椭圆练习(一)
椭圆综合练习题一
椭圆综合练习题一1.“a >b >0”是“方程122=+by ax 表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 2.过15622=+yx内的一点P(2,-1)的弦,恰被P 点平分,则这条弦所在的直线方程是( ) A .5x -3y -13=0 B .5x +3y -13=0 C .5x -3y +13=0 D .5x +3y +13=03.2的椭圆称为“优美椭圆”.设22221(0)x y a b ab+=>>是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个顶点,则F B A ∠=( )A. 60B. 75C.90D.120 4.椭圆22221(0)x y a b ab+=>>的四个顶点A ,B ,C ,D 构成的四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆的离心率是( )A 2B 8.2D 45.已知A ,B 是椭圆()012222>>=+b a by ax 长轴的两个顶点,N M ,是椭圆上关于x 轴对称的两点,直线BN AM ,的斜率分别为12,k k ,且021≠k k ,若21k k +的最小值为1,则椭圆的离心率为( )A .12B .2C .23 D .326. P 、Q 是141622=+yx上两点,O 为原点,OP 、OQ 斜率之积为41-,则22OQ OP+为( )A . 4 B. 20 C. 64 D. 不确定 7.椭圆13422=+yx上有n 个不同的点,,,,21n P P P 椭圆的右焦点为F , 数列{}F P n 是公差大于1001的等差数列, 则n 的最大值是( )A .198B .199C .200D .201 8.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为( ) A .23 B .33 C .36 D .669.设O 为坐标原点,12,F F 是椭圆22221(0)x y a b ab+=>>的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且||2O P =,则该椭圆的离心率为( )A.12B.142D.210.如图,椭圆的中心在坐标原点O ,顶点分别是1A ,2A ,1B ,2B ,焦点为1F ,2F ,延长11B F 与22A B 交于 P 点,若12B PA Ð为钝角,则此椭圆的离心率的取值范围为( )A. (0,14+ ) B .(14,1) C. (0, 12- ) D.( 12,1)11.椭圆22221(0)x y a b ab+=>>的中心、右焦点、右顶点及在准线与x 轴的交点依次为O 、F 、G 、H ,则FG O H的最大值为( )A .12B .13C .14D .不确定12.若直线4:1=+ny mx l 和圆4:221=+y x C 无公共点,则过点),(n m P 的直线2l 与椭圆149:222=+yxC 的公共点的个数为( )A .至多一个B .2个C .1个D . 0个 13.已知F 1、F 2为椭圆2212516xy+=的左、右焦点,若M 为椭圆上一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 有( )个.A.0B.1C.2D.414.B 1、B 2是椭圆短轴的两端点,O 为椭圆中心,过左焦点F 1作长轴的垂线交椭圆于点P ,若12F B 是|1O F |和|12B B |的等比中项,则12||PF O B 的值________.15.若点P 在以F 1,F 2为焦点的椭圆上,PF 2⊥F 1F 2,123tan 4PF F ∠=,则椭圆离心率为_______.16.已知非零实数a 、b 、c 成等差数列,直线0ax by c ++=与曲线2221(0)9x ym m+=>恒有公共点,则实数m 的取值范围为___________________.17.已知AB 是过椭圆x 225+y 216=1左焦点F 1的弦,且22||||12AF BF +=,其中2F 是椭圆的右焦点,则弦AB 的长是 .18.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆 离心率的取值范围是 .19.已知以)0,2(1-F 、)0,2(2F 为焦点的椭圆与直线043=++y x 有且只有一个交点,则椭圆的长轴长为__________.20.已知正方形ABCD 的四个顶点在椭圆12222=+by ax ()0>>b a 上,x AB //轴,AD 过左焦点F ,则该椭圆的离心率为 . 21.若椭圆1C :2222111x y a b +=(110a b >>)和椭圆2C :2222221xy a b +=(220a b >>)的焦点相同且12a a >.给出如下四个结论: ①椭圆1C 和椭圆2C 一定没有公共点;②1122a b a b >;③22221212a a b b -=-; ④1212a a b b -<-.其中,所有正确结论的序号是 . 22.已知椭圆()012222>>=+b a by ax 的右焦点为2F (3,0),离心率为23=e 。
椭圆练习题
椭圆练习题(一)1.对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件2.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 453.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 4.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为A.14 B. C. 12 D.5.椭圆2221(5x y a a +=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是______。
6.设椭圆C : ()222210x y a b a b+=>>过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.7.已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率. (Ⅰ)求椭圆2C 的方程;(Ⅱ)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2=求直线AB 的方程.8.已知椭圆1422=+y x 及直线m x y +=(1) 当直线和椭圆有公共点时,求实数m 的取值范围 (2) 求被椭圆截得的最长弦所在的直线方程。
(完整版)椭圆练习题(含答案)
解析几何——椭圆精炼专题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C ,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P 到定点F (2,0)的距离和它到定直线x =8的距离的比为1:2,求点P 的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程22.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12 .化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。
椭圆及其标准方程练习题一
《椭圆及其标准方程》练习题一1.设定点()3,01-F ,()3,02F ,动点()y x P ,满足条件a PF PF =+21(a >)0,则动点P 的轨迹是 ( )A. 椭圆B. 线段C. 椭圆或线段或不存在D. 不存在2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A. (0,+∞)B. (0,2)C. (1,+∞)D. (0,1)3.椭圆9x 2+16y 2=144的焦点为F 1、F 2,CD 是过F 1的弦,则∆F 2CD 的周长是 ( )A .10 B.12 C.16 D.不确定4.过椭圆13422=+y x 的焦点且垂直于x 轴的直线l 被此椭圆截得的弦长为( ) A .23 B.3 C.32 D.3 5.椭圆的两个焦点分别是F 1(-8,0)和F 2(8,0),且椭圆上一点到两个焦点的距离之和 是20,则此椭圆方程是 ( )A.3x 2+1002y =1B.4002x +3362y =1C.1002x + 362y =1D. 202x +122y =1 6.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段P F 1的中点在y 轴上, 那么|P F 1|是|PF 2|的 ( )A .7倍B .5倍C .4倍D .3倍7.椭圆m x 2+42y =1的焦距是2,则m 的值是 ( ) A.5 B.8 C.5或3 D.208.以两条坐标轴为对称轴的椭圆过点P(53,-4)和Q(-54,3),此椭圆的方程是( ) A. 252x +y 2=1 B.x 2+252y =1 C.252x +y 2=1或x 2+252y =1 D.非A 、B 、C 答案 9.P 是椭圆14522=+y x 上的一点,F 1和F 2是焦点,若∠F 1PF 2=30°,则△F 1PF 2的面积 等于( )A. 3316 B. )32(4- C. )32(16+ D. 16 10.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是( )(A )2211510x y += (B )221510x y += (C )2211015x y += (D )2212510x y += 11.若椭圆a 2x 2-22a y =1的一个焦点是(-2, 0),则a =( )(A )14 (B )14-± (C )14 (D )14-- 12.点P 为椭圆22154x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是( )(A )(±2, 1) (B )(2, ±1) (C )(2, 1) (D )(±2, ±1)13=10为不含根式的形式是( )(A )2212516x y += (B )221259x y += (C )2211625x y += (D )221925x y += 14.椭圆22125x y m m +=-+的焦点坐标是( ) (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7)15.椭圆22110036x y +=上一点P 到焦点F 1的距离是6,则点P 到另一个焦点F 2的距离是( ) (A )4 (B )194 (C )94 (D )1416.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是( )(A )椭圆 (B )直线 (C )圆 (D )线段17.P 点在椭圆452x +202y =1上,F 1,F 2是椭圆的焦点,若PF 1⊥PF 2,则P 点的坐标是 . 18.过椭圆x y F 22136251+=的焦点作直线交椭圆于A 、B 二点,F 2是此椭圆的另一焦点,则∆ABF 2的周长为。
椭圆 经典题型练习 (精选题) 含答案
椭圆经典题型练习一.选择题(共13小题)1.设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆与直线bx+y=b2相切,则该椭圆的离心率为()A.B.C.D.2.已知方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y轴上的椭圆,则实数m的取值范围为()A.(1,2)B.(2,3)C.(﹣∞,1)D.(3,+∞)3.已知椭圆的两个焦点分别为F1,F2,P是椭圆上一点,且∠F1PF2=60°,则△F1PF2的面积等于()A.B.C.6D.34.椭圆=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值是()A.B.C.D.5.已知点M(﹣4,0),椭圆的左焦点为F,过F作直线l(l的斜率存在)交椭圆于A,B两点,若直线MF恰好平分∠AMB,则椭圆的离心率为()A.B.C.D.6.设椭圆(a>b>0)的一个焦点F(2,0)点A(﹣2,1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=8,则椭圆E的离心率的取值范围是()A.B.C.D.7.已知椭圆的左焦点为F1,离心率为,P是椭圆C上的动点,若点Q(1,1)在椭圆C内部,且|PF1|+|PQ|的最小值为3,则椭圆C的标准方程为()A.B.C.D.8.在平面直角坐标系xOy中,过椭圆C:=1(a>b>0)的右焦点F作x 轴的垂线,交C于点P,若=2,cos∠OPF=,则椭圆C的方程为()A.=1B.=1C.=1D.=1 9.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()A.2B.C.4D.10.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则△AFB周长的取值范围是()A.(2,4)B.C.(6,8)D.(8,12)11.已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.椭圆的左右焦点分别为F1,F2,A为椭圆上一动点(异于左右顶点),若△AF1F2的周长为6且面积的最大值为,则椭圆的标准方程为()A.B.C.D.13.已知点A(0,0),B(2,0).若椭圆上存在点C,使得△ABC为等边三角形,则椭圆W的离心率是()A.B.C.D.二.填空题(共7小题)14.已知点P圆C:(x﹣4)2+y2=4上,点Q在椭圆上移动,则|PQ|的最大值为.15.已知点A在椭圆+y2=1上,且O、A、P三点共线(O是坐标原点),=24,则线段OP在x轴上的投影长度的最大值为16.直线y=kx+k与焦点在y轴上的椭圆+=1总有两个公共点,则实数m的取值范围是.17.过直线l:y=x+9上的一点P作一个长轴最短的椭圆,使其焦点为F1(﹣3,0),F2(3,0),则此椭圆的离心率为18.椭圆右焦点为F,存在直线y=t与椭圆C交于A,B 两点,使得△ABF为等腰直角三角形,则椭圆C的离心率e=.19.已知F1,F2是长轴长为4的椭圆的左右焦点,P是椭圆上一点,则△PF1F2面积的最大值为.20.已知点P(x,y)在椭圆上运动,则最小值是三.解答题(共10小题)1.已知F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.(Ⅰ)求△ABF2的周长;(Ⅱ)若AF2⊥BF2,求△ABF2的面积.2.已知p:实数m使得椭圆的离心率.(1)求实数m的取值范围;(2)若q:t≤m≤t+9,p是q的充分不必要条件,求实数t的取值范围.3.已知椭圆C:=1(a>b>0)的离心率为,短轴端点到焦点的距离为2.(1)求椭圆C的方程;(2)设A,B为椭圆C上任意两点,O为坐标原点,且OA⊥OB.求证:原点O 到直线AB的距离为定值,并求出该定值.4.已知椭圆C:+=1(a>b>0)的离心率为,F1,F2分别是其左、右焦点,P为椭圆C上任意一点,且|PF1|+|PF2|=4(1)求椭圆C的标准方程;(2)过F1作直线l与椭圆C交于A、B两点,点Q(m,0)在x轴上,连结QA、QB分别与直线x=﹣2交于点M、N,若MF1⊥NF1,求m的值.5.已知椭圆的离心率为且经过点.(1)求椭圆方程;(2)直线y=kx+m交椭圆于不同两点A,B,若,△OAB(O是坐标原点)的面积等于,求直线AB的方程.6.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2且离心率为,过左焦点F1的直线l与C交于A,B两点,△ABF2的周长为16.(1)求椭圆C的方程;(2)已知过点P(2,1)作弦且弦被P平分,则此弦所在的直线方程.7.设F1,F2分别是椭圆C:的左、右焦点,M是C上一点,且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为3,且|MN|=7|F1N|,求a,b.8.已知椭圆C:+=1(a>b>0)的离心率为,且C过点(1,).(1)求椭圆C的方程;(2)若斜率为k(k<0)的直线l与椭圆C交于P,Q两点,且直线OP,l,OQ 的斜率成等比数列,求k值.9.已知椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,设直线x﹣y+2=0交椭圆于A,B两点,求线段AB的中点坐标.10.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的右焦点F(1,0),过F且垂直于x轴的弦长为3,直线l与圆(x﹣1)2+y2=1相切,且与椭圆C交于A,B两点,Q为椭圆的右顶点.(1)求椭圆C的方程;(2)用S1,S2分别表示△ABF和△ABQ的面积,求S1•S2的最大值.椭圆练习参考答案与试题解析一.选择题(共13小题)1.【解答】解:椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆x2+y2=c2,以F1F2为直径的圆与直线bx+y=b2相切,可得:,即a2﹣c2=ac,因为e=∈(0,1),所以e=.故选:C.2.【解答】解:方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),即,方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y 轴上的椭圆,可得m﹣1>3﹣m>0,解得2<m<3.故选:B.3.【解答】解:如图所示,椭圆,可得a=5,b=3,c==4.设|PF1|=m,|PF2|=n,则m+n=2a=10,在△F1PF2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos60°,可得(m+n)2﹣3mn=6即102﹣3mn=64,解得mn=12.∴△F1PF2的面积S=mnsin60°==3.故选:B.4.【解答】解:由椭圆=1,可得a=5,b=4,c==3.如图所示,设△ABF2的内切圆的圆心为G.连接AG,BG,GF2.设内切圆的半径为r,则2πr=π,解得r=.则==•|F1F2|,∴4a=|y2﹣y1|×2c,∴|y2﹣y1|==.故选:D.5.【解答】解:设F(﹣c,0),A(x1,y1),B(x2,y2),直线AB的方程为y=k(x+2),代入椭圆方程,可得(b2+4k2)x2+8ck2x+4k2c2﹣4b2=0,即有x1+x2=﹣,x1x2=,由直线MF恰好平分∠AMB,可得k AM+k BM=0,即有+=0,可得k(x1+c)(x2+4)+k(x2+c)(x1+4)=0,化为2x1x2+(c+4)(x1+x2)+8c=0,可得2•+(c+4)•(﹣)+8c=0,化简可得c=1,则椭圆的离心率e==,故选:C.6.【解答】解:椭圆(a>b>0)的一个焦点F(2,0),另一个焦点为F'(﹣2,0),由椭圆的定义可得2a=|PF|+|PF'|,即|PF'|=2a﹣|PF|,可得|PA|﹣|PF'|=8﹣2a,由||PA|﹣|PF'||≤|AF'|=1,可得﹣1≤8﹣2a≤1,解得≤a≤,又c=2,可得e=∈[,],故选:A.7.【解答】解:如图所示,设右焦点为F2.|PF1|+|PQ|=2a﹣(|PF2|﹣|PQ|)≥2a﹣|QF2|=3,∴2a﹣=3,=a2=b2+c2,联立解得a=2,c=1,b2=3.∴椭圆C的标准方程为=1.故选:A.8.【解答】解:∵|OF|=c,PF⊥x轴,cos∠OPF=,∴sin∠OPF=,∴cos∠OPF=,|OP|===c,∵=2,∴|OP|•c•cos∠OPF=|OP|•c•=c•c•=2,解得c2=2,即c=∴|OP|=,∴|PF|=×=1,∴P(,1),∴+=1∵a2﹣b2=c2=2,∴a2=4,b2=2,∴+=1故选:B.9.【解答】解:如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.10.【解答】解:∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx(k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2)则△AFB周长的取值范围是(6,8).故选:C.11.【解答】解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.故选:D.12.【解答】解:由椭圆的定义可得2(a+c)=6,所以a+c=3①,当A在上(或下)顶点时,△AF1F2的面积取得最大值,即最大值为bc=②,由①②及a2=c2+b2联立求得a=2,b=,c=1,椭圆方程为+=1,故选:A.13.【解答】解:过点C做x轴垂线,垂足为D,根据正三角形性质可知D为A,B的中点,C坐标为(1,),C点的坐标代入椭圆方程得,解得m=6,所以椭圆的离心率为:=.故选:C.二.填空题(共7小题)14.【解答】解:∵点Q在椭圆上移动,∴可设Q(cosθ,2sinθ),由圆C:(x﹣4)2+y2=4,可得圆心C(4,0),半径r=2.∴|CQ|===≤5,当且仅当cosθ=﹣1时取等号.∴|PQ|的最大值=5+r=7.故答案为:7.15.【解答】解:∵O、A、P三点共线(O是坐标原点),=24,∴|OA|•|OP|=24,设OP与x轴夹角为θ,设A(x,y)在第一象限,B为点A 在x轴的投影,则OP在x轴上的投影长度为|OP|cosθ==24×=24×=24×≤24×=8.当且仅当x=时等号成立.则线段OP在x轴上的投影长度的最大值为8.故答案为:8.16.【解答】解:直线y=kx+k恒过(﹣1,0),直线与焦点在y轴上的椭圆+=1总有两个公共点,可得:解得m∈(1,4).故答案为:(1,4).17.【解答】解:设直线l上的占P(t,t+9),取F1(﹣3,0)关于l的对称点Q (﹣9,6),根据椭圆定义,2a=|PF1|+|PF2|=|PQ|+|PF2|≥|QF2|==6 ,当且仅当Q,P,F2共线,即,即=﹣时,上述不等式取等号,∴t=﹣5.∴P(﹣5,4),据c=3,a=3,离心率为:e==.故答案为:.18.【解答】解:要使△ABF为等腰直角三角形,则B(c,2c).,又a2=b2+c2,∴b2=2ac,⇒c2+2ac﹣a2=0,⇒e2+2e﹣1=0,且0<e<1,∴e=﹣1.故答案为:﹣1.19.【解答】解:F1,F2是长轴长为4的椭圆的左右焦点,a=2,b2+c2=4,P是椭圆上一点,△PF1F2面积的最大值时,P在椭圆的短轴的端点,此时三角形的面积最大,S=bc≤=2,当且仅当b=c时,三角形的面积最大.故答案为:2.20.【解答】解:根据题意,点P(x,y)在椭圆上运动,则有,变形可得:+=,变形可得x2+2(y2+1)=5,则=[x2+2(y2+1)]()=×[1+4++]=×[5++]≥(5+2×2)=;即最小值是,故答案为:三.解答题(共10小题)1.【解答】解:(I)∵F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.∴△ABF2的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=4.…(3分)(II)设直线l的方程为x=my﹣1,由,得(m2+2)y2﹣2my﹣1=0.设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=﹣,…(5分)∵AF2⊥BF2,∴•=0,∴•=(x1﹣1)(x2﹣1)=(my1﹣2)(my2﹣2)+y1y2=(m2+1)y1y2﹣2m(y1+y2)+4=﹣2m×+4==0∴m2=7.…(10分)∴△ABF2的面积S=×|F1F2|×=.2.【解答】解:(1)当0<m<2时,∵,又,∴,∴,当m>2时,∵,又,∴解得4<m<8.综上所述实数m的取值范围:或4<m<8.(2)∵q:t≤m≤t+9,p是q的充分不必要条件,∴⊆[t,t+9],∴,解得.3.【解答】解:(1)由题意知,e==,a==2,又a2=b2+c2,所以a=2,c=,b=1,所以椭圆C的方程为+y2=1;(2)证明:当直线AB的斜率不存在时,直线AB的方程为x=±;此时,原点O到直线AB的距离为;当直线AB的斜率存在时,设直线AB 的方程为y=kx+m,A(x1,y1),B(x2,y2).代入椭圆方程x2+4y2=4,得(1+4k2)x2+8kmx+4m2﹣4=0,则△=(8km)2﹣4(1+4k2)(4m2﹣4)=16(1+4k2﹣m2)>0,x1+x2=﹣,x1x2=,则y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,由OA⊥OB得k OA k OB=﹣1,即x1x2+y1y2=0,所以=0,即m2=(1+k2),所以原点O到直线AB的距离为d==,综上,原点O到直线AB的距离为定值.4.【解答】解:(1)由题意可得:=,|PF1|+|PF2|=4=2a,a2=b2+c2.联立解得:a=2,c==b.∴椭圆C的标准方程为:+=1.(2)如图所示,设直线l的方程为:ty=x+,A(x1,y1),B(x2,y2).联立,化为:(t2+2)y2﹣2ty﹣2=0,∴y1+y2=,y1y2=.直线QA的方程为:y=(x﹣m),可得:M.直线QB的方程为:y=(x﹣m),可得N.∵MF1⊥NF1,∴•=0.又F1(﹣,0).∴+•=0,化为:2[x1x2﹣m(x1+x2)+m2]+=0,∵x1+x2=t(y1+y2)﹣2,x1x2=(ty2﹣)=t2y1y2﹣t(y1+y2)+2.∴(2t2+8+4m+m2)y1y2﹣(2+2mt)(y1+y2)+4+4m+2m2=0,∴(2t2+8+4m+m2)•﹣(2+2mt)+4+4m+2m2=0,化为:(m2﹣4)(t2﹣1)=0.∵∀t∈R上式都成立,∴m2﹣4=0,解得m=±2.5.【解答】解:(1)椭圆的离心率为且经过点,可得e==,+=1,a2﹣b2=c2,解得a=,b=1,则椭圆方程为+y2=1;(2)直线y=kx+m与椭圆x2+2y2=2联立,可得(1+2k2)x2+4kmx+2m2﹣2=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,可得|AB|=•==•=,①由△OAB(O是坐标原点)的面积等于,设O到AB的距离为d,可得|AB|d=,即d=,即有=,即3m2=2+2k2②联立①②解得m=1,k=±;m=﹣1,k=±,则直线AB的方程为y=±x+1或y=±x﹣1.6.【解答】解:(1)如图所示,椭圆C:=1的离心率为,∴=,△ABF2的周长为|AB|+|AF2|+|BF2|=4a=16,∴a=4,∴c=2,∴b2=a2﹣c2=4,∴椭圆C的方程+=1;(2)设过点P(2,1)作直线l,l与椭圆C的交点为D(x1,y1),E(x2,y2),则,两式相减,得(﹣)+4(﹣)=0,∴(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,∴直线l的斜率为k==﹣=﹣=﹣,∴此弦所在的直线方程为y﹣1=﹣(x﹣2),化为一般方程是x+2y﹣4=0.7.【解答】解:(1)根据及题设知,5b2=24ac将b2=a2﹣c2代入5b2=24ac解得或(舍去),故C的离心率为;………………………………………………(4分)(2)由题意得,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,3)是线段MF1的中点,故,即b2=6a①………………………………………………(7分)由|MN|=7|F1N|得|DF1|=3|F1N|,设N(x1,y1)则,即代入C的方程,得②……………………………………………(10分)将①及代入②得解得故8.【解答】解:(1)由题意可得,解得,因此,椭圆C的方程为;(2)由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+m(m≠0),由,消去y整理得(1+4k2)x2+8kmx+4(m2﹣1)=0,∵直线l与椭圆交于两点,∴△=64k2m2﹣4(1+4k2)(m2﹣1)=4(4k2﹣m2+1)>0,设点P、Q的坐标分别为(x1,y1)、(x2,y2),则,,∴y1+y2=(kx1+m)(kx2+m)=,∵直线OP、l、OQ的斜率成等比数列,∴,整理得,∴,又m≠0,所以,,结合图象可得,故直线l的斜率为定值.9.【解答】解:椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,焦点在x轴上,设椭圆C的方程为:(a>b>0),a=3,b2=a2﹣c2=9﹣8=1,∴椭圆C的方程为:;由,消y整理得:10x2+36x+27=0,由△=362﹣4×10×27=216>0,∴直线与椭圆有两个不同的交点,设A(x1,y1),B(x2,y2),中点E(x0,y0),则x1+x2=﹣,由中点坐标公式可知:x0==﹣,y0=x0+2=,故线段AB的中点坐标为(﹣,).10.【解答】解:(1)由已知c=1,,又a2=b2+c2,解得.∴椭圆C的方程为:;(2)当l斜率不存在时,AB=,得S1•S2=6.当l斜率存在时,设为直线为y=kx+m,由l与圆(x﹣1)2+y2=1相切,得m2+2km=1…(*)联立,得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则.|AB|=.Q到直线的距离,S1•S2==.将(*)式代入得S1•S2=,令t=m2+1∈(1,+∞).∴S1•S2==.综上,S1•S2的最大值为6.。
椭圆练习题及答案
椭圆练习题及答案椭圆练习题及答案椭圆是数学中一种重要的几何形状,它在实际生活中有着广泛的应用。
本文将为大家提供一些椭圆的练习题,并给出相应的答案。
通过这些练习题,希望读者能够更好地理解和掌握椭圆的性质和运用。
1. 练习题一:给定椭圆的长轴长度为8,短轴长度为6,求椭圆的离心率。
解答:椭圆的离心率定义为离心距与长轴长度之比,其中离心距为焦点到椭圆上任意一点的距离。
由于椭圆的离心距等于长轴长度的一半,所以离心率为1/2。
2. 练习题二:已知椭圆的焦点F1和F2的坐标分别为(-3,0)和(3,0),离心率为2/3,求椭圆的方程。
解答:设椭圆的焦点为F1(-c,0)和F2(c,0),离心率为e,则椭圆的方程为(x+c)^2+y^2=(x-c)^2+y^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为(x+3)^2+y^2=(x-3)^2+y^2=(4/9)(x^2+y^2)。
3. 练习题三:已知椭圆的焦点F1和F2的坐标分别为(0,-4)和(0,4),离心率为1/2,求椭圆的方程。
解答:设椭圆的焦点为F1(0,-c)和F2(0,c),离心率为e,则椭圆的方程为x^2+(y+c)^2=x^2+(y-c)^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为x^2+(y+4)^2=x^2+(y-4)^2=(1/4)(x^2+y^2)。
4. 练习题四:已知椭圆的焦点F1和F2的坐标分别为(-2,0)和(2,0),离心率为3/5,求椭圆的方程。
解答:设椭圆的焦点为F1(-c,0)和F2(c,0),离心率为e,则椭圆的方程为(x+c)^2+y^2=(x-c)^2+y^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为(x+2)^2+y^2=(x-2)^2+y^2=(9/25)(x^2+y^2)。
通过以上练习题,我们可以看到椭圆的方程与其焦点和离心率之间的关系。
椭圆的方程可以通过焦点和离心率来确定,同时也可以通过方程来求解椭圆的性质和参数。
高二椭圆基础练习题及答案
高二椭圆基础练习题及答案练习题1:已知椭圆E的长轴长为6,短轴长为4。
若椭圆E的焦点F到点P 的距离等于点P到长轴的距离与点A到长轴的距离之和,且点A在椭圆E的右半部分上。
求椭圆E的方程。
解答:设椭圆E的焦点坐标为F(a,0),其中a为焦点到原点的距离。
设点P(x,y)。
根据题意,有:PF = PA + PA'根据椭圆的定义,有:PF = √[(x-a)^2 + y^2]PA = √[(x-a)^2 + (y-4)^2]PA' = √[(x+a)^2 + (y+4)^2]将上述式子代入PF = PA + PA',整理得:√[(x-a)^2 + y^2] = √[(x-a)^2 + (y-4)^2] + √[(x+a)^2 + (y+4)^2]对上式两边进行平方运算,得:(x-a)^2 + y^2 = [(x-a)^2 + (y-4)^2] + 2√[(x-a)^2 + (y-4)^2]√[(x+a)^2 + (y+4)^2] + (x+a)^2 + (y+4)^2对上式进行整理,得:0 = -8x^2 + 8a^2 - 32a - 64由于长轴长为6,短轴长为4,求平方可得:36 = 4a^2解得a = ±3/2将a = ±3/2 代入上式,得到两个椭圆E的方程:E1:-8x^2 + 18 - 48 = 0,即4x^2 = 15E2:-8x^2 + 18 + 48 = 0,即4x^2 = 33练习题2:已知椭圆E的焦点坐标为F(0,2),G(0,-2),长轴长为8。
设直线y = mx + 3与椭圆E相切于点P,求m的值。
解答:设点P(x,y),则点P在直线y = mx + 3上,故有:y = mx + 3又由于点P位于椭圆E上,满足椭圆的方程,即有:x^2/16 + y^2/4 = 1将y = mx + 3代入上式,得到关于x的二次方程:x^2/16 + (mx + 3)^2/4 = 1化简得:(4+m^2)x^2 + 24mx + 144 - 64 = 0上述方程为判别式为0的二次方程,故有:(24m)^2 - 4(4+m^2)(144 - 64) = 0进行整理得到最终的方程:208m^2 - 256 = 0解得m = ±8/√13练习题3:已知椭圆O的焦点坐标为F1(-4,0),F2(4,0),离心率为2/3。
高中椭圆经典练习题1(含答案)
高中椭圆经典练习题【编著】黄勇权一、填空题:1、已知椭圆的焦点为(3,0),长轴是短轴的2倍,则椭圆的方程是 。
2、已知椭圆22221(0)x y a b a b +=>>的短轴为4,且过点( 132 , 233 ),则椭圆的离心率是 。
3、直线y=21x+1于椭圆12y 3x 22=+相交于A 、B 两点。
则线段AB 的长度是 。
4、如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. 则椭圆的离心率 。
5、F1、F2分别为椭圆1by a 2222=+x 的左右两个焦点,过左焦点F1作x 轴垂线交椭圆于P ,若∠21PF F =45°,则椭圆的离心率为 。
6、F1、F2分别为椭圆15y 922=+x 的左右两个焦点,P 为椭圆上的一点, 若∠21PF F =60°,则△21PF F 的面积为 。
7、椭圆16y 822=+x ,点M 不与C 的焦点重合,A 、B 是M 关于焦点对称的点,若另外一点N ,使得N 与点M 连线的中点落在椭圆上,则=+BN AN 。
1by 22=(a >b >0),过点M(4,1)作斜率k= -2的直线,与椭圆相交9、F 为椭圆15y 922=+x 的右焦点,P 为椭圆上的一点,并在第一象限,且PF=2,点M 在FP 上,若2PM=MF,O 为椭圆的中心,那么线段OM 的长度= 。
120y 2=+有一动点P (x ,y ),点M 地坐标为(4,0),有另一动点N ,若MN =1,且0=•PN MN,则丨PN 丨的最大值= 。
二、选择题1、椭圆1by a x 2222=+(a >b >0)的长轴是短轴的3倍,且过(3,2),则椭圆其中一个焦点的坐标是( )A 、(0102,)B 、(010,)C 、(053,)D 、(05,) 2、已知椭圆C :18y a x 222=+(a >b >0)的离心率为31,则椭圆的焦距为( ) A 、6 B 、3 C 、2 D 、1 过点( 3, 2),则椭圆的右准线方程是( ) A 、 x=3 62 B 、 x= 2 63 C 、x= 3 32 D41b y 22=+(a >b >0)的左右两个焦点为F1、F2,过F2的直线交椭圆于M 、N 两点,若MN F 1∠=60°,MN M F =1,则椭圆的离心率为( )1by 22=+(a >b >0)的左焦点到右顶点的距离是8,右焦点到左准线的距离是20,,则椭圆的方程:( )A 、116y 2022=+xB 、112y 1622=+xC 、136y 4022=+xD 、132y 3622=+x7、已知椭圆12m y 1m x 222=++的焦距为4,则椭圆的离心率为( )A 、51 B 、 510 C 、 131 D 、1326213y 2=,直线过P (1,-1)交椭圆于A 、B ,若P 为线段AB 的中点,那么直线AB 的方程为( )A 、 3x-4y-7=0B 、 3x-4y+7=0C 、 3x-4y+1=0D 、3x-4y-1=01by 22=+(a >b >0)与直线y+x=1相交于A 、B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长度是( )10、过P (-2,0)的直线斜率为k1(k1≠0),与椭圆1222=+y x 交于A 、B ,线段AB 的中点为M ,直线OM 的斜率为k2,则k1k2的值为( )A 、 - 12B 、 12C - 13D 、 13三、解答题16y 2=+的左右焦点是F1,F2,P 是第一象限内该椭圆上的点, 且F 1P ⊥F 2P ,则P 的横坐标为 。
椭圆练习题(含答案)
高二年级数学周测试题出题人:XXX 日期2021年11月29日一、单选题(本大题共16小题,共80.0分)1.下列说法中正确的是()A. 已知F1(−4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆B. 已知F1(−4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆C. 平面内到点F1(−4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆D. 平面内到点F1(−4,0),F2(4,0)距离相等的点的轨迹是椭圆【答案】C【解析】【分析】本题考查椭圆的定义,属于基础题.由椭圆的定义,逐一判断求解即可.【解答】解:A中,F1F2=8,则平面内到F1,F2两点的距离之和等于8的点的轨迹是线段,所以A错误;B中,到F1,F2两点的距离之和等于6,小于F1F2,这样的轨迹不存在,所以B错误;C中,点M(5,3)到F1,F2两点的距离之和为,则其轨迹是椭圆,所以C正确;D中,轨迹应是线段F1F2的垂直平分线,所以D错误.故选C.2.设P是椭圆上的动点,则P到该椭圆的两个焦点的距离之和为()A. 2√2B. 2√3C. 2√5D. 4√2【答案】C【解析】【分析】本题考查椭圆的定义,属于基础题.直接利用椭圆方程求出a,再利用椭圆定义求解即可.【解答】解:椭圆x25+y23=1的焦点在x轴,则a=√5,又P是椭圆x25+y23=1上的动点,由椭圆的定义可知,P到该椭圆的两个焦点的距离之和为2a=2√5.故选C.3.若椭圆x225+y24=1上一点P到焦点F1的距离为3,则点P到另一焦点F2的距离为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题主要考查椭圆的定义的应用,属于基础题.根据椭圆的定义知,|PF1|+|PF2|=2a=2×5=10,即可得.【解答】解:根据椭圆的定义知,|PF1|+|PF2|=2a=2×5=10,因为|PF1|=3,所以|PF2|=7.故选B.4.椭圆x2m +y24=1的焦距为2,则m的值等于()A. 5B. 3C. 5或3D. 8【答案】C【解析】【分析】本题主要考查了椭圆的简单性质,是基础题,要求学生对椭圆中长轴和短轴以及焦距的关系要明了.解题时要认真审题,本题焦点位置不确定,分情况求解.【解答】解:由椭圆x2m +y24=1得:2c=2得c=1.当m>4时,m−4=1,∴m=5;当0<m<4时,4−m=1,∴m=3,∴m的值为3或5,故选C.5.椭圆x2+2y2=4的焦点坐标为()A. (√2,0),(−√2,0).B. (0,√2),(0,−√2).C. (√6,0),(−√6,0).D. (0,√6),(0,−√6).【答案】A【解析】【分析】本题考查椭圆的标准方程,属于基础题.将椭圆x2+2y2=4化为x24+y22=1,利用椭圆的标准方程即可得出.【解答】解:由椭圆x2+2y2=4化为x24+y22=1,∴c=√4−2=√2,椭圆的焦点坐标为(±√2,0).故选A.6.若方程x2m +y22−m=1表示椭圆,则实数m的取值范围为()A. (0,1)B. (1,2)C. (0,2)D. (0,1)∪(1,2)【答案】D【解析】【分析】本题主要考查椭圆的标准方程,属于基础题.由条件根据椭圆的标准方程的特征,可求得所对应的m的范围.【解答】解:方程x2m +y22−m=1表示椭圆的充要条件是{m>02−m>0m≠2−m,即m∈(0,1)∪(1,2).故选D.7.已知椭圆的焦点为(−1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的方程为()A. x24+y23=1 B. x24+y2=1 C. y24+x23=1 D. y24+x2=1【答案】A【解析】【分析】本题考查椭圆标准方程的求解,属于基础题.【解答】解:由题意,椭圆的焦点在x轴上,且半焦距c=1,设椭圆的方程为x2a2+y2b2=1(a>b>0),且a2−b2=1,又点P(2,0)在椭圆上,所以4a2=1,解得a2=4,b2=3,所以椭圆方程为x24+y23=1,故选A.8.与椭圆x29+y216=1有相同焦点的椭圆是()A. x27+y214=1 B. x26+y215=1 C. x26+y29=1 D. x212+y218=1【答案】A 【解析】【分析】本题主要考查了椭圆的焦点坐标,关键是分清焦点在x轴或在y轴上.由给出的椭圆方程,确定出a,b的值,再利用c与a,b之间的关系求出c的值,从而解答此题.【解答】解:根据椭圆的标准方程知c2=16−9=7,故焦点坐标为(0,±√7),A、x27+y214=1的焦点坐标为(0,±√7),B、x26+y215=1的焦点坐标为(0,±3),C、x26+y29=1的焦点坐标为(0,±√3),D、x212+y218=1的焦点坐标为(0,±√6).9.椭圆x24+y23=1的左右焦点为F1,F2,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,则△MF1N的周长为()A. 6B. 8C. 10D. 12【答案】D【解析】【分析】本题考查椭圆的定义的应用,考查数形结合以及计算能力,属于基础题.利用已知条件结合椭圆的定义,转化求解即可.【解答】解:椭圆x24+y23=1的左右焦点为F1,F2,可得a=2,c=1,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,如图:则△MF1N的周长为:|MF1|+|MN|+|F1N|=2(|F1P|+|PF2|+|F1F2|)=2(2a+2c)=12.故选:D.10.已知椭圆的一个焦点为F(−√3,0),则这个椭圆的方程是()A. B. C. D.【答案】C【解析】[分析]本题考查椭圆方程的求解,属于基础题。
完整版)椭圆经典练习题两套(带答案)
完整版)椭圆经典练习题两套(带答案)A组基础过关1.选择题1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于多少?A。
2B。
2/3C。
1/2D。
1/3解析:由题意得2a=2b,所以a=b,又a²=b²+c²,所以b=c,所以a=2c,e=c/a=1/2,答案为C。
2.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是什么?A。
(x²/81)+(y²/72)=1B。
(x²/81)+(y²/9)=1C。
(x²/81)+(y²/45)=1D。
(x²/81)+(y²/36)=1解析:依题意知2a=18,所以a=9,2c=3×2a,所以c=3,所以b=a-c=81-9=72,所以椭圆方程为(x²/81)+(y²/72)=1,答案为A。
3.椭圆x²+4y²=1的离心率是多少?A。
2/3B。
2C。
1/2D。
3解析:先将x²+4y²=1化为标准方程,得(x/1)²+(y/(1/2))²=1,所以a=1,b=1/2,所以c=√(a²-b²)=√(3)/2,所以e=c/a=√(3)/2,答案为A。
2.解答题1.设F₁、F₂分别是椭圆4x²+y²=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF₁⊥PF₂,则点P的横坐标为多少?解析:由题意知,点P即为圆x²+y²=3与椭圆4x²+y²=1在第一象限的交点,解方程组x²+y²=3和4x²+y²=1,得点P的横坐标为√(2/3),答案为√(2/3)。
2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为2,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程是什么?解析:依题意设椭圆G的方程为a²x²+b²y²=1(a>b>0),因为椭圆上一点到其两个焦点的距离之和为12,所以2a=12,所以a=6,又因为椭圆的离心率为2,所以c=a/2=3,所以b=√(a²-c²)=3√5,所以椭圆G的方程为36x²+45y²=1,答案为C。
椭圆方程练习题
椭圆方程练习题椭圆方程练习题椭圆方程是数学中的一个重要概念,广泛应用于物理、工程和计算机科学等领域。
它描述了一个平面上所有点的集合,这些点到两个给定点的距离之和等于一个常数。
在本文中,我们将通过一些练习题来加深对椭圆方程的理解和应用。
练习题1:考虑一个椭圆方程:(x/2)^2 + (y/3)^2 = 1。
请回答以下问题:1. 这个椭圆的中心在哪里?2. 椭圆的长轴和短轴分别是多少?3. 椭圆的离心率是多少?解答:1. 这个椭圆的中心在原点(0, 0)。
2. 椭圆的长轴是2,短轴是3。
3. 椭圆的离心率是√(1 - (3/2)^2) ≈ 0.866。
练习题2:给定一个椭圆方程:(x/5)^2 + (y/4)^2 = 1。
请回答以下问题:1. 这个椭圆的中心在哪里?2. 椭圆的长轴和短轴分别是多少?3. 椭圆的离心率是多少?解答:1. 这个椭圆的中心在原点(0, 0)。
2. 椭圆的长轴是5,短轴是4。
3. 椭圆的离心率是√(1 - (4/5)^2) ≈ 0.6。
练习题3:给定一个椭圆方程:(x - 2)^2/4 + (y + 1)^2/9 = 1。
请回答以下问题:1. 这个椭圆的中心在哪里?2. 椭圆的长轴和短轴分别是多少?3. 椭圆的离心率是多少?解答:1. 这个椭圆的中心在点(2, -1)。
2. 椭圆的长轴是6,短轴是4.5。
3. 椭圆的离心率是√(1 - (4.5/6)^2) ≈ 0.75。
通过以上的练习题,我们可以看到椭圆方程的一些特点。
首先,椭圆的中心可以通过方程中的常数项得到。
其次,长轴和短轴的长度可以通过方程中的系数得到。
最后,离心率可以通过长轴和短轴的长度计算得到。
椭圆方程在现实生活中有着广泛的应用。
例如,当我们研究天体运动时,可以使用椭圆方程描述行星绕太阳的轨道。
此外,椭圆方程还可以用于设计汽车、船只和飞机的轨迹,以及计算机图形学中的曲线绘制等。
总结起来,椭圆方程是数学中一个重要的概念,具有广泛的应用价值。
椭圆练习题含解析
椭圆练习题含解析椭圆练习题含解析椭圆是数学中的一个重要概念,也是几何学中的一个重要图形。
在解析几何中,椭圆的性质和应用是我们必须掌握的内容。
本文将通过一些椭圆练习题的解析,帮助读者更好地理解椭圆的特点和应用。
1. 题目:已知椭圆的长轴长度为8,短轴长度为6,求椭圆的离心率。
解析:椭圆的离心率是一个重要的参数,它反映了椭圆的形状。
离心率的计算公式为e = √(1 - b^2/a^2),其中a和b分别是椭圆的长轴和短轴长度。
代入题目中给出的数值,可以得到e = √(1 - 6^2/8^2) = √(1 - 36/64) = √(28/64)= √(7/16)。
2. 题目:已知椭圆的离心率为1/2,焦点在x轴上,且离原点的距离为3,求椭圆的方程。
解析:椭圆的方程一般形式为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的长轴和短轴长度。
由于焦点在x轴上,且离原点的距离为3,可以得到焦点的坐标为(±3, 0)。
根据椭圆的离心率定义,我们有e = c/a = 1/2,其中c是焦点到原点的距离。
代入题目中给出的数值,可以得到c = a/2 = 3,解得a = 6。
将a代入椭圆方程,可以得到6^2/b^2 = 1,解得b = 6/√3。
因此,椭圆的方程为x^2/36 + y^2/(36/3) = 1,即x^2/36 + y^2/12 = 1。
3. 题目:已知椭圆的焦点在y轴上,离原点的距离为5,离心率为2/3,求椭圆的方程。
解析:与上一题类似,我们可以得到焦点的坐标为(0, ±5)。
根据椭圆的离心率定义,我们有e = c/a = 2/3,其中c是焦点到原点的距离。
代入题目中给出的数值,可以得到c = 2a/3 = 5,解得a = 15/2。
将a代入椭圆方程,可以得到x^2/(15/2)^2 + y^2/b^2 = 1。
由于焦点在y轴上,我们可以得到b^2 = a^2 - c^2 = (15/2)^2 - 5^2 = 225/4 - 25 = 200/4 = 50。
椭圆的方程练习题
椭圆的方程练习题椭圆是平面上非常重要的几何图形,许多数学问题和应用都与椭圆有关。
为了帮助大家更好地理解椭圆的方程及其相关性质,本文将为大家提供一些椭圆的方程练习题。
通过解决这些练习题,相信对于椭圆的方程会有更深入的理解。
练习题1:给定椭圆的焦点为F₁(-2,0)和F₂(2,0),离心率为3/4。
求椭圆的方程。
解答:首先,我们可以根据定义得知焦点之间的距离为2ae,离心率e的定义为c/a。
因此,我们可以得到下列方程:2ae = 2 × (3/4)aa = 3/2c/a = 3/4c = (3/4)ac = (3/4) × (3/2)c = 9/8根据椭圆的方程模板(x-h)^2/a^2 + (y-k)^2/b^2 = 1,我们可以得到以下方程:(x-0)^2/(9/2)^2 + (y-0)^2/(√[(9/2)^2 - (9/8)^2])^2 = 1对上式进行化简,我们得到椭圆的方程为:4x^2/9 + 64y^2/81 = 1练习题2:已知椭圆的焦点为F₁(-1,0)和F₂(1,0),离心率为√2/2。
求椭圆的方程。
解答:根据定义可得:2ae = 2 ×(√2/2)a = √2a√2a = 2a = 2/√2a = √2c/a = √2/2c = (√2/2)ac = (√2/2) × (√2)c = 1根据椭圆的方程模板,我们有:(x-0)^2/(√2)^2 + (y-0)^2/b^2 = 1化简上式得到:x^2/2 + y^2/b^2 = 1由于焦点位于y轴上,根据对称性可知焦点关于椭圆对称,因此焦点 F₁' 为 (-1, 0),根据焦点的性质可知 c = 1,因此焦点 F₁'的坐标为 (-1, 0)。
练习题3:已知椭圆的长轴长度为12,焦点到直径的距离为4。
求椭圆的方程。
解答:由于焦点到直径的距离为4,我们可以根据定义得知2ae = 4a,即2e = 4。
高中数学选择性必修一(人教版)《3.1椭圆练习1》
椭圆练习1一.选择题1.已知椭圆x 210-m +y 2m -2=1的长轴在y 轴上,若焦距为4,则m 等于( ) A .4B .5C .7D .82.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .123.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( ) A .13B .12C .22D .2234.(2019·北京高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则( ) A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b 5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( ) A .32 B .22C .13D .12二.填空题 6.若焦点在x 轴上的椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.7.已知F 1,F 2是椭圆x 24+y 22=1的左、右焦点,过F 1的直线交椭圆于A ,B 两点,则该椭圆的离心率是________;△ABF 2的周长是________.8.已知中心是坐标原点的椭圆C 过点⎝⎛⎭⎫1,255,且它的一个焦点为(2,0),则C 的标准方程为________.三.简答题9.已知F1,F2是椭圆x2100+y264=1的两个焦点,P是椭圆上任意一点.(1)若∠F1PF2=π3,求△PF1F2的面积;(2)求|PF1|·|PF2|的最大值.10.设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为1的直角三角形.(1)求该椭圆的离心率和标准方程;(2)点M为该椭圆上任意一点,求|MA|的取值范围.。
椭圆练习及参考答案
椭圆练习及参考答案一、单选题(共 50 分)1.椭圆x 29+y28=1的左右焦点为F1,F2,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,则ΔMF1N的周长为()A.8B.10C.16D.22【详解】因为F1关于P的对称点为M,关于F2的对称点为N,所以PF2为△F1MN的中位线,所以MF1+MN=2PF1+2PF2=2(PF1+PF2)=2×2a=12,F1N=2F1F2=4c=4√9−8=4,所以ΔMF1N的周长为12+4=16.【点睛】本题考查了点与点的对称性,椭圆的定义,属于基础题.2.已知定圆C1:(x+5)2+y2=1,C2:(x−5)2+y2=225,动圆C满足与C1外切且与C2内切,则动圆圆心C的轨迹方程为()A.x 264+y239=1 B.x239+y264=1 C.x2256+y2241=1 D.x2241+y2256=1【详解】解:设动圆圆心C的坐标为(x,y),半径为r,则|CC1|=r+1,|CC2|=15−r,∴|CC1|+|CC2|=r+1+15−r=16>|C1C2|=10,由椭圆的定义知,点C的轨迹是以C1,C2为焦点的椭圆,则2a=16,a=8,c=5,b2=82−52=39,椭圆的方程为:x264+y239=1【点睛】考查圆与圆的位置关系,考查椭圆的定义,考查学生分析解决问题的能力,中档题.3.设F1、F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,ΔF2PF1是底角为30∘的等腰三角形,则E的离心率为()A.12B.23C.34D.45试题分析:如下图所示,ΔF2PF1是底角为30∘的等腰三角形,则有|F1F2|=|PF2|,∠PF1F2=∠F2PF1=30∘所以∠PF2A=60∘,∠F2PA=30∘,所以|PF2|=2|AF2|=2(32a−c)=3a−2c又因为|F1F2|=2c,所以,2c=3a−2c,所以e=ca =34所以答案选C.考点:椭圆的简单几何性质.4.椭圆x 29+y26=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则ΔPF1F2的面积为()A.2√3B.3√2C.√32D.√23【详解】解:∵椭圆x29+y26=1的焦点为F1、F2,点P在椭圆上,|PF1|=4,∴F1(−√3,0),F2(√3,0),|PF2|=6﹣4=2,|F1F2|=2√3,则△PF1F2是直角三角形,∴△PF1F2的面积为S=12×2×2√3=2√3.【点睛】本题考查椭圆的简单性质,三角形的面积的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.5.已知椭圆x 24+y2=1的焦点分别是F1,F2,点M在该椭圆上,如果F1M⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F2M⃑⃑⃑⃑⃑⃑⃑⃑ =0,那么点M到y轴的距离是()A.√2B.2√63C.3√22D.1【详解】设M(x,y),则椭圆x24+y2=1…①,∵椭圆x24+y2=1的焦点分别是F1,F2,∴F1(−√3,0),F2(√3,0)∵F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x −√3,y),F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x +√3,y), F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =0,∴x 2+y 2=3…②由①②得x 2=83,x =±2√63, ∴点M 到y 轴的距离为2√63,故选B .【点睛】本题考查了椭圆的方程及向量运算,属于中档题. 7.已知直线l 与椭圆x 216+y 22=1交于A,B 两点,AB 中点是M (−2,1),则直线l 的斜率为( )A.-4B.-14C.14D.4【详解】设交点坐标A (x 1,y 1),B (x 2,y 2),则{x 1216+y 122=1x 2216+y 222=1,两式相减得,(x 1+x 2)(x 1−x 2)16+(y 1+y 2)(y 1−y 2)2=0 ,故y 1−y2x 1−x 2=−2(x 1+x 2)16(y 1+y 2)=−2×(−2×2)16×(1×2)=14 ,故选C【点睛】本题考查了直线与椭圆的相交弦问题,一般涉及弦的中点和直线斜率问题时,可采用“点差法”,建立中点坐标与斜率的关系求解.8.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B,C 两点,且∠BFC =90°,则该椭圆的离心率为( )A.√63B.2√33C.12D.√22【详解】将y =b2代入椭圆方程得:B (−√32a,b2),C (√32a,b2)又椭圆焦点F (c,0) ∴BF ⃑⃑⃑⃑⃑ =(c +√32a,−b 2),CF ⃑⃑⃑⃑⃑ =(c −√32a,−b 2) ∵∠BFC =90∘∴BF ⃑⃑⃑⃑⃑ ⋅CF⃑⃑⃑⃑⃑ =c 2−34a 2+b 24=c 2−34a 2+a 2−c 24=34c 2−12a 2=0∴e 2=c 2a 2=23 ∴e =√63,故选A 【点睛】本题考查椭圆离心率的求解问题,关键是能够利用垂直关系构造出关于a,c 的齐次方程,从而根据e =ca 求得离心率.9.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为() A.13B.15C.16D.25【详解】如图所示,由椭圆x 225+y 216=1,可得a =5,b =4,c =√a 2−b 2=3,所以F 1(−3,0),F 2(3,0),由椭圆的定义可得|PF 1|+|PF 2|=2a =10,所以|PM |+|PF 1|=|PM |+2a −|PF 2|=10+(|PM |−|PF 2|)≤10+|MF 2|=10+√32+42=15,则|PM |+|PF 1|的最大值15.故选B . 【点睛】本题主要考查了椭圆的定义及标准方程的应用,以及三角形三边大小关系的应用,其中解答中熟练应用椭圆的定义转化是解答的关键,着重考查了推理与运算能力,属于基础题.10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长、短轴长和焦距成等差数列,若点P 为椭圆C 上的任意一点,且P 在第一象限,O 为坐标原点,F (3,0)为椭圆C 的右焦点,则OP ⃑⃑⃑⃑⃑ •PF ⃑⃑⃑⃑⃑ 的取值范围为( ) A.(−16,−10)B.(−10,−394)C.(−16,−394]D.(−∞,−394]【详解】因为椭圆C 的长轴长、短轴长和焦距成等差数列 所以2a +2c =4b ,即a +c =2b F(3,0)为椭圆C 的右焦点,所以c=3 在椭圆中,a 2=c 2+b 2所以{a 2=c 2+b 2a +c =2bc =3 ,解方程组得{a =5b =4c =3所以椭圆方程为x 225+y 216=1设P(m,n) (0<m <5)则m 225+n 216=1,则n 2=16−1625m 2 OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ =(m,n )(3−m,−n ) =3m −m 2−n 2=3m −m 2−(16−1625m 2) =−925m 2+3m −16=−925(m −256)2−394因为0<m <5,所以当m =256时,OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 取得最大值为−394当m 趋近于0时,OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的值趋近于-16 ,所以OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 的取值范围为(-16,-394] 【点睛】本题考查了椭圆性质的综合应用,向量在解析几何中的用法,属于中档题. 二、填空题(共 25 分) 11.已知椭圆x 24+y 23=1的左、右焦点为F 1,F 2,则椭圆的离心率为_____,过F 2且垂直于长轴的直线与椭圆交于点A ,则|F 1A |=_____. 【详解】椭圆x 24+y 23=1,可得a =2,b =√3,则c =1,所以椭圆的离心率为:e =c a =12.过F 2且垂直于长轴的直线与椭圆交于点A ,所以|AF 2|=b 2a=32,由椭圆的定义可知:|F 1A |=2a ﹣|AF 2|=4−32=52.故答案为12;52.【点睛】本题考查椭圆的离心率和椭圆的定义,解题时由椭圆标准方程确定出a,b 再计算出c ,可求离心率,而求椭圆上的点到焦点的距离时,可以与椭圆定义联系起来.12.如果椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是______. 【详解】由椭圆x 2144+y 236=1,可得a =12,由椭圆的定义可知:|PF 1|+|PF 2|=2a =24,因为椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是:24-10=14.故答案为14.【点睛】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.属于基础题. 13.已知椭圆中心在原点,一个焦点为F(−2√3,0),且长轴长是短轴长的2倍.则该椭圆的长轴长为______;其标准方程是________. 【详解】解:已知{a =2b,c =2√3a 2−b 2=c 2∴{b 2=4a 2=162a =8则该椭圆的长轴长为8;其标准方程是x 216+y 24=1.故答案为椭圆的长轴长为8;其标准方程是x 216+y 24=1.【点睛】本题主要考查椭圆的标准方程.属基础题.14.已知P 是椭圆x 210+y 2=1上的一点,F 1,F 2是椭圆的两个焦点,当∠F 1PF 2=2π3时,则ΔPF 1F 2的面积为_____.【详解】设|PF 1|=m ,|PF 2|=n ,则m +n =2a =2√10在ΔPF 1F 2中,由余弦定理得:F 1F 22=m 2+n 2−2mncos∠F 1PF 2即:36=(m +n )2−2mn −2mncos2π3=40−mn ,解得:mn =4∴S ΔPF 1F 2=12mnsin 2π3=√3 【点睛】本题考查焦点三角形面积的求解,关键是能够利用余弦定理构造出关于焦半径之积的方程,属于常考题型.15.已知P 是椭圆E:x 2a 2+y 2b 2=1(a >b >0)上异于点A(−a,0),B(a,0)的一点,E 的离心率为√32,则直线AP 与BP 的斜率之积为__________.【解析】设P (x 0,y 0),有x 02a 2+y 02b 2=1,且c a =√32,得b a =12,k AP k BP =y 0x+a ⋅y 0x−a=y 02x 02−a 2=y 02(1−y 02b 2)a 2−a 2=−14.点睛:本题考查椭圆的几何性质.由离心率,得到a,b,c 的比例关系.本题中由题意可知,题目由点P 的位置决定,所以设P (x 0,y 0),得到斜率关系k AP k BP =y 0x 0+a ⋅y 0x0−a=y 02x02−a 2=y 02(1−y 02b 2)a 2−a 2=−14,为定值.三、解答题(共 34 分)16.已知点A(0,−2),椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√22,F是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.(1)求E的方程;(2)设过点P(0,√3)且斜率为k的直线l与椭圆E交于不同的两M、N,且|MN|=8√27,求k的值.【详解】解:(1)由离心率e=ca =√22,则a=√2c,直线AF的斜率k=0−(−2)c−0=2,则c=1,a=√2,b2=a2﹣c2=1,∴椭圆E的方程为x 22+y2=1;(2)设直线l:y=kx﹣√3,设M(x1,y1),N(x2,y2),则{y=kx−√3x22+y2=1,整理得:(1+2k2)x2﹣4√3kx+4=0,△=(﹣4√3k)2﹣4×4×(1+2k2)>0,即k2>1,∴x1+x2=4√3k1+2k2,x1x2=41+2k2,∴|MN|=√1+k2|x1−x2|=√1+k2√(x1+x2)2−4x1x2=4√(1+k2)(k2−1)1+2k2=8√27,即17k4−32k2−57=0,解得:k2=3或−1917(舍去)∴k=±√3,【点睛】考查直线与椭圆的位置关系,椭圆的求法,弦长的计算,考查转化思想以及计算能力.17.设O为坐标原点,动点M在椭圆E:x 24+y22=1上,过点M作x轴的垂线,垂足为N,点P满足NP⃑⃑⃑⃑⃑⃑ =√2NM⃑⃑⃑⃑⃑⃑⃑ .(1)求点P的轨迹方程;(2)设A(1,0),在x轴上是否存在一定点B,使|BP|=2|AP|总成立?若存在,求出B点坐标;若不存在,说明理由.【详解】(1)设P(x,y),M(x1,y1),则N(x1,0)∵M 在椭圆E 上 ∴x 124+y 122=1…①由NP ⃑⃑⃑⃑⃑⃑ =√2NM ⃑⃑⃑⃑⃑⃑⃑ 知:{x =x 1y =√2y 1 ,即:{x 1=x y 1=√22y ,代入①得:x 2+y 2=4即点P 的轨迹方程为:x 2+y 2=4…② (2)假设存在点B (m,0)满足条件,设P (x,y )由|BP |=2|AP |得:√(x −m )2+y 2=2√(x −1)2+y 2 即:3x 2+3y 2+(2m −8)x =m 2−4此方程与(1)中②表示同一方程,故:{2m −8=0m 2−4=12,解得:m =4∴存在点B (4,0)满足条件【点睛】本题考查椭圆的综合应用问题,涉及到动点轨迹的求解、定点问题的求解等知识;求解定点问题的关键是能够通过假设存在的方式,利用已知中的等量关系建立起关于变量的方程,通过求解方程确定变量的取值,从而得到定点是否存在.18.已知点M (2√33,√33)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且点M 到C 的左、右焦点的距离之和为2√2.(1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点O ,M )上,求OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ 的取值范围.【详解】(1)由条件知43a 2+13b 2=1,2a =2√2,所以a =√2,b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)设点A 、B 的坐标为A (x 1,y 1),B (x 2,y 2),则AB 中点(x 1+x 22,y 1+y 22)在线段OM 上,且k OM =12,∴x 1+x 2=2(y 1+y 2),又x 122+y 12=1,x 222+y 22=1,两式相减得(x 1−x 2)(x 1+x 2)2+(y 1−y 2)(y 1+y 2)=0,易知x 1−x 2≠0,y 1+y 2≠0,所以y 1−y 2x 1−x 2=−x 1+x22(y 1+y 2)=−1,即k AB =−1. 设AB 方程为y =−x +m ,代入x 22+y 2=1并整理得3x 2−4mx +2m 2−2=0.由Δ=8(3−m 2)>0解得m 2<3,又由x 1+x 22=2m 3∈√3),∴0<m <√3.由韦达定理得x 1+x 2=4m 3,x 1x 2=2(m 2−1)3,故OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=x 1x 2+(−x 1+m )(−x 2+m ) =2x 1x 2−m (x 1+x 2)+m 2=4(m 2−1)3−4m 23+m 2 =m 2−43.而0<m <√3,所以OA ⃑⃑⃑⃑⃑ ⋅OB⃑⃑⃑⃑⃑ 的取值范围是(−43,53). 【点睛】本小题主要考查椭圆的定义和标准方程,考查直线和椭圆的位置关系,考查点差法,考查向量数量积的坐标运算,考查运算求解能力,属于中档题.19.已知Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(0,−35)的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.【详解】(1)设Q(x 0,y 0),P (x,y),则x 02+y 02=1,由BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,可得{x 0=x2y 0=−y,代入x 02+y 02=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1; (2)假设存在满足条件的定点,由对称性可知该定点必在y 轴上,设定点为H(0,m), 当直线l 的斜率存在时,设直线l 的方程为y =kx −35,联立{y =kx −35x 24+y 2=1得(1+4k 2)x 2−245kx −6425=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=24k5(1+4k 2),x 1x 2=−6425(1+4k 2),所以y 1+y 2=k(x 1+x 2)−65=−65(1+4k 2),y 1y 2=(kx 1−35)(kx 2−35)=k 2x 1x 2−35k(x 1+x 2)+925=9−100k 225(1+4k 2), 因为HM ⃑⃑⃑⃑⃑⃑⃑ =(x 1,y 1−m),HN ⃑⃑⃑⃑⃑⃑ =(x 2,y 2−m),所以HM ⃑⃑⃑⃑⃑⃑⃑ ⋅HN ⃑⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2−m(y 1+y 2)+m 2=100(m 2−1)k 2+25m 2+30m−5525(1+4k 2)=0,对任意的k 恒成立,所以{100(m 2−1)=025m 2+30m −55=0 ,解得m =1,即定点为H(0,1), 当直线l 的斜率不存在时,以MN 为直径的圆也过点(0,1), 故以MN 为直径的圆过定点(0,1).【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,直线bx −y +√2a =0经过椭圆C 的左焦点. (1)求椭圆C 的标准方程;(2)若直线bx −y +4=0与y 轴交于点P ,A 、B 是椭圆C 上的两个动点,且它们在y 轴的两侧,∠APB的平分线在y 轴上,|PA |≠|PB ||,则直线AB 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【详解】(1)在直线方程bx −y +√2a =0中令y =0,则x =−√2ab ,故c =√2ab ,又c a=√22,故b =2,所以a =4,所以椭圆标准方程为:x 28+y 24=1.(2)因为A 、B 在在y 轴的两侧,故AB 的斜率必存在, 设AB 的方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2), 因为P 在y 轴上且P 在直线2x −y +4=0,故P (0,4). 因为∠APB 的平分线在y 轴上,所以y 1−4x 1+y 2−4x 2=0,而y 1=kx 1+b,y 2=kx 2+b ,代入整理得到:2kx 1x 2+(b −4)(x 1+x 2)=0. 由{y =kx +b x 2+2y 2=8可得(1+2k 2)x 2+4kbx +2b 2−8=0,所以x1+x2=−4kb1+2k2,x1x2=2b2−81+2k2,所以2k×2b 2−81+2k2+(b−4)(−4kb1+2k2)=0,化简得到k(b−1)=0,所以对任意的k,总有b=1,故直线AB过定点(0,1).【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等. 直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x或y的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有x1x2,x1+x2或y1y2,y1+y2,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.21.已知椭圆的离心率为√32,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由试题解析:(1)设椭圆的焦半距为c,则由题设,得{a=2ca=√32,解得{a=2c=√3,………2分所以b2=a2−c2=4−3=1,故所求椭圆C的方程为.…………..4分(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点A(x1,y1),B(x2,y2),将直线l的方程代入,并整理,得.(*)………………………………….6分则,.………………………………………8分因为以线段AB 为直径的圆恰好经过坐标原点O ,所以OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =0,即.又,于是,…………….10分解得k =±√112,………………………………..11分经检验知:此时(*)式的Δ>0,符合题意.所以当k =±√112时,以线段AB 为直径的圆恰好经过坐标原点O .………………12分考点:直线与圆锥曲线的综合问题;椭圆的标准方程22.设曲线E 是焦点在x 轴上的椭圆,两个焦点分别是是F 1,F 2,且|F 1F 2|=2,M 是曲线上的任意一点,且点M 到两个焦点距离之和为4.(1)求E 的标准方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于两点A ,B (A ,B 不是左右顶点),且满足|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB⃑⃑⃑⃑⃑⃑ |,求证:直线l 恒过定点,并求出该定点的坐标. 【详解】(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由题意{2a =42c =2 ,即{a =2c =1,∴b =√a 2−c 2=√3, ∴椭圆E 的方程是x 24+y 23=1.(2)由(1)可知D (−2,0),设A (x 1,y 1),B (x 2,y 2),联立{y =kx +m x 24+y 23=1 ,得(3+4k 2)x 2+8mkx +4(m 2−3)=0,Δ=(8mk)2−4(3+4k 2)(4m 2−12)=16(12k 2−3m 2+9)>0,即3+4k 2−m 2>0,∴x 1+x 2=−8mk 3+4k 2,x 1x 2=4(m 2−3)3+4k 2,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2 =3m 2−12k 23+4k 2,∵|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB ⃑⃑⃑⃑⃑⃑ |,∴DA ⃑⃑⃑⃑⃑ ⊥DB ⃑⃑⃑⃑⃑⃑ ,即DA ⃑⃑⃑⃑⃑ ⋅DB⃑⃑⃑⃑⃑⃑ =0, 即(x 1+2,y 1)⋅(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=0, ∴4m 2−123+4k 2+2×−8mk 3+4k 2+4+3m 2−12k 23+4k 2=0,∴7m 2−16mk +4k 2=0, 解得m 1=2k ,m 2=27k ,且均满足即3+4k 2−m 2>0,当m 1=2k 时,l 的方程为y =kx +2k =k (x +2),直线恒过(−2,0),与已知矛盾;当m 2=27k ,l 的方程为y =kx +27k =k (x +27),直线恒过(−27,0).【点睛】考查求椭圆的标准方程,直线与椭圆相交问题、椭圆中直线过定点问题.对直线与椭圆相交问题,一般设交点为A (x 1,y 1),B (x 2,y 2),由直线方程与椭圆方程联立消元用韦达定理得x 1+x 2,x 1x 2,再把这个结论代入题中另一条件可得参数k,m 的关系,求得定点.23.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 为椭圆上一动点,当ΔMF 1F 2的面积最大时,其内切圆半径为b 3,设过点F 2的直线l 被椭圆C 截得线段RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,P,Q 是椭圆上异于左、右顶点的两点,设直线AP,AQ 的斜率分别为k 1,k 2,若k 1k 2=−14,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.【详解】解:(1)由题意及三角形内切圆的性质可得12⋅2c ⋅b =12(2a +2c)⋅b 3,得c a =12① 将x =c 代入x 2a 2+y 2b 2=1,结合a 2=b 2+c 2②,得y =±b 2a ,所以2b 2a =3③,由①②③得a =2,b =√3故椭圆C 的标准方程为x 24+y 23=1(2)设点P,Q 的坐标分别为(x 1,y 1),(x 2,y 2).①当直线PQ 的斜率不存在时,由题意得P (1,32),Q (1,−32)或P (1,−32),Q (1,32), 直线PQ 的方程为x =1②当直线PQ的斜率存在时,设直线PQ的方程为y=kx+m,联立得{x24+y23=1y=kx+m,消去y得(4k2+3)x2+8kmx+4m2−12=0,由Δ=64k2m2−4(4k2+3)(4m2−12)=48(4k2−m2+3)>0,得4k2+3>m2x1+x2=−8km4k2+3,x1x2=4m2−124k2+3.(1))由k1k2=y1y2(x1+2)(x2+2)=−14,可得4y1y2+(x1+2)(x2+2)=0,得4(kx1+m)(kx2+m)+(x1+2)(x2+2)=0,整理得(4k2+1)x1x2+(4km+2)(x1+x2)+4m2+4=0,(2)由(1)和(2)得m2−km−2k2=0,解得m=2k或m=−k当m=2k时,直线PQ的方程为y=kx+2k,过定点(−2,0),不合题意;当m=−k时,直线PQ的方程为y=kx−k,过定点(1,0),综上直线PQ过定点,定点坐标为(1,0).【点睛】本题考查求椭圆的标准方程,直线与椭圆的综合问题以及直线过定点问题,属于综合题.。
椭圆基础练习题及其完整答案
解析几何——椭圆精炼专题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( ) A . 22 B . 2 C . 2 D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )A .9B .12C .10D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍 10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2C .21 D .-21二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 .15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 . 三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程. 18.椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程. 19.点P 到定点F (2,0)的距离和它到定直线x =8的距离的比为1:2,求点P 的轨迹方程,并指出轨迹是什么图形. 20.中心在原点,一焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程 22.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. (1)求2211ba +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A CDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+y x 17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12.化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。
椭圆练习题职高
椭圆练习题职高椭圆是数学中的一种二次曲线,是由平面上到两定点A、B的距离之和等于常数2a的点P的轨迹。
在职业高中的数学教学中,椭圆是一个重要的概念,学生们需要通过练习题来加深对椭圆的理解与运用。
本文将介绍一些椭圆练习题,帮助职高学生更好地掌握椭圆的相关知识。
练习题1:已知椭圆的长轴长为12,短轴长为8,求其离心率。
解答:离心率(e)定义为离心距(c)与长轴长(2a)的比值,即e=c/2a。
根据给定的信息可知,椭圆的长轴长为12,短轴长为8,因此半焦距(c)为√(a^2-b^2),代入数值计算得c=√(12^2-8^2)=√(144-64)=√80=4√5。
代入公式计算离心率,e=4√5/(2*12)=√5/6。
练习题2:已知椭圆的长轴长为10,离心率为1/2,求其短轴长。
解答:离心率(e)定义为离心距(c)与长轴长(2a)的比值,即e=c/2a。
根据给定的信息可知,椭圆的长轴长为10,离心率为1/2,因此离心距(c)为1/2*10=5。
由离心距和长轴长的关系可得c=√(a^2-b^2),代入已知数值计算其短轴长,√(a^2-b^2)=5,a=10/2=5,代入计算得√(5^2-b^2)=5,解得b=√(5^2-5^2)=√(25-25)=√0=0。
因此,椭圆的短轴长为0。
练习题3:已知一条弦的长度为6,其所在的直径与椭圆的其他直径都不平行于y轴,求椭圆的方程。
解答:设椭圆的中心为原点O,半长轴为a,半短轴为b。
因为给定的弦不平行于y轴,所以直径AC与直径BD的交点不同于O。
根据椭圆的性质,连接OA、OB,分别垂直于x轴,交弦AB于点E、F。
根据题意可知,弦AB的长度为6,因此AE=EF=FB=3。
考虑∠EOA和∠FOB,根据正弦定理可得sin(∠EOA)/3=sin(∠FOB)/b,即sin(∠EOA)*b=sin(∠FOB)*3。
根据sin(∠EOA)=sin(π-∠FOB)的性质,得到sin(∠EOA)*b=sin(∠EOA)*3,即b=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.已知椭圆+=1(a>0)的一个焦点与抛物线y2=8x的焦点重合,则该椭圆的离心率为
;
5.设直线l:x-2y+2=0过椭圆的左焦点F和一个顶点B(如图),
9.椭圆+=1的左焦点为F,直线x=m与椭圆相交于点A,B,当△FAB的周长最大时,△FAB的面积是________.
10.已知椭圆的中心在原点且过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程.
11.已知椭圆G:+=1(a>b>0)的离心率为,右焦点为(2,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
则这个椭圆的离心率e为;
6.“m>n>0”是“方程ny2=1表示焦点在y轴上的椭圆”的条件;
7.已知椭圆中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆方程为;
8.矩形ABCD中,|AB|=4,|BC|=3,则以A,B为焦点,且过C,D两点的椭圆的短轴的长为;
5.设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为。
二、课后作业
1.已知椭圆的两个焦点是F1(-2, 0)、F2(2, 0),且点A(0, 2)在椭圆上,那么这个椭圆的标准方程是________;
2.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为;
8.5椭圆(一)姓名
一、限时训练
1.已知椭圆的方程为 ,则它的长轴长为______,短轴长为______,
焦点坐标为________,离心率为________;
2.经过点 的椭圆的标准方程是_____________;
3.长轴长为20,离心率为 ,焦点在y轴上的椭圆方程为__________;
4.已知椭圆的方程为 ,若P是椭圆上一点,且 则 ;
(1)求椭圆G的方程;
(2)求△PAB的面积.