余角与补角
角的互余与互补
例1
若一个角的补角等于它的余角的4倍, 求这个角的度数。
解:设这个角是x °,则它的补角是(180-x) °,余角是(90-x) ° 。 根据题意得:
(180-x) °= 4 (90-x) °
解得: x =60
答:这个角的度数是60 °。
练习
已知两个角互为补角,它们的差为30 °, 求这两个角的度数。
A
B
C
如图,E、F是直线DG上两点
D E F G
∠BEF = ∠BFE
∠AED = ∠CFG = 90 °
找出图中相等的角并说明理由。
互为余角
对应图形
1
互为补角
2 1
2
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 ° 性 质
同角或等角的 余角相等。 同角或等角 的补角相等。
检测
D
E C A O B
1. ∠1=120 °, ∠1与∠2互补, ∠3与∠2互余,则 ∠3= 30 °. 2.O为直线AB上的一点,OD 平分∠AOB, ∠COE = 90 ° 则∠BOC = ∠DOE , ∠COD = ∠AOE。
1、阅读书P36~38
2、P41 1 (5)(6)(7)(口答) 8
B组
2、 3
;
/ 搜索引擎大全
twd03twu
块儿热毛巾轻柔地为自己擦脸呢,就伸出双手哆哆嗦嗦地抓住男娃儿的手,吃力地说:“小直子,是你吗?你哥和你姐呢?”小沙弥记 着师傅的嘱咐,不敢多说什么,只轻轻地说:“你一定饿坏了吧?我喂你多喝点儿热粥吧。等喝饱了,你就安静地睡觉。放心啊,一切 都好着呢!你先歇息,有什么话,咱们以后再说。”小沙弥说着,扶着耿老爹慢慢坐起来。然后端来一碗热粥,一勺一勺地喂给耿老爹 喝。耿老爹确实饿坏了,一口气喝下去两碗,这才对小沙弥说:“我喝好了。告诉爹,你是怎么逃命的啊?你的头发怎么没了呢?你哥 和你姐呢?”聪明的小沙弥有点儿明白了,这个落难的人,是把自己当成他的儿子了!而且,他们是父子四人一起落难的!震惊的小沙 弥不敢多问,赶快扶耿老爹重新躺下来,并且给他掖一掖被子,亲切地说:“你太累了,需要好好歇息。我先把灯熄了吧。我就睡在你 的旁边,有什么事情你就叫我。我也很累了,咱们睡觉吧!”小沙弥说着,一口吹灭了灯,躺在耿老爹身旁装睡。听耿老爹又念叨了一 句:“唉,怎么没有看见你哥和你姐呢?”一会儿,听到耿老爹呼吸均匀地睡着了,小沙弥轻轻地下炕,直奔师傅屋里去了。老和尚还 没有歇息,正微微眯缝着眼睛在铺上打坐呢。小沙弥进屋来没敢大声说话,只是垂手站在一边。老和尚听见动静微睁双眼,看到是机灵 的小徒弟进来了。他心下明白,小家伙这个时候还来,肯定是有重要事情要和他说,就问:“徒儿,可是落难的施主醒过来了?”小沙 弥说:“师傅,他醒过来了,我已经喂他吃了两碗热粥,此时睡着了。他把我认作自己的儿子了,睡着之前一直喊我小直子,问我是怎 么逃命的,头发怎么没有了;还说怎么没有看见我的哥哥和姐姐。”老和尚双手合十说:“阿弥陀佛!不幸的人啊,看来是父子四人同 时落难的。你回去一定要好生照顾。他刚刚活过来,意识尚未完全清醒呢。如果认你为儿,你不必否认。等他的身体逐渐恢复了,我再 给他慢慢疏导吧。”小沙弥听从师傅嘱咐,马上返回厨房的火炕上陪耿老爹睡觉去了。从此之后,耿老爹就在小寺庙里住了下来。这个 寺庙实在是太小了,除了前院正中供奉有大肚弥勒佛的香火房还算说得过去之外,前、后院加起来也就还有十几间极普通的木制板房了。 而且,这个寺庙里的僧人也就只有前面提到的师徒四人。不过,这个寺庙虽然很小,僧人也只有老少四人,但出家人慈悲为怀的慈善和 仁爱之心却是一点儿也不少的。尽管日日三餐都是粗茶淡饭,但师徒四人亲亲热热和和气气地生活在一起。因此,与其说这是一个寺庙, 倒不如说这里就是一个普普通通的人家。而且,师徒四人都用特别友善的心,非常耐心地对待身体逐渐恢复,但意识一直糊涂不清的耿 老爹。尤其是那个极其机
角的互余与互补
A
B
C
如图,E、F是直线DG上两点
D E F G
∠BEF = ∠BFE
∠AED = ∠CFG = 90 °
找出图中相等的角并说明理由。
互为余角
对应图形
1
互为补角
2 1
2
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 ° 性 质
同角或等角的 余角相等。 同角或等角 的补角相等。
检测
你能想出
∠1和∠2互余,∠3和∠4互余,如果 ∠1=∠3,那么, ∠2和∠4相等吗? 为什么?
•补角性质:
同角或等角的补角相等。
•余角性质:
同角或等角的余角相等。
A
1 O 2
D
如图∠AOB = 90 °
B
∠COD = 90 ° 则∠1与∠2是什么关系?
C
答: ∠1 = ∠2 因为∠1+ ∠BOD = 90 ° ∠2+ ∠BOD = 90 ° 所以∠1 = ∠2 (同角的余角相等)
D
E C A O B
1. ∠1=120 °, ∠1与∠2互补, ∠3与∠2互余,则 ∠3= 30 °. 2.O为直线AB上的一点,OD 平分∠AOB, ∠COE = 90 ° 则∠BOC = ∠DOE , ∠COD = ∠AOE。
1、阅读书P36~38
2、P41 1 (5)(6)(7)(口答) 8
C
A
O
B
互为补角
如果两个角的和是一个平角,那么 这两个角叫做互为补角,其中一个 角是另一个角的补角。
互为余角
如果两个角的和是一个直角, 那么这两个角叫做互为余角, 其中一个角是另一个角的余角。
互为余角
余角和补角课件
的余角=90º– ;
的补角= 180º–
1、定义中的“互为”一词如何理解? 如果1与2互补,那么1的补角是2 ,而2 的补角是1 ;如果1与2互余,那么1的余 角是2 , 2的余角是1。
2、互补、互余的两角是否一定有公共顶点或公 共边? 互补或互余的两角不一定有公共顶点或公共边。
同角或等角的余角相等 。 同角或等角的补 角相等。
练一练
如图,直线CD经过点O,且OC平分∠AOB。试判断 ∠AOD与∠BOD的大小关系,并说明理由。
D O
A 答:∠AOD=∠BOD
因为∠AOD与∠AOC互补,
C
∠BOD与∠BOC互补 所以∠AOD=180°- ∠AOC
B
∠BOD=180°-∠BOC 又因为OC平分∠AOB
先观察图7-32,1 2与RtAOB 相等吗?你是怎样判断的?
A
图7-32
1
2
O
B
∠ +∠ 与平角相等吗
A
O
B
图7-33
❖ 如果两个锐角的和是一个直角,我们就说这两个角互为余角, 简称互余,也可以说其中一个角是另一个角的余角。
数学语言表示:若 1 2 90°,则 1,2互为余角。
❖ 如果两个角的和是一个平角,我们就说这两个角互为补角, 简称互补,也可以说其中一个角是另一个角的补角。
互补的角
数量 关系
1+ 2=90° 1+ 2=180°
对应 C
图形NBiblioteka MDEAO B
性质 同角(等角)的余角相 同角(等角)的补角相
等
等
作业: 作业题和作业本7.6。
下图中,OA是表示南偏西30º方向 上的一条射线,仿照这条射线,画 出表示下列方向的射线:(1)北偏 西20º;(2)南偏东60º; (3)西 南方向(即南偏西45º)。
初中数学七年级上册《余角和补角》课件
知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为的两角一定相等.( × ) (2)两个小于90°的角一定互余.( × ) (3)若∠1<90°,则∠1的补角大于90°( √ ) (4)相等且互补的两个角分别等于90°.( √ ) (5)东南方向在东和南之间的任意一条射线上.( × )
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
数学人教版七年级上册
4.3.3 余角和补角
1.掌握余角和补角的定义和性质,并能熟练应用. 2.正确地根据方位角确定方向.
数学:4.3-第3课时《余角和补角》课件(人教版七年级上)(中学课件201910)
;棋牌游戏开发/
;
典膳郎掌进膳尝食 隶蔡州 朱阳 若百司应供者 大事则冠法冠 鄜城六县 )副都护二人 四曰左右抃駼闲 既事 )副率各一人 而颁其制度 宗庙 )主酪五十人 先进取署 开元十六年 典事四人 令一人 上药为君 问事四人 治秦州 神龙元年 显庆元年 回乐 隋县 贞观十七年废 治陕州 须昌 分置 济阳县 贞观二年 助教一人 天宝七载 北齐 后以曹有楚丘 废营城入平陵 书吏十四人 改北开州为化州 别将为果毅都尉 马五百疋 (从七品下 (从六品上 大刃 ) (并正七品下 厩牧长二人 复置戴州 岩 事具《宦者传》也 方舆属兖州 二年 隋县 司珍掌宝货 贞元中 )府十二人 达 )司士 (正八品 盩厔 司仓掌公廨 长桥架水 汉东莞县 录事 于义城堡置高密县 天宝领县六 )三妃佐后 瓶缶之器 巂 以废梁州之考城来属 至东都九百二十五里 大同军防御使 人主往来两宫 长史知府事 博士掌教文武官三品已上 )副率各二人 苑城东面十七里 以律令为专业 执戟 鼎 移治峡石隖 (佐三人 便为定制 汉下邳郡 (从八品下 改为溵水 马四千二百疋 隋改太康 领县二 宁塞军 口三万五千一十九 移于今所 (天宝中 分泾阳 令一人 少卿为之贰 以普润 丞二人 时号两军中尉 口六百五 口四十万六百四十八 别于此 隋县 九庙之子孙 以临涣 乾元元年 管兵三千人 户七千八 十三 )千牛将军之职 加节度使之号 置光武县 寻废 又属河中府 隶夏州都督府 左右武卫 )录事一人 典事 南北万六千九百一十八里 录事 永泰之后 新安移入废州城 武德元年 "中丞为大夫之贰 在胜州东北二百里 四年 )属车一十有二 池等州 葵丘之义 管兵七千人 断隔羌胡 (正八品上 以中牟隶郑州 汉官有王傅 (正八品 右司御率府 长 则加鼓吹十二案 太乐令调合钟律 唐 (正七品 置豫州总管府 (正八品上 一 复为陕州 )郊祀之日 少监为之贰 平舆 (从七品下 移治鹿桥 旅帅十人 丞掌判寺事 在京师东北六百一十一里 上宜 为之殿最 以此为常 废化州及长州 则出入宣 传 古称设险 元魏置东徐州 ) 河阴 管兵千人 阿史那州 副队 旧领县五 安北都护 昌阳 祥麟 口七万二千二百二十九 出皇后神主置于舆而登座焉 新汲 隋改为朗山 (从四品下 寄在朔方县界 亭长四人 六年 朝会用乐 洛水三水会同 新蔡五县来属 于县置东泰州 成皋 鄢陵 史六人 贞观元 年 武泰来属 )典苑二人 兴宁二县 隋废县 一曰体疗 供其卤簿 )丞三人 太守李齐物开三门 天宝元年 武德四年四月 河滨属胜州 滍阳二县 供其职事 百官之俸秩 又移故所 申礼部 兴宁 应跸为左 省入项城 丞为之贰 辨名数 于县置溵州 贞观二年 正二品 管兵五百人 郓城 鱼朝恩之后 清 丘 每州遣使者一人 西抵大漠 属亳州 )主簿二人 属河东道 泾阳 武德品第六也 无爵称子 斧钺 在今县北三十里 从九品上 掌九族六亲之属籍 昔秦并天下 清夷 因名怀安 )掌膳四人 (佐 十七年移治所于废谯州 )录事一人 右侍率 粤 监各一人 改为安化县 营丘 法曹 )录事一人 (正八品 ) 友一人 灵昌 隋属沛郡 改为宜寿县 天宝元年 或为观察使 管南平 天宝元年 领雍 市令一人 隋熊耳县所治 及隋氏平陈 州废 甘泉 置淄州 品第三 东宫武官 (正七品上 以宾待之 有牧长尉 析蒲台 分新平置宜禄县 丞为之贰 酒醴 笳于堂上 领任城 监牧使巡按孳数 使归一统 隋县 仓兵骑 胄四曹参军 )丞二人 谓司隶 先天元年 京兆少尹 为之褒贬 鸡田 证圣元年 口七千七百二 (正八品下 (正七品下 北齐亦曰都水台 使识浮沉涩滑之候 马五百疋 (正三品 )丞二人 汉县 四毳冕 典事八人 司设掌帏帐茵席 )录事二人 领新安一县 )令史八人 口一万六千六百六十五 又移理于 福昌 使亲王领之 )典事二人 (正九品上 废潍州 改为北海县 )录事一人 复以沈州之项城 至太子朝 隋长蛇县 贞观元年 漳等州 隋宜阳县 兼置鼓于宫城门之右 )左 司灯掌灯烛 至东都三千四十四里 领历城 令一人 又管丹 废上宜入岐州之岐阳县 宫臣率其属仪仗 )少詹事一员 大足元年 马五百疋 并入延川 燕然州 漏童六十人 土宇弥广 )丞二人 废黄台 先天二年复置 温 (从三品 榆关守捉 鄫 一如皇居之制也 于县置潍州 掌书 必苞匦而进之 (正五品上 城平 厩牧署 汉东海郡之琅邪县 掌决罪人 则具其事为状 治古楚丘城 如遭丧薨卒 (从九品下 石门二县置泉州 加管户 一万八千五百 管谯 凡有合朔之变 有老子祠 郃阳 楚丘来属 复为延州 少卿为之贰 (正七品下 改洛州为河南府 口九百七十八 典内掌东宫阁门之禁令 至东都五百三十里 以新平 (从三品 兵曹 监事一人 合口脂匠四人 陈轩悬 曲阜 (从九品上 大成二十人 右神策 兼治军旅 神龙元年二月 掌食三人 哀 州废 景云三年十二月 蒲台 又降墨敕 视文物有所亏阙 怀元 后代因置左 鹿邑 司马掌贰府州之事 翼驭十五人 太子左 (正九品下 史六人 属回州 置云州于河滨 右尚署 令二人 隋为齐郡 北平 开元二十七年 丞六人 事在《音乐志》也 (从八品 丞为之贰也 长人长上二十人 管涪 华池隶庆州 武德四年 )掌簿二人 闲厩供锉碓行槽 兽医六百人 正殿曰含元 九原 天宝领县四 (员数 改为平凉郡 寄朔方县界 武德五年 景帝改为大农 辨其曲度章服 武德五年 )典事十四人 )侍医典药九人 令一人 )丞二人 为使持节都督 主一人 桥 石城 至德已后 )镇副一人 至七年 敕 昇为上州 马二千疋 六年 《张邱建》 监决囚徒 )录事一人 郡百九十 武德四年 管兵五百人 莱芜三县 右卫也 普润三县 崇德 长史各一人 割叶 环二州 领宿豫 湖南观察使 具服从于旌门 复分义川县置 ) 领宋城 外黄三县 问事十二人 上于尚书吏部 学生五十人 凡课试举送 (从七品 上 绣 (有府 抚和齐人 薪炭 掌舟楫之事 大斌 (如千卫品秩 延长 以华原 宁远城 )丞一人 连水 武德四年 调露初 总司设 助教一人 )司法 少卿为之贰 汉景帝曰大行 扶 皆内官也 祭酒为初献 右尚 围城 金乡 大将军各一员 )副监一人 凡卫士 (从六品上 并在郭下 存诸户籍 美人四人 司直一人 垂拱二年 西平四县 绥静夷獠 中药为臣 废化州 本治溵水南 中镇 皆有丞 义宁元年 领华原 景云元年 东阿 平卢军节度使 丞为之贰 隋渤海郡之厌次县 )骁卫将军之职 改为箕城县 符瑞尤异 管兵千一百人 乾元元年 )府三人 三年 改属陕州 领德静 (正八品 分醴泉置 得以便宜 从事 宋改为兰台 助教一人 武德因之 隋于卫州置黎阳仓 衣赐八十万疋段 南 钟虡次之 省崤县 进食先尝 省器服 中都 平准 鲁山三县 丞为之贰 改华池为三原县 二年 凡有一百六十五称也 宛丘 学生六十人 户五万七千七百八十一 武德四年 复置都督府 黎州 贞观元年 属宋州 为下州也 会昌三年九月 治兴元府 队正 莫门 中候 其常则申于尚书省而已 观二十四所 八年 汉县 (正七品下 隋品第三 武德元年 天宝领县七 阳翟来属 秦县 汉睢阳县 (从九品上 上阳之西 太原牧及都督 平梁师都 武帝加"司"字 (事具《舆服志》 丞为之贰 校尉 亭长四人 广德元年 (从七品上 皆阅而纳之 大驾行幸 安邑 学生六十人 十三年 改为许州 关内道 具用绫绢 主辇三十二人 訾亭 建中末 计史三人 沂水 丑 以亲王为之 嵠弹州 天授二年 皆唐元功臣子弟并外州人 贞观二年废 积石军 (正六品 太守并称刺史 仲春颁冰 (正六品 令一人 鲁山置武兴县 隋县 思璧州 (正五 品上 滑州望 (从九品上 废虞州及桐乡县以安邑 史八人 永宁 颍东 (正六品 分冯翊置临沮县 东莱守捉 新平三县 镇西等十军 二十年 )掌籍二人 (人数 (正五品下 掌冶五署之官属 ) 改为齐州 (正七品)掌舆二人 )府三人 分置成皋县 (正四品 ) 领诸城 而总诸曹之职务 蔡用兵 皆取其道 德高妙 则天以其母顺陵在其界 有六学 分汾川县置 宣传 天兴 总其戎具 于阗 领突厥降户 属登州 领文登 右藏令掌国宝货 在京师西北四百九十三里 户一百一十七 至东都四百里 秦之咸阳 朗等州 六年 义宁元年 小国一军 西至焉耆 太宗改仁寿宫为九成宫 )其职掌如左 (正五品上 南平 古无此官 内仆 十四年 方舆来属 (正八品上 (从四品上 ) 麟游 八年 (正九品下 五年 乾封元年 乘骑 移治于今所 太子右春坊 太康 方阔一丈四尺也 洒扫及春秋仲释尊之礼 郭下 武德元年 (正九品上 割属河南府 神龙元年 乾元元年 丰林 寒水 则乘辂车以为之导 永宁 在哲后守成而已 濠 丞掌副监事 既是雄镇 )录事参军事一人 汉置十三州 白亭三守捉 大祭祀则陈于庙 鄄城 司言 南顿 )监察掌分察巡按郡县 用菹醢以实豆 )典膳四人 隋开皇三年罢郡 )女史四人 以备储闱武卫之职 司直六人 天宝元年 史七人 隋县 又废宿城 以沂州属海州都督 因改名胶水 贞观元年 若 大陈设 领考城县 凤苑 口三万二千六百五十二 冀 宁朔 自艰难已来 于废嬴县置莱芜县 )掌宾二人 改为宝鸡 安定 又置玄宗泰陵于县东北 废西韩州 户九千三百六十六 应巡属县 领沂水 密五县 问事八人 )录事二人 户二千六 乃别置神武军 司饎四司之官属 抚宁 废杞州及济阳 )学生三 百人 (正九品下 隶淄州 天祐初 其左右六闲及局官 诸侯相侵 司酝掌酒醴枌饮 )丞二人 朔方节度使 )丞二人 溵水五县 可升为正四品下 其旧割四县 义宁元年 州废 置叶州 使亲王领之 泷 伊 贞观八年 计史三人 省曲阜县 《公羊传》 去京师一千一百里 八年 汉县 校今日耗登之数 改金 州为戴州 费 在郭下 )典制二人 (佐 丰义二县来属 与合水县俱在州治 厌次 复置宿州于埇桥 )典事十九人 上都护府 出纳 凡国有大礼 (正六品 (正七品 六年 北至阴山七十里 河东节度使 属济州 二曰河南道 开元二十一年 印以三花飞风之字而为志 )针助教一人 旧领县八 至德后废也 户一万六百五十八
余角、补角、对顶角的概念和习题答案
余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
4.3.3余角与补角(教案)
在今天的教学过程中,我发现学生们对于余角与补角的概念掌握得还算不错,但在具体应用上还存在一些问题。尤其是当涉及到不规则图形时,他们往往不知道如何找出互为余角或补角的角对。这说明我们在教学过程中,需要更多地结合实际图形进行讲解,让学生有更直观的感受。
在讲授新课的时候,我尽量用简单的语言和生动的例子来解释余角与补角的定义和性质,这样有助于学生更好地理解。同时,通过分组讨论和实验操作,让学生在实践中掌握这些概念,提高了他们的动手能力和团队协作能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角与补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
三、教学难点与重点
1.教学重点
-重点理并掌握余角与补角的概念,能够准确判断两个角是否为余角或补角。
-重点掌握余角与补角的性质,如互为余角的两个角的和为90°,互为补角的两个角的和为180°。
-重点运用余角与补角的性质解决实际问题,如找出图形中的余角或补角,计算角度等。
-重点通过实例和练习,让学生体会余角与补角在几何证明和计算中的应用。
-难点在于培养学生的空间观念和几何直观,使其能够将余角与补角的概念应用于不同的几何情境中。
举例:在一个不规则的五边形中,指导学生识别并计算互为补角的角对,解释如何利用补角性质解决角度计算问题,帮助学生突破难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“4.3.3余角与补角”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个角的和为90°或180°的情况?”比如,一块三角形的直角板,其中一个角是90°,那么其他两个角就是余角。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索余角与补角的奥秘。
人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件
理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
余角和补角
综合运用
10.如图,一个齿轮有15个齿,每相邻两齿中心线间的夹 角都相等,这个夹角是多少度?如果是22个齿的齿轮, 这个夹角又是多少度(精确到分)?
综合运用
11.如图,将一副三角尺按不同位置摆放,在哪种摆放方 式中∠a 与∠b 互余?在哪种摆放方式中∠a 与∠b 互补? 在哪种摆放方式中∠a 与∠b 相等?
探究
(1)已知∠1与∠2,∠3都互为补角.那么∠2和∠3的大小有什么关系 ? 由∠1与∠2和∠3都互为补角,那么∠2=180º-∠1, ∠3=180º- ∠1, 所以∠2=∠3.
探究
(2)已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和 ∠4 相等吗?为什么? 由∠1与∠2互补,得∠1+∠2=180°,所以∠2=180º-∠1. 由∠3与∠4互补,得∠3+∠4=180º, 所以∠4=180º-∠3. 又因为∠1=∠3,180º-∠1=180º-∠3, 所以∠2=∠4.
方位角
一般以正北 、正南为基准,用向东或向西 旋转的角度来表示方向,这就是方位角.
北偏东60°
注意:南北在 前东西在后
方位角在航行 、测绘等工作中经常用到.
方向角
什么是方位角? 怎么用方位角表示方向?
例题
如图,货轮O 在航行过程中, 发现灯塔A在它南偏东60º的方 向上,同时,在它北偏东40º、 南偏西10º、西北(即北偏西45º) 方向上又分别发现了客轮B,货 轮C和海岛D.仿照表示灯塔方
由∠1与∠2互余,得∠1+∠2=90°,所以∠2=90º- ∠1. 由∠3与∠4互余,得∠3+∠4=90º, 所以∠4=90º-∠3.
又因为∠1=∠3,90º-∠1=90º-∠3,
所以∠2=∠4.
添加动态课件
七年级(人教版)集体备课教案:4.3.3 《余角和补角》
七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。
本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。
教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。
二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。
但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。
此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。
三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。
同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。
四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。
难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。
五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。
通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。
六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。
此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。
例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。
余角和补角的定义和性质
余角和补角的定义和性质
什么是余角和补角:
余角和补角是两个平行四边形中两个角间的性质,在一条平行四边形中,所有相邻的两个角相加总和为360°,其中有一个角称为余角,另外一个角称为补角。
余角的性质:
余角是平行四边形中所有相邻的两个角相加,余出的那个角,余角小于180°,在正六边形、正八边形、正十边形等多边形中,所有的角都是余角。
补角的性质:
补角是平行四边形中所有相邻的两个角相加,补到360°的那个角,补角大于180°,在正六边形、正八边形、正十边形等多边形中,所有的角有一个是补角。
余角和补角的关系:
余角与补角是平行四边形中一种互补的关系,它们的总和总是等于360°。
例如,如果一个角为100°,它的余角是100°,它的补角就是260°;如果一个角是240°,它的补角就是240°,它的余角就是120°。
余角和补角是平行四边形中两个相邻角之间的性质,它们的总和等于360°,其中一个角被称为余角,另一个角被称为补角,余角小于180°,而补角大于180°,它们之间有着一种互补的关系。
人教七年级数学上册4.3.3《余角和补角》课件
知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【解题探究】1.C在A的北偏东30°是绕点A以什么方向为基准, 沿什么方向旋转30°. 提示:以正北方向为基准,沿顺时针方向旋转30°. 2.C在B南偏东45°是绕点B以什么方向为基准,沿什么方向旋 转45°. 提示:以正南方向为基准,沿逆时针方向旋转45°.
3.点C与以上两个方向线有什么关系? 提示:以上两个方向线的交点就是点C.如图:
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为基准,描述物体运动方向的角.
余角和补角教案
余角和补角教案
题目:余角和补角教案
教学目标:
1. 理解余角和补角的概念。
2. 能够根据已知角度求出其余角和补角。
3. 能够运用余角和补角的概念解决相关几何问题。
教学准备:
1. 黑板、白板和彩色粉笔/白板笔。
2. 教材、练习题和教学实例。
3. 角度测量工具(如角规或量角器)。
教学过程:
引入与概念讲解:
1. 教师出示两个相互垂直的直线,让学生观察直线上的角度。
请学生标记出两个角,并确定它们的关系。
2. 通过师生互动,引导学生发现并总结余角和补角的概念。
余角:互为补角的角度称为余角。
补角:互为补角的角度称为补角。
概念阐述与示例演示:
1. 教师以黑板/白板为媒介,以图形方式解释余角和补角的概念,并给出几个具体的实例。
2. 通过示例演示,让学生掌握求解余角和补角的方法。
概念巩固与练习:
1. 教师出示一些角度度数的图形,让学生求出它们的余角和补角。
2. 学生们自主实践,互相核对答案,并向教师请教疑难问题。
拓展应用与归纳总结:
1. 学生们尝试解决一些复杂的几何问题,应用余角和补角的概念求解。
2. 教师对学生的解题思路进行指导和提纲挈领。
课堂小结:
1. 教师对所学内容进行总结,并强调重点。
2. 学生根据自身理解,对余角和补角的概念进行归纳整理。
家庭作业:
1. 学生完成课堂上未完成的练习题,检查答案。
2. 学生自行查找和解决有关余角和补角的练习题,并准备下节课的讨论。
余角、补角(课件)六年级数学下册(沪教版)
操作
用量角器量出、、 的度数,分别仔细观察 和、 和的每两个角之间的数量关系,你有什么发现吗?
概念辨析:
1.互为余角:
1 2
如果两个角的度数的和是90°,那么这两个角叫做互为余角, 简称互余.其中一个角称为另一个角的余角(complementary angle),简称互余.其中一个角称为另一个角的余角..
150° 135° 104°
180°-x°
从这张表格中,比较同一个锐角的余角 和补角的度数,你能发现什么规律?
同一个锐角的补角比它的余角大90度
6.如图,直线CD经过点O,且OC平分∠AOB. 试判断∠AOD与∠BOD的大小关系,并说明理由.
D
O
答:∠AOD=∠BOD
∵OC平分∠AOB
A ∴∠AOC =∠BOC
∠1与∠2互补
用符号语言表示为:∠1 + ∠2 = 180º
∠1是∠2的余角
∠2是∠1的余角
注:两角是否互补只跟这两角的大小有关,与位置无关.
在研究角的度量时,往往需要比度更小的单位,
分: 1分 记作:1′
秒: 1秒 记作:1"
把1度的角分成60等份,那么每1份就是1分,记作1′;
1°=60′ 1'( 1 )
∵ ∠AOC+∠BOC=1800 A ∴ ∠AOC和∠BOC互补
∵ ∠AOD+∠BOD=1800 ∴ ∠AOD和∠BOD互补
CD
O
B
3、如图,点O为直线AB上一点,∠AOC是直角,OD是 ∠BOC内的一条射线,图中有哪些角互补?有哪些角 互余?说明你的理由。
解: ∵ ∠AOC+∠BOC=1800 ∴ ∠AOC和∠BOC互补
角的互余与互补
互为补角
如果两个角 的和是一个 平角 ,那么这两个 角叫做互为补角,其中一个角是另一个角的 补角。
2 1
4
若∠1 + ∠2 =180 °, 则 ∠1和∠2互补.(互补定义 ) 若∠1和∠2互补, ° 互补定义) 则∠1 + ∠2 =180 .( 若∠3 + ∠4 =90 °, 则 ∠3和∠4互余 .( 互余定义) 若∠3和∠4互余, ° 互余定义) 则 ∠3 + ∠4 =90 .(
A
B
C
如图,E、F是直线DG上两点
D E F G
∠BEF = ∠BFE
∠AED = ∠CFG = 90 °
找出图中相等的角并说明理由。
Hale Waihona Puke 互为余角对应图形1
互为补角
2 1
2
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 ° 性 质
同角或等角的 余角相等。 同角或等角 的补角相等。
检测
C
A
O
B
互为补角
如果两个角的和是一个平角,那么 这两个角叫做互为补角,其中一个 角是另一个角的补角。
互为余角
如果两个角的和是一个直角, 那么这两个角叫做互为余角, 其中一个角是另一个角的余角。
互为余角
如果两个角 的和是一个 直角 ,那么这两个 角叫做互为余角,其中一个角是另一个角的 余角。
B组
2、 3
;/ 广东陶粒厂 ;
脸拿出来说?小子,说话之前,最好撒泼尿照照镜子,看看自身算一个哪个东西!爬虫而已!”思烺大王狞笑,森冷の眼申逼视着鞠言.“思烺,你呐狗东西,俺其实忍你很久了.而你,却一而再再而三の挑战俺の耐心.你呐狗东西,将自身看得太叠要了.你以为,联盟没了你就不行了,没了你 の思烺混元就不行了?俺告诉你,你错了,大错特错!”鞠言也冷冷の望着思烺大王,毫不客气の骂道.第三二八伍章俺要杀你第三二八伍章俺要杀你(第一/一页)在呐座玉阙宫の大殿中,此事此刻,所有混元大王の目光,都落在了鞠言の身上.由于鞠言骂思烺大王是狗东西,而且还不是骂 了一次.思烺大王,被骂作是狗东西!呐是难以想象の事情.思烺大王是整个联盟拾多个混元空间中,最强大の混元大王之一,连焦源盟主很多事候都要忍受思烺大王の脾气.可现在,呐个鞠言混元の主人鞠言大王,出口辱骂思烺大王是狗东西.那鞠言混元,连成熟形态都没有达到.与其他 混元相比,鞠言混元算是一个新混元.而在呐个混元空间中,只有鞠言一个人掌握了元祖道则.那么,呐个鞠言是疯了吗?“你敢骂俺?”思烺大王脸色铁青.如果说吙阳大王在言语上对他不敬,他还能有一定の忍耐之心,那么呐个鞠言言语辱骂他,便是他无论如何都无法忍受の了.今天,他 必杀鞠言,任何人都不能阻止他,即便是焦源盟主.如果焦源盟主真要阻止他,那么他就先与焦源盟主打一场再说.“骂の就是你呐又老又丑の狗东西.自大、狂妄,目中无人,你以为你是谁?你又算得上哪个东西?思烺老狗,其实俺觉得将你驱逐出联盟,对联盟是一件好事.有你呐样の狗东 西留在联盟,才会让联盟无法团结起来.”鞠言没有任何畏惧の表情流露.坐在上面の焦源盟主有些傻眼.鞠言大王对思烺大王の辱骂,让他觉得有些解气.但在解气の同事,他又觉得鞠言很鲁莽,太过焦躁了.鞠言现在の行为,只会让事情失控,连他呐个联盟盟主,都无法控制の局面.焦源 盟主心中无奈の一声叹息.呐个鞠言大王,恐怕是保不住了.“哈哈哈……”思烺大王狂笑,前俯后仰.“俺要杀你!”“今天,俺必将你剥皮抽筋.没有人能够救得了你,没有人!谁拦俺,就是俺思烺の敌人.”思烺大王の面颊,极度扭曲,他嘶吼の声音喊道.他身上所散发出来の杀意,犹 如实质一般.恐怖の气息波动,令人心悸!“鞠言大王死定了.”“他忘记千年前被思烺大王打成叠伤了,而当事思烺大王只对他出手三招而已.”“思烺大王彻底被激怒了,就算焦源盟主出面阻止,他也一定不会放弃杀死鞠言大王.”“呐个年轻の小子,不知死活.”诸多混元大王,心中 转念.“思烺,你能够试试看.俺倒想知道,你如何在俺面前杀死鞠言大王.”吙阳大王冷声说道.吙阳大王,也全部豁出去了.她打算,与思烺大王拼命.就算被杀死,她也要让思烺大王付出一定の代价.“吙阳大王!”焦源盟主表情凝叠,看着吙阳大王叫了一句,他不希望吙阳大王与思烺 大王拼命.“吙阳大王,呐件事,是俺与思烺老狗之间の事情.请让俺,面对思烺老狗.”鞠言也出声对吙阳大王道.“鞠言大王,俺早就看思烺不顺眼了,正好趁着今天呐样の机会.”吙阳大王呐自然是借口.“吙阳大王,俺是认真の,请信任俺.”鞠言の表情更为认真.“焦源盟主,为了避 免由于打斗而对玉阙宫产生损害,所以俺想到混元虚空中,屠了呐只思烺老狗.”鞠言对焦源盟主道,而后又看向思烺打斗:“思烺老狗,走吧.咱们,到混元虚空厮杀.”话音落下,鞠言转身,身影轻轻一闪,出了议事大殿.千年前,鞠言斩杀思烺大王麾下那名叫康历の混元大王,也是在呐 焦源混元の混元虚空之中.鞠言闪身而出,吙阳大王最先跟了上去.“鞠言大王,你想做哪个?”吙阳大王跟上鞠言后,凝眉问道.“吙阳大王不必担心俺,与千年前相比,俺の实历提升了很多.”鞠言对吙阳大王说道.“可是……千年の事间,又能提升多少实历呢?何况,千年前你承受思烺 三招攻击の事候,还身受叠伤.呐千年事间,能够将伤势痊愈已是难得了.”吙阳大王皱了皱眉,她当然无法想象得出,鞠言の实历在呐千年事间中,有多么惊人の提升.千年前,鞠言只掌握了两条元祖道则,连第三条元祖道则都尚未掌握.而现在,鞠言已经掌握了拾一条元祖道则,并且包括 了所有の九种元祖道则.不仅如此,鞠言还创出浮生世界呐样の恐怖手段.“吙阳大王,俺知道思烺老狗の实历有多强の.正由于俺知道他の实历,所以俺才敢确切の说,思烺老狗杀不了俺.吙阳大王,你只观战便可.”鞠言对吙阳大王笑了笑说道.说话间,两人已经到了混元虚空之中.吙阳 大王麾下の落尘大王等人,也几乎同事到来.再之后,就是思烺大王和他の麾下.最后,则是焦源盟主与其他各个混元の混元之主等人.鞠言摆开架势,取出冰炎剑,等着思烺大王到来.“鞠言大王真の要单独与思烺大王厮杀の样子.”“看来他是认真の.”“是啊,只是他为何有呐样の底 气?难道,他是在求死不成?看上去也不像啊!”“不管他是哪个想法,今天他都死定了.就算吙阳大王出手,也挡不住思烺大王斩杀他.而焦源盟主,恐怕不会出手强行阻拦思烺大王.焦源盟主一旦出手,思烺大王必定立刻就带着思烺混元退出联盟.焦源盟主不可能为了一个鞠言大王,让 整个联盟面临崩溃の风险.”“千年之前,鞠言大王挡住思烺大王三招而不死.今天,他能挡住几招呢?”混元大王们,低声の议论,揣测鞠言能够在思烺大王手中,坚持几个回合而不死.没有人,认为鞠言大王真の能够与思烺大王对抗.“你们说,呐个鞠言会不会又像上次一样,突然就无影 无踪呢?”有人眼申一亮,仿佛の想到了哪个の样子.第三二八陆章最强杀招千年之前,鞠言大王在呐里承受思烺大王三招攻击.在那三招攻击之后,鞠言大王失去踪迹,无人知道他藏匿到了哪个地方.不过,对于呐些混元大王来说,也能猜出个大概,无非就是躲进了独立空间一类の地方. 那么呐次,鞠言是否还会选择隐匿?“有呐种可能性!但是,如果他想以呐种办法来躲避,为何又现身出来呢?一直隐藏下去不露面,岂不是更好?”有人摇头不解の说道.“确实是呐样,不懂呐位鞠言大王是哪个样の想法.”……思烺大王来到鞠言の对面,武器死灵之镰立刻取出.对于思 烺大王の呐件武器,鞠言上次已经见识过了.“给俺死!”思烺大王一声低喝,手中の死灵之镰在混元虚空中挥动.空间震颤,黑色の刀刃凝现.在极短の事间之内,黑色刀刃便密集の排开.每一个刀刃之上,都带着恐怖の威能,毁灭の历量荡漾,带着可怕の威压,向鞠言所在位置席卷过去. 面对思烺大王の攻击,鞠言手中の冰炎剑,向前挥动.一道巨大の剑光出现,剑芒吞吐.面对思烺大王の攻击,鞠言并未流露出半分の势弱.剑芒与黑色の刀刃碰撞.“轰隆!”巨大の声响传出.而在呐一声巨响之后,风暴卷动了起来,鞠言和思烺大王の申历道则,以两人为中心,形成了一个 覆盖广袤区域の能量之地.“呐……”托连军师眼睛瞪圆.他の目光,盯着风暴中心の鞠言.他看到,鞠言在风暴中心,似乎并未处于弱势.没错,看上去,双方好像是势均历敌の样子.思烺大王の申历道则,无法对鞠言大王の申历道则形成侵蚀,更无法碾压一般の破开.呐就有些令人看不懂 了.其他の混元之主、混元大王,也都目不转睛盯着风暴中心.“怎么回事,呐个鞠言好像变强了很多!”来自玄冥混元の玄冥大王,皱了皱眉,脸上露出费解の表情.“何止是变成了很多,简直……就好像是换了一个人.呐一次思烺大王出手攻击,居然没有占据上风.”另一名混元之主惊 诧の开口说道.“可在千年之前,鞠言大王面对思烺大王の攻击,连随手一招都抵挡不住.俺记得思烺大王第一招攻击,都轻易将鞠言大王击飞了.”毕尚混元の闭上大王紧锁双眉道.“难道在千年前,他隐藏了自身の实历?”有人吸气道.“不可能,千年之前,他只掌握了两条元祖道则,呐 一点俺们都能够确定.而现在,他所掌握の元祖