),销售完两种商品的总销售额为y(元).(1)求y与x的函数关系式;(2)若购进乙种商品不超过45件,且该超市购进这两种商品的总进货费用不超过5000元.①问共有多少种购进方案?②直接写出总利润的最大值(总利润=总销售额﹣总进货费用).思路引领:(1)分两种情况:当0≤x≤20时和当20<x≤90时,分别根据已知列出函数关系式即可;(2)①由购进乙种商品不超过45件,且该超市购进这两种商品的总进货费用不超过5000元,得x≤4560(90―x)+50x≤5000,即可解得共有6种购进方案;②设总利润为w元,可得w=(﹣20x+9400)﹣[60(90﹣x)+50x]=﹣10x+4000,由一次函数性质可得总利润的最大值是3600元.解:(1)当0≤x≤20时,y=100(90﹣x)+100x=9000,当20<x≤90时,y=100(90﹣x)+20×100+(100﹣20)×(x﹣20)=﹣20x+9400,∴y=9000(0≤x≤20)―20x+9400(20<x≤90);(2)①∵购进乙种商品不超过45件,且该超市购进这两种商品的总进货费用不超过5000元,∴x≤4560(90―x)+50x≤5000,解得40≤x≤45,∵x是整数,∴x可取40,41,42,43,44,45,∴共有6种购进方案;②设总利润为w元,∵40≤x≤45,∴总销售额y=﹣20x+9400,∴w=(﹣20x+9400)﹣[60(90﹣x)+50x]=﹣10x+4000,∵﹣10<0,∴w随x的增大而减小,∴x=40时,w取最大值,最大值为﹣10×40+4000=3600(元),答:总利润的最大值是3600元.总结提升:本题考查一次函数的应用,解题的关键是读懂题意,列出函数关系式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若设从 A 水库调往甲地的水量为 x 万吨。完成下表及下图。
调入地 水量
甲地
乙地
调出地
A 水库
总计
B 水库
总计 (4) 由上图可知:当设总的水的调运量为
y 万吨 / 千米时,可列出 y 关于 x 的函数关系式为 :__________
( 5) 化简函数,指出自变量的取值范围。 [
(6) 画出函数的简易图像。并结合图像及解析式说明最佳调运方案,水的最小调运量为多少?
(页)的函数关系为
;
⑶在给出的坐标系内画出( 1)、( 2)中的函数图象,并回答每月复印页数在 1200 左右应选择哪个复印社?
y (元 ) 600
400
200
O
200
400
600
800
1000 x(页 )
6.如图, L1,L2 分别表示一种白炽灯和一种节能灯的费用 y(费用 =灯的售价 +电费, 单位: 元)与照明时间 x(小时) 的函数图象, 假设两种灯的使用寿命都是 2000 小时,照明效果一样 .
地到甲地 50 千米,到乙地 30 千米;从 B 地到甲地 60 千米,到乙地 45 千米。设计一个调运方案使水的调运量(单位:万吨
·千米)尽
可能小。
( 1 )调运量和哪些因素有关?
( 2 )为完成调运,过程中含有哪些地方到哪些地方的调运?彼此之间的路程各为多少?
(3)调出地 ( 水源地 ) 共有水多少吨?调入地 ( 目的地 ) 共需水多少吨?这说明什么?
y=
,
化简得: ________________________________
现在讨论 x 的范围:为使 240 名师生有车坐,应满足 _________________ 240 ,
为使租车费用不超过 2300 元,应满足 _________________ 2300 , 故 x 的取值为
( 3 )不同的租车方案有
,它们的租车费用分别
为
,为节省费用,应选
2、如图, L1,L2?分别表示一种白炽灯和一种节能灯的费用 y( 费用 =灯的售价 +电费,单位:元 ) 与照明时间 x( h) 的函数图像,假设两种
灯的使用寿命都是 2000h,照明效果一样.
(1) 根据图像分别求出 L1, L2的函数关系式.
(2) 当照明时间为多少时,两种灯的费用相等 ?
解:(1)从人数上看, 共有 240 人,若全部租大客车, 要
辆,全部租小客车, 要
辆; 但由于每辆汽车上至少要有一名教师,
故最多只能要
辆车。
综合考虑,租车总数 a= 辆。
( 2 )租车费用与所租车的种类有关。显然,当车辆总数确定时,尽可能少地租用
种客车可以节省费用。设租用 x 辆甲种客车,租
车总费用 y 元,则 y 与 x 的函数关系为:
。
选择方案(第一课时) 1、某学校计划在总费用 2300 元的限额内, 租用汽车送 234 名学生和 6 名教师集体外出活动, 每辆汽车上至少要有 1 名教师。 现有甲、 乙两种大客车,它们的载客量和租金如下表:
甲种客车
乙种客车
载客量 / (人 / 辆)
45
30
租金 / (元 / 辆)
400
280
(1)共需租多少辆汽车 ?( 2)给出最节省费用的租车方案。
(7) 如果设其它的水量为 x 万吨,能否得到同样的最佳方案吗?
50 元,每通话 1 分钟再收 0.4 元 ; 乙公司 .( 通话不到 1 分钟按 1 分钟收费 )
。1
。
4 、 某 社 区 活 动 中 心 为 鼓 励 居 民 加 强 体 育 锻 炼 , 准 备 购 买 10 副 某 种 品 牌 的 羽 毛 球 拍 , 每 副 球 拍 配 x ( x ≥2 ) 个 羽 毛 球 , 供 社 区 居 民 免 费 借 用 . 该 社 区 附 近 A、 B 两 家 超 市 都 有 这 种 品 牌 的 羽 毛 球 拍 和 羽 毛 球 出 售 , 且 每 副 球 拍 的 标 价 均 为 30 元 , 每 个 羽 毛 球 的 标 价 为 3 元 , 目 前 两 家 超 市 同 时 在 做 促 销 活 动 : A 超 市 : 所 有 商 品 均 打 九 折 ( 按 标 价 的 90%) 销 售 ; B超市 :买一副羽毛球拍 送 2 个羽毛球. 设 在 A 超 市 购 买 羽 毛 球 拍 和 羽 毛 球 的 费 用 为 y A( 元 ), 在 B 超 市 购 买 羽 毛 球 拍 和 羽 毛 球 的 费 用 为 yB( 元 ). 请 解 答 下 列问题: ( 1) 分 别 写 出 yA、 y B 与 x 之 间 的 关 系 式 ; ( 2) 若 该 活 动 中 心 只 在 一 家 超 市 购 买 , 你 认 为 在 哪 家 超 市 购 买 更 划 算 ? ( 3) 若 每 副 球 拍 配 15 个 羽 毛 球 , 请 你 帮 助 该 活 动 中 心 设 计 出 最 省 钱 的 购 买 方 案
5、某学 校的复印任务原来ቤተ መጻሕፍቲ ባይዱ甲复印社承接,其收费 y(元)与复印页数 x(页)的关系如下表:
x( 页 )
100
200
400
1000
…
y( 元 )
40
80
160
400
⑴若 y 与 x 满足初中学过的某一函数关系,求函数的解析式;
⑵现在乙复印社表示:若学校先按每月付给 200 元的承包费,则可按每页 0.15 元收费 . 则乙复印社每月收费 y(元)与复印页数 x
⑴根据图象分别求出 L1,L2 的函数关系式 . ⑵ 当照明时间为多少时,两种灯的费用相等? ⑶ 小亮房间计划照明 2500 小时,他买了一个白炽灯和一个节能节, ?请你帮他设计最省钱的用灯方法(直接给出答案,不必写出 解答过程) .
。2
。
7、调水问题: 从 A、 B 两水库向甲、乙两地调水,其中甲地需水 15 万吨,乙地需水 13 万吨, A、 B 两水库各可调出水 14 万吨。从 A
(3) 小亮房间计划照明 2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法
( 直接给出答案,不必写出解答
过程 ) .
y/元
l1
l2
26 20 17
2 O 500
2000
x/ 时
3、 甲乙两个通信公司分别制定了一种移动电话的收费办法。甲公司规定:每月收取月租费 规定:不收取月租费 , 每通话 1 分钟收费 0.6 元. 那么 , 应当怎选择通信公司才能节省电话费