2017-2018学年最新河南省郑州市中考数学第二次模拟试题及答案解析一
2018年河南中考数学试卷及答案
2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3.00分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3?x4=x7D.2x3﹣x3=15.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D .7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3.00分)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3.00分)计算:|﹣5|﹣=.12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3.00分)不等式组的最小整数解是.14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3.00分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC 的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10.00分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3.00分)﹣的相反数是()A.﹣ B.C.﹣ D.【解答】解:﹣的相反数是:.故选:B.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【解答】解:214.7亿,用科学记数法表示为 2.147×1010,故选:C.3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.4.(3.00分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3?x4=x7D.2x3﹣x3=1【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3?x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.5.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D .【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.8.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.9.(3.00分)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【解答】解:∵?AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A .10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3.00分)计算:|﹣5|﹣=2.【解答】解:原式=5﹣3=2.故答案为:2.12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.13.(3.00分)不等式组的最小整数解是﹣2.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.15.(3.00分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC 的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;三、计算题(本大题共8题,共75分,请认真读题)16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.【解答】解:当x=+1时,原式=?=1﹣x=﹣17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF ,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm .21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.22.(10.00分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM 的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).。
河南省郑州市中考数学二模试卷及答案(word解析版)
河南省郑州市中考数学二模试卷参考答案与试题解析一、填空题:(本大题共10小题,每小题2分,计20分)1.(2分)(•常德)3的倒数是.考点:倒数.分析:根据倒数的定义可知.解答:解:3的倒数是.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2分)﹣y的系数是﹣,次数是3.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义,数字因式﹣为单项式的系数,字母指数和为2+1=3,故系数是3.点评:单项式中的数字因数叫做这个单项式的系数.单项式中,所有字母的指数和叫做这个单项式的次数.3.(2分)(•盐城)因式分解:x2﹣4y2=(x+2y)(x﹣2y).考点:因式分解-运用公式法.分析:直接运用平方差公式进行因式分解.解答:解:x2﹣4y2=(x+2y)(x﹣2y).点评:本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2﹣b2=(a+b)(a ﹣b).4.(2分)(•邵阳)函数y=中,自变量x的取值范围是x≥1.考点:函数自变量的取值范围;二次根式有意义的条件.专题:计算题.分析:根据二次根式的意义,有x﹣1≥0,解不等式即可.解答:解:根据二次根式的意义,有x﹣1≥0,解可x≥1,故自变量x的取值范围是x≥1.点评:本题考查了二次根式的意义,只需保证被开方数大于等于0即可.5.(2分)(•盐城)已知△ABC∽△A′B′C′,它们的相似比为2:3,那么它们的周长比是2:3.考点:相似三角形的性质.分析:根据相似三角形性质,相似三角形周长的比等于相似比可求.解答:解:∵△ABC∽△A′B′C′,它们的相似比为2:3,∴它们的周长比是2:3.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.(2分)(•盐城)在正比例函数y=3x中,y随x的增大而增大(填“增大”或“减小”).考点:正比例函数的性质.分析:根据正比例函数的性质可知.解答:解:因为正比例函数y=3x中,k=3>0,故此函数为增函数,即y随x的增大而增大.故填:增大.点评:本题考查的是正比例函数的性质,解答此题的关键是要熟知以下知识:正比例函数y=kx中:当k>0时,图象位于一、三象限,y随x的增大而增大;当k<0时,图象位于二、四象限,y随x的增大而减小.7.(2分)(•盐城)若直角三角形斜边长为6,则这个直角三角形斜边上的中线长为3.考点:直角三角形斜边上的中线.分析:此题考查了直角三角形的性质,根据直角三角形的性质直接求解.解答:解:∵直角三角形斜边长为6,∴这个直角三角形斜边上的中线长为3.点评:解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.8.(2分)(•盐城)请写出你熟悉的两个无理数或.考点:无理数.专题:开放型.分析:由于开方开不尽的数或无限不循环小数是无理数,根据此定义即可解答.解答:解:例如,.(答案不唯一).点评:此题主要考查了无理数的定义,解答此题的关键是熟知无理数的定义:无理数为无限不循环小数.9.(2分)(•郴州)已知⊙O的半径是3,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是相切.考点:直线与圆的位置关系.专题:应用题;压轴题.分析:圆心到直线的距离大于圆心距,直线与圆相离;小于圆心距,直线与圆相交;等于圆心距,直线与圆相切.解答:解:∵圆心到直线的距离=圆的半径,∴直线与圆的位置关系为相切.点评:此题考查的是圆与直线的位置关系.10.(2分)(•盐城)如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=135度.考点:圆周角定理;圆内接四边形的性质.专题:压轴题.分析:根据圆周角定理可求出∠A的度数,由于圆内接四边形的对角互补,可求出∠BCD的度数.解答:解:根据圆周角定理,得:∠A=∠BOD=45°,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=180°﹣45°=135°.点评:本题综合考查了圆内接四边形的性质和圆周角定理的应用.二.选择题(本大题共8小题,每小题3分,计24分)下列各题给出的四个选项中只有一个是正确的,请将正确答案的字母代号填写在下面的表格内.11.(3分)(•盐城)下列各式正确的是()A.a5+3a5=4a5B.(﹣ab)2=﹣a2b2C.D.m4•m2=m8考点:二次根式的性质与化简;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方、二次根式的化简的法则进行判断.解答:解:A、合并同类项,正确;B、(﹣ab)2=a2b2,错误;C、=2,错误;D、m4•m2=m6,错误.故选A.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法、幂的乘方与积的乘方、二次根式的化简,需熟练掌握且区分清楚,才不容易出错;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.12.(3分)(•盐城)已知a:b=2:3,那么(a+b):b等于()A.2:5 B.5:2 C.5:3 D.3:5考点:分式的基本性质.专题:计算题.分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.根据此性质作答.解答:解:由a:b=2:3,可得出3a=2b,让等式两边都加上3b,得:3(a+b)=5b,因此,(a+b):b=5:3.故选C.点评:在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.13.(3分)(•盐城)解分式方程时,可设=y,则原方程可化为整式方程是()A.y2+2y+1=0 B.y2+2y﹣1=0 C.y2﹣2y+1=0 D.y2﹣2y﹣1=0考点:换元法解分式方程.专题:换元法.分析:观察方程的两个分式具备的关系,设=y ,则原方程另一个分式为.可用换元法转化为关于y的方程.去分母即可.解答:解:把=y代入原方程得:y+=2,方程两边同乘以y整理得:y2﹣2y+1=0.故选C.点评:换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.14.(3分)(•盐城)下列命题中假命题是()A.平行四边形的对角线互相平分B.矩形的对角线相等C.等腰梯形的对角线相等D.菱形的对角线相等且互相平分考点:命题与定理.分析:平行四边形的对角线互相平分;矩形的对角线相等;等腰梯形的对角线相等;菱形的对角线垂直且互相平分.解答:解:根据特殊四边形的性质,知:A、B、C正确;D、菱形的对角线不相等,故错误.故选D.点评:本题考查命题的真假性,是易错题.注意平行四边形和特殊平行四边形对角线特性的掌握.15.(3分)(•盐城)某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是()A.B.C.D.考点:正方形的性质.专题:压轴题.分析:根据正方形的对称性,逐个进行判断,可知A、C、D中的花坛面积均是园地面积的一半,而D则不是.解答:解:根据正方形的对称性可知:A、C、D 中的花坛面积都是,而B中的面积是1﹣﹣=.故选B.点评:主要考查了正方形的对称性和基本性质.正方形性质:边:两组对边分别平行,四条边都相等,相邻边互相垂直内角:四个角都是90°,对角线:对角线互相垂直,对角线相等且互相平分,每条对角线平分一组对角.16.(3分)(•盐城)若直线y=3x+m经过第一,三,四象限,则抛物线y=(x﹣m)2+1的顶点必在()A.第一象限B.第二象限C.第三象限D.第四象限考点:二次函数的性质;一次函数的性质.分析:由直线y=3x+m经过第一,三,四象限可判断m的符号,再由抛物线y=(x﹣m)2+1求顶点坐标,判断象限.解答:解:∵直线y=3x+m经过第一,三,四象限,∴m<0,∴抛物线y=(x﹣m)2+1的顶点(m,1)必在第二象限.故选B.点评:要求掌握直线性质和抛物线顶点式的运用.17.(3分)(•盐城)一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的()A.平均数是2 B.众数是3 C.中位数是1.5 D.方差是1.25考点:方差;算术平均数;中位数;众数.专题:应用题;压轴题.分析:根据平均数、众数、中位数、方差的概念计算后,再判断各选项的正误.解答:解:由题意可知:这十天次品的平均数为=1.5,故A错误;出现次数最多的数就叫这组数据的众数,则这组数据的众数是2,故B错误;总数个数是偶数的,按从小到大的顺序,取中间的那两个数的平均数便为中位数,则中位数为,故C错误;一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,则方差=1.25,故D正确.故选D.点评:正确理解中位数、众数及方差的概念,是解决本题的关键.18.(3分)(•盐城)如图是一个圆柱形木块,四边形ABB1A1是经边它的轴的剖面,设四边形ABB1A1的面积为S,圆柱的侧面积为S侧,则S与S侧的关系是()A.S=S侧B.S=C.D.不能确定考点:圆柱的计算.专题:压轴题.分析:侧面积=底面周长×高,四边形的面积=底面直径×高,算出后比较即可.解答:解:设底面直径为d,高为h,则四边形ABB1A1的面积为S=dh.圆柱的侧面积为S侧=πdh,所以.故选C.点评:本题的关键是设未知数,但又要把未知数当已知数来求.三.解答题(本大题共4小题,计29分)19.(6分)(•盐城)计算:(﹣(2﹣π)0+|﹣|﹣.考点:实数的运算.分析:本题涉及零指数幂、负整数指数幂、绝对值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣1+﹣1=0.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(7分)(•盐城)如图,甲、乙两楼相距36m,甲楼高度为30m,自甲楼楼顶看乙楼楼顶的仰角为30°,问乙楼有多高(结果保留根式).考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:分析题意可得:过点A作AE⊥CD,交CD于点E;可构造Rt△ACE,利用已知条件解可得:CE=12;而乙楼高CD=AB+CE;代入可得答案.解答:解:过点A作AE⊥CD,交CD于点E;在Rt△ACE中,AE=36,∠CAE=30°,故CE=36×tan30°=12,CD=AB+CE=30+12答:乙楼高为(30+12)m.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.(8分)(•盐城)分别解不等式5x﹣2<3(x+1)和,再根据它们的解集写出x与y的大小关系.考点:解一元一次不等式.专题:计算题.分析:解不等式5x﹣2<3(x+1),去括号移项得2x<5,得x<.解不等式去括号,移项得2y>8,解得:y>4,然后比较x与y的大小.解答:解:不等式5x﹣2<3(x+1)的解集为,不等式的解集为y>4,∴y>x.点评:先利用不等式的性质,分别求出两个不等式的解集,然后比较大小.22.(8分)(•盐城)如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD,过点E作EF∥AB交AD于F,求证:(1)AF=BE;(2)AF2=AE•EC.考点:相似三角形的判定与性质;平行线的性质;直角梯形.专题:证明题.分析:(1)根据平行构造相似三角形,利用相似三角形的性质解答;(2)因为AB⊥BC,所以△ABC为直角三角形,又因为AC⊥BD,所以可知△BCE∽△ABE,利用相似三角形的性质即可解答.解答:证明:(1)∵EF∥AB,∴△DFE∽△DAB.∴=.又∵DA=DB,∴DF=DE.∴DA﹣DF=DB﹣DE,即AF=BE.(2)∵AB⊥BC,∴△ABC为直角三角形.又∵AC⊥BD,∴△BCE∽△ABE.∴=,即EB2=AE•EC.又∵AF=EB,∴AF2=AE•EC.点评:解答此题的关键是根据平行和直角三角形的性质找出图中的相似三角形,利用相似三角形的性质解答此题.要知道,EB2=AE•EC属于射影定理.四.解答题(本大题共8小题,计77分)23.(9分)(•盐城)已知关于x的一元次方程x2﹣(m+2)x+m2﹣2=0(1)当m为何值时,这个方程有两个相等的实数根;(2)如果这个方程的两个实数根x1,x2满足x12+x22=18,求m的值.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.分析:(1)由于△=0时,一元二次方程有2个相等的实数根,故建立关于m的方程,求得m的值;(2)把等号左边进行整理,根据x12+x22=(x1+x2)2﹣2x1x2即可得到关于m的方程,从而求解.解答:解:(1)根据题意得:△=[﹣(m+2)]2﹣4×(m2﹣2)=0解得:m=﹣3;(2)∵x12+x22=18∴(x1+x2)2﹣2x1x2=18即(m+2)2﹣2×(m2﹣2)=18解得m=2或m=﹣10根据题意可得m≥﹣3才有实数根∴m=2.点评:解决本题的关键是把所求的代数式整理成与根与系数有关的形式.注意所求值的取舍.24.(9分)(•盐城)某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?考点:反比例函数的应用.专题:应用题.分析:(1)设p与V的函数的解析式为,利用待定系数法求函数解析式即可;(2)把v=0.8代入可得p=120;(3)由p=144时,v=,所以可知当气球内的气压>144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.解答:解:(1)设p与V的函数的解析式为,把点A(1.5,64)代入,解得k=96.∴这个函数的解析式为;(2)把v=0.8代入,p=120,当气球的体积为0.8立方米时,气球内的气压是120千帕;(3)由p=144时,v=,∴p≤144时,v≥,当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.点评:主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.25.(8分)(•盐城)如图,AB是⊙O的直径,DF切⊙O于点D,BF⊥DF于F,过点A作AC∥BF交BD的延长线于点C.(1)求证:∠ABC=∠C;(2)设CA的延长线交⊙O于E,BF交⊙O于G,若的度数等于60°,试简要说明点D和点E关于直线AB对称的理由.考点:切线的性质.专题:证明题.分析:(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,=60°,可求证===60°由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.解答:证明:(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,∵BF∥OD,∴∠OBG=∠AOD,=.∵=60°,∴===60°.∴OD∥BF∥AC.∴∠ABC=∠C=∠E=30°,∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.点评:本题考查的是切线的性质及圆周角定理,比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.26.(9分)(•盐城)如图,给出了我国从1998年~年每年教育经费投入的情况.(1)由图可见,1998年~年这五年内,我国教育经费投入呈现出逐年增长趋势;(2)根据图中所给数据,求我国1998年~年教育经费的年平均数;(3)如果我国的教育经费从年的5480亿元增加到年的7891亿元,那么这两年的教育经费平均增长率为多少?(结果精确到0.01)考点:算术平均数;一元二次方程的应用.分析:(1)从图中可以我国从1998年~年每年教育经费投入一年比一年高,所以呈现逐年增长的趋势;(2)我国从1998年~年每年教育经费投入分别是2949亿元,3349亿元,3849亿元,4638亿元,5480亿元,所以教育经费的年平均数为(2949+3349+3849+4638+5480)÷5=4053亿元;(3)第三问考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.解答:解:(1)根据图表可知我国教育经费投入呈现出趋势逐年增长趋势;(2)根据图表我国教育经费平均数=(2949+3349+3849+4638+5480)÷5=4053亿元;(3)设这两年的教育经费的平均增长率为x,则5480(1+x)2=7891解得x1≈0.20 x2≈﹣2.2(舍去)(结果精确到0.01)∴x=0.20=20%.故答案为(1)逐年增长;(2)我国1998年~年教育经费的年平均数为4053亿元;(3)教育经费平均增长率为20%.点评:本题主要考查的知识点:(1)平均数的求法;(2)涉及一元二次方程的平均变化率的求解.27.(10分)(•盐城)已知y=ax2+bx+c经过点(2,1)、(﹣1,﹣8)、(0,﹣3).(1)求这个抛物线的解析式;(2)画出该抛物线的草图、并标出图象与x轴交点的横坐标;(3)观察你所画的抛物线的草图,写出x在什么范围内取值时,函数值y<0?考点:待定系数法求二次函数解析式;二次函数的图象.分析:(1)直接利用图中的三个点的坐标代入解析式用待定系数法求解析式;(2)令y=0,解关于x的一元二次方程﹣x2+4x﹣3=0,其解即为图象与x轴交点的横坐标;(3)依据图象可知,当图象在x轴上方时,y>0,在x轴下方时,y<0,在x轴上时,y=0.解答:解:(1)把点(2,1),(﹣1,﹣8),(0,﹣3)代入可得解得a=﹣1,b=4,c=﹣3故y=﹣x2+4x﹣3;(2)当y=0时,﹣x2+4x﹣3=0解得x=1或x=3故图象与x轴交点的横坐标是1和3;(3)当x<1或x>3时,函数值y<0.点评:主要考查了用待定系数法求二次函数的解析式和二次函数及其图象的性质.28.(11分)(•盐城)银河电器销售公司通过对某品牌空调市场销售情况的调查研究,预测从年1月份开始的6个月内,其前n个月的销售总量y(单位:百台)与销售时间n(单位:月)近似满足函数关系式y=(n2+3n)(1≤n≤6,n是整数).(1)根据题中信息填写下表:(百台)第一个月的销售量前两个月的销售量(百台)第二个月的销售量(百台)前三个月的销售量(百台)第三个月的销售量(百台)(2)试求该公司第n个月的空调销售台数W(单位:百台)关于月份的函数关系式.考点:二次函数的应用.专题:应用题.分析:(1)先将月份1代入函数式中,求出1月份的销售量,然后将月份2代入函数式中求出1、2月份的销售量的和,然后减去1月份的销售量,就求出了2月份的销售量,然后按照此办法依次求出前3个月的销售总量和第3个月的销售量;(2)根据(1)得出的1、2、3月份的单月销售量,观察它们大致符合什么函数,然后设出函数通式,用待定系数法求出函数的解析式即可.解答:解:(1)第一个月的销售量 1(百台)前两个月的销售量2.5(百台)第二个月的销售量1.5 (百台)前三个月的销售量4.5 (百台)第三个月的销售量2(百台)(2)可设:W=kn+b,根据(1)中的填表信息可得:,解得:即该函数关系式为:W=(1≤n≤6,n是整数).点评:本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式.根据二次函数准确填表是解题的关键,要注意给出的二次函数中y代表的是前n个月的销售总量,而不是第n个月的销售量.29.(10分)(•盐城)如图1,E为线段AB上一点,AB=4BE,以AE,BE为直径在AB的同侧作半圆,圆心分别为O1,O2,AC、BD分别是两半圆的切线,C、D为切点.(1)求证:AC=BD;(2)现将半圆O2沿着线段BA向点A平移,如图2,此时半圆O2的直径E′B′在线段AB上,AC′是半圆O2的切线,C′是切点,当为何值时,以A、C′、O2为顶点的三角形与△BDO1相似?考点:切线的性质;勾股定理;相似三角形的判定.专题:综合题;压轴题;分类讨论.分析:(1)如果设⊙O1的半径为R,⊙O2的半径为r,那么根据AB=4BE,可知R=3r.连接O1D,O2C,那么O1B=5r,AO2=7r,可在直角△BO1D中求出BD的长,同理求出AC的长,即可得出AC,BD的比例关系;(2)本题要分两种情况进行讨论:①当∠CAO2=∠B时,O2C,O1D和AO2,BO1分别对应成比例.设AE′=kAB,那么可用k,r表示出AE′的长,然后代入比例关系式中即可求出k的值.②当∠CAO2=∠DO1B时,AO2,BO1和O2C,BD对应成比例,然后按①的方法即可求出此时k的值.解答:(1)证明:连接O1D,O2C,设⊙O1的半径为R,⊙O2的半径为r,则R=3r在直角三角形BO1D中∵BO1=5r,O1D=3r∴BD=4r,同理可求得AC=4r∴AC=BD;(2)解:设AE′=kAB,因此AE′=8kr①当∠C′AO2=∠B时,,即∴k=,②当∠C′AO2=∠BO1D时,,即∴k=,或时,以A、C′、O2为顶点的三角形与△BDO1相似.点评:本题主要考查了勾股定理,相似三角形的判定和性质等知识点,要注意(2)中要按不同的相似三角形对应的成比例线段是不同的,因此要分类讨论.不要漏解.30.(11分)(•大庆)如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.考点:旋转的性质;正方形的性质.专题:压轴题.分析:(1)根据图形的关系,可得AF的长,根据三角形面积公式,可得△DBF的面积;(2)连接AF,由题意易知AF∥BD;△DBF与△ABD同底等高,故面积相等;(3)分析可得:当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值;分两种情况讨论可得其最大最小值.解答:解:(1)∵点F在AD上,∴AF2=a2+a2,即AF=a,∴DF=b﹣a,∴S△DBF=DF×AB=×(b﹣a)×b=b2﹣ab;(2)连接DF,AF,由题意易知AF∥BD,∴四边形AFDB是梯形,∴△DBF与△ABD等高同底,即BD为两三角形的底,由AF∥BD,得到平行线间的距离相等,即高相等,∴S△DBF=S△ABD=b2;(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆,第一种情况:当b>2a时,存在最大值及最小值,因为△BFD的边BD=b,故当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值.如图②所示DF⊥BD时,S△BFD的最大值=S△BFD=b•(+a)=,S△BFD的最小值=S△BFD=b•(﹣a)=,第二种情况:当b=2a时,存在最大值,不存在最小值.∴S△BFD的最大值=.(如果答案为4a2或b2也可).点评:解答本题要充分利用正方形的特殊性质,注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.。
河南省中考模拟数学考试试卷(三)
河南省中考模拟数学考试试卷(三)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设a是有理数,则下列各式的值一定为正数的是()A . a2B . |a|C . a+1D . a2+12. (2分)(2017·河北) 把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A . 1B . ﹣2C . 0.813D . 8.133. (2分) (2016七上·仙游期末) 从不同方向观察如图所示的几何体,不可能看到的是()A .B .C .D .4. (2分) (2019八下·孝南月考) 下列计算:①()2=2;② =2;③(–2 )2=12;④( + )(–)=–1.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·宜兴模拟) 函数y= 中,自变量x的取值范围是()A . x≥﹣5B . x≤﹣5C . x≥5D . x≤56. (2分) (2016九下·吉安期中) 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a2B . a2C . a2D . a27. (2分) (2020八下·武城期末) 如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A . 2B .C .D . 18. (2分)在盒子里放有三张分别写有整式a﹣3、a+1、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .9. (2分) (2021七上·肇源期末) 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A . a2﹣b2=(a+b)(a﹣b)B . a(a﹣b)=a2﹣abC . (a﹣b)2=a2﹣2ab+b2D . a(a+b)=a2+ab10. (2分)如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,则∠ACB和∠AEB之和为()A . 45°B . 90°C . 60°D . 75°11. (2分) (2018九上·秦淮月考) 如图,AC⊥BC,AC=BC=4,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB.过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是()A .B .C .D .12. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共4题;共4分)13. (1分)分解因式:2a2-8b2=________.14. (1分) (2019八上·垣曲期中) 若a,b为两个连续的正整数,且,则 ________.15. (1分)观察下列各等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,则1+3+5+7+…+2017=________.16. (1分) (2016九上·南岗期中) 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m,当撬动石头的动力F至少需要400N时,则动力臂l的最大值为________ m.三、解答题 (共6题;共60分)17. (5分)(2020·陕西模拟) 计算: .18. (5分)不等式组的解集是2<x<m+7,求m的最大负整数解.19. (10分) (2017八上·金堂期末) 2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:(1) n =________,小明调查了________户居民,并补全图1________;(2)每月每户用水量的中位数落在________之间,众数落在________之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20. (10分) (2019九上·偃师期中) 如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3 米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)求小明从点A到点D的过程中,他上升的高度;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)21. (10分) (2020八上·红桥期末) 某茶店用4000元购进了A种茶叶若干盒,用8400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1) A,B两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?22. (20分)(2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC 重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共60分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:。
2018年河南省郑州市中考数学试卷+答案
2018年河南省中考数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.−25的相反数是()A.−25B.25C.−52D.522.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿元”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.下列运算正确的是()A.(-x2)3=-x5B.x2+x3=x5C.x3·x4=x7D.2x3-x3=15.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%,关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是06.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.=5 +45, =7 +3B.=5 −45, =7 +3C.=5 +45, =7 −3D. =5 −45, =7 −37.下列一元二次方程中,有两个不相等实数根的是()A.x 2+6x +9=0B.x 2=xC.x 2+3=2xD.(x -1)2+1=08.现有4张卡片,其中3张卡片正面上的图案是“ ”,1张卡片正面上的图案是“♣”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面图案相同的概率是()A.169 B.43 C.83 D.219.如图,已知Y AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC于点G .则点G 的坐标为()-2,2)10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运到点B .图2是点F 运动时,△FBC 的面积y (cm2)随时间x (s)变化的关系图象,则a 的值为()B.2C.25D.2二、填空题(每小题3分,共15分)11.计算:-5=_______.12.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC 的度数为_______.13.不等式组x 524x 3+>⎧⎨-≥⎩,的最小整数解是_______.14.如图,在△ABC 中,∠ACB =90°,AC =BC =2.将△ABC 绕AC 的中点D 逆时针旋转90°得到△A B C ''',其中点B 的运动路径为¼'BB ,则图中阴影部分的面积为______.15.如图,∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△'A BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交'A B 所在直线于点F ,连接'A E .当△'A EF 为直角三角形时,AB 的长为________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(+ − )÷2−,其中x =2+ .17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E 的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y =(k >0)的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ;②矩形的面积等于k 的值.治理杨絮——您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他19.(9分)如图,AB是圆0的直径,DO垂直于点O,连接DA交圆O于点C,过点C作圆O 的切线交DO于点E,连接BC交DO于点F。
2023年河南省郑州市中考数学一模试卷(含解析)
2023年河南省郑州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km记做“+2km”,那么向西走1km应记做( )A. ―2kmB. ―1kmC. 1kmD. +2km2. 星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度.1纳=1×10―9秒,那么20纳秒用科学记数法表示为( )A. 2×10―8秒B. 2×10―9秒C. 20×10―9秒D. 2×10―10秒3. 如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后( )A. 主视图改变,俯视图改变B. 主视图不变,俯视图改变C. 主视图不变,俯视图不变D. 主视图改变,俯视图不变4. 把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为( )A. 15°B. 20°C. 25°D. 30°5. 下列调查中,最适宜采用普查的是( )A. 调查郑州市中学生每天做作业的时间B. 调查某批次新能源汽车的电池使用寿命C. 调查全市各大超市蔬菜农药残留量D. 调查运载火箭的零部件的质量6. 如图,五线谱由五条等距离的平行横线组成,同一条直线上的三个点A,B,C都在横线上,若线段AB=6,则线段BC的长是( )A. 4B. 3C. 2D. 17. 若关于x的方程x2+ax+1=0有两个相等的实数根,则a值可以是( )A. 2B. 1C. 0D. ―18.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为( )A. 6B. 9C. 12D. 159. 已知点(―3,y1)、(―1,y2)、(1,y3)在下列某一函数图象上,且y3<y1<y2,那么这个函数是( )A. y=3xB. y=3x2C. y=3x D. y=―3x10. 如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )A. m(cosα―sinα)B. m(sinα―cosα)C. m(cosα―tanα)D. msinα―mcosα二、填空题(本大题共5小题,共15.0分)11. 数学具有广泛的应用性.请写出一个将基本事实“两点之间,线段最短”应用于生活的例子: .12. 不等式组―2x <6,x ―2<0的解集是______.13. 甲乙两人参加社会实践活动,随机选择“做社区志愿者”和“做交通引导员”两项中的一项,那么两人同时选择“做社区志愿者”的概率是______.14.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,m),C(3,m +6),反比例函数y =k x(x >0)的图象同时经过点B 与点D ,则k的值为______.15. 如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =2,BE =5.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为 .三、解答题(本大题共8小题,共75.0分。
2022年人教版中考第二次模拟检测《数学卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共8小题)1. 如图是圆规示意图,张开的两脚所形成的角大约是()A. 90°B. 60°C. 45°D. 30°2. 实数m,n在数轴上对应点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是( )A. 点AB. 点BC. 点CD. 点D3. 如果a﹣b=3,那么代数式2b aaa a b⎛⎫-⋅⎪+⎝⎭的值为( )A. ﹣3B. 3C. 3D. 234. 若正多边形的内角和是540︒,则该正多边形的一个外角为( )A. 45︒B. 60︒C. 72︒D. 90︒5. 今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.根据统计图提供的信息,下列推断合理的是( ) A. 2010﹣2018年,北京市毎万人发明专利授权数逐年增长B. 2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件C. 2010年申请后得到授权的比例最低D. 2018年申请后得到授权的比例最高6. 弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示: 弹簧总长L (cm ) 16 17 18 19 20 重物重量x (kg )0.51.01.52.02.5当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( ) A. 22.5B. 25C. 27.5D. 307. 如图,抛物线2815y x x =-+与轴交于、两点,对称轴与轴交于点,点(0,2)D -,点(0,6)E -,点是平面内一动点,且满足90DPE ∠=︒,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( ).A. 3B.412C.72D. 58. 如图,点A ,B ,C 是⊙O 上的三个点,点D 在BC 的延长线上.有如下四个结论:①在∠ABC 所对的弧上存在一点E ,使得∠BCE =∠DCE ;②在∠ABC 所对的弧上存在一点E ,使得∠BAE =∠AEC ;③在∠ABC 所对的弧上存在一点E ,使得EO 平分∠AEC ;④在∠ABC 所对的弧上任意取一点E (不与点A ,C 重合) ,∠DCE=∠ABO +∠AEO 均成立.上述结论中,所有..正确结论的序号是( )A. ①②③B. ①③④C. ②④D. ①②③④二.填空题(共8小题)9. 质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为10. 用一组,,的值说明命题”若ac bc =,则a b =“是错误的,这组值可以是a =__________,b =__________,c =__________.11. 如图,某人从点A 出发,前进5m 后向右转60°,再前进5m 后又向右转60°,这样一直走下去,当他第一次回到出发点A 时,共走了_____m .12. 如图所示的网格是正方形网格,△ABC 是_____三角形.(填”锐角”“直角”或”钝角”)13. 如图,过⊙O 外一点P 作⊙O 的两条切线P A ,PB ,切点分别为A ,B ,作直线BC ,连接AB ,AC ,若∠P =80°,则∠C =_____°.14. 如图,在矩形ABCD 中,过点B 作对角线AC 的垂线,交AD 于点E ,若AB =2,BC =4,则AE =_____.15. 2019年2月,全球首个5G 火车站在上海虹桥火车站启动.虹桥火车站中5G 网络峰值速率为4G 网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G 网络比4G 网络快720秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 千兆数据,依题意,可列方程为___.16. ▱ABCD 中,对角线AC 、BD 相交于点O ,E 是边AB 上的一个动点(不与A 、B 重合),连接EO 并延长,交CD 于点F ,连接AF ,CE ,下列四个结论中: ①对于动点E ,四边形AECF 始终是平行四边形;②若∠ABC <90°,则至少存在一个点E ,使得四边形AECF 是矩形; ③若AB >AD ,则至少存在一个点E ,使得四边形AECF 菱形; ④若∠BAC =45°,则至少存在一个点E ,使得四边形AECF 是正方形. 以上所有正确说法的序号是_____.三.解答题(共12小题)17.计算:052sin 60(2019)π-︒--18. 解不等式组: 4(21)31385x x x x -<+⎧⎪-⎨<⎪⎩19. 已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线? 小明的做法是: (1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,; (3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图: ∵PC a ∥∴1PDA ∠=∠( )∵以圆心,任意长为半径画圆弧,分别交直线,PC 于点, ∴PA PD =∴PAB ∠=∠ ∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( ) 根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是: .20. 已知关于的方程mx2+(2m-1)x+m-1=0(m≠0) .(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数的值.21. 如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.22. 在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线ykx =与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若112S<<,结合函数图象,直接写出k的取值范围.23. 如图,AB是O的直径,CB与O相切于点B.点D在O上,且BC BD=,连接CD交O于点E.过点E作EF⊥AB于点H,交BD于点M,交O于点F.(1)求证:∠MED=∠MDE.(2)连接BE,若3ME=,MB=2.求BE的长.24. 为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100)b.乙部门成绩如下:40 52 70 70 71 73 77 78 80 8182 82 82 82 83 83 83 86 91 94c.甲、乙两部门成绩的平均数、方差、中位数如下:平均数方差中位数甲79.6 36.84 78.5乙77 147.2 md.近五年该单位参赛员工进入复赛的出线成绩如下:2014年2015年2016年2017年2018年出线成绩(百79 81 80 81 82分制)根据以上信息,回答下列问题:(1)写出表中m值;(2)可以推断出选择部门参赛更好,理由为;(3)预估(2)中部门今年参赛进入复赛的人数为.25. 如图,P是直径AB上的一点,AB=6,CP⊥AB交半圆AB于点C,以BC为直角边构造等腰Rt△BCD,∠BCD=90°,连接OD.小明根据学习函数的经验,对线段AP,BC,OD的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,BC,OD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置…AP 0.00 1.00 2.00 3.00 4.00 5.00 …BC 6.00 5.48 4.90 4.24 3.46 2.45 …OD 6.71 7.24 7.07 6.71 6.16 5.33 …在AP,BC,OD的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当OD=2BC时,线段AP的长度约为________.26. 在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD和线段EF都没有公共点,请直接写出m的取值范围.27. 已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接P A,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠P AC的度数;②直接写出P A、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.28. 对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的”生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的”生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,x的取值范围.是点M,N的”生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标N答案与解析一.选择题(共8小题)1. 如图是圆规示意图,张开的两脚所形成的角大约是()A. 90°B. 60°C. 45°D. 30°【答案】B【解析】【分析】观察图形,直接判断结果.【详解】解:观察图形,张开的两脚所形成的角大约是60,故选B.【点睛】本题考查了角的概念,正确的识别图形是解题的关键.2. 实数m,n在数轴上对应的点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】由若mn<0可知,m、n异号,所以原点可能是点B或点C,而又由|m|<|n|即可根据距离正确判断.【详解】解:∵mn<0∴m、n异号∴原点可能是点B或点C又由|m|<|n|,观察数轴可知,原点应该是点B.故选B.【点睛】本题考查的是绝对值的意义,利用数形结合的思想研究绝对值会让问题更加明确清晰,是一种常用的方法.3. 如果a ﹣b 2b a a a a b ⎛⎫-⋅ ⎪+⎝⎭的值为( )A. C. 3 D. 【答案】A【解析】【分析】先化简分式,然后将a ﹣b =代入计算即可. 【详解】解:原式=22b a a a a b⋅-+ =()()a b a b a a a b-+-⋅+ =﹣(a ﹣b ),∵a ﹣b,故选A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.4. 若正多边形的内角和是540︒,则该正多边形的一个外角为( )A. 45︒B. 60︒C. 72︒D. 90︒【答案】C【解析】【分析】根据多边形的内角和公式()2180n -•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,多边形的每个外角360572÷︒==.故选.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.5. 今年是我国建国70周年,回顾过去展望未来,创新是引领发展第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.根据统计图提供的信息,下列推断合理的是( )A. 2010﹣2018年,北京市毎万人发明专利授权数逐年增长B. 2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件C. 2010年申请后得到授权的比例最低D. 2018年申请后得到授权的比例最高【答案】B【解析】【分析】根据统计图得出各年的具体数据,依据增长情况和百分比概念逐一判断即可得.【详解】解:A .2010﹣2018年,北京市毎万人发明专利授权数在2012﹣2013年不变,此选项错误; B .2010﹣2018年,北京市毎万人发明专利授权数的平均数为5.989.99.910.916.319.121.222.39++++++++≈13.7,超过10件,此选项正确; C .2014年申请后得到授权的比例最低,此选项错误;D .2017年申请后得到授权的比例最高,此选项错误;故选B .【点睛】本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.6. 弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示:弹簧总长L (cm )16 17 18 19 20 重物重量x (kg ) 0.5 1.0 1.5 2.0 2.5当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( )A. 22.5B. 25C. 27.5D. 30【答案】B【解析】【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x =5时,代入函数解析式求值即可.【详解】设弹簧总长L (cm )与重物质量x (kg )的关系式为L =kx +b , 将(0.5,16)、(1.0,17)代入,得:0.51617k b k b +=⎧⎨+=⎩, 解得:k 2b 15=⎧⎨=⎩, ∴L 与x 之间的函数关系式为:L =2x +15;当x =5时,L =2×5+15=25(cm ) 故重物为5kg 时弹簧总长L 是25cm ,故选B .【点睛】此题主要考查根据实际问题列一次函数关系式,解决本题的关键是得到弹簧长度的关系式,难点是得到x 千克重物在原来基础上增加的长度.7. 如图,抛物线2815y x x =-+与轴交于、两点,对称轴与轴交于点,点(0,2)D -,点(0,6)E -,点是平面内一动点,且满足90DPE ∠=︒,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( ).A. 3B. 412C.72D. 5【答案】C【解析】【分析】解方程x2−8x+15=0得A(3,0),利用抛物线的性质得到C点为AB的中点,再根据圆周角定理得到点P 在以DE为直径的圆上,圆心Q点的坐标为(−4,0),接着计算出AQ=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF的最大值为7,连接AP,利用三角形的中位线性质得到CM=12AP,从而得到CM的最大值.【详解】解方程x2−8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(−4,0),AQ=2234=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=12 AP,∴CM的最大值为72.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和圆周角定理.8. 如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合),∠DCE=∠ABO +∠AEO均成立.上述结论中,所有..正确结论的序号是( )A. ①②③B. ①③④C. ②④D. ①②③④【答案】D【解析】【分析】①当BE是⊙O的直径时,根据圆周角定理和邻补角的定义得到结论;②当AE∥BC时,得到弧AB=弧CE,根据圆周角定理得到结论;③当点E是弧AC的中点时,根据角平分线的定义得到结论;④根据圆内接四边形的性质和四边形的内角和得到结论.【详解】解:①当BE是⊙O的直径时,∠BCE=∠DCE=90°,故①正确;②当AE∥BC时,弧AB=弧CE,∴弧BCE=弧ABC,∴∠BAE=∠AEC;故②正确;③当点E是弧AC的中点时,EO平分∠AEC;故正确;④如图2,∵∠A=∠ECD,∠A+12∠BOE=180°,∴∠ABO+∠AEO=360°-∠A-∠BOE=360°-∠DCE-2(180°-∠COE),∴∠DCE=∠ABO+∠AEO,故正确;故选D .【点睛】本题考查圆周角定理,解题关键是正确的理解题意.二.填空题(共8小题)9. 质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 【答案】12 【解析】【分析】向上一面的数字是偶数的情况数除以总情况数6即为所求的概率.【详解】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,偶数为2,4,6,则向上一面的数字是偶数的概率为3162=. 【点睛】明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比. 10. 用一组,,的值说明命题”若ac bc =,则a b =“是错误的,这组值可以是a =__________,b =__________,c =__________.【答案】 (1). -1 (2). -2 (3). 0【解析】【分析】根据题意选择a 、b 、c 的值即可.【详解】当c =0,a =−1,b =−2,所以ac =bc ,但a ≠b ,当c =0,a =3,b =−2,所以ac =bc ,但a ≠b ,故答案不唯一;故答案为:-1;-2,0.【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11. 如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了_____m.【答案】30【解析】【分析】从A点出发,前进5m后向右转60°,再前进5m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,∴他第一次回到出发点A时一共走了:5×6=30(m),故答案为30.【点睛】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.12. 如图所示的网格是正方形网格,△ABC是_____三角形.(填”锐角”“直角”或”钝角”)【答案】锐角【解析】【分析】根据三边的长可作判断.【详解】解:∵AB2=32+12=10,AC2=12+42=17,BC2=32+42=25,∴AB2+AC2>BC2,∴△ABC为锐角三角形,故答案为锐角.【点睛】本题考查了三边的关系,会利用三边关系确定三角形的形状:若三角形的三边分别为a、b、c,①当a2+b2>c2时,△ABC为锐角三角形;②当a2+b2<c2时,△ABC为钝角三角形;③当a2+b2=c2时,△ABC为直角三角形.13. 如图,过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,作直线BC,连接AB,AC,若∠P=80°,则∠C=_____°.【答案】50【解析】【分析】根据切线的性质得出∠P AO=∠PBO=90°,求出∠AOB的度数,根据圆周角定理求出∠C即可.【详解】解:连接OA,∵过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,∴∠P AO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,∴∠C=12AOB=50°,故答案为50.【点睛】本题考查了切线的性质,圆周角定理等知识点,能求出∠AOB的度数和根据圆周角定理得出∠C=12AOB是解此题的关键.14. 如图,在矩形ABCD中,过点B作对角线AC的垂线,交AD于点E,若AB=2,BC=4,则AE=_____.【答案】1【解析】【分析】根据矩形的性质得到∠DAB=∠ABC=90°,AD=BC=4,根据勾股定理得到AC=22AB BC+=25,设AC与BE交于F,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,AD=BC=4,∴AC=22AB BC+=25,设AC与BE交于F,∵BE⊥AC,∴AB2=AF•AC,∴AF=2225525=,∴CF=AC﹣AF=855,∵AE∥BC,∴△AEF∽△CBF,∴AE AF BC CF=,∴255 4855AE=,∴AE=1,故答案为1.【点睛】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握正方形的性质是解题的关键.15. 2019年2月,全球首个5G火车站在上海虹桥火车站启动.虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G网络比4G网络快720秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x千兆数据,依题意,可列方程为___.【答案】8872010x x-=【解析】【分析】设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据在峰值速率下传输8千兆数据,5G网络快720秒列出方程即可.【详解】解:设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据题意,得8872010x x-=.故答案为8872010x x-=.【点睛】本题考查了由实际问题抽象出分式方程,理解题意,找到等量关系列出方程是解题的关键.16. ▱ABCD中,对角线AC、BD相交于点O,E是边AB上的一个动点(不与A、B重合),连接EO并延长,交CD于点F,连接AF,CE,下列四个结论中:①对于动点E,四边形AECF始终是平行四边形;②若∠ABC<90°,则至少存在一个点E,使得四边形AECF是矩形;③若AB>AD,则至少存在一个点E,使得四边形AECF是菱形;④若∠BAC=45°,则至少存在一个点E,使得四边形AECF是正方形.以上所有正确说法的序号是_____.【答案】①③④【解析】分析】①根据平行四边形的性质得AB∥DC,OA=OC,再由平行线的性质和对顶角相等可得∠OAE=∠OCF,∠AOE=∠COF,根据ASA来判定△AOE≌△COF,推出AE=CF,由此可判断四边形为平行四边形;②根据矩形的判定定理可知,当CE⊥AB时,四边形AECF为矩形,而图2-2中,AB<AD时,点E不在线段AB上;③根据菱形的判定定理可知:当EF⊥AC时,四边形AECF为菱形;④当CE⊥AB且∠BAC=45°时,四边形AECF为正方形,在AB上一定存在一点E【详解】解:(1)如图1,∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB∥DC,AB=DC,OA=OC,OB=OD,∴∠OAE=∠OCF,∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形,即E在AB上任意位置(不与A、B重合)时,四边形AECF恒为平行四边形,故选项①正确;(2)如图2,当∠ABC<90°,当CE⊥AB时,四边形AECF为矩形,在图2中,AB>AD时,存在一点E, 使得四边形AECF是矩形;而图2-2中,AB<AD时,点E不在线段AB上;故选项②不正确.(3)如图3,当EF⊥AC时,四边形AECF为菱形,∵AB>AD,∴在AB 上一定存在一点E, 使得四边形AECF 是矩形;故选项③正确.(4)如图4,当CE ⊥AB 且∠BAC =45°时,四边形AECF 为正方形,故选项④正确.故答案为:①③④.【点睛】本题主要考查平行四边形以及几种特殊平行四边形的判定.熟悉平行四边形、矩形、菱形、正方形的判定方法是解答此题的关键.三.解答题(共12小题)17. 计算:05122sin 60(2019)π-︒-- 【答案】4 3.+【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用利用特殊角的三角函数值计算,第四项利用零指数幂法则计算,最后进行加减运算即可. 【详解】()05122sin602019π-︒--, =35321+-, =4 3.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18. 解不等式组: 4(21)31385x x x x -<+⎧⎪-⎨<⎪⎩ 【答案】4x 1-<<.【解析】【分析】分别解出两不等式的解集,再求其公共解.【详解】()42131385x x x x ⎧-+⎪⎨-⎪⎩<①<② 解不等式①得:x <1,解不等式②得:x >-4,所以不等式组的解集为:-4<x <1.【点睛】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19. 已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线? 小明的做法是:(1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,;(3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图:∵PC a ∥∴1PDA ∠=∠( )∵以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,∴PA PD =∴PAB ∠=∠∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( )根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是: .【答案】两直线平行,同位角相等;PDA ;等角对等边;等腰三角形三线合一【解析】【分析】根据平行线的性质及圆的特点得到1PAB ∠=∠,故可得以直线,的交点和点、为顶点所构成的三角形为等腰三角形,然后根据等腰三角形三线合一即可作图.【详解】(1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,;(3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图:∵PC a ∥∴1PDA ∠=∠(两直线平行,同位角相等)∵以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,∴PA PD =∴PAB ∠=∠PDA∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形(等角对等边)根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是:等腰三角形三线合一故答案为:两直线平行,同位角相等;PDA ;等角对等边;等腰三角形三线合一.【点睛】此题主要考查复杂尺规作图,解题的关键是熟知平行线的性质、圆的基本性质及等腰三角形的判定与性质.20. 已知关于的方程mx 2+(2m-1)x+m-1=0(m≠0) .(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数的值.【答案】(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=,从而可判断方程总有两个不相等的实数根;(2)先利用求根公式得到1211,1x xm=-=-,然后利用有理数的整除性确定整数的值.试题解析:(1)证明:∵m≠0,∴方程为一元二次方程,2(21)4(1)10m m m=---=>,∴此方程总有两个不相等的实数根;(2)∵(21)12mxm--±=,1211,1x xm∴=-=-,∵方程的两个实数根都是整数,且m是整数,∴m=1或m=−1.21. 如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.【答案】(1)证明见解析27.【解析】【分析】(1)由AE∥BD,且AE=BD可得四边形AEBD是平行四边形,再根据AB=AC,D为BC中点,可知AD⊥BC 即可得出四边形AEBD是矩形.(2)根据30°所对的直角边是斜边的一半即可求出EB,再根据矩形的性质求出BC即可利用勾股定理求出EC,由题意可证△AEF∽△BCF,再根据对应边成比例即可求出结果.【详解】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∴∠AEB=90°,∵∠ABE=30°,AE=2,∴BE=23,BC=4,∴EC=27,∵AE∥BC,∴△AEF∽△BCF,∴12 EF AECF BC,∴EF13=EC=273.【点睛】本题为矩形与等腰三角形的结合题型,关键在于熟练掌握矩形与等腰三角形的性质.22. 在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线ykx =与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若112S<<,结合函数图象,直接写出k的取值范围.【答案】(1)点B的坐标为(0,2);(2)k的值为8;(3)54<k<3.【解析】【分析】(1)有点A的坐标,可求出直线的解析式,再由解析式求出B点坐标.(2)把点P的横坐标代入直线解析式即可求得点P的纵坐标,然后把点P代入反比例函数解析式即可得k值.(3)根据△POB的面积为S的取值范围求点P的横坐标取值,然后把横坐标代入直线解析式,即可求得点P 纵坐标的取值范围,进而求得k的取值范围.【详解】解:(1)∵直线l:y=x+b与x轴交于点A(﹣2,0)∴﹣2+b=0∴b=2∴一次函数解析式为:y=x+2∴直线l与y轴交于点B为(0,2)∴点B的坐标为(0,2);(2)∵双曲线ykx=与直线l交于P,Q两点∴点P在直线l上∴当点P的横坐标为2时,y=2+2=4 ∴点P的坐标为(2,4)∴k=2×4=8∴k的值为8(3)如图:S△BOP12=⨯2×x p=x p,∵11 2S<<,∴12<x p<1,∴52<y p<3,∴54<k<3【点睛】本题主要涉及一次函数与反比例函数相交的知识点.根据交点既在一次函数上又在反比例函数上,即可解决问题.23. 如图,AB 是O 的直径,CB 与O 相切于点B .点D 在O 上,且BC BD =,连接CD 交O 于点E .过点E 作EF ⊥AB 于点H ,交BD 于点M ,交O 于点F . (1)求证:∠MED=∠MDE .(2)连接BE ,若3ME =,MB=2.求BE 的长.【答案】(1)证明见解析;(2)10【解析】【分析】(1)由题意得//EF BC ,则C DEM ∠=∠,又C MDE ∠=∠,则结论得证;(2)连BE ,BE BF =,可得BEF D ∠=∠,可证BEM BDE ∆∆∽,则2BE BM BD =,可求BE 的长.【详解】(1)证明:CB 与O 相切于点,OB BC ∴⊥,EF AB ⊥,//EF BC ∴,DEM C ∴∠=∠,BC BD =,C MDE ∴∠=∠,MED MDE ∴∠=∠;(2)EF AB ⊥,AB 是O 的直径,BE BF =,D BEF ∴∠=∠,EBM DBE ∠=∠,BEM BDE ∆∆∽,BE BD BM BE=,即2BE BM BD =, MED MDE ∠=∠3∴==ME MDBM=,2BD MB MD∴=+=5BE=.10【点睛】本题主要考查了等腰三角形和平行线之间的角度转化以及圆周角定理和相似综合,熟练的在圆中找出对应的相似三角形是求解本题的关键.24. 为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100)b.乙部门成绩如下:40 52 70 70 71 73 77 78 80 8182 82 82 82 83 83 83 86 91 94c.甲、乙两部门成绩的平均数、方差、中位数如下:平均数方差中位数甲79.6 36.84 78.5乙77 147.2 md.近五年该单位参赛员工进入复赛的出线成绩如下:2014年2015年2016年2017年2018年出线成绩(百79 81 80 81 82分制)。
2018年河南省郑州市中考数学二模试卷
第1页(共19页)2018年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
)1、下列各数中最小的数是……………………()A .2p- B B..2- C C..0 D 0 D..12、2015年河南省参加高考的考生数量为772325人,比2014年增加了4.8万人。
将数据772325精确到千位用科学记数法表示为……………()A .41023.77´B B..51072.7´C C..5107.7´D D..4102.77´3、将一个螺栓按如右下图放置,则螺栓的左视图可能是………………()4、某小组5名同学一周内参加家务劳动的时间如下表所示,关于劳动时间这组数据,下列说法正确的是……………………………………()劳动时间(小时) 1 2 3 4人数 1 1 2 1 A .众数是2,平均数是,平均数是 2.6 2.6 2.6;;B .中位数是3,平均数是2;C .众数和中位数都是3; D D.众数是.众数是2,中位数是3.5、不等式组的解集在数轴上表示正确的是……()6、如图,已知0361=Ð,0362=Ð,01403=Ð,则4Ð的度数等于……()A.040. B.036. C . C..044. D.0100.7、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的非负整数值的个数是……………………………………()(A )5;(B )4;(C )3; (D) 2 (D) 2..8、如图,四边形ABCD 是⊙是⊙O O 的内接四边形,AC 是⊙O 直径直径,,点P 在AC 的延长线上,延长线上,PD PD 是⊙是⊙O O 的切线,延长BC 交PD 于点E .则下列说法不正确的是……………………………………………………()A .PDO ADC Ð=Ð;B B..DAB DCE Ð=Ð;2-2x ≥6,2x -1≤5DCB A NMPQ43211EO PDCBAC .B Ð=Ð1;D D.. PDA PCD Ð=Ð.二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=______.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______. 12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是______(填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”). 14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ʹ,经过点P 再次折叠纸片,使点C 落在直线PB ʹ上,得折痕PQ 和点C ʹ,当点C ʹ恰好落在边OA 上时BP 的长为 ______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;)请将该条形统计图补充完整;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;为正方形.(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.有两个不相等的实数根.(1)求k的取值范围;取最大整数值时,用合适的方法求该方程的解.(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).的函数关系式;(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE 交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?;如果不是,请说明理由.如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、三点.点C三点.(1)试求抛物线的解析式;)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△BʹOʹCʹ.在平移过程中,△BʹOʹCʹ与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?之间的函数关系式?2018年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。
2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析
B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(
)
A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(
)
A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?
河南省中考数学真题模拟题分类卷4 图形的性质
河南省中考数学真题模拟题分类卷4 图形的性质姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分)已知在△ABC中,∠A与∠C的度数比是5:7,且∠B比∠A大10°,那么∠B为()A . 40°B . 50°C . 60°D . 70°2. (2分)(2018·苏州) 如图,在△ABC中,延长BC至D,使得CD= BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A . 3B . 4C . 2D . 33. (2分)(2019·广西模拟) 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是()A . 2B .C .D .4. (2分) (2020八下·莲湖期末) 如图,在四边形中,,对角线、相交于点O,于点E,于点F,连接、,若,则下列结论不一定正确的是()A .B .C . 为直角三角形D . 四边形是平行四边形5. (2分)(2019·海南模拟) 如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠AOC 的度数是()A . 70°B . 110°C . 140°D . 160°6. (2分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A . 45°B . 22.5°C . 67.5°7. (2分)(2013·梧州) 如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A . 10B . 12C . 15D . 208. (2分) (2020九上·永嘉期中) 如图,把一个量角器与一块30°(∠CAB=30° )角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有点P恰好是量角器的半圆弧中点,连结CP。
2020-2021学年河南省郑州市中考数学第二次模拟试题及答案解析
最新河南省中考数学二模试卷一、选择题(本题共8小题,每小题3分,共24分)1.在实数﹣2、0、﹣5、3中,最小的实数是()A.﹣2B.0 C.﹣5 D.32.下列计算正确的是()A.3x2﹣4x2=﹣1 B.3x+x=3x2C.4x•x=4x2D.﹣4x6÷2x2=﹣2x33.某市今年预计建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.0.14×1064.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变5.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.6.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC 的度数为()A.40°B.50°C.80°D.100°7.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF 的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°8.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C. D.二、填空题(本题共7小题,每小题3分,共21分)9.计算:|﹣4|﹣()﹣2= .10.若正多边形的一个内角等于120°,则这个正多边形的边数是.11.在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数为.12.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A 的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .14.如图矩形ABCD中,AD=1,CD=,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为.15.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB 上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为.三、解答题(本题共小题,共75分)16.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.17.为推广阳光体育“大课间”活动,我县某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.18.如图,AB是⊙O直径,点P是AB下方的半圆上不与点A,B重合的一个动点,点C为AP中点,延长CO交⊙O于点D,连接AD,过点D作⊙O的切线交PB的廷长线于点E,连CE.(1)求证:△DAC≌△ECP;(2)填空:①当∠DAP= 时,四边形DEPC为正方形;②在点P运动过程中,若⊙O半径为5,tan∠DCE=,则AD= .19.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)20.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)21.郑州市雾霾天气趋于严重,丹尼斯商场根据民众健康需要,代理销售每台进价分别为600元、560元的A、B两种型号的空气净化器,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周4台5台7100元第二周6台10台12600元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A,B两种型号的空气净化器的销售单价;(2)若商场准备用不多于17200元的金额再采购这两种型号的空气净化器共30台,超市销售完这30台空气净化器能否实现利润为6200元的目标,若能,请给出相应的采购方案;若不能,请说明理由.22.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF 与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.23.如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.在实数﹣2、0、﹣5、3中,最小的实数是()A.﹣2B.0 C.﹣5 D.3【考点】实数大小比较.【分析】先根据实数的大小比较法则比较大小,即可得出选项.【解答】解:﹣5<﹣2<0<3,最小的实数是﹣5,故选C.2.下列计算正确的是()A.3x2﹣4x2=﹣1 B.3x+x=3x2C.4x•x=4x2D.﹣4x6÷2x2=﹣2x3【考点】整式的除法;合并同类项;单项式乘单项式.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式利用单项式除以单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣x2,错误;B、原式=4x,错误;C、原式=4x2,正确;D、原式=﹣2x4,错误,故选C3.某市今年预计建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.0.14×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:140000=1.4×105,故选:B.4.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【考点】简单组合体的三视图.【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.5.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【考点】平行线分线段成比例.【分析】求出AB,由平行线分线段成比例定理得出比例式,即可解答本题.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,BC=5,∴;故选D.6.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC 的度数为()A.40°B.50°C.80°D.100°【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°,故选C.7.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF 的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°【考点】轴对称-最短路线问题.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.8.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C. D.【考点】动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A二、填空题(本题共7小题,每小题3分,共21分)9.计算:|﹣4|﹣()﹣2= ﹣.【考点】实数的运算;负整数指数幂.【分析】分别根据负整数指数幂的计算法则、绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=4﹣﹣4=﹣.故答案为:﹣.10.若正多边形的一个内角等于120°,则这个正多边形的边数是 6 .【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求正n边形边数为n,则120°n=(n﹣2)•180°,解得n=6;解法二:设所求正n边形边数为n,∵正n边形的每个内角都等于120°,∴正n边形的每个外角都等于180°﹣120°=60°.又因为多边形的外角和为360°,即60°•n=360°,∴n=6.故答案为:6.11.在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数为8 .【考点】概率公式.【分析】设黄球的个数为x个,根据概率公式得到=,然后解方程即可.【解答】解:设黄球的个数为x个,根据题意得:=,解得x=8,经检验:x=8是原分式方程的解,故答案为8.12.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为 5 .【考点】一次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【解答】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.13.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A 的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】首先根据点A在双曲线y=(x>0)上,设A点坐标为(a,),再利用含30°直角三角形的性质算出OA=2a,再利用菱形的性质进而得到B点坐标,即可求出k的值.【解答】解:因为点A在双曲线y=(x>0)上,设A点坐标为(a,),因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,),可得:k=,故答案为:14.如图矩形ABCD中,AD=1,CD=,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为﹣.【考点】扇形面积的计算;矩形的性质;旋转的性质.【分析】根据勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可得到结论.【解答】解:在矩形ABCD中,∵AD=1,CD=,∵AC=2,tan∠CAB==,∴∠CAB=30°,∵线段AC、AB分别绕点A顺时针旋转90°至AE、AF,∴∠CAE=∠BAF=90°,∴∠BAG=60°,∵AG=AB=,∴阴影部分面积=S△ABC+S扇形ABG﹣S△ACG=××1+﹣××2=﹣,故答案为:﹣.15.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB 上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为.【考点】翻折变换(折叠问题).【分析】由题意得:DF=DB,得到点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD 交⊙D于点F,此时AF值最小,由点D是边BC的中点,得到CD=BD=3;而AC=4,由勾股定理得到AD=5,求得线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,根据相似三角形的性质即可得到结论.【解答】解:由题意得:DF=DB,∴点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD交⊙D于点F,此时AF值最小,∵点D是边BC的中点,∴CD=BD=3;而AC=4,由勾股定理得:AD2=AC2+CD2∴AD=5,而FD=3,∴FA=5﹣3=2,即线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,∵∠ACB=90°,∴FH∥AC,∴△DFH∽△ADC,∴,∴HF=,DH=,∴BH=,∴BF==,故答案为:.三、解答题(本题共小题,共75分)16.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.【考点】分式的化简求值;一元二次方程的解.【分析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x﹣1=0的根,那么m2+3m﹣1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.【解答】解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.17.为推广阳光体育“大课间”活动,我县某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)用A类人数除以它所占百分比即可得到调查的总人数;(2)用总人数分别减去A、C、D类人数即可得到B类人数,再计算B类所占百分比,然后补全统计图;(3)用A表示男生,B表示女生,先画树状图展示所有20种等可能的结果数,再找出到同性别学生的结果数,然后根据概率公式求解.【解答】解:(1)15÷10%=150(名),答;在这项调查中,共调查了150名学生;(2)本项调查中喜欢“立定跳远”的学生人数=150﹣15﹣60﹣30=45(人),它所占百分比=×100%=30%,画图如下:(3)用A表示男生,B表示女生,画图如下:共有20种等可能的结果数,其中同性别学生的结果数是8,所有P(刚好抽到同性别学生)=.18.如图,AB是⊙O直径,点P是AB下方的半圆上不与点A,B重合的一个动点,点C为AP中点,延长CO交⊙O于点D,连接AD,过点D作⊙O的切线交PB的廷长线于点E,连CE.(1)求证:△DAC≌△ECP;(2)填空:①当∠DAP= 45°时,四边形DEPC为正方形;②在点P运动过程中,若⊙O半径为5,tan∠DCE=,则AD= 4.【考点】圆的综合题.【分析】(1)先由切线的性质得到∠CDE=90°,再利用垂径定理的推理得到DC⊥AP,接着根据圆周角定理得到∠APB=90°,于是可判断四边形DEPC为矩形,所以DC=EP,然后根据“SAS”判断△DAC≌△ECP;(2)①利用四边形DEPC为矩形得到DE=PC=AC,则根据正方形的判定方法得DC=CP时,四边形DEPC为正方形,则DC=CP=AC,于是得到此时△ACD为等腰直角三角形,所以∠DAP=45°;②先证明∠ADC=∠DCE,再在Rt△ACD中利用正切得到tan∠ADC==,则设AC=x,DC=2x,利用勾股定理得到AD=x,然后在Rt△AOC中利用勾股定理得到x2+(2x﹣5)2=52,再解方程求出x即可得到AD的长.【解答】(1)证明:∵DE为切线,∴OD⊥DE,∴∠CDE=90°,∵点C为AP的中点,∴DC⊥AP,∴∠DCA=∠DCP=90°,∵AB是⊙O直径,∴∠APB=90°,∴四边形DEPC为矩形,∴DC=EP,在△DAC和△ECP中,∴△DAC≌△ECP;(2)解:①∵四边形DEPC为矩形,∵DE=PC=AC,∵当DC=CP时,四边形DEPC为正方形,此时DC=CP=AC,∴△ACD为等腰直角三角形,∴∠DAP=45°;②∵DE=AC,DE∥AC,∴四边形ACED为平行四边形,∴AD∥CE,∴∠ADC=∠DCE,在Rt△ACD中,tan∠ADC==tan∠DCE=,设AC=x,则DC=2x,∴AD==x,在Rt△AOC中,AO=5,OC=CD﹣OD=2x﹣5,∴x2+(2x﹣5)2=52,解得x1=0(舍去),x2=4,∴AD=4.故答案为45°,4.19.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==220.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.21.郑州市雾霾天气趋于严重,丹尼斯商场根据民众健康需要,代理销售每台进价分别为600元、560元的A、B两种型号的空气净化器,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周4台5台7100元第二周6台10台12600元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A,B两种型号的空气净化器的销售单价;(2)若商场准备用不多于17200元的金额再采购这两种型号的空气净化器共30台,超市销售完这30台空气净化器能否实现利润为6200元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设A型号空气净化器单价为x元,B型号空气净化器单价y元,根据4台A型号,5台B型号的销售收入为7100元,6台A型号10台B型号的销售收入为12600元,列方程组求解;(2)设采购A种型号空气净化器a台,则采购B种型号空气净化器(30﹣a)台,根据金额不多余17200元,列不等式求解;【解答】解:(1)设A型号空气净化器单价为x元,B型号空气净化器单价y元,则,解得:,答:A型号空气净化器单价为800元,B型号空气净化器单价780元;(2)设A型空气净化器采购a台,采购B种型号空气净化器(30﹣a)台.则600a+560(30﹣a)≤17200,解得:a≤10,200a+220(30﹣a)≥6200,解得:a≤20,则最多能采购A型号空气净化器10台,即可实现目标.22.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF 与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.【考点】四边形综合题.【分析】(1)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得∠HAD=90°,即可求得AG⊥GD,AG=GD;(2)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等边三角形,即可证得AG⊥GD,AG=DG;(3)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等腰三角形,即可证得DG=AGtan.【解答】(1)AG⊥DG,AG=DG,证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DCF=90°,∴∠DCB=90°,∴∠ACD=45°,∴∠ABH=∠ACD=45°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∵∠BAH+∠HAC=90°,∴∠CAD+∠HAC=90°,即∠HAD=90°,∴AG⊥GD,AG=GD;(2)AG⊥GD,AG=DG;证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=60°,∴∠ABC=60°,∠ACD=60°,∴∠ABC=∠ACD=60°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=60°;∴AG⊥HD,∠HAG=∠DAG=30°,∴tan∠DAG=tan30°==,∴AG=DG.(3)DG=AGtan;证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣,∠ACD=90°﹣,∴∠ABC=∠ACD,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=,∴tan∠DAG=tan=,∴DG=AGtan.23.如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.【考点】二次函数综合题.【分析】1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P 与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1在x 轴上,B1O1∥y轴,根据B1纵坐标为1,求出B1横坐标即可解决问题.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值.(3)“落点”的个数有4个,如图1,图2,图3,图4所示.如图3,图4中,B1O1=BO=1,则x2﹣x﹣1=1,解得x=,∵A1O1=,∴图3中,OA1=OO1+A1O1,图4中OA1═OO1+O1A1=∴点A1坐标为(,0)或().2016年10月16日。
2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)
= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是
.
版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分
2018河南中考数学试题[含解析]
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分) 11.(3分)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S=PM2=×72=△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
郑州市中考数学二模考试试卷
郑州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共39分)1. (3分) (2017八上·顺德期末) 下列式子成立的是()A .B .C .D .2. (3分) -2的相反数是()A .B .C . 2D . ±23. (2分)(2019·萍乡模拟) sin60°的相反数()A . -B . -C . -D . -4. (3分) (2018九上·港南期中) cos30°的相反数是()A .B .C .D .5. (3分)(2020·无锡) 下列选项错误的是()A .B .C .D .6. (2分) (2019九上·浙江期末) 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A . 132°B . 134°C . 136°D . 138°7. (3分)(2019·定州模拟) 数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE ,使得OD=OE;(2)分别以点D、E为圆心,以大于 DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P .那么小明所求作的线段OP是△AOB的()A . 一条中线B . 一条高C . 一条角平分线D . 不确定8. (3分)(2018·盘锦) 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A . 1.70,1.75B . 1.70,1.70C . 1.65,1.75D . 1.65,1.709. (2分)(2018·江油模拟) 如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O 为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A . (﹣3,﹣1)B . (﹣1,2)C . (﹣9,1)或(9,﹣1)D . (﹣3,﹣1)或(3,1)10. (3分)(2019·定州模拟) 如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN ,点O是正五边形的中心,则∠MON的度数是()A . 45度B . 60度C . 72度D . 90度11. (2分)(2019·定州模拟) 某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4000元,购买篮球用了2800元,篮球单价比足球贵16元.若可列方程表示题中的等量关系,则方程中x表示的是()A . 足球的单价B . 篮球的单价C . 足球的数量D . 篮球的数量12. (2分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A . 12B . 9C . 13D . 12或913. (2分)(2019·定州模拟) 如图,已知点M为▱ABCD边AB的中点,线段CM交BD于点E ,S△BEM=1,则图中阴影部分的面积为()A . 2B . 3C . 4D . 514. (2分)(2019·定州模拟) 如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A . π﹣2B .C . π﹣4D .15. (2分)(2016·南充) 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A . 30°B . 45°C . 60°D . 75°16. (2分)(2019·定州模拟) 如图,在等腰△ABC中,AB=AC=4cm ,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A .B .C .D .二、填空题 (共3题;共12分)17. (3分)实数﹣2的整数部分是________.18. (3分)(2019·定州模拟) 如图,在平面直角坐标系xOy中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D ,与BC相交于点 E .若点B(6,3),四边形ODBE 的面积为12,则k的值为________.19. (6分)(2019·定州模拟) 如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y= x 于点B1 ,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2 ,则点A2的坐标为________;再过点A2作x轴的垂线交直线l于点B2 ,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是________.三、解答题 (共7题;共60分)20. (8分) (2019八下·鹿角镇期中) 的算术平方根是________.21. (2分)(2017·许昌模拟) 某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)22. (8分)(2019·定州模拟) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查________名学生;扇形统计图中C所对应扇形的圆心角度数是________;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.23. (9.0分)(2019·定州模拟) 如图所示,AB是⊙O的一条弦,DB切⊙O于点B ,过点D作DC⊥OA于点C , DC与AB相交于点E .(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.24. (10.0分)(2019·定州模拟) 都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.运行区间票价起点站终点站一等座二等座都匀桂林95(元)60(元)(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.25. (11.0分)(2019·定州模拟)(1)问题发现如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,点D、F分别在边AB、AC上,请直接写出线段BD、CF的数量和位置关系;(2)拓展探究如图2,当正方形ADEF绕点A逆时针旋转个锐角θ时,上述结论还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)解决问题如图3,在(2)的条件下,延长BD交直线CF于点G .当AB=3,AD=,θ=45°时,直接写出线段BG 的长.26. (12分)(2019·定州模拟) 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t .(1)求抛物线的表达式;(2)设抛物线的对称轴为l , l与x轴的交点为D .在直线l上是否存在点M ,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC , PB , PC ,设△PBC的面积为S .①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.参考答案一、选择题 (共16题;共39分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共12分)17-1、18-1、19-1、三、解答题 (共7题;共60分)20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
2023年河南省郑州市新郑市市直中学中考数学模拟试卷及答案解析
2023年河南省郑州市新郑市市直中学中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.(3分)﹣3的负倒数()A.3B.﹣3C.D.﹣2.(3分)如图是由6个相同的小正方体组成的几何体,其左视图是()A.B.C.D.3.(3分)2023年2月10日,神舟十五号航天员乘组圆满完成了他们的首次出舱任务,飞船的时速为每小时28亿千米,28亿千米用科学记数法表示应为()A.2.8×108米B.2.8×109米C.28×1012米D.2.8×1012米4.(3分)运算结果为a8的式子是()A.a4•a2B.(a6)2C.a12÷a4D.a8﹣2a85.(3分)关于菱形,下列说法错误的是()A.对角线垂直B.对角线互相垂直C.对角线相等D.对角线互相平分6.(3分)一元二次方程2x2﹣mx﹣1=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定7.(3分)若点A(x1,﹣3),B(x2,2),C(x3,6)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x2<x3<x1D.x3<x1<x2 8.(3分)下列调查中,最适合采用普查的是()A.对某市居民垃圾分类意识的调查B.对某批汽车抗撞击能力的调查C.对一批节能灯管使用寿命的调查D.对某校学生的视力情况的调查9.(3分)如图,菱形OABC的顶点O(0,0),A(﹣2,0),∠B=60°,若菱形OABC 绕点O顺时针旋转90°后得到菱形OA1B1C1,依此方式,绕点O连续旋转2023次得到菱形OA2024B2024C2024,那么点C2024的坐标是()A.B.C.D.10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C,下列结论:①abc>0,②2a+b<0,③4a﹣2b+c>0,④3a+c<0,其中正确的结论个数为()A.1B.2C.3D.4二、填空题(本大题共5小题,共15.0分)11.(3分)若代数式有意义,则实数x的取值范围是.12.(3分)小明将四张正面分别标有数字﹣3,﹣1,1,3的卡片(除数字外其他都相同)置于暗箱内摇匀,从中随机抽取两张,则所抽卡片上的数字至少一个是方程x2﹣2x﹣3=0的解的概率是.13.(3分)不等式组的解集是.14.(3分)如图,在边长为1的正方形网格中,A,B,C均在格点上,则阴影部分的周长为.15.(3分)如图,将△ABC纸片按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF,已知AB=3,AC=4,BC=5,若以B′、F、C为顶点的三角形与三角形ABC相似,那么CF的长度是.三、解答题(本大题共8小题,共75.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣12.有一种圆柱体茶叶筒如图所示,则它的左视图是()A. B.C.D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.5.马老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计,下面是全班45名学生单程所花时间(单位:分)与对应人数(单位:人)的统计表,则关于这45名学生单程所花时间的数据的中位数是()单程所花时间 5 10 15 20 25 30 35 40人数 6 6 8 14 5 4 1 1A.15 B.20 C.25 D.306.如图,在一单位长度为1的方格纸上,依如图所示的规律,设定点A 1,A 2,A 3,A 4,A 5,A 6,A 7,…A n ,连接点O ,A 1,A 2组成三角形,记为△1,连接O ,A 2,A 3组成三角形,记为△2,…,连接O ,A n ,A n+1组成三角形,记为△n (n 为正整数),请你推断,当n 为10时,△n 的面积=( )平方单位.A .45B .55C .66D .1007.郑徐客运专线(简称郑徐高铁),即郑州至徐州高速铁路,是《国家中长期铁路网规划》中“四纵四横”之一的徐兰客运专线的重要组成部分.2016年7月将要开通运营.高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时.已知郑州到徐州的铁路长约为361千米,原普通车组列车的平均速度为x 千米/时,高铁列车的平均速度比原普通车组列车增加了145千米/时,依题意,下面所列方程正确的是( )A .﹣=1.4B .﹣=1.4C .﹣=1.4D .x+1.4(x+145)=3618.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是( )A .6B .3C .2D .1.5二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=______.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是______(填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”).14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ′,经过点P 再次折叠纸片,使点C 落在直线PB ′上,得折痕PQ 和点C ′,当点C ′恰好落在边OA 上时BP 的长为 ______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM 位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?参考答案与试题解析一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣1【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D.2.有一种圆柱体茶叶筒如图所示,则它的左视图是()A. B.C.D.【考点】简单几何体的三视图.【分析】找到从几何体的左面看所得到的视图即可.【解答】解:圆柱体茶叶筒的左视图是矩形,故选:D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B.4.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .【考点】作图—复杂作图.【分析】由PB+PC=BC 和PA+PC=BC 易得PA=PB ,根据线段垂直平分线定理的逆定理可得点P 在AB 的垂直平分线上,于是可判断D 选项正确.【解答】解:∵PB+PC=BC ,而PA+PC=BC ,∴PA=PB ,∴点P 在AB 的垂直平分线上,即点P 为AB 的垂直平分线与BC 的交点.故选D .5.马老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计,下面是全班45名学生单程所花时间(单位:分)与对应人数(单位:人)的统计表,则关于这45名学生单程所花时间的数据的中位数是( )单程所花时间 5 10 15 20 25 30 35 40人数 6 6 8 14 5 4 1 1A .15B .20C .25D .30【考点】中位数.【分析】根据总人数找出最中间的数,再根据中位数的定义即可得出答案.【解答】解:∵共有45名学生,∴最中间的数是第23个数,∴这45名学生单程所花时间的数据的中位数是20.故选B .6.如图,在一单位长度为1的方格纸上,依如图所示的规律,设定点A 1,A 2,A 3,A 4,A 5,A 6,A 7,…A n ,连接点O ,A 1,A 2组成三角形,记为△1,连接O ,A 2,A 3组成三角形,记为△2,…,连接O ,A n ,A n+1组成三角形,记为△n (n 为正整数),请你推断,当n 为10时,△n 的面积=( )平方单位.A .45B .55C .66D .100【考点】规律型:图形的变化类.【分析】分别求出△1,△2,△3,△4的面积,探究规律后,利用规律解决问题即可.【解答】解:由图象可知,因为S △1=×1×2,S △2=×2×3,S △3=×3×4,S △4=×4×5,…,所以S △10=×10×11=55.故选B .7.郑徐客运专线(简称郑徐高铁),即郑州至徐州高速铁路,是《国家中长期铁路网规划》中“四纵四横”之一的徐兰客运专线的重要组成部分.2016年7月将要开通运营.高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时.已知郑州到徐州的铁路长约为361千米,原普通车组列车的平均速度为x 千米/时,高铁列车的平均速度比原普通车组列车增加了145千米/时,依题意,下面所列方程正确的是( )A .﹣=1.4B .﹣=1.4C.﹣=1.4 D.x+1.4(x+145)=361【考点】由实际问题抽象出分式方程.【分析】直接利用高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时,进而表示出两种列车行驶的时间得出等式即可.【解答】解:设原普通车组列车的平均速度为x千米/时,高铁列车的平均速度为:(x+145)千米/时,依题意得:﹣=1.4.故选:C.8.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6 B.3 C.2 D.1.5【考点】全等三角形的判定与性质;等边三角形的性质.【分析】取线段AC的中点F,连接EF,根据等边三角形的性质以及角的计算即可得出CD=CF以及∠FCE=∠DCF,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCE≌△DCF,进而即可得出DF=FE,再根据点F为AC的中点,即可得出FE的最小值,此题得解.【解答】解:取线段AC的中点F,连接EF,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CF=AB=3,∠ACD=60°,∵∠ECF=60°,∴∠FCE=∠DCF.在△FCE和△DCF中,,∴△FCE≌△DCF(SAS),∴DF=FE.当FE∥BC时,FE最小,∵点F为AC的中点,∴此时FE=CD=.故选D.二、填空题(每小题3分,共21分)9.= 2 .【考点】算术平方根.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.如图,已知直线AB∥CD,直线EG垂直于AB,垂足为G,直线EF交CD于点F,∠1=50°,则∠2= 140°.【考点】平行线的性质.【分析】先根据垂直的定义求出∠AGE=90°,由三角形外角的性质得出∠AHE的度数,根据平行线的性质即可得出结论.【解答】解:∵EG⊥AB,∴∠AGE=90°.∵∠1=50°,∴∠AHE=∠1+∠AGE=50°+90°=140°.∵AB∥CD,∴∠2=∠AHE=140°.故答案为:140°.故答案为:140°.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为 3.13×106 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于313万有7位,所以可以确定n=7﹣1=6.【解答】解:313万=3.13×106.故答案为:3.13×106.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为 .【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为:=.故答案为:.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是 y 1<y 2 (填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”).【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数y=经过点A (﹣3,1)得出反比例函数y=﹣,判断此函数图象所在的象限,再根据x 1<x 2<0判断出A (x 1,y 1)、B (x 2,y 2)所在的象限,根据此函数的增减性即可解答.【解答】解:∵反比例函数y=经过点A (﹣3,1),∴反比例函数y=﹣中,k=﹣3<0,∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵x 1<x 2<0,∴A (x 1,y 1)、B (x 2,y 2)两点均位于第二象限,∴y 1<y 2.故答案为:y 1<y 2.14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为 π﹣2 平方单位.【考点】扇形面积的计算.【分析】连接OC ,作OM ⊥BC ,ON ⊥AC ,证明△OMG ≌△ONH ,则S 四边形OGCH =S 四边形OMCN ,求得扇形FOE 的面积,则阴影部分的面积即可求得.【解答】解:连接OC ,作OM ⊥BC ,ON ⊥AC .∵CA=CB ,∠ACB=90°,点O 为AB 的中点,∴OC=AB=2,四边形OMCN 是正方形,OM=,则扇形FOE 的面积是: =π, ∵OA=OB ,∠AOB=90°,点D 为AB 的中点,∴OC 平分∠BCA ,又∵OM ⊥BC ,ON ⊥AC ,∴OM=ON ,∵∠GOH=∠MON=90°,∴∠GOM=∠HON ,则在△OMG 和△ONH 中,,∴△OMG ≌△ONH (AAS ),∴S四边形OGCH =S 四边形OMCN =()2=2.则阴影部分的面积是:π﹣2,故答案为:π﹣2.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ′,经过点P 再次折叠纸片,使点C 落在直线PB ′上,得折痕PQ 和点C ′,当点C ′恰好落在边OA 上时BP 的长为或 .【考点】翻折变换(折叠问题).【分析】设BP=t ,AQ=m ,首先过点P 作PE ⊥OA 于E ,易证△PC ′E ∽△C ′QA ,由勾股定理可求得C ′Q 的长,然后利用相似三角形的对应边成比例得到m=t 2﹣t+6,即可求得t 的值.【解答】解:过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC ′=90°,∴∠PC ′E+∠EPC ′=90°,∵∠PC ′E+∠QC ′A=90°,∴∠EPC ′=∠QC ′A ,∴△PC ′E ∽△C ′QA ,∴=, 设BP=t ,AQ=m ,∵PC ′=PC=11﹣t ,PE=OB=6,C ′Q=CQ=6﹣m ,AC ′==,∴=.∵=,∴m=t 2﹣t+6, 又∵36﹣12m=t 2,将m=t 2﹣t+6代入36﹣12m=t 2,化简得,3t 2﹣22t+36=0,解得:t 1=,t 2=.故答案为:或.三、解答题(共75分)16.先化简(+),再求值.a 为整数且﹣2≤a ≤2,请你从中选取一个合适的数代入求值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,选取合适的a 的值代入进行计算即可.【解答】解:原式=•=•=•=,当a=﹣1时,原式=(答案不唯一).17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有50 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 3 棵.(保留整数)【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)用植2棵树的学生数除以其百分比即可解答.(2)用总人数减去其他人数即可解答,再填图即可.(3)利用加权平均数的求法,求出总棵树再除以人数即可解答.【解答】解:(1)16÷32%=50;(2)50﹣10﹣16﹣8﹣4=12人,画图如下(3)(1×10+2×16+4×12+5×8+6×4)÷50=3.18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB= 60°时,四边形ADFE为菱形;(3)当AB= 4时,四边形ACBF为正方形.【考点】圆的综合题.【分析】(1)根据EF∥AB,可以得到∠FAB和∠CAB的关系,由AC和AF都是圆的半径,AB是△ABC和△ABF的公共边可以得到△ABC和△ABF关系;(2)根据四边形ADFE为菱形,通过变形可以得到∠CAB的度数;(3)根据四边形ACBF为正方形,AC=4,AB是该正方形的对角线,可以求得AB的长.【解答】(1)证明:∵EF∥AB,∴∠AEF=∠CAB,∠AFE=∠FAB,又∵AE=AF,∴∠AEF=∠AFE,∴∠FAB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF(SAS);(2)连接CF,如右图所示,若四边形ADFE为菱形,则AE=EF=FD=DA,又∵CE=2AE,CE是圆A的直径,∴CE=2EF,∠CFE=90°,∴∠ECF=30°,∴∠CEF=60°,∵EF∥AB,∴∠AEF=∠CAB,∴∠CAB=60°,故答案为:60°;(3)若四边形ACBF为正方形,则AC=CB=BF=FA,AB是正方形ACBF的对角线,∵AC=4,∴AB=.故答案为:4.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.【考点】根的判别式.【分析】(1)根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.(2)从上题中找到K的最大整数,代入方程后求解即可.【解答】解:(1)∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△>0,即22﹣4×1×k>0,解得:k<1;(2)根据题意,当k=0时,方程为:x2+2x=0,左边因式分解,得:x(x+2)=0,∴x1=0,x2=﹣2.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM 位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)【考点】解直角三角形的应用;弧长的计算.【分析】(1)构造∠α为锐角的直角三角形,利用α的正弦值可得AB的长;(2)弧MN的长度为圆心角为90+α,半径为0.8的弧长,利用弧长公式计算即可.【解答】解:(1)作AF⊥BC于F.∴BF=BC﹣AD=0.4米,∴AB=BF÷sin18°≈1.29米;(2)∵∠NEM=90°+18°=108°,∴弧长为=0.48π米.21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?【考点】二次函数的应用.【分析】(1)分别设出两种方案中y关于x的函数关系式,用待定系数法求解,即可解答;(2)根据“两种方案月报酬差额将达到3800元”,得到方程30x2﹣(50x+1200)=3800,即可解答;(3)分别计算出当销售员销售产量达到40件时,方案一与方案二的月报酬,根据方案二的月报酬不低于方案一的月报酬,列出不等式组,即可解答.【解答】解:(1)设y=ax2,1把(30,2700)代入得:900a=2700,解得:a=3,∴y 1=3x 2.设y 2=kx+b ,把(0,1200),(30,2700)代入得:,解得:, ∴y 2=50x+1200.(2)由题意得:30x 2﹣(50x+1200)=3800,解得:x 1=50,x 2=﹣(舍去),答:当销售达到50件时,两种方案月报酬差额将达到3800元.(3)当销售员销售产量达到40件时,方案一的月报酬为:3×402=4800,方案二的月报酬为:(50+m )×40+1200=40m+3200,由题意得:40m+3200≥4800,解得:m ≥40,答:当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬,m 至少增加40元.22.如图1,在Rt △ABC 中,∠ACB=90°,∠B=60°,D 为AB 的中点,∠EDF=90°,DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.【考点】几何变换综合题.【分析】(1)根据含30°的直角三角形的性质和等边三角形的性质解答即可;(2)根据相似三角形的判定和性质以及直角三角形中的三角函数解答即可;(3)由(2)的推理得出,再利用直角三角形的三角函数解答.【解答】解:(1)∵∠ACB=90°,D为AB的中点,∴CD=DB,∴∠DCB=∠B,∵∠B=60°,∴∠DCB=∠B=∠CDB=60°,∴∠CDA=120°,∵∠EDC=90°,∴∠ADE=30°;(2)∵∠C=90°,∠MDN=90°,∴∠DMC+∠CND=180°,∵∠DMC+∠PMD=180°,∴∠CND=∠PMD,同理∠CPD=∠DQN,∴△PMD∽△QND,过点D分别做DG⊥AC于G,DH⊥BC于H,可知DG,DH分别为△PMD和△QND的高∴=,∵DG⊥AC于G,DH⊥BC于H,∴DG∥BC,又∵D为AC中点,∴G为AC中点,∵∠C=90°,∴四边形CGDH 为矩形有CG=DH=AG,Rt△AGD中,即(3)是定值,定值为tan(90°﹣β),∵,四边形CGDH 为矩形有CG=DH=AG,∴Rt△AGD中,=tan∠A=tan(90°﹣∠B)=tan(90°﹣β),∴=tan(90°﹣β).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P (﹣,).(3)直线BC :y=﹣x+3,直线BD :y=﹣3x+9, 当0≤t ≤2时,如下图:设直线C ′B ′:y=﹣(x ﹣t )+3联立直线BD 求得F (,),S=S △BCD ﹣S △CC ′E ﹣S △C ′DF=×2×3﹣×t ×t ﹣×(2﹣t )(3﹣)整理得:S=﹣t 2+3t (0≤t ≤2).当2<t ≤3时,如下图:H (t ,﹣3t+9),I (t ,﹣t+3)S=S △HIB = [(﹣3t+9)﹣(﹣t+3)]×(3﹣t )整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.2016年9月20日。