2013届中考数学知识点训练题6
2013届九年级中考数学复习巩固练习(06)
初三数学复习巩固练习(06)分式班级_____姓名______一、选择题1、若分式12+a 有意义,则a 的取值范围是( ) A 、a =0 B 、a =1 C 、a ≠-1 D 、a ≠0 2、若分式21+-x x 的值为0,则( ) A 、x =-2 B 、x =0 C 、x =1或x =-2 D 、x =13、如果把yx x +5的x 与y 都扩大10倍,那么这个代数式的值( ) A 、不变 B 、扩大50倍 C 、扩大10倍 D 、缩小为原来的101 4、下列计算错误的是( )A 、b a b a b a b a -+=-+727.02.0B 、y x yx y x =3223 C 、1-=--a b b a D 、c c c 321=+ 5、化简1211222+--÷-+a a a a a a 的结果是( ) A 、a 1 B 、a C 、11-+a a D 、11+-a a 6、化简111212-÷⎪⎭⎫ ⎝⎛+-x x 的结果是( ) A 、2)1(1+x B 、2)1(1-x C 、(x +1)2 D 、(x -1)2 二、填空题7、若分式11||+-x x 的值为0,则x 的值为____ 8、若分式392+-a a 的值为0,则a 的值为_____ 9、化简123162--m m 得_____,当m =-1时,原式的值为_____10、已知实数x 满足31=+x x ,则221xx +的值为____ 11、若n m n m +=+711,则n m m n +的值为____ 12、已知三个数x 、y 、z 满足34,34,2-=+=+-=+x z zx z y yz y x xy ,则zxyz xy xyz ++的值为_____三、解答题,13、计算: (1)aa a a a +-÷-2211 (2))13(112+++⋅-x x x x x14、先化简,再求值(1)b a b ba b ab a ++-+-22222,其中a =-2,b =1.(2)13)2)(1(4212-+÷⎥⎦⎤⎢⎣⎡-+-+x x x x x ,其中x =6.(3)已知x =3+1,y =3-1,求22222yx y xy x -+-的值.(4)112122+÷⎪⎭⎫⎝⎛-+++a a a a a ,其中a =(-1)2012+tan60°.(5)化简分式1211222+--÷⎪⎭⎫ ⎝⎛---x x x x x x x x ,并从-1≤x ≤3中选一个你认为适合的整数x 代入求值.15、化简代数式x x x x x 12122-÷+-,并判断当x 满足不等式组⎩⎨⎧->-<+6)1(212x x 时该代数式的符号.16、先化简⎪⎭⎫ ⎝⎛-÷-+-x x x x x x 424422,然后从-5<x <5的范围内选取一个合适的整数作为x 的值代入求值.17、先化简,再求值:⎪⎭⎫ ⎝⎛--+÷--2526332m m m m m ,其中m 是方程x 2+3x -1=0的根.。
2013届中考数学试题分类汇编:概率(含解析)
(2013•郴州)掷一枚质地均匀的骰子,骰子的六个面上分别标有数字1~6,掷得朝上的一面的数字为奇数的概率是.,则向上一面的数字是奇数的概率为=.故答案为:.的概率是()A.12B.13C.14D.16(2013•湘西州)小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.故针头扎在阴影区域的概率为.每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是(2013,成都)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.(1)4, 0.7 (2)树状图(或列表)略,P=61122= (2013,成都)若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______. 117 (2013•达州)某中学举行“中国梦·我的梦”演讲比赛。
志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张。
如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽。
2013届中考数学试题分类汇编:基本作图(含解析)
(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.(2013•乐山)如图9,已知线段AB.(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方).连结AM、AN、BM、BN.求证:∠MAN=∠MBN.(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C 为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.(2013•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2013•青岛)已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等(在题目的原图中完成作图)结论:解析:因为点E到B、D两点的距离相等,所以,点E一定在线段BD的垂直平分线上,首先以D为顶点,DC为边作一个角等于∠ABC,再作出DB的垂直平分线,即可找到点E.点E即为所求.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.(2013兰州)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)考点:作图—应用与设计作图.分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.(2013,河北)如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对。
2013届中考数学试题分类汇编:无理数和实数(含解析)
(2013•郴州)计算:|﹣|+(2013﹣)0﹣()﹣1﹣2sin60°.+1﹣2³+1﹣(2013,娄底)计算:(1124sin 603-⎛⎫--︒+= ⎪⎝⎭_______________(2013•湘西州)计算:()﹣1﹣﹣sin30°.﹣(2013()12013112-⎛⎫+- ⎪⎝⎭2013•株洲)计算:.﹣2³(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为 5 .,==(2013•巴中)计算:.﹣(2013•达州)计算:2 01tan603-⎛⎫+-︒+ ⎪⎝⎭解析:原式=1+9=10(2013•广安)计算:()﹣1+|1﹣|﹣﹣2sin60°.﹣﹣2³=3(2013•乐山)计算:∣-2∣- 4sin45º + (-1)2013 + 8 . (2013凉山州)下列说法中:①邻补角是互补的角;②数据7、1、3、5、6、3的中位数是3,众数是4;③|﹣5|的算术平方根是5;④点P(1,﹣2)在第四象限,其中正确的个数是()A.0 B.1 C.2 D.3考点:算术平方根;点的坐标;对顶角、邻补角;中位数;众数.分析:根据邻补角、算术平方根、中位数及众数的定义、点的坐标的知识,分别进行各项的判断即可.解答:解:①邻补角是互补的角,说法正确;②数据7、1、3、5、6、3的中位数是5,众数是3,原说法错误; ③|﹣5|的算术平方根是,原说法错误;④点P (1,﹣2)在第四象限,说法正确; 综上可得①④正确,共2个. 故选C .点评:本题考查了邻补角、中位数、众数及算术平方根的知识,掌握基础知识是解答此类(2013凉山州)计算:.考点:实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题.分析:原式第一项表示2平方的相反数,第二项利用特殊角的三角函数值化简,第三项先计算绝对值里边的式子,再利用绝对值的代数意义化简,第四项利用零指数幂法则计算,即可得到结果.解答:解:原式=﹣4﹣+3+1+=0.点评:此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.题目的关键.(2013•泸州)计算:11()2(3.14)sin 303π-O O --⨯ (2013•眉山)计算:010)3.14()41(1645cos 2-+-+--π(2013•绵阳)计算:)21212sin 45-︒-+-⨯;(2013•内江)下列四个实数中,绝对值最小的数是( )|=,(2013•内江)计算:.﹣(2013•遂宁)下列计算错误的是()=2,本选项正确.(2013•遂宁)计算:|﹣3|+.³﹣(2013•雅安)(1)计算:8+|﹣2|﹣4sin45°﹣解:(1)原式=8+2﹣4³﹣=8+2﹣2﹣3=7﹣2;(2013宜宾)(1)计算:|﹣2|+﹣4sin45°﹣1﹣2原式=2+2﹣4³﹣1=2+2﹣2﹣1=1;将括号内的部分通分,将分子、分母因式分解,然后将除法转化为乘法解答即可.(2013•资阳)16的平方根是A.4 B.±4C.8 D.±8(2013•自贡)计算:= 1 .﹣2³﹣()﹣2+ (2013鞍山)3﹣1等于( ) A .3B .﹣C .﹣3D .考点:负整数指数幂. 专题:计算题.分析:根据负整数指数幂:a ﹣p=(a≠0,p 为正整数),进行运算即可.解答:解:3﹣1=. 故选D .点评:此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.(2013•大连)计算:(2013•沈阳)如果1m =,那么m 的取值范围是( )A .01m <<B .12m <<C .23m <<D .34m <<(2013•沈阳)计算:216sin 3022-⎛⎫-︒++ ⎪⎝⎭(-2)(2013•铁岭)﹣的绝对值是( ) ﹣﹣.(2013•恩施州)25的平方根是 ±5 .(2013•黄石)计算: 013tan 30(2013)()3π--+--+解析:原式3213=--+ ²²²²²²²²²²²²²²²²²²² (5分) 4= ²²²²²²²²²²²²²²²²²²²²²²²²² (2分) (2013•荆门)(1)计算:(1)分别根据0指数幂、有理数乘方的法则及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;:(1)原式=1+2﹣1﹣³=-1.(2013•潜江)若平行四边形的一边长为2,面积为64,则此边上的高介于 A.3与4之间B. 4与5之间C. 5与6之间D. 6与7之间(2013•潜江)计算:9)1(42013+-+- (2013•十堰)计算:+(﹣1)﹣1+(﹣2)0= 2..(2013•襄阳)计算:|﹣3|+= 4 .(2013•宜昌)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( ) A. a +b =0 B. b <a C. a b >0 D. b <a(2013•宜昌)计算:()200092120++⎪⎪⎭⎫⎝⎛-⨯-.(2013•张家界)计算:|13|60sin 2)21()2013(20-++--- π 解:原式=1-4-3+3+1 =-402013(3)(1)|2π-+-+;解:原式=21(1)2-+-+= 2(2013•莆田)计算:+|﹣3|﹣(π﹣2013)0.(2013•三明)计算:(﹣2)2+﹣2sin30°;解:(1)原式=4+3﹣2³=4+3﹣1=6;(2013•漳州)计算:|-2|+(-1)2013-(π-4)0.(2013•白银)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,﹣(﹣﹣(﹣﹣﹣.(2013•宁夏)计算:.(2013•宿迁)计算:1011)2cos 602-⎛⎫-+ ⎪⎝⎭.(2013•常州)在下列实数中,无理数是( )是有理数,故本选项错误;是无理数,故本选项正确. (2013•常州)化简:0060cos 2)2013(4+-- . 原式=2﹣1+2³=2.(2013•淮安)如图,数轴上A 、B 两点表示的数分别为和5.1,则A 、B 两点之间表示整数的点共有( )比1(2013•淮安)计算:(1)(π﹣5)0+﹣|﹣3|解:(1)原式=1+2﹣3=0;(2013•南京)设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③ 3<a<4;④a是18的算术平方根。
2013届中考数学基础题强化复习题8
中考数学基础题强化提高测试8总分70分 时间35分钟一、选择题(本题共12个小题,每小题3分,满分36分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( )A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++.其中正确的是( )A .小明B .小亮C .小芳D .没有正确的 4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .2009 5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )A .6B .8C .12D .242左视俯视(第5题标准对数视0. 4.0.1 4.1 0.14.2 (第2题6.如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C所表示的数为( )A.2-- B .1-- C .2-+D .1+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( ) A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为(A .2x <- B .21x -<<- C .20x -<< D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边A B C △的边长为3,P 为B C 上一点,且1BP =,D 为A C 上一点,若60A P D∠=°,则C D的长为( )C A O B(第6题x(第8题ADC P(第10题60A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac=+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm二、填空题(本题共6个小题,每小题4分,满分24分)13.若523m x y +与3n x y 的和是单项式,则m n =. 14.设a b >>,2260a b ab +-=,则a b b a+-的值等于 .15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .①②(第12题x(第11题xxB .C .xA .xD .(第15题16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍. 18.如图,A B C △与A E F △中,AB AE BC EF B E AB==∠=∠,,,交E F 于D.给出下列结论:①A F C C∠=∠;②D FC F=;③A D E F D B △∽△; ④BFDC AF∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共2个小题,满分10分) 19.(本题满分4分)2)-++AED B F C(第18题20.(本题满分6分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.(第20题参考答案一、选择题(本题共12个小题,每小题3分,满分36分)案二、填空题(本题共6个小题,每小题3分,满分18分)14..17 16.1 17.20 18.①,13.14③,④三、解答题(本题共2个小题,满分10分)19.(本题满分4分)-++2)=-+++-.··············2分(11|1=--+.···············3分1111=························ 4分20.(本题满分8分)解:(1)12 ······················ 1分(2)13························ 2分(3)根据题意,画树状图: ··············· 4分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)41164==. ·············· 6分或根据题意,画表格: ················· 4分1 2 3 1第一第二 1 2 3 21 2 3 31 2 34开始由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)41164==.················6分。
(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
最新2013届中考数学模拟试卷
2013届中考数学模拟卷一、选择题(30分)1、-0.5的绝对值是()A. 12B.-12C.-5 D.52、2012年我国国民生产总值为10 583 000 000 000元,用科学计数法表示()元.A.1.0583×1 0-12B.1.0583×1 012C.1.0583×1 013D.1.0583×1 0-133、“一方有难,八方支援”.在为芦山地震捐款活动中,东升中学初三级某班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据下图提供的信息,捐款金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、304、如下左图所示的物体是一个几何体,其主视图是()5、如图所示,BC∥EF,直线AG交BC于点D,交EF于点H,AB⊥AD,∠EHG=60°,AD=1,则AB为()A 3B 2C 3D 56、因式分解x3-xy2的结果是()A .x (x 2-y 2)B .x (x 2+y 2)C .x (x +y )(x -y )D .x (x -y )27、已知等腰三角形的一边等于3,一边等于6,则它的周长为( ) A 12 B 12或15 C 15 D 15或188、定义新运算“⊗”,a ⊗b =13a -4b ,则12⊗(-1)的值为( )A 0B —12C 11D 89、函数x x--=13y 中自变量x 的取值范围是( )A x ≤3B x ≠1C x ≤3且x ≠1D x<3且x ≠110、 如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .东D .升二、填空题(24分)11、若点P(m -3,m +1)在第二象限内,则m 的范围是________. 12、照下图所示的操作步骤,若输入x 的值为5,则输出的值为________.输入x ―→加上5―→平方―→减去3―→输出13、在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6 cm ,高OC =8 cm 则这个圆锥漏斗的侧面积是________cm 2.14、若分式x 2-64x +8的值为0,则x 的值等于________.15、反比例函数y =m -1x 的图象在第一、三象限,则m 的取值范围是________.16、下面是按一定规律排列的一列数:23,-45,87,-169,…那么第n 个数是________.三、解答题(15分)17、计算:|23|-+(π-2)0-(-1)-2 013+2sin 60°18、解方程组⎪⎩⎪⎨⎧=-=-45422y x y x19、在△ABC 中,AC =3,BC =4,AB =5.点D 是AB 的中点.求CD 的长.四、 解答题(24分)20、已知点A (0,6),B (-3,0),C (m ,2)三点在同一直线上,试求出图象经过点C 的反比例函数的解析式.21、集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1~20号)和1只红球,规定:每次只摸一只球,摸前交1元钱且在1~20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元. (1)求摸彩者获奖的概率.(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?说明你的理由.22、如图,AC为正方形ABCD的对角线,DE∥AC,且CE=AC①用尺规作图的方法求作△AEC的边AC上的高EF,垂足为F(不要求写作法,保留作图痕迹)②求ta n∠ACE的值五、解答题(27分)23、如图,抛物的图象如图.(1)求抛物线的解析式;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;3-4 224、百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.①要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?②要想平均每天销售这种童装盈利1800元,有可能吗?③要想平均每天销售这种童装获利达最大,则每件童装应降价多少元?每天的获利是多少元?25、如图,在⊙O 上位于直径AB 的两侧有定点C 和动点P ,AC =12AB ,点P 在半圆弧AB上运动(不与A 、B 两点重合),过点C 作直线PB 的垂线CD 交PB 于D 点.(1)如图1,求证:△PCD ∽△ABC ;(2)当点P 运动到什么位置时,△PCD ≌△ABC ?请在图2中画出△PCD 并说明理由; (3)如图3,当点P 运动到CP ⊥AB 时,求∠BCD 的度数.。
2013届北京市中考数学二轮专题突破复习课件代数综合题
专题六┃ 京考解读
解:(1)证明:∵mx2-(3m+2)x+2m+2=0 是关于 x 的一 元二次方程, ∴Δ =[-(3m+2)]2-4m(2m+2)=m2+4m+4=(m+2)2, ∵当 m>0 时,(m+2)2>0,即Δ >0. ∴方程有两个不相等的实数根.
专题六┃ 京考解读
(3m+2)± (m+2) (2)由求根公式得 x= . 2m 2m+2 ∴x= 或 x=1. m ∵m>0, 2m+2 2(m+1) ∴ = >1. m m 2m+2 ∵x1<x2,∴x1=1,x2= . m 2m+2 2 ∴y=x2-2x1= -2×1= . m m 2 即函数解析式为 y= (m>0). m
专题六┃ 京考解读
解:(1)证明∵Δ=(-2m)2-4(m2-4)=16>0, ∴该方程总有两个不相等的实数根. (2)由题意可知 y 轴是抛物线的对称轴, ∴-2m=0,解得 m=0. ∴此抛物线的解析式为 y=x2-4. (3)如图,当直线与 C2 交于 A(-1,0)时,b=1; 当直线与 C2 交于 B(3,0)时, b=-3, ∴-3<b<1.
专题六┃ 京考解读
解: (1)∵关于 x 的一元二次方程有实根, ∴m≠0,且Δ ≥0, ∴Δ =(2m+2)2-4m(m-1)=12m+4≥0, 1 解得 m≥- . 3 1 ∴当 m≥- 且 m≠0 时此方程有实根. 3 (2)∵在(1)的条件下,且 m 取最小的整数,∴m=1, ∴原方程化为 x2-4x=0, 解得 x1=0,x2=4.
年份 分值 2008~2012 年北京第23 题考点对比
2008 7分
考点
根的判别式、求根、构造函 数、利用函数图象求取值范围
2013届九年级中考数学复习巩固练习(09)
初三数学复习巩固练习(09)方程组(解法)一、选择题1、已知{21x y ==是二元一次方程组{81m x ny nx m y +=-=的解,则2m-n 的算术平方根为( )A 、2±B 、、2 D 、42、若2(341)3250x y y x +-+--=则x -y 的值( )A 、-1B 、1C 、2D 、-2 3、已知1x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ) A 、 1 B 、-1 C 、2 D 、3 4、已知代数式133m x y --与52n m nx y+是同类项,那么m n 、的值分别是( )A 、21m n =⎧⎨=-⎩B 、21m n =-⎧⎨=-⎩C 、21m n =⎧⎨=⎩D 、21m n =-⎧⎨=⎩5、关于x 的方程组⎩⎨⎧=+=nmy x m x y -3的解是⎩⎨⎧==11y x ,则|m-n|的值是( )A 、5B 、3C 、2D 、1 二、填空题1、将方程527x y -=变形成用y 的代数式表示x ,则x =______.再用x 的代数式表示y ,则y =______.2、在432-=x y 中,如果x =6,那么y =____;如果y =—2,那么x =___3、写出一个以23x y =⎧⎨=⎩为解的二元一次方程组__________________ .4、已知ax=by + 2012的一个解是⎩⎨⎧-==11y x ,则a +b=________________5、已知二元一次方程x + 3y =10,请写出一组正整数解______________6、若0)2(|6|2=-+-y x x ,则=+y x 。
7、在y kx b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = 。
8、关于x 、y 的方程组⎩⎨⎧-=+=-225453by ax y x 与⎩⎨⎧=--=+8432by ax y x 有相同的解,则()ba -= 。
北京市2013年中考数学试题(解析版)
个完全相同的不透明礼盒中,准备将它们奖给小本题考核的立意相对较新,考核了学生的空间想象能力,结合图形理解两点之间距离的概念,认识两点间距离变化产生的数量关系。
采取验证法和排除法求解较为简单。
本题考点:两点间距离、线段.难度系数:0.4分解因式: .269mn mn m ++=的代数式表示.)本题是建立在反比例函数基础上的一次函数解析式确定及与一次函数图象有关的本题考点:一次函数解析式的确定、一次函数图像与坐标轴上点的确定.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年毫克所需的银杏树叶的片数与一年滞尘毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.设一片国槐树叶一年的滞尘量为毫克,则一片银杏树叶一年的滞尘量为毫克,解得检验:将带入中,不等于零,则是方程的根=CF=请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011每年需新增运营里程多少千米?【解析】228;1000;82.75【点评】本题将北京市轨道交通发展规划与统计结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力。
这是北京市这几年考核统计这部分知识的常见题型本题考点:条形统计图、扇形统计图、平均数以及用样本估算总体的数学思想难度系数:0.622.操作与探究:P(1)对数轴上的点进行如下操作:先把点2,在平面直角坐标系中,对正方形及其内部的每个xOy ABCD 点进行如下操作:把每个点的横、纵坐标都乘以同一种实数到的点先向右平移个单位,再向上平移个单位(m n m 得到正方形及其内部的点,其中点的对应点分别为A B C D ''''A B ,个单位。
2013届中考数学试题分类汇编:分式与分式方程(含解析)
(2013•郴州)函数y=中自变量x的取值范围是()(2013•郴州)化简的结果为()﹣2013•郴州)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.)•(2013•衡阳)计算:= a﹣1 .(2013•湘西州)吉首城区某中学组织学生到距学校20km的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.,﹣=(2013•益阳)化简:= 1 .(2013,永州)已知0a b a b +=,则abab的值为(2013•株洲)计算:= 2 .=(2013•巴中)先化简,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.×++=(2013,成都)要使分式1-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1(2013,成都)化简112)(22-+-÷-a a a a a a(2013•达州)如果实数x 满足2230x x +-=,那么代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值为_ _. 答案:5解析:由知,得22x x +=3,原式=2222(1)221x x x x x x ++⨯+=+++=5。
(2013•德州)先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中12-=a . (2013•德州)某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3? (2013•广安)解方程:﹣1=,则方程的解是 x=﹣ .,(2013•广安)先化简,再求值:(﹣)÷,其中x=4.﹣)÷×,﹣. (2013•乐山)甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米。
2013版中考总复习数学(人教版 全国通用)基础讲练 第1讲 实数(含答案点拨)
第一单元数与式第1讲实数考纲要求命题趋势1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.实数是中学数学重要的基础知识,中考中多以选择题、填空题和简单的计算题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法.另外,命题者也会利用分析归纳、总结规律等题型考查考生发现问题、解决问题的能力.知识梳理一、实数的分类实数⎩⎪⎪⎨⎪⎪⎧⎭⎪⎬⎪⎫有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧零负整数分数⎩⎪⎨⎪⎧正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫负无理数无限不循环小数二、实数的有关概念及性质1.数轴(1)规定了______、________、____________的直线叫做数轴;(2)实数与数轴上的点是一一对应的.2.相反数(1)实数a的相反数是____,零的相反数是零;(2)a与b互为相反数⇔a+b=____.3.倒数(1)实数a(a≠0)的倒数是____;(2)a与b互为倒数⇔______.4.绝对值(1)数轴上表示数a的点与原点的______,叫做数a的绝对值,记作|a|.(2)|a |=⎩⎪⎨⎪⎧(a >0), (a =0), (a <0).5.平方根、算术平方根、立方根(1)平方根①定义:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根(也叫二次方根),数a 的平方根记作______.②一个正数有两个平方根,它们互为________;0的平方根是0;负数没有平方根. (2)算术平方根①如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作____.零的算术平方根是零,即0=0.②算术平方根都是非负数,即a ≥0(a ≥0).③(a )2=a (a ≥0),a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).(3)立方根①定义:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),数a 的立方根记作______.②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同. 6.科学记数法、近似数、有效数字 (1)科学记数法把一个数N 表示成______(1≤a <10,n 是整数)的形式叫做科学记数法.当N ≥1时,n 等于原数N 的整数位数减1;当N <1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从______第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.三、非负数的性质 1.常见的三种非负数|a |≥0,a 2≥0,a ≥0(a ≥0). 2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0. 四、实数的运算 1.运算律(1)加法交换律:a +b =______.(2)加法结合律:(a +b )+c =________. (3)乘法交换律:ab =____.(4)乘法结合律:(ab )c =______.(5)乘法分配律:a (b +c )=__________. 2.运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从____至____的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义为:a 0=____(a ≠0);(2)负整数指数幂的意义为:a -p =______(a ≠0,p 为正整数). 五、实数的大小比较 1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数____.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小. 2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b . 3.倒数比较法 若1a >1b ,a >0,b >0,则a <b . 4.平方法因为由a >b >0,可得a >b ,所以我们可以把a 与b 的大小问题转化成比较a 和b 的大小问题.(提示:本书[知识梳理]栏目答案见第122~123页) 自主测试1.-2的倒数是( )A .-12B ..12C .-2D .22.-2的绝对值等于( )A .2B .-2C .12D .-123.下列运算正确的是( )A .-|-3|=3B .⎝⎛⎭⎫13-1=-3 C .9=±3 D .3-27=-34.2012年世界水日主题是“水与粮食安全”.若每人每天浪费水0.32 L ,那么100万人每天浪费的水,用科学记数法表示为( )A .3.2×107 LB .3.2×106 LC .3.2×105 LD .3.2×104 L5.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 6.计算:|-5|+16-32.考点一、实数的分类【例1】四个数-5,-0.1,12,3中为无理数的是( )A .-5B .-0.1C .12D . 3解析:因为-5是整数属于有理数,-0.1是有限小数属于有理数,12是分数属于有理数,3开不尽方是无理数,故选D. 答案:D方法总结 一个数是不是无理数,应先计算或者化简再判断.有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.触类旁通1 在实数5,37,2,4中,无理数是( )A .5B .37C . 2D . 4考点二、相反数、倒数、绝对值与数轴【例2】(1)-15的倒数是__________;(2)(-3)2的相反数是( )A .6B .-6C .9D .-9(3)实数a ,b 在数轴上的位置如图所示,化简|a +b |+(b -a )2=__________.解析:(1)-15的倒数为1-15=-5;(2)因为(-3)2=9,9的相反数是-9,故选D ;(3)本题考查了绝对值,平方根及数轴的有关知识. 由图可知,a <0,b >0,|a |>|b |,所以a +b <0,b -a >0,原式=-a -b +b -a =-2a . 答案:(1)-5 (2)D (3)-2a方法总结 1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出. 2.解有关绝对值和数轴的问题时常用到字母表示数的思想、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1.触类旁通2 下列各数中,相反数等于5的数是( ) A .-5 B .5C .-15D .15考点三、平方根、算术平方根与立方根 【例3】(1)(-2)2的算术平方根是( )A .2B .±2C .-2D . 2 (2)实数27的立方根是__________.解析:(1)(-2)2的算术平方根,即(-2)2=|-2|=2; (2)27的立方根是327=3. 答案:(1)A (2)3方法总结 1.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a 具有双重非负性:①被开方数a 是非负数,即a ≥0;②算术平方根a 本身是非负数,即a ≥0.2.(3a )3=a ,3a 3=a .触类旁通3 4的平方根是( ) A .2 B .±2 C .16 D .±16考点四、科学记数法、近似数、有效数字【例4】2012年安徽省有682 000名初中毕业生参加中考,按四舍五入保留两位有效数字,682 000用科学记数法表示为( )A .0.69×106B .6.82×105C .0.68×106D .6.8×105解析:用科学记数法表示的数必须满足a ×10n (1≤|a |<10,n 为整数)的形式;求近似数时注意看清题目要求和单位的换算;查有效数字时,要从左边第1个非零数查起,到精确到的数为止.682 000=6.82×105≈6.8×105.答案:D方法总结 1.用科学记数法表示数,当原数的绝对值大于或等于1时,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数.2.取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑.3.用科学记数法表示的近似数,乘号前面的数(即a )的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.触类旁通4 某种细胞的直径是5×10-4毫米,这个数是( ) A .0.05毫米 B .0.005毫米 C .0.000 5毫米 D .0.000 05毫米 考点五、非负数性质的应用【例5】若实数x ,y 满足x -2+(3-y )2=0,则代数式xy -x 2的值为__________. 解析:因为x -2≥0,(3-y )2≥0,而x -2+(3-y )2=0,所以x -2=0,3-y =0,解得x =2,y =3,则xy -x 2=2×3-22=2.答案:2方法总结 常见的非负数的形式有三种:|a |,a (a ≥0),a 2,若它们的和为零,则每一个式子都为0.触类旁通5 若|m -3|+(n +2)2=0,则m +2n 的值为( ) A .-4 B .-1 C .0 D .4 考点六、实数的运算【例6】计算:(1)2-1+3cos 30°+|-5|-(π-2 011)0.(2)(-1)2 011-⎝⎛⎭⎫12-3+⎝⎛⎭⎫cos 68°+5π0+|33-8sin 60°|. (1)分析:2-1=12,cos 30°=32,|-5|=5,(π-2 011)0=1.解:原式=12+3×32+5-1=12+32+5-1=6.(2)分析:⎝⎛⎭⎫12-3=(2-1)-3=23=8,⎝⎛⎭⎫cos 68°+5π0=1,sin 60°=32. 解:原式=-1-8+1+⎪⎪⎪⎪33-8×32=-8+ 3.点拨:(1)根据负整数指数幂的意义可把负整数指数幂转化为正整数指数幂运算,即a -p =1ap (a ≠0).(2)a 0=1(a ≠0). 方法总结 提高实数的运算能力,首先要认真审题,理解有关概念;其次要正确、灵活地应用零指数、负整数指数的定义、特殊角的三角函数、绝对值、相反数、倒数等相关知识及实数的六种运算法则,根据运算律及顺序,选择合理、简捷的解题途径.要特别注意把好符号关.考点七、实数的大小比较【例7】比较2.5,-3,7的大小,正确的是( ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3 解析:由负数小于正数可得-3最小,故只要比较2.5和7的大小即可,由2.52<(7)2,得2.5<7,所以-3<2.5<7. 答案:A方法总结 实数的各种比较方法,要明确应用条件及适用范围.如:“差值比较法”用于比较任意两数的大小,而“商值比较法”一般适用于比较符号相同的两个数的大小,还有“平方法”、“倒数法”等.要依据数值特点确定合适的方法.触类旁通6在-6,0,3,8这四个数中,最小的数是( ) A .-6 B .0 C .3 D .81.(2012湖北黄石)-13的倒数是( )A .13B .3C .-3D .-132.(2012江苏南京)下列四个数中,负数是( )A .|-2|B .(-2)2C .- 2D .(-2)23.(2012北京)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109C .6.011×1010D .0.6011×10114.(2012四川南充)计算2-(-3)的结果是( ) A .5 B .1 C .-1 D .-55.(2012四川乐山)计算:⎪⎪⎪⎪-12=__________. 6.(2012重庆)计算:4+(π-2)0-|-5|+(-1)2 012+⎝⎛⎭⎫13-2.1.下列各数中,最小的数是( )A .0B .1C .-1D .- 2 2.若|a |=3,则a 的值是( )A .-3B .3C .13D .±33.下列计算正确的是( )A .(-8)-8=0B .⎝⎛⎭⎫-12×(-2)=1 C .-(-1)0=1 D .|-2|=-24.如图,数轴上A ,B 两点对应的实数分别为1和3,若点A 关于点B 的对称点为C ,则点C 所表示的实数是( )A .23-1B .1+ 3C .2+ 3D .23+15.(1)实数12的倒数是____.(2)写出一个比-4大的负无理数__________.6.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.7.定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是__________.8.如图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B →…的顺序循环运动,则第2 012步到达点________处.9.计算:|-2|+(-1)2 012-(π-4)0.参考答案导学必备知识 自主测试1.A 1-2=-12.2.A3.D A 中-|-3|=-3,B 中⎝⎛⎭⎫13-1=3,C 中9=3.4.C 0.32×100万=320 000=3.2×105.5.C 因为从数轴可知:m 小于0,n 大于0,则mn <0,m -n <0. 6.解:|-5|+16-32=5+4-9=0. 探究考点方法触类旁通1.C 因为5是整数,37是分数,4=2是整数.触类旁通2.A 因为5的相反数是-5,-15的相反数是15,15的相反数是-15.触类旁通3.B触类旁通4.C 因为0.05=5×10-2,0.005=5×10-3,0.000 5=5×10-4,0.000 05=5×10-5,故选C.触类旁通5.B 因为|m -3|≥0,且(n +2)2≥0,又因为|m -3|+(n +2)2=0,所以m -3=0且n +2=0.所以m =3,n =-2,所以m +2n =3+2×(-2)=-1.触类旁通6.A 因为根据正数大于0,0大于负数,正数大于负数,解答即可. 品鉴经典考题1.C ∵-3×⎝⎛⎭⎫-13=1,∴-13的倒数是-3. 2.C A 中,|-2|=2,是正数,故本选项错误;B 中,(-2)2=4,是正数,故本选项错误;C 中,-2<0,是负数,故本选项正确;D 中,(-2)2=4=2,是正数,故本选项错误.3.C 因为科学记数法的形式为a ×10n ,用科学记数法表示较大的数,其规律为1≤a <10,n 是比原数的整数位数小1的正整数,所以60 110 000 000=6.011×1010.4.A 原式=2+3=5.5.12根据负数的绝对值是它的相反数,得⎪⎪⎪⎪-12=12. 6.解:原式=2+1-5+1+9=8. 研习预测试题1.D 因为正数和0都大于负数,2>1,两个负数比较大小,绝对值大的反而小,所以-2最小.2.D 绝对值为3的数有+3和-3两个,且互为相反数.3.B (-8)-8=-16,⎝⎛⎭⎫-12×(-2)=1,-(-1)0=-1,|-2|=2. 4.A 因为数轴上A ,B 两点对应的实数分别为1和3, 所以OA =1,OB = 3.所以AB =OB -OA =3-1. 由题意可知,BC =AB =3-1.所以OC =OB +BC =3+(3-1)=23-1. 5.(1)2 (2)-4+2(答案不唯一)6.7 因为-3<0,11>3,1<7<3. 7.56 因为2☆3=12+13=36+26=56. 8.A 由题意知,每隔8步物体到达同一点,因为2 012÷8=251余4,所以第2 012步到达A 点.9.解:原式=2+1-1=2.。
2013年广州中考数学模拟试题题型 (6)
2013年广州中考数学模拟试题题型1.1亿可记作108,如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食()A.1.3×108千克B.1.3×107千克C.1.3×106千克D.1.3×105 千克2.我区某街道进行街边人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是().A.正三角形B.正方形C.正五边形D.正六边形3.以下四个几何体中,它们各自的左视图与主视图可能不相同的是()4.Rt ABC△中,90C∠= ,8AC=,6BC=,两个相等的圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.254πB.25π C.2516π D.2532π5.如图,有一张直角三角形纸片,两直角边6AC cm=,9BC cm=,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()cm.A、254B、223C、74D、256、在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以21AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______。
7、所在位置为(-1,-2),所在位置的坐标为(2,-2),那么所在位置的坐标为___。
8.如图,⊙O中OA BC⊥,30CDA∠= ,则sin AOB∠的值为.9.如图是一组有规律的图案,第(1)个图案由4个基础图形组成,第(2)个图案由7个基础图形组成,……,第(n)(n是正整数)个图案中由个基础图形组成.10、化简132121++-的结果为11、图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.12、先化简,再求值:1111222---++aaaa,其中,a=12+。
2013届中考数学基础题强化复习题6
中考数学基础题强化提高测试6总分64分 时间35分钟一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.12-的倒数是( ).A.2 B .2- C .12D .12-2.1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为( ). A .1324.95310⨯元 B .1224.95310⨯元 C .132.495310⨯元 D .142.495310⨯元 3.图中圆与圆之间不同的位置关系有( ). A .2种 B .3种 C .4种 D .5种4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是( ).A .2.4,2.5B .2.4,2C .2.5,2.5D .2.5,2 5.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ). A .(1,2) B .(1-,2-) C .(2,1-) D .(1,2-) 6.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ).(第3题A .102m << B .102m -<< C .0m <D .12m>7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ). A .1.5 B .2 C .3 D .68.化简2b aa a ab ⎛⎫- ⎪-⎝⎭的结果是( ).A .a b -B .a b +C .1a b- D .1a b+ 9.如图,9030A O B B ∠=∠=°,°,A O B ''△可以看作是由AO B △绕点O 顺时针旋转α 角度得到的.若点A '在A B 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90° 10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点 二、填空题(共6小题,每小题4分,计24分) 11.031)--=__________.120(第7题A OBA 'B '(第9题AB E 1212.如图,AB C D ∥,直线E F 分别交A B C D 、于点E F 、,147∠=°,则2∠的大小是__________.13.若1122()()A x y B x y ,,,是双曲线3y x=上的两点,且120x x >>,则12_______y y {填“>”、“=”、“<”}.14.如图,在梯形A B C D 中,D C AB ∥,D A C B =.若104A B D C ==,,tan 2A =,则这个梯形的面积是__________.15.一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元. 16.如图,在锐角A B C△中,245AB BA C =∠=°,B AC ∠的平分线交B C于点D M N ,、分别是A D 和A B 上的动点,则B M M N+的最小值是___________ .三、解答题(共2小题,计10分) 17.(本题满分5分)解方程:223124x x x --=+-.ABCD(第14题ABCDNM (第16题18.(本题满分5分)如图,在A B C D中,点E是A D的中点,连接C E并延长,交B A的延长线于点F.求证:FA AB.AB C DEF (第18题参考答案一、选择题(共10小题,每小题3分,计30分)二、填空题(共6小题,每小题4分,计24分)11.2 12.133° 13.< 14.42 15.60 16.4三、解答题(共2小题,计10分) 17.(本题满分5分)解:22(2)(4)3x x ---=. ··············· (2分)45x -=-. 54x =. ············· (4分)经检验,54x =是原方程的解. ············ (5分)18.(本题满分6分)证明: 四边形A B C D 是平行四边形,A B D C A B D C∴=,∥.ADEF,.·(3分)∴∠=∠∠=∠FAE D F EC D又EA ED,=∴△≌△.····(4分)AFE D C E∴=.A F D C∴=.·······(5分)AF AB。
2013北京中考数学试题、答案解析版
2013年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 ( ) A 。
39。
6×102 B 。
3.96×103 C. 3。
96×104 D. 3.96×104 考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3。
96×103.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.43-的倒数是 ( )A. 34B. 43C. 43-D. 34-考点:倒数分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A. 51 B 。
52 C 。
53 D. 54考点:概率公式分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率n mA P)(,难度适中。
2013年北京市中考数学试卷及答案
2013年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43−的倒数是 A. 34 B. 43 C. 43− D. 34−答案:D解析:(0)a a ≠的倒数为1a ,所以,43−的倒数是34− 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
2013届中考数学试题分类汇编:位似(含解析)
(2013•孝感)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.(2013•泰州)如图,平面直角坐标系xOy中,点A, B的坐标分别为(3, 0),(2,-3),则△AB' O'是△ABO关于点A的位似图形,且O'的坐标为(一1, 0),则点B' 的坐标为___________.【答案】:5(,4) 3.(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.,)(2013•青岛)如图,△ABO 缩小后变为O B A ''△,其中A 、B 的对应点分别为''B A 、,''B A 、均在图中格点上,若线段AB 上有一点),(n m P ,则点P 在''B A 上的对应点'P 的坐标为( )A 、),2(n m B 、),(n m C 、)2,(n m D 、)2,2(n m 答案:D解析:因为AB =''A B =''12A B AB =,所以点P (m ,n )经过缩小变换后点'P 的坐标为。
2013届中考数学试题分类汇编:中心对称(含解析)
B(2013,娄底)下列图形中是中心对称图形的是()A. B. C. D.(2013•达州)下列图形中,既是轴对称图形,又是中心对称图形的是()答案:D解析:A、C只是轴对称图形,不是中心对称图形;B是中心对称图形,不是轴对称轴图形,只有D符合。
(2013•德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是(2013凉山州)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.A .B .C .D . 考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念,结合选项所给图形进行判断即可. 解答:解:A .是轴对称图形,不是中心对称图形,不符合题意;B .是轴对称图形,也是中心对称图形,符合题意;C .是中心对称图形,不是轴对称图形,不符合题意;D .不是轴对称图形,是中心对称图形,不符合题意.故选B .点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. (2013•眉山)下列图形是中心对称图形的是B..D . A C D(2013•黄冈)随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( )(2013•龙岩)下列图形,既是中心对称图形,又是轴对称图形的是DA .等边三角形B .平行四边形C .正五边形D .正六边形(2013•厦门)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3, -1),请在图6上画出△ABC ,并画出与△ABC 关于原点O 对称的图形;解: 正确画出△ABC正确画出△DEF(2013•白银)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图B C DA B C D(2013•宿迁)下列三个函数:①1y x =+;②y x=;③21y x x =-+.其图象既是轴对称图形,又是中心对称图形的个数有A .0B .1C .2D .3(2013•泰州)下列标志图中,既是轴对称图形,又是中心对称图形的是( )【答案】:B .(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有( )(2013•毕节)在下列图形中既是轴对称图形又是中心对称图形的是( D)①线段②角③等边三角形④圆⑤平行四边形⑥矩形A. ③④⑥B.①③⑥ D.④⑤⑥ D. ①④⑥(2013•北京)下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
2013年江苏省南京市中考数学试题及答案
第4题l O 2O 12013年南京中考数学试题一、选择题(本大题共有6小题,共12分,每小题2分.) 1.计算12-7×(-4)+8÷(-2)的结果是A .-24B .-20C .6D .362.计算23)1·a a (的结果是A .aB .5aC .6aD .9a3.设边长为3的正方形的对角线长为a.下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的算术平方根。
其中,所有正确说法的序号是 A .①④ B .②③ C .①②④ D .①③④4.如图,⊙O 1、⊙O 2的圆心O 1、O 2在直线l 上,⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,O 1O 2=8cm 。
⊙O 1以1cm/s 的速度沿直线l 向右运动,7s 后停止运动。
再此过程中,⊙O 1与⊙O 2没有出现的位置关系是A .外切B .相交C .内切D .内含5.在同一直角坐标系中,若正比例函数y=k 1x 的图像与反比例函数xk y 2=的图像没有公共点,则 A .k 1+ k 2<0 B .k 1+ k 2>0 C .k 1k 2<0 D .k 1k 2>06. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是二、填空题(本大题共有10小题,共20分,每小题2分.)7.-3的相反数是 ;-3的倒数是 . 8.计算2123-的结果是 . 第6题A .B .C .D .F E O D CB A 1D'B'C'D CB A 第12题第11题9.使式子111-+x 有意义的x 的取值范围是 . 10.第二节亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务,将13000用科学计数法表示为 .11.如图将矩形ABCD 绕点A 顺时针旋转到AB ’C ’D ’的位置,旋转角α(0°<α<90°).若 ∠1=110°,则∠α= °.如图,将菱形纸片12. ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.△OAB 是以正多边形相邻的两个顶点A 、B 与它的中心O 为顶点的三角形,若△OAB 的一个内角为70°,则该正多边形的边数为 .14. 已知如图所示的图形的面积为24,根据图中的条件,可列出方程 . 15. 如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点P ,已知A (2,3),B (1,1), D (4,3),则点P 的坐标为( , ).16.计算⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛------⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛----51413121615141312116151413121514131211的结果是.三、解答题(本大题共有11小题,共88分.)17.(6分)化简ba a ba b b a +÷⎪⎭⎫ ⎝⎛---221. 18.(6分)解方程x x x --=-2112219.(8分)如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N.xx +1 1+xxA DBC P y xO 第14题第15题C N PD M A B (1)求证:∠ADB =∠CDB ;(2)若∠ADC =90°,求证:四边形MPND 是正方形.20.(8分)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个,这些球除颜色外都相同,求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是是红球;(2)某次考题共有6道选择题,每道题所给出的4个选项中,恰有一项是正确的.如果小明从每道题的4个选项中随机的选择一个,那么他6道选择题全部选正确的概率是( )A .41B .641⎪⎭⎫⎝⎛ C .6411⎪⎭⎫ ⎝⎛- D .6431⎪⎭⎫ ⎝⎛-21.(9分)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查,整理样本数据,得到下列图表:(1)理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图:(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议,如:骑车上学的学生数约占全校的34%,建议学生合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化建议: .22.(8分)已知不等臂跷跷板AB 长4m ,如图①,当AB 的一端A 碰到地面时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH .(用含α、β的式子表示)某校2000名学生上学方式条形统计图 步行 骑车 乘公共 乘私 其它 上学方式 交通工具 家车 700 600 500 400 300 200 100 0 人数A O BHα ①OA B H β ②23.(8分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定 额后,按下表获得相应返回 额.消费 额(元)300~400 400~500 500~600 600~700 700~900 ··· 返还 额(元)30 60 100 130 150 ··· 注:300~400表示消费 额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如,若购买标价为400元的商品,则消费 额为320元,获得的优惠额为400×(1-80%)+30=110(元)(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?24.(8分)小丽驾车从甲地到乙地,设她出发第x min 时的速度为y km/h ,图中折线表示她在整个驾车过程中第y 与 x 之间的函数关系.(1)小丽驾车的最高速度是 km/h;(2)当20≤x ≤30时,求y 与 x 之间的函数关系式,并求出小丽出发第22min 时的速度; (3)如果汽车每行驶100km 耗油10L ,那么小丽驾车从甲地到乙地共耗油多少升?10 20 30 40 50 x (min) 724824 O y (km/h) A B C D E F G 方法指导 如果物体的运动速度随着时间均匀增加(或减少),那么其在某个时间段内的平均速度为该时间段开始时刻的速度与结束时刻的速度的平均数。
2013届全国中考数学3年中考2年模拟之专题突破:6.1统计pdf版
统计与概率
6 . 1 统 计
内容清单 统计图( 条形图、 折线图、 扇形图) 统 计 初 步 知 识 频数、 频率的概念 频数分布的意义和作用 频数分布表和频数分布直方图 用频数分布直方图解决实际问题 数据的收集与整理 抽样、 样本 众数、 中位数、 平均数、 加权平均数 数 据 的 收 集 与 整 理 数据的离散程度、 极差、 方差 用样本估计总体 根据统计结果作出合理判断 设计简单的统计活动, 检验判断 对统计信息发表自己的看法 用统计方法解决社会生活及科学领 域的一些简单的实际问题 区别与联系.
能力要求 会画条形图、 折线图及扇形图, 能说出三者的 能解释频数与频率之间的关系. 理解并掌握频数分布的含义. 会画频数分布直方图. 能利用频数分布直方图表示实际问题. 会进行数据的收集与整理. 理解样本的含义, 能进行科学抽样. 能记住表示数据集中趋势的一组数的特征, 正 确区分它们之间的联系与区别. 掌握表示数据离散程度的一组数的特征, 正确 区分它们之间的联系与区别. 掌握用样本估计总体的思想. 能进行科学猜想及判断. 能进行简单的统计. 能从信息图表中获取信息. 会用统计思想解决实际问题.
用电量( 千瓦时) 1 2 0 1 4 0 1 6 0 1 8 0 2 2 0 户数 2 3 6 7 2 , , , B .一组数据2 2 3 6的众数和中位数都是2 . ) 则这户家庭用电量的众数和中位数分别是( 为了了解岳阳 万名学生中考数学成绩 , 可以从中抽取 , , C. 5 A. 1 8 01 6 0 B . 1 6 01 8 0 C. , , 1 0名学生作为样本 1 6 0 1 6 0 D. 1 8 0 1 8 0 2 2 , 乙组数据的方差犛 ( ·河南) 某校九年级8位同学一分钟跳绳的次数排序后 甲 =0 乙 = D.若甲 组 数 据 的 方 差 犛 . 3 1 3 . 2 0 1 2 , 则乙组数据比甲组数据稳定 , , , , , , , , 则有这组数据中 0 . 0 2 1 5 0 1 6 4 1 6 8 1 6 8 1 7 2 1 7 6 1 8 3 1 8 5 如下: ·北京) 某课外小组的同学们实践活动中调查了 2 得到的结论错误的是( 2 .( 2 0 1 2 0户 . ) 家庭某月用电量, 如下表所示: A.中位数为1 7 0 B .众数为1 6 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率
【复习要点】
1.在一定条件下,______________ 的事件,称为必然事件; ______________ 的事件,称为不可能事件;______________ 的事件,称为随机事件。
2.概率的意义:表示一个事件发生的____________的数,叫做该事件的概率。
3.求某事件发生的概率的步骤:
(1)先计算所有可能出现的结果n;
(2)再计算这一事件出现的结果m;
(3)最后用____________即得该事件的概率。
4.必然事件的概率为P=________;不可能事件的概率为P=________;随机事件的概率的取值范围是____________。
5. 掷一个质地均匀的正方体骰,骰子的六个面上分别刻有1到6的点数.在骰子向上的一面上,下列事件:①出现1点、②出现2点、③出现奇数点、④出现偶数点、⑤出现7点⑥出现的点数大于0且小于7,必然事件有____________;随机事件有____________;不可能事件有____________。
【实弹射击】
一、填空题
1.“抛出的篮球会落到地面上”,这个事件是事件(填“确定”或“不确定”).2.下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为;必然事件为;不可能事件为.(只填序号)
3.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.
4.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是。
二、选择题
1.下列说法正确的是()
A.某市“明天降雨的概率是75%”表示明天有75%的时间会降雨
B.随机抛掷一枚均匀的硬币,落地后正面一定朝上
C.在一次抽奖活动中,“中奖的概率是
1
100
”表示抽奖l00次就一定会中奖
D.在平面内,平行四边形的两条对角线一定相交2.下列事件是必然事件的是()
A.抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA球赛
a
C.射击运动员射击一次,命中十环
D.若a是实数,则0
3.下列成语所描述的事件是必然事件的是:
A.瓮中捉鳖B.拔苗助长C.守株待兔D.水中捞月
4.下列事件中是必然事件的是()
A.我市一月一日刮西北风;
B.抛掷一枚硬币,落地后正面朝上;
x≥;
C.当x是实数时,20
D.三角形内角和是360°.
5.下列事件是随机事件的是()
A.在一个标准大气压下,加热到100℃,水沸腾;
B.购买一张福利彩票,中奖;
C.有一名运动员奔跑的速度是30米/秒;
D.在一个仅装着白球和黑球的袋中摸球,摸出红球.
三、解答题
1.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有多少个?
2.某超市为了促销一批新品牌的商品,设立了一个不透明的纸箱,纸箱里装有1个红球,2个白球和12个黄球,并规定:顾客每购买50元的新品牌商品,就能获得一次摸球的机会,如果摸到红球,顾客可以获得一把雨伞,摸到白球,可以获得一个文具盒,摸到黄球,可以获得一支铅笔,甲顾客购此新商品80元,她获得奖品的概率是多少?他得到一把雨伞,一个文具盒,一支铅笔的概率分别是多少?
3.在摸奖活动中,游乐场在一只黑色的口袋里装有只颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球,搅拌均匀后,每2元摸1个球,奖品的标准在球上(如下图)。
(1)如果花2元摸1个球,那么摸不到奖的概率是多少?
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?
四、链接中考
1.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是1
2
”,小
明做了下列三个模拟实验来验证.
①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值
②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值
③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如右图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值
上面的实验中,不.科学的有( )
A.0个B.1个C.2个D.3个
2.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.
从中随机摸出一个球,摸到黄球的概率是4
5
,则n __________.
3.如图所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个转盘,当它停止转动时,指针停在黄色区域的概率为.
4.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆
子,则豆子落在阴影部分的概率是.。