2020高考数学100个必考知识点详解45 均值不等式
2020届高考数学(理)一轮复习讲义7.2均值不等式及其应用
§7.2均值不等式及其应用最新考纲考情考向剖析1.认识基本不等式的证明过程 . 主要考察利用基本不等式求最值.常与函数、解析几何、不等式相联合考察,作为求最值的方2.会用基本不等式解决简单的最大(小 )值问题 .法,常在函数、分析几何、不等式的解答题中考察,难度为中档 .a+ b1.均值不等式:ab≤2(1)均值不等式成立的条件:a>0, b>0.(2)等号成立的条件:当且仅当a= b 时取等号 .2.几个重要的不等式(1)a2+ b2≥ 2ab(a, b∈R ).b a(2)a+b≥ 2(a, b 同号 ).a+ b 2(3)ab≤( a,b∈ R).(4) a2+ b2 a+ b 2(a, b∈ R ).≥22以上不等式等号成立的条件均为a=b.3.算术均匀数与几何均匀数设 a>0, b>0,则 a, b 的算术均匀值为a+b,几何均匀值为ab,均值不等式可表达为两个2正实数的算术均匀值大于或等于它们的几何均匀值.4.利用均值不等式求最值问题已知 x>0, y>0,则(1)假如积 xy 是定值 p,那么当且仅当x=y 时, x+ y 有最小值2 p.(简记:积定和最小 )p2(2)假如和 x+y 是定值 p,那么当且仅当x= y 时, xy 有最大值4 .(简记:和定积最大 )概念方法微思考1.若两个正数的和为定值,则这两个正数的积必定有最大值吗?提示不必定 .若这两个正数能相等,则这两个数的积必定有最大值;若这两个正数不相等,则这两个正数的积无最大值.12.函数 y = x + x 的最小值是 2 吗?提示不是 .由于函数y = x + 1x 的定义域是{ x|x ≠ 0} ,当 x<0时, y<0 ,所以函数y = x + 1x 无最小值 .题组一 思虑辨析1.判断以下结论能否正确 (请在括号中打“√”或“×”) 4 , x ∈ π的最小值等于 4.( × )(1)函数 f(x) = cos x + cos x0, 2(2)“ x>0 且 y>0 ”是“ x + y≥ 2”的充要条件 .( × )y x(3)( a + b)2 ≥4ab(a , b ∈R ).( √ )(4)若 a>0 ,则 a 3+ 12的最小值为 2a.( × )a(5)不等式 a 2+ b 2≥2ab 与a +b≥ ab 有同样的成立条件 .( × )2(6)两个正数的等差中项不小于它们的等比中项.( √ ) 题组二教材改编2.设 x>0, y>0,且 x + y = 18,则 xy 的最大值为 ( )A.80B.77C.81D.82答案 C∵ x>0, y>0, ∴ x + yxy ,分析 2 ≥即 xy ≤x + y2= 81, 2 当且仅当 x = y =9 时, (xy)max = 81.3.若把总长为 20 m 的篱笆围成一个矩形场所,则矩形场所的最大面积是________ m 2.答案25分析设矩形的一边为 x m ,面积为 y m 2,则另一边为 12× (20- 2x)= (10- x)m ,此中 0<x<10 ,∴y = x(10-x)≤x +10- x2=25, 2当且仅当 x = 10- x ,即 x =5 时, y max =25.题组三 易错自纠4.“ x>0”是“ x + 1≥ 2 成立”的 ( )xA. 充分不用要条件B. 必需不充分条件C.充要条件D.既不充分也不用要条件答案 C分析11当 x>0 时, x + ≥ 2x ·= 2.xx11 1 1 成立 ” 的充要条件,由于 x , 同号,所以若 x +x ≥2,则 x>0 , >0,所以 “x>0 ” 是 “x +≥ 2xxx应选 C.5.若函数 f(x)= x + 1(x>2) 在 x = a 处取最小值,则 a 等于 ( )x - 2A.1 + 2B.1+ 3C.3D.4答案 C分析 当 x>2 时, x - 2>0 ,f(x)= (x - 2)+ 1+ 2≥ 2x - 2 × 1+ 2= 4,当且仅当 x -2x - 2 x - 21= x - 2( x>2) ,即 x = 3 时取等号,即当f(x) 获得最小值时, x = 3,即 a = 3,应选 C.6.若正数 x , y 知足 3x + y = 5xy ,则 4x + 3y 的最小值是 ( )A.2B.3C.4D.5答案 D3x +y 31分析 由 3x + y =5xy ,得xy = y + x =5,1 31所以 4x + 3y = (4x + 3y) ·+5 yx=13y +12x5 4+9+ xy 1≥5(4+ 9+ 2 36)= 5,当且仅当3y = 12x,即 y = 2x 时, “ =” 成立,xy故 4x + 3y 的最小值为 5.应选 D.题型一利用均值不等式求最值命题点 1 配凑法例 1 (1) 已知 0<x<1,则 x(4- 3x)获得最大值时 x 的值为 ________.答案231分析x(4- 3x)= 3·(3x)(4 - 3x)≤1 3x +4-3x2=4,·233当且仅当 3x = 4- 3x ,即 x =23时,取等号 .x 2 + 2(2)函数 y = x - 1 (x>1) 的最小值为 ________. 答案 2 3+2分析 ∵ x>1, ∴x - 1>0 ,∴ y = x 2 + 2 x 2- 2x + 1 + 2x - 2 + 3 =x - 1x - 1=x - 1 2+ 2 x - 1 + 3 x - 1= (x - 1)+ 3+ 2≥ 2 3+ 2. x- 1当且仅当 x - 1=3,即 x = 3+ 1 时,等号成立 . x - 1命题点 2 常数代换法例 2 (2019 ·大连模拟 )已知首项与公比相等的等比数列 { a n } 中,知足 22a m a n =a 4(m , n ∈N +),则 2+1的最小值为 () m n39A.1B. 2C.2D. 2答案 A分析 由题意可得, a 1= q ,22∵ a m a n = a 4,∴ a 1·q m -1·(a 1·q n -1 )2= (a 1·q 3)2,即 q m ·q 2n = q 8, 即 m + 2n =8.∴ 2 + 1= (m + 2n) 2 + 1 ×1m nm n 8= 2+m +4n+ 2 ×1≥ (4+ 2 4)× 1= 1. n m88当且仅当 m = 2n 时,即 m = 4, n = 2 时,等号成立 .命题点 3 消元法例 3已知正实数 a , b 知足 a 2- b +4≤ 0,则 u =2a +3ba +b ()1414A. 有最大值 5B. 有最小值 5C.有最小值 3D.有最大值 3答案B分析∵ a 2- b +4≤ 0, ∴ b ≥ a 2+ 4,∴ a + b ≥ a 2+ a +4.又 ∵ a , b>0, ∴ a≤a ,a +b a 2+ a +4∴ -a≥ - a ,a +b a 2 +a + 42a + 3baa∴ u = a + b = 3- a + b ≥3- a 2+ a +4 = 3-1 ≥ 3-1= 14 ,a + 42 45+ 1a ·+ 1aa当且仅当 a = 2, b = 8 时取等号 .应选 B.思想升华 (1) 前提: “一正 ”“ 二定 ”“ 三相等 ”.(2)要依据式子的特色灵巧变形,配凑出积、和为常数的形式,而后再利用均值不等式.(3)条件最值的求解往常有三种方法:一是消元法;二是将条件灵巧变形,利用常数“ 1” 代换的方法;三是配凑法.追踪训练 1 (1)(2019·东质检丹)设x>0, y>0,若 xlg 2, lg 2, ylg 2 成等差数列,则1x +9y 的最小值为()A.8B.9C.12D.16答案D分析∵ xlg 2 , lg 2, ylg 2成等差数列,∴ 2lg 2= (x + y)lg 2 ,∴ x + y = 1.∴1x +9y = (x + y) 1x + 9yy 9x ≥ 10+2· = 10+ 6= 16,x y当且仅当 x = 1, y = 3时取等号,4 4故 1+9的最小值为 16.应选 D.x y(2)若 a, b,c 都是正数,且4 +1的最小值是 () a+b+ c= 2,则a+1 b+ cA.2B.3C.4D.6答案 B分析∵ a, b,c 都是正数,且a+ b+ c= 2,∴a+ b+ c+ 1=3,且 a+1>0 , b+c>0.∴4+1=1·(a+1+ b+ c) ·4+1 a+ 1 b+ c 3 a+ 1 b+ c 14 b+ c a+ 1 1=3 5+a+1+b+c≥3(5+ 4)= 3.当且仅当a+ 1= 2(b+ c),即 a=1, b+ c=1 时,等号成立.应选 B. 题型二均值不等式的综合应用命题点 1 均值不等式与其余知识交汇的最值问题例 4 在△ ABC 中,点→→M,P 知足 BP= 2PC,过点 P 的直线与 AB, AC 所在直线分别交于点→→→→N,若 AM =mAB, AN= nAC(m>0, n>0) ,则 m+2n 的最小值为 ()8 10A.3B.4C.3D. 3答案 A分析→ →→∵ AP= AB+ BP→ 2 → →=AB+3(AC-AB)1 →2 → 1 → 2 →=AB + AC =AM +3n AN ,333m∵M ,P ,N 三点共线, ∴ 1+2= 1,3m 3n∴ m + 2n =( m + 2n) 1+ 23m 3n=13+43+ 3m 2n + 2m3n≥ 5+ 2 2n × 2m 33m 3n=53+43= 3,当且仅当 m = n = 1 时等号成立 . 命题点 2 求参数值或取值范围例 5 (2018 ·包头模拟 )已知不等式 (x +y) 1 a ≥ 9 对随意正实数 x ,y 恒成立, 则正实数 a 的 x +y 最小值为 ( ) A.2B.4C.6D.8答案 B1 a1 a分析 已知不等式 (x + y) x + y ≥ 9 对随意正实数 x , y 恒成立,只需求 (x + y) x + y 的最小值 大于或等于 9,∵ 1+ a + y + ax≥ a + 2 a + 1,x y当且仅当 y = ax 时,等号成立,∴ a + 2 a +1≥ 9,∴ a ≥ 2 或 a ≤ - 4(舍去 ), ∴ a ≥ 4,即正实数 a 的最小值为 4,应选 B.思想升华 求参数的值或范围:察看题目特色,利用均值不等式确立有关成立条件,进而得参数的值或范围 .π2sin C sin B 追踪训练 2 (1)在△ ABC 中, A =6,△ ABC 的面积为 2,则 sin C + 2sin B +sin C 的最小值为 ()3 3 3 3 5 A. 2 B.4 C.2D.3答案 C分析 由 △ ABC 的面积为 2,所以1 1 πS =bcsin A = bcsin = 2,得 bc =8,22 6在△ABC 中,由正弦定理得2sin C + sin B= 2c +b sin C+ 2sin B sin C c+2bc =2cb + b2b c+ 2b bc=16 2 8 +b 2+ 41+b=8-8+ 2b2 8 4+ b2 2≥ 2 8b2+ 4 1=2-1= 3,2·-4+ b 8 2 2 2当且仅当 b= 2, c= 4 时,等号成立,应选 C.(2)已知函数f(x)= ax2+bx(a>0, b>0)的图象在点 (1,f(1))处的切线的斜率为2,则8a+b的最ab小值是 ( )A.10B.9C.8D.3 2答案 B分析由函数 f(x)= ax2+ bx,得 f′( x)= 2ax+ b,由函数 f(x)的图象在点 (1, f(1)) 处的切线斜率为2,所以 f′ (1)= 2a+ b= 2,所以 8a+ b= 1+8= 1 1+ 8ab a b 2 a b (2a+ b)1 b 16a 1 b 16a=2 10+a+b ≥2 10+2 a ·b1=2(10+8)= 9,当且仅当ba=16ab,即 a=13, b=43时等号成立,所以8a+b的最小值为9,应选 B. ab利用均值不等式求解实质问题数学建模是对现实问题进行数学抽象,用数学的语言表达问题,用数学的方法建立模型解决问题 .过程主要包含:在实质情形中从数学的视角发现问题、提出问题、剖析问题、成立模型、确立参数、计算求解、查验结果、改良模型,最后解决实质问题 .例 某厂家拟在 2019 年举行促销活动,经检查测算,该产品的年销售量 (即该厂的年产量 )x万件与年促销花费 m 万元 (m ≥ 0)知足 x = 3-km + 1(k 为常数 ) ,假如不搞促销活动,则该产品的年销售量只好是 1 万件 .已知 2019 年生产该产品的固定投入为8 万元 .每生产 1 万件该产品需要再投入 16 万元,厂家将每件产品的销售价钱定为每件产品年均匀成本的 1.5 倍 (产品成本包含固定投入和再投入两部分资本).(1)将 2019 年该产品的收益y 万元表示为年促销花费 m 万元的函数;(2)该厂家 2019 年的促销花费投入多少万元时,厂家的收益最大?解 (1) 由题意知,当 m =0 时, x = 1,∴ 1= 3- k? k =2,∴ x = 3- 2,m+ 18+ 16x每万件产品的销售价钱为1.5×(万元 ),∴ 2019 年的收益 y = 1.5x ×8+ 16x-8- 16x - m x2= 4+ 8x - m = 4+ 8 3-m + 1 - m16=- + m + 1+ 29(m ≥ 0).16(2)∵ m ≥ 0 时,+ ( m + 1)≥ 216=8,∴y≤- 8+ 29=21,16当且仅当= m+ 1? m= 3(万元 )时,y max= 21(万元 ).故该厂家2019 年的促销花费投入 3 万元时,厂家的收益最大为21 万元 .修养提高利用均值不等式求解实质问题时依据实质问题抽象出目标函数的表达式,成立数学模型,再利用均值不等式求得函数的最值.x2+ 41.函数 f(x)=|x| 的最小值为 ()A.3B.4C.6D.8答案 B分析f(x)=x2+4=|x|+4≥ 24= 4,|x||x|当且仅当 x=±2 时,等号成立,应选 B.2.若 x>0, y>0,则“ x+ 2y=2 2xy”的一个充分不用要条件是( )A. x= yB. x=2yC.x=2 且 y= 1D.x= y 或 y= 1答案 C分析∵ x>0, y>0,∴ x+ 2y≥ 2 2xy,当且仅当 x= 2y 时取等号 .故“ x= 2 且 y=1 ”是“ x+2y= 2 2xy”的充分不用要条件.应选 C.4+1的最小值为( ) 3.(2018 沈·阳模拟 )已知正数 a, b 知足 a+ b=1,则a b5A. 3B.3C.5D.9答案 D分析由题意知,正数a, b 知足 a+ b= 1,4 1 4+ 1则a+b= a b (a+b)= 4+1+4b+a≥5+ 24b aa b·= 9,a b当且仅当4b=a,即 a=2, b=1时等号成立,a b 3 3所以4+1的最小值为 9,应选 D.a b4.若 a>0, b>0,lg a+ lg b= lg(a+ b),则 a+b 的最小值为 ()A.8B.6C.4D.2答案 C分析由 lg a+ lg b=lg( a+ b) ,得 lg( ab)=lg( a+ b),即 ab= a+ b,则有1+1= 1,所以 a+ b a b1 1 b a≥2+ 2 b aa+ b 的最=+b (a+ b)= 2++·= 4,当且仅当 a=b= 2 时等号成立,所以a ab a b 小值为4,应选 C.5.已知函数x在点 (0,f(0)) 处的切线为 l,动点 (a,b)在直线 l 上,则 2a -b的最小值是f(x)=e +2( )A.4B.2C.2 2D. 2答案 D分析由题意得 f ′(x)= e x,f(0) = e0= 1,k=f ′ (0)= e0= 1.所以切线方程为y-1= x- 0,即 x- y+ 1= 0,∴ a- b+ 1= 0,∴ a-b=- 1,∴ 2a+ 2-b≥ 2 2a·2-b= 2 2a-b= 2 2-1=2当且仅当 a=-1, b=1时取等号,应选 D.2 26.《几何本来》卷 2 的几何代数法 (以几何方法研究代数问题 )成了后代西方数学家办理问题的重要依照,经过这一原理,好多的代数的公义或定理都能够经过图形实现证明,也称之为无字证明 .现犹如下图图形,点 F 在半圆 O 上,点 C 在直径 AB 上,且 OF ⊥ AB,设 AC= a,BC= b,则该图形能够达成的无字证明为()a+ bA.2≥ ab(a>0,b>0)B.a2+b2≥ 2 ab(a>0, b>0)C.2ab≤ ab(a>0 , b>0)+b a a+ b a2+ b2D. 2 ≤2 (a>0 , b>0)答案 D分析由 AC= a,BC = b,可得圆 O 的半径 r =a+b,2又 OC=OB- BC=a+b- b=a-b,2 2a- b 2 a+ b 2 a2+b2,则 FC 2= OC2+ OF2=+=4 4 2再依据题图知FO ≤ FC,即a+ b a2+ b2≤,当且仅当 a= b 时取等号 .应选 D.2 27.设 x, y 均为正数,且 xy+x- y- 10= 0,则 x+ y 的最小值是 ________. 答案 6分析由 xy+ x-y- 10= 0,得 x=y+10=9+ 1,y+ 1 y+ 1∴ x+ y=9+ 1+ y≥ 2 9y+ 1 y+1·1+ y = 6,9当且仅当=1+ y ,即 y = 2 时,等号成立 .98.设正项等比数列 { a n } 的前 n 项和为 S n ,若 S 7- S 5= 3(a 4+ a 5),则 4a 3+a 7的最小值为 ________.答案4分析设正项等比数列 { a n } 的公比为 q(q>0) ,∵ S 7- S 5= a 7+ a 6= 3(a 4 +a 5),∴a 7+a 6= q 2=3.a 5+ a 4∴ 4a9=4a 9 = 4a 1 ≥ 2 4a 1= 4, 3+7 3+4 3+33·3a 3aa qa当且仅当 4a 31,即 a 31时等号成立 .=a 3= 2∴ 4a 3+ 9的最小值为 4.a 79.已知△ ABC 的角 A ,B ,C 的对边分别为 a ,b ,c ,若 a 2= b 2+ c 2- bc ,且△ ABC 的面积为33,4则 a 的最小值为 ________. 答案3分析 由题意得 b 2+ c 2- a 2= bc ,∴ 2bccos A = bc ,1 π ∴ cos A = , ∴A = .23∵△ ABC 的面积为33,4∴ 1bcsin A = 3 3, ∴ bc = 3.24∵ a 2= b 2+ c 2- bc ,∴ a 2≥ 2bc - bc = bc = 3(当且仅当 b = c 时,等号成立 ),∴ a ≥ 3.10.已知 a , b 为正实数,且 (a - b)2= 4(ab)3,则1a + 1b 的最小值为 ________.答案2 2分析由题意得 (a - b)2 =(a + b)2-4ab ,代入已知得 (a + b)2= 4(ab)3+ 4ab ,两边同除以 (ab)2得a +b 2=4 ab 3 4ab ab 2 2 + 2 2a ba b = 4 ab + 1≥4·21ab ab · = 8,ab当且仅当 ab = 1 时取等号 .所以 1+1≥2 2,a b即1a +1b 的最小值为 2 2.11.已知 x>0 , y>0 ,且 2x + 5y = 20.(1)求 u = lg x + lg y 的最大值;1 1(2)求 x + y 的最小值 . 解 (1) ∵ x>0, y>0,∴ 由均值不等式,得 2x +5y ≥ 2 10xy.∵ 2x +5y = 20,∴ 2 10xy ≤20, xy ≤ 10,当且仅当 2x = 5y 时,等号成立 .所以有2x + 5y = 20,2x = 5y ,解得x =5,y = 2,此时 xy 有最大值 10.∴ u = lg x +lg y = lg( xy)≤ lg 10 = 1.∴ 当 x = 5, y = 2 时, u = lg x + lg y 有最大值 1.(2)∵ x>0, y>0,∴ 1+1= 1+ 1 2x + 5yx yx y ·20= 1 7+ 5y + 2x ≥ 17+ 2 5y 2x 20 x y 20 ·x y=7+ 2 10,20当且仅当5y = 2x时,等号成立 .x y2x +5y = 20, x =10 10- 20, 由5y 2x 解得3= 20- 4 10x , y = . y3∴ 1+1的最小值为 7+ 2 10.x y2012.某人准备在一块占地面积为 1 800 平方米的矩形地块中间建三个矩形温室大棚,大棚四周均是宽为 1 米的小道 (如下图 ),大棚占地面积为S 平方米,此中 a ∶b = 1∶ 2.(1)试用 x, y 表示 S;(2)若要使 S 的值最大,则x, y 的值各为多少?解 (1) 由题意可得 xy=1 800, b= 2a,则 y=a+ b+ 3=3a+ 3,所以 S= (x- 2)a+ (x- 3)b= (3x- 8)a= (3x- 8) y-3= 1 808-3x-8 y(x>3, y>3).3 3(2)方法一S= 1 808-3x-8×1 800 3x= 1 808- 3x+ 4 800 ≤1 808- 2 3x×4 800x x =1 808- 240=1 568,当且仅当3x=4 800,即 x= 40 时等号成立, S 获得最大值,此时y=1 800= 45,x x所以当 x= 40, y= 45 时, S 获得最大值 .方法二设 S=f(x)= 1 808- 3x+4 800(x>3) ,x则 f′ (x)=4 8002 -3=3 40- x 2 40+ xx x令 f′ (x)= 0,则 x= 40,当 0<x<40 时, f′ (x)>0 ;当 x>40 时, f′ (x)<0.所以当 x= 40 时, S 获得最大值,此时,y= 45.13.在△ ABC 中,角 A ,B , C 的对边分别为 a ,b ,c ,若2a - c = cos C,b =4,则△ ABC 面积bcos B的最大值为 ( ) A.4 3B.23答案 A2a - c cos C分析 ∵ b= cos B ,∴ (2a - c)cos B = bcos C ,由正弦定理得 (2sin A -sin C)cos B = sin Bcos C ,∴ 2sin Acos B = sin Ccos B + sin Bcos C = sin(B + C) =sin A.又 sin A ≠0, ∴ cos B = 1. 2π ∵ 0<B<π, ∴ B = 3. 由余弦定理得b 2=16= a 2+c 2- 2accos= a 2+ c 2- ac ≥ 2ac - ac = ac ,π3∴ ac ≤16,当且仅当 a = c 时等号成立 .1 π 1× 16× 3=4 3.∴ S △ABC = acsin≤ 2 2 3 2故 △ABC 面积的最大值为 4 3.应选 A.2214.已知 P 为椭圆 x+ y= 1 上一个动点, 过点 P 作圆 (x + 1)2+ y 2= 1 的两条切线, 切点分别是4 3→ →的取值范围为 ( )A ,B ,则 PA ·PB3,+∞3, 56A. 2B. 2 956D.[ 2 2-3,+∞) C. 2 2-3,9答案 C分析如图,由题意设∠APB= 2θ,则 |PA|= |PB |=1,tan θ→→ →→∴ PA·PB=|PA||PB|cos 2θ=1 1+ cos 2θ2·cos 2θ=·cos 2θ,tan θ1- cos 2θ设 cos 2θ= t,→ →=t 1+t = (1- t)+2- 3则 PA·PB 1- t 1- t≥21- t ·2-3= 2 2- 3,1- t2当且仅当1- t=,即t=1-2时等号成立,此时 cos 2θ= 1-2.1又当点 P 在椭圆的右极点时,sin θ=,∴cos 2θ= 1- 2sin2θ=79,7→ →最大,且最大值为1+9 7 56此时 PA·PB 7 × =9 .9 1-9→ →56∴ PA·PB的取值范围是 2 2-3,9 .应选 C.15.已知正三棱柱 ABC -A 1B 1C 1,侧面 BCC 1B 1 的面积为4 6,则该正三棱柱外接球表面积的最小值为 ( )A.24 πB.16 2πC.8 πD.4 π答案 B分析 设 BC = a ,CC 1= b ,则 ab = 4 6, 底面三角形外接圆的半径为 r ,则 a = 2r , ∴r =3sin 60 ° 3 a.所以 R 2= b 2+ 3 a 2= b 2 a 22 3 +34 ≥ 2 b 2 a 2 96 = 4 2,4 · = 2123 当且仅当 a =3时,等号成立 .2 b所以该正三棱柱外接球表面积的最小值为4π× 4 2= 16 2π.16.已知曲线 C : y 2= 2x + a 在点 P n ( n , 2n + a)( a>0 ,n ∈ N)处的切线 l n 的斜率为 k n ,直线 l n交 x 轴、 y 轴分别于点 A n (x n,0), B n (0,y n ),且 |x 0 |= |y 0|.给出以下结论:① a = 1;2 3②当 n ∈ N + 时, y n 的最小值为 3 ;③当 n ∈ N + 时, k n > 2sin1 ;2n + 1④当 n ∈ N + 时,记数列 { k n } n nn + 1-1).的前 n 项和为 S ,则 S< 2( 此中,正确的结论有 ________.( 写出全部正确结论的序号)答案①②④1分析令 y=(2x+ a) 2,-1-1所以 y′=21(2 x+ a) 2× 2=(2x+a) 2 ,1k n=(2 n a) 2,1所以 l n: y- 2n+ a=(2 n a) 2(x-n),所以 x0=- a, y0= a,∴ a= a∴ a= 1,① 对;令 t=2n+ 1≥3,所以 y n= 2n+1-n t2-1 1 1,= t-= t+2n+ 1 2t 2 2t所以 y n≥13+1=2 3,②对;2 23 31,令 f(x)=x- 2sin x x∈ 0,3所以 f′ (x)= 1- 2cos x<0,所以 f(x)<f(0) = 0,即 1 < 2sin 1 ,③ 错;2n+ 12n+ 1由于 k n=1 2= 2( n+ 1- n),<2n+1 n+ 1+ n所以 S n=k1+k2++ k n< 2( 2- 1)+ 2( 3- 2)++ 2( n+1- n)= 2( n+ 1- 1),④对 .。
人教B版2020高考文科数学第七章 第2节均值不等式及其应用
第2节 均值不等式及其应用最新考纲 1.了解均值不等式的证明过程;2.会用均值不等式解决简单的最大(小)值问题.知 识 梳 理1.均值不等式:ab ≤a +b2(1)均值不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用均值不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大). [微点提醒]1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为4.()(4)x>0且y>0是xy+yx≥2的充要条件.()解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(3)函数f(x)=sin x+4sin x没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.答案(1)×(2)×(3)×(4)×2.(必修5P73B2改编)若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立. 答案 A3.(必修5P73A8改编)若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 解析 因为x <0,所以-x >0,-x+1-x≥21=2,当且仅当x =-1时,等号成立,所以x +1x ≤-2. 答案D4.(2019·鞍山模拟)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12B.43C.-1D.0 解析 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号. 又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.答案 D5.(2018·呼和浩特模拟)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大. 解析 设矩形的长为x m ,宽为y m.则x +2y =30, 所以S =xy =12x ·(2y )≤12⎝⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y , 即x =15,y =152时取等号. 答案 15 1526.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.解析 由题设知a -3b =-6,又2a >0,8b >0,所以2a +18b ≥22a ·18b =2·2a -3b2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.答案 14考点一 利用均值不等式求最值 多维探究角度1 通过配凑法求最值【例1-1】 (2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.解析 y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92.答案 92角度2 通过常数代换法求最值【例1-2】若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. 解析 由题设可得1a +2b =1,∵a >0,b >0,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =2+b a +4a b +2≥4+2b a ·4ab =8⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a 时,等号成立. 故2a +b 的最小值为8. 答案 8规律方法 在利用均值不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用均值不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等. (2)条件变形,进行“1”的代换求目标函数最值.【训练1】 (1)(2019·济南联考)若a >0,b >0且2a +b =4,则1ab 的最小值为( )A.2B.12C.4D.14(2)已知x <54,则f (x )=4x -2+14x -5的最大值为______.解析 (1)因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2,∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立).(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝⎛⎭⎪⎫5-4x +15-4x +3 ≤-2(5-4x )·15-4x+3=-2+3=1.当且仅当5-4x =15-4x,即x =1时,等号成立. 故f (x )=4x -2+14x -5的最大值为1. 答案 (1)B (2)1考点二 均值不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)设所用时间为t =130x (h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x+2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x+2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 规律方法 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用均值不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练2】 网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和, 则该公司最大月利润是________万元.解析由题意知t =23-x -1(1<x <3),设该公司的月利润为y 万元,则y =⎝ ⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎢⎡⎦⎥⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元. 答案 37.5考点三 均值不等式的综合应用【例3】 (1)(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________.(2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.解析 (1)∵a 3=7,a 9=19, ∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1, ∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1 ≥12×2(n +1)·9n +1=3,当且仅当n =2时取等号.故S n +10a n +1的最小值为3.(2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c =1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a , ∴A ⎝ ⎛⎭⎪⎫c 2,32c ,C ⎝ ⎛⎭⎪⎫a 2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →.∴⎝ ⎛⎭⎪⎫1-c 2⎝ ⎛⎭⎪⎫-32a +32c ⎝ ⎛⎭⎪⎫a 2-1=0, ∴ac =a +c ,∴1a +1c =1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥9,当且仅当c a =4a c , 即a =32,c =3时取“=”. 答案 (1)3 (2)9规律方法 均值不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是:1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用均值不等式求解,这是难点.2.要有利用均值不等式求最值的意识,善于把条件转化为能利用均值不等式的形式.3.检验等号是否成立,完成后续问题.【训练3】 (1)(2019·厦门模拟)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)(2)在各项都为正数的等比数列{a n }中,若a 2 018=22,则1a 2 017+2a 2 019的最小值为________.解析 (1)由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x +23x . 又3x +23x ≥22(当且仅当3x =23x ,即x =log 3 2时,等号成立). 所以k +1<22,即k <22-1.(2)∵{a n }为等比数列,∴a 2 017·a 2 019=a 22 018=12. ∴1a2 017+2a2 019≥22a 2 017·a 2 019=24=4.当且仅当1a 2 017=2a 2 019,即a 2 019=2a 2 017时,取得等号.∴1a 2 017+2a 2 019的最小值为4. 答案 (1)B (2)4[思维升华]1.均值不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用均值不等式的切入点.2.对于均值不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用均值不等式时等号取不到的情况,可考虑使用函数y =x +mx (m >0)的单调性. [易错防范]1.使用均值不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用均值不等式求最值要求每次等号成立的条件一致.基础巩固题组 (建议用时:35分钟)一、选择题1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R ,故必要性不成立. 答案 A2.下列结论正确的是( ) A.当x >0且x ≠1,lg x +1lg x ≥2B.1x 2+1<1(x ∈R ) C.当x >0时,x +1x ≥2D.当0<x ≤2时,x -1x 无最大值解析 对于A ,当0<x <1时,lg x <0,不等式不成立; 对于B ,当x =0时,有1x 2+1=1,不等式不成立; 对于C ,当x >0时,x +1x≥2x ·1x=2,当且仅当x =1时等号成立; 对于D ,当0<x ≤2时,y =x -1x单调递增,所以当x =2时,取得最大值,最大值为32. 答案 C3.(2018·绵阳诊断)已知x >1,y >1,且lg x ,2,lg y 成等差数列,则x +y 有( ) A.最小值20 B.最小值200 C.最大值20 D.最大值200解析 由题意得2×2=lg x +lg y =lg (xy ),所以xy =10 000,则x +y ≥2xy =200,当且仅当x =y =100时,等号成立,所以x +y 有最小值200. 答案 B4.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A.16B.9C.4D.2解析 在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5.所以a ≥4. 答案 C5.(2019·太原模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|P A |+|PB |的最大值为( ) A.2B.2 2C.4D.4 2解析 由题意知∠APB =90°,∴|P A |2+|PB |2=4,∴⎝ ⎛⎭⎪⎫|P A |+|PB |22≤|P A |2+|PB |22=2(当且仅当|P A |=|PB |时取等号),∴|P A |+|PB |≤22,∴|P A |+|PB |的最大值为2 2. 答案 B6.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件D.120件解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝⎛⎭⎪⎫800x +x 8元,由均值不等式得800x +x 8≥2800x +x8=20,当且仅当800x =x8,即x =80时取等号. 答案 B7.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2B.2C.2 2D.4解析 依题意知a >0,b >0,则1a +2b ≥22ab =22ab ,当且仅当1a =2b ,即b =2a 时,“=”成立. 因为1a +2b =ab ,所以ab ≥22ab,即ab ≥22(当且仅当a =214,b =254时等号成立), 所以ab 的最小值为2 2. 答案 C8.(2019·衡水中学质检)正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)解析 因为a >0,b >0,1a +9b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥16, 当且仅当b a =9ab ,即a =4,b =12时取等号.依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立. 又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6. 答案 D 二、填空题9.正数a ,b 满足ab =a +b +3,则ab 的取值范围是________.解析 ∵a ,b 是正数,∴ab =a +b +3≥2ab +3(当且仅当a =b =3时等号成立),解得ab ≥3,即ab ≥9. 答案 [9,+∞)10.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),则每台机器为该公司创造的年平均利润的最大值是________万元.解析 每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大值为8万元. 答案 811.(2019·合肥调研)设x ,y满足约束条件⎩⎨⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________.解析 可行域如图所示,当直线abx +y =z (a >0,b >0)过点B (2,3)时,z 取最大值2ab +3.于是有2ab +3=35,ab =16.所以a +b ≥2ab =8,当且仅当a =b =4时等号成立, 所以(a +b )min =8. 答案 812.已知直线mx +ny -2=0经过函数g (x )=log a x +1(a >0且a ≠1)的定点,其中mn >0,则1m +1n 的最小值为________.解析 因为函数g (x )=log a x +1(a >0且a ≠1)的定点(1,1)在直线mx +ny -2=0上,所以m +n -2=0,即m 2+n2=1.所以1m +1n =⎝ ⎛⎭⎪⎫1m +1n ⎝ ⎛⎭⎪⎫m 2+n 2=1+n 2m +m 2n≥1+2n 2m ·m2n =2, 当且仅当n 2m =m2n ,即m =n =1时取等号,所以1m +1n 的最小值为2. 答案 2能力提升题组 (建议用时:15分钟)13.(2018·江西师范大学附属中学月考)若向量m =(a -1,2),n =(4,b ),且m ⊥n ,a >0,b >0,则log 13a +log 3 1b 有( )A.最大值log 3 12 B.最小值log 32 C.最大值log 1312D.最小值0解析 由m ⊥n ,得m ·n =0,即4(a -1)+2b =0,∴2a +b =2,∴2≥22ab ,∴ab ≤12(当且仅当2a =b 时,等号成立). 又log 13a +log 3 1b =log 13a +log 13b =log 13ab ≥log 1312=log 3 2,故log 13a +log 3 1b 有最小值为log 3 2.答案 B14.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b+a +b c 的最小值为( ) A.2B.2+ 2C.4D.2+2 2解析 因为△ABC 的面积为1,内切圆半径也为1, 所以12(a +b +c )×1=1,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2ca +b +a +bc ≥2+22,当且仅当a +b =2c ,即c =22-2时,等号成立, 所以4a +b +a +b c 的最小值为2+2 2.答案 D15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 答案 416.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N +,f (x )≥3恒成立,则a的取值范围是________. 解析 对任意x ∈N +,f (x )≥3, 即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N +,则g (x )=x +8x ≥42, 当x =22时等号成立,又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.答案 ⎣⎢⎡⎭⎪⎫-83,+∞。
高中四个均值不等式
高中四个均值不等式高中数学中的四个均值不等式是:算术平均数不小于几何平均数,几何平均数不小于调和平均数,调和平均数不小于平方平均数。
这些不等式在数学中有重要的应用,包括概率论、统计学、经济学和物理学。
一、算术平均数不小于几何平均数算术平均数和几何平均数是我们常见的两种平均数。
算术平均数是将一组数据中所有数值之和除以数据的总数。
例如,1,2,3,4,5这五个数的算术平均数是(1+2+3+4+5)/5=3。
几何平均数则是一组数据中所有数的乘积的n次方根,其中n表示数据的个数。
例如,1,2,3,4,5这五个数的几何平均数是(1x2x3x4x5)^(1/5)=2.605。
在一组非负数数据中,算术平均数和几何平均数有如下关系:算术平均数不小于几何平均数。
这个不等式的证明可以采用数学归纳法,对于两个数的情形容易证明。
对于任意个数的情况,则可以用调和平均数来证明。
这个不等式的重要性在于它可以用来证明其他重要的不等式。
二、几何平均数不小于调和平均数调和平均数的定义为n个非零实数的倒数之和再除以n,其中n表示这n个数的个数。
例如,1,2,3,4,5这五个数的调和平均数为5/(1/1+1/2+1/3+1/4+1/5)=3.55。
在一组非负数数据中,几何平均数和调和平均数有如下关系:几何平均数不小于调和平均数。
例如,对于1,2,3,4,5这五个数,它们的几何平均数为2.605,调和平均数为3.55,显然2.605不小于3.55。
三、调和平均数不小于平方平均数平方平均数是一组数据中所有数的平方和的平均数的平方根。
例如,对于1,2,3,4,5这五个数,它们的平方和为1+4+9+16+25=55,平方平均数为(1+4+9+16+25)/5=5.48。
在一组非负数数据中,调和平均数和平方平均数有如下关系:调和平均数不小于平方平均数。
例如,对于1,2,3,4,5这五个数,它们的调和平均数为3.55,平方平均数为5.48,显然3.55不小于5.48。
均值不等式及其应用--高考数学【解析版】
专题05 均值不等式及其应用高考命题对基本不等式的考查比较灵活,重点考查应用基本不等式确定最值(范围)问题、证明不等式、解答函数不等式恒成立等问题.独立考查以选择、填空为主,有时以应用题的形式出现.有时与三角函数、数列、解析几何、平面向量函数等相结合,考查考生应用数学知识的灵活性.【重点知识回眸】1. 基本不等式 ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭,,a b R ∈:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,,a b R ∈(4)222()22a b a b ++≤,,a b R ∈ (5)2,,b aa b a b+≥同号且不为零 (6)重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 上述不等式,当且仅当a =b 时等号成立 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)x +y ≥2xy ,若xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)xy ≤⎝⎛⎭⎫x +y 22,若x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值q 24(简记:和定积最大).提醒:在应用基本不等式求最值时,一定要检验求解的前提条件:“一正、二定、三相等”,其中等号能否取到易被忽视.特别是:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围.5、常见求最值的题目类型 (1)构造乘积与和为定值的情况 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解.(3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得234x y +≥,即()min 2434x y += 注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈【典型考题解析】热点一 直接法求最值【典例1】(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+ D .4ln ln y x x=+【答案】C 【解析】【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意. 【详解】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意; 对于B ,因为0sin 1x <≤,4sin 44sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,242222442x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【典例2】(2021·全国·高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【解析】 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .【典例3】(2023·全国·高三专题练习)若0a >、0b >,且411a b+=,则ab 的最小值为( ).A .16B .4C .116 D .14【答案】A 【解析】 【分析】根据基本不等式计算求解. 【详解】因为0a >、0b >,所以414112+≥⨯=a b a b ab114≥ab 4ab ≥,即16ab ≥,当仅当41a b =,即82a b ==,时,等号成立. 故选:A.【典例4】(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.热点二 配凑法求最值【典例5】(2023·全国·高三专题练习)已知102x <<,则函数(12)y x x =- 的最大值是( ) A .12B .14C .18D .19【答案】C 【解析】 【分析】将(12)y x x =-化为12(12)2x x ⨯-,利用基本不等式即可求得答案.【详解】 ∵102x <<,120x ∴-> , ∴1(12)2(12)2x x x x -=⨯-22(12)112[]28x x +-=≤⨯, 当且仅当212x x =- 时,即14x =时等号成立, 因此,函数(12)y x x =-,1(0)2x <<的最大值为18,故选:C .【典例6】(2023·全国·高三专题练习)已知a >b ,关于x 的不等式220ax x b ++≥对于一切实数x 恒成立,又存在实数0x ,使得2020ax x b ++=成立,则22a b a b+-最小值为_________.【答案】22【解析】 【分析】由220ax x b ++≥对于一切实数x 恒成立,可得0a >,且0∆≤;再由0x R ∃∈,使20020ax x b ++=成立,可得0∆≥,进而可得ab 的值为1,将22a b a b+-可化为()222a b a b a b a b +=-+--,利用基本不等式可得结果. 【详解】因为220ax x b ++≥对于一切实数x 恒成立, 所以0a >,且440ab ∆=-≤,所以1≥ab ;再由0x R ∃∈,使20020ax x b ++=成立,可得440ab ∆=-≥,所以1ab ≤, 所以1ab =,因为a b >,即0a b ->,所以()()2222222a b ab a b a b a b a b a b-++==-+≥--- 当且仅当2a b a b-=-,即2a b -=所以22a b a b+-的最小值为22故答案为:22【典例7】(2023·全国·高三专题练习)已知 5<4x ,求函数14145y x x =-+- 的最大值. 【答案】2 【解析】 【分析】 将14145y x x =-+-变形为[()1]54454y x x=--++-,利用基本不等式即可求得答案. 【详解】根据题意,函数()114545444554y x x x x ⎡⎤=-++=--++⎢⎥--⎣⎦ , 又由54x <,则540x -> ,则()(115425425454)x x x x-+≥---⋅, 当且仅当15454x x-=-时,即1x =时取等号, 则1[(54)]424254y x x=--++≤-+=-, 故函数14145y x x =-+-的最大值为2. 【总结提升】形如()2ax bx c f x dx e +++=的函数,可化为()11[()]f x x k m x k+++=的形式,再利用基本不等式求解热点三 常数代换法求最值【典例8】(2023·全国·高三专题练习)在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是( ) A .23B .423+ C .6 D .12【答案】D 【解析】 【分析】利用向量共线定理可得31m n +=,再根据3131(3)()m n m n m n+=++结合基本不等式即可得出答案. 【详解】解:3AC AE =,∴3AP mAB nAC mAB nAE =+=+,,,P B E 三点共线,31m n ∴+=, ∴313199(3)()336212n m n m m n m n m n m n m n+=++=+++≥+⋅, 当且仅当9n m m n=,132m n ==时取等号,所以31m n+的最小值是12. 故选:D .【典例9】(2020·天津·高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】 【分析】根据已知条件,将所求的式子化为82a b a b+++,利用基本不等式即可求解. 【详解】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++ 882422a b a b a b a b++=+≥⨯=++,当且仅当a b +=4时取等号, 结合1ab =,解得23,23a b ==23,23a b =+=. 故答案为:4【典例10】(2017·山东·高考真题(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为________. 【答案】8 【解析】 【分析】 由直线1(00)x y a b a b +=>,>过点(1,2),可得121a b +=,从而有()1222a b a b a b ⎛⎫+=++ ⎪⎝⎭,展开后利用基本不等式可求得其最小值 【详解】解:因为直线1(00)x y a b a b+=>,>过点(1,2),所以121a b +=,因为00a b >,>所以()12442222428a b a b a b a b a b b a b a ⎛⎫+=++=+++≥+⋅= ⎪⎝⎭, 当且仅当4a bb a =,即2,4a b ==时取等号, 所以2a b +的最小值为8 故答案为:8 【总结提升】常数代换法主要解决形如“已知x +y =t (t 为常数),求a b x y+的最值”的问题,先将a x +b y 转化为()a b x y x y t ++⋅,再用基本不等式求最值. 热点四 基本不等式的实际应用【典例11】(2023·全国·高三专题练习)迷你KTV 是一类新型的娱乐设施,外形通常是由玻璃墙分隔成的类似电话亭的小房间,近几年投放在各大城市商场中,受到年轻人的欢迎.如图是某间迷你KTV 的横截面示意图,其中32AB AE ==,90A B E ∠=∠=∠=︒,曲线段CD 是圆心角为90︒的圆弧,设该迷你KTV 横截面的面积为S ,周长为L ,则SL的最大值为( ).(本题中取π=3进行计算)A .6B .12315-C .3D .9【答案】B 【解析】 【分析】根据面积和周长的计算,可得SL,根据基本不等式即可求解最大值. 【详解】圆弧的半径为3(0)2r r <<,则32BC ED r ==-,π322CD rl r ==.所以周长162CD L AB BC l DE EA r =++++=-,面积2223139[()]22244r r S r r =-+⨯⨯=-.所以22191(12)24(12)135********12[(12)]122(12)12315212212212212S r r r r r L r r r r---+--=⋅=⋅=-⋅-+-⋅-⋅-----. 当且仅当1351212r r-=-,12315r =- 故选:B【典例12】(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 【答案】30 【解析】 【详解】 总费用为600900464()42900240x x x x +⨯=+≥⨯,当且仅当900x x=,即30x =时等号成立.故答案为30. 【总结提升】利用基本不等式解决实际问题的三个注意点(1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解,如利用()a f x x x=+(a>0)的单调性.热点五 利用均值不等式连续放缩求最值【典例13】(2022·江苏·南京市第一中学高三开学考试)已知0a b >>,且1,ab =则不正确的是( ) A .20a b +> B .22log log 1a b +> C .2222a b +>D .22log log 0a b ⋅<【答案】B 【解析】 【分析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断. 【详解】对A ,根据指数函数的性质20a b +>,故A 正确;对B ,2222log log log log 10a b ab +===,故B 错误;对C ,因为2a b ab +≥=,当且仅当a b =取等号,所以222222422a b a b +≥=>+C 正确; 对D ,因为1ab =,且0a b >>,故10>>>a b ,22log 0,log 0a b ><,所以22log log 0a b ⋅<;故D 正确. 故选:B【典例14】(2021·天津·高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________. 【答案】22【解析】 【分析】两次利用基本不等式即可求出. 【详解】0 , 0a b >>,2211222222a a b b a b a b b b b b∴++≥⋅=+≥⋅ 当且仅当21a a b =且2b b=,即2a b ==所以21ab ab ++的最小值为2 故答案为:22 【总结提升】第一次使用基本不等式是对原不等式的一次放缩,并为第二次使用基本不等式创造了条件,因此要使结果为原不等式的最值,两次使用基本不等式等号成立的条件应该是一致的.【精选精练】一、单选题1.(2023·全国·高三专题练习)已知02x <<,则24y x x =- ) A .2 B .4 C .5 D .6【答案】A 【解析】 【分析】由基本不等式求解即可 【详解】 因为02x <<,所以可得240x ->, 则()()2222244422x x y x x x x+-=-⋅-=,当且仅当224x x =-,即2x24y x x =-2.故选:A .2.(2023·全国·高三专题练习)已知a >0,b >0,且a +2b =ab ,则ab 的最小值是( ) A .4 B .8 C .16 D .32【答案】B 【解析】 【分析】利用基本不等式可得答案. 【详解】∵已知a >0,b >0,且a +2b =ab ,∴ab 2a b ⋅ 化简可得ab ≥2∴ab ≥8,当且仅当a =2b 时等号成立, 故ab 的最小值是8, 故选:B .3.(2022·江西·高三阶段练习(理))已知双曲线22:1(0,0)4n C mx y m n -=>>的一个焦点坐标为(1,0)-,当m n +取最小值时,C 的离心率为( )A 5B 3C .2D 2【答案】B 【解析】 【分析】根据双曲线的标准方程可得22214,,1a b c m n===,根据,,a b c 的关系可得141m n +=,由基本不等式的求解即可得26n m ==,进而2311a m ==,即可求离心率. 【详解】由22:1(0,0)4n C mx y m n -=>>可得22114x y m n-=,所以22214,,1a b c m n===, 故可得141m n +=,所以(4144)5529n m n m m n m n m n m n m n ⎛⎫+=++=+++⋅ ⎪⎝⎭, 当且仅当4n m m n =,即26n m ==时等号成立,所以2311a m ==,3a =1c =, 所以3==ce a, 故选:B .4.(2021·浙江·高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.5.(2020·全国·高考真题(理))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B 【解析】 【分析】 因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b =+得答案. 【详解】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b - ∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为2222222168c a b ab =+≥==当且仅当22a b == ∴C 的焦距的最小值:8故选:B.6.(2023·全国·高三专题练习)已知0a >,0b >,且2ab a b =+,若228a b m m +-恒成立,则实数m 的取值范围是( ) A .426426m -+B .426m +或426m - C .19m - D .9m 或1m -【答案】C 【解析】 【分析】由题意化2ab a b =+为211b a=+,利用基本不等式求出2+a b 的最小值,再解关于m 的一元二次不等式即可. 【详解】解:0a >,0b >,且2ab a b =+,211b a∴=+, 1222222(2)()14529b a b aa b a b a b a b a b∴+=++=++++=,当且仅当3a b ==时取“=”; 若228a b m m +-恒成立, 则298m m -, 即2890m m --, 解得19m -,∴实数m 的取值范围是[1-,9].故选:C .7.(2023·全国·高三专题练习)已知ln ln 222+≥+-aa b b ,则a b +=( ) A .52B .4C .92D .6【答案】A 【解析】 【分析】根据基本不等式可得22222+-≥ab ab ,当且仅当4a b =时取等号,从而可到ln()2≥ab ab ,再构造函数分析可得ln()20-≤ab ab ,从而得到ln()20-=ab ab ,再根据基本不等式取得最值时的关系求解即可 【详解】 由题意得ln()222≥+-a ab b ,因为0a >,0b >,所以22222+-≥ab ab ,当且仅当4a b =时取等号,所以ln()2≥ab ab ,令()ln 22=-f x x x ,则11()-='=xf x x x,当(0,1)x ∈,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0,()f x f x '<单调递减,所以()(1)0f x f ≤=,当且仅当1ab =时取等号,即ln()220-≤ab ab ,所以ln()220-=ab ab ,所以1ab =,所以12,2a b ==,所以52a b +=. 故选:A8.(2017·天津·高考真题(理))已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[3,2]-D .39[23,]16- 【答案】A 【解析】 【详解】 不等式()2x f x a ≥+为()()2xf x a f x -≤+≤(*), 当1x ≤时,(*)式即为22332xx x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+,又22147473()241616x x x -+-=---≤-(14x =时取等号),223339393()241616x x x -+=-+≥(34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+, 又3232()2322x x x x --=-+≤-23x =,222222x x x x+≥⨯=(当2x =时取等号), 所以232a -≤, 综上47216a -≤≤.故选A . 【考点】不等式、恒成立问题 【名师点睛】首先满足()2x f x a ≥+转化为()()22x xf x a f x --≤≤-去解决,由于涉及分段函数问题要遵循分段处理原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的范围. 二、多选题9.(2022·全国·高考真题)(多选)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤ B .2x y +≥- C .222x y +≤ D .221x y +≥【答案】BC 【解析】 【分析】根据基本不等式或者取特值即可判断各选项的真假. 【详解】因为22222a b a bab ++⎛⎫≤≤⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x y θθ-==,所以cos ,33x y θθθ==,因此2222511cos sin cos 12cos 233333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当33x y ==时满足等式,但是221x y +≥不成立,所以D 错误. 故选:BC .10.(2020·海南·高考真题)(多选)已知a >0,b >0,且a +b =1,则( ) A .2212a b +≥B .122a b -> C .22log log 2a b +≥- D 2a b【答案】ABD 【解析】 【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确; 对于D ,因为21212a bab a b =+++=,2a b ,当且仅当12a b ==时,等号成立,故D 正确; 故选:ABD11.(2023·全国·高三专题练习)(多选)已知a <b <0,则下列不等式正确的是( ) A .a 2>ab B .ln (1﹣a )>ln (1﹣b ) C .2a b ab+>D .a +cos b >b +cos a【答案】ABC 【解析】 【分析】利用不等式的性质判断A ,利用对数函数的单调性判断B ,利用基本不等式判断C ,利用构造函数判断D. 【详解】A:∵a <b <0,∴a 2>ab ,∴A 正确,B:∵a <b <0,1﹣a >1﹣b ,∴ln (1﹣a )>ln (1﹣b ),∴B 正确, C:∵a <b <0,∴2a bab -->2a b ab +>C 正确, D:设f (x )=x ﹣cos x ,则()f x '=1+sin x ≥0,∴f (x )在R 上为增函数,∵a <b <0,∴a ﹣cos a <b ﹣cos b ,a +cos b <b +cos a ,∴D 错误. 故选:ABC .12.(2022·江苏省如皋中学高三开学考试)(多选)若实数x ,y 满足1221x y ++=,m x y =+,111()()22-=+x y n ,则( ) A .0x <且1y <- B .m 的最大值为3- C .n 的最小值为7 D .22m n ⋅<【答案】ABD 【解析】 【分析】根据指数函数的性质判断A ,利用基本不等式判断B 、C ,根据指数幂的运算判断D ; 【详解】解:因为1221x y ++=,若0x ≥,则21x ≥,又120y +>,显然不成立,即0x <, 同理可得10y +<,所以1y <-,即0x <且1y <-,故A 正确; 又111122222x y x y x y ++++=+≥⋅=1222x y ++-≤,所以3x y +≤-,当且仅当11222x y +==,即1x =-,2y =-时取等号,即m 的最大值为3-,故B 正确; 又()111111112222222244x y x y x y x y n +-++⎛⎫=+=+=+⋅+ ⎪⎝⎭ 111144552922222222y x y xx y x y ++++⋅⋅=⋅+≥+=+,当且仅当1142222y xx y ++⋅=,即2log 3x =-,22log 13y =-时取等号,故C 错误;对于D :()111112()()22222222m x y x y x y x y y x n -+--+++⎡⎤⋅=+⋅=+⋅=+⎢⎥⎣⎦,因为1221x y ++=,所以()12222x y ++=,即12222x y +++=,即12422x y ++⨯=,即122322x y y ++⨯=+,因为302y ⨯>,所以1222x y +<+,即22m n ⋅<,故D 正确; 故选:ABD 三、填空题13.(2020·江苏·高考真题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【答案】45【解析】 【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y -+=+=,利用基本不等式即可求解.【详解】 ∵22451x y y +=∴0y ≠且42215y x y-=∴422222222114144+2555555y y y x y y y y y -+=+=≥⋅,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45.故答案为:45.14.(2019·天津·高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.【答案】92.【解析】 【分析】 把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值.【详解】由24x y +=,得2422x y xy +=≥2xy ≤(1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=,等号当且仅当2x y =,即2,1x y ==时成立. 故所求的最小值为92.15.(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c aa c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.16.(2018·天津·高考真题(理))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 【答案】14【解析】 【分析】由题意首先求得3a b -的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件. 【详解】由360a b -+=可知36a b -=-,且:312228a ab b -+=+,因为对于任意x ,20x >恒成立, 结合均值不等式的结论可得:336122222224a b a b ---+≥⨯==.当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14. 17.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##1+3-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-, 所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++ ()4433211m m ≥=-+⋅+ 当且仅当311m m +=+即31m =时,等号成立, 所以当AC AB取最小值时,31m =. 31.四、解答题18.(2023·全国·高三专题练习)设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求a ,b 的值;(2)若(1)3f =,0a >,0b >,求11a b +的最小值,并指出取最小值时a ,b 的值. 【答案】(1)3,2a b =-=(2)1a =,1b =时,11a b+的最小值是2 【解析】【分析】 (1)由根与系数的关系可得答案;(2)由(1)3f =得2a b +=,再利用基本不等式可得答案.(1)由()0f x >的解集是(1,1)-知1,1-是方程()0f x =的两根, 由根与系数的关系可得311211a b a ⎧-⨯=⎪⎪⎨-⎪-+=-⎪⎩解得32=-⎧⎨=⎩a b , 即32a b =-=,.(2)由(1)3f =得2a b +=,0a >,0b >,11111()2a b a b a b ⎛⎫∴+=++ ⎪⎝⎭1222b a a b ⎛⎫≥⋅= ⎪ ⎪⎝⎭, 当且仅当b a a b =,即1a =,1b =时取等号,11a b∴+的最小值是2.。
均值不等式公式完全总结归纳(非常实用)
错因:解法中两次连用均值不等式,在等号成立条件是,在等号成立条件是即,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。
正解:,
当且仅当时,上式等号成立,又,可得时,。
变式:(1)若且,求的最小值
(2)已知且,求的最小值
技巧七
已知x,y为正实数,且x 2+=1,求x的最大值.
分析:因条件和结论分别是二次和一次,故采用公式ab≤。
同时还应化简中y2前面的系数为,x=x=x·
下面将x,分别看成两个因式:
x·≤==即x=·x ≤
技巧八:
已知a,b为正实数,2b+ab+a=30,求函数y=的最小值.
分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
技巧四:换元
解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。
当,即t=时,(当t=2即x=1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W=+的最值.
解法一:若利用算术平均与平方平均之间的不等关系,≤,本题很简单
+≤==2
解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
均值不等式知识点
均值不等式知识点
均值不等式,又称为平均值不等式、平均不等式,是数学中的一个重要公式,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
均值不等式有以下几个应用条件:
- 一正:这些数都必须是正实数,因为只有正数才有几何平均值。
- 二定:分为积定与和定。
当这组数的乘积为定值,则这组数的和才能取到最小值。
当这组数的和为定值,则这组数的乘积能取到最大值。
所以要求和的最值,就要让这组数的乘积为定值。
要求乘积的最值就要让组数的和为定值。
- 三相等:表示什么时候能取到最值,也就是取到等号的时候。
只有当这组数据都相同的时候,算术平均值等于几何平均值。
(完整)均值不等式公式完全总结归纳(非常实用),推荐文档
均值不等式归纳总结1. (1)若,则(2)若,则(当且仅当R b a ∈,ab b a 222≥+R b a ∈,222b aab +≤时取“=”)b a =2. (1)若,则(2)若,则(当且仅当时取*,R b a ∈abb a ≥+2*,R b a ∈ab b a 2≥+b a =“=”)(3)若,则 (当且仅当时取“=”)*,R b a ∈22⎪⎭⎫⎝⎛+≤b a ab b a =3.若,则 (当且仅当时取“=”)0x >12x x +≥1x =若,则 (当且仅当时取“=”)0x <12x x+≤-1x =-若,则 (当且仅当时取“=”)0x ≠11122-2x x x x x x+≥+≥+≤即或b a =4.若,则 (当且仅当时取“=”)0>ab 2≥+ab ba b a =若,则 (当且仅当时取“=”)0ab ≠22-2a b a ba bbabab a+≥+≥+≤即或b a =5.若,则(当且仅当时取“=”)R b a ∈,2)2(222b a b a +≤+b a =『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y =3x 2+(2)y =x +12x 21x解:(1)y =3x 2+≥2= ∴值域为[,+∞)12x 266(2)当x >0时,y =x +≥2=2;1x 当x <0时, y =x += -(- x -)≤-2=-21x 1x ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知,求函数的最大值。
54x <14245y x x =-+-解:因,所以首先要“调整”符号,又不是常数,所450x -<1(42)45x x --A以对要进行拆、凑项,42x -,5,5404x x <∴-> 11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当,即时,上式等号成立,故当时,。
高中四个均值不等式
高中四个均值不等式在高中数学中,均值不等式是一组重要的不等式,包括算术平均数、几何平均数、调和平均数和平方平均数。
本篇文章将详细介绍这四个均值不等式的定义、特点、证明以及应用。
一、算术平均数不等式算术平均数不等式也称为平均值不等式,是指对于任意非负实数 $a_1,a_2,\cdots,a_n$,有:$$\frac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdotsa_n}$$等号成立的充分必要条件是 $a_1=a_2=\cdots=a_n$。
算术平均数不等式的特点是,它是一组相对简单但应用广泛的不等式。
证明方法有多种,如引入柯西-施瓦茨不等式、引用对数函数的性质等。
同时,算术平均数不等式与几何平均数不等式、调和平均数不等式和平方平均数不等式共同构成均值不等式的四大基石。
应用方面,算术平均数不等式可以用于证明其他不等式,如根据其性质证明柯西-施瓦茨不等式、夹逼定理等;还可以用于优化问题的求解,如求解简单平均数、加权平均数等。
二、几何平均数不等式几何平均数不等式是指对于任意正实数$a_1,a_2,\cdots,a_n$,有:$$\sqrt[n]{a_1a_2\cdotsa_n}\leq\frac{a_1+a_2+\cdots+a_n}{n}$$等号成立的充分必要条件是 $a_1=a_2=\cdots=a_n$。
几何平均数不等式的特点是,它是一组与比例有关的不等式,反映了乘法的稳定性。
它可以通过对数函数的性质、证明柯西-施瓦茨不等式等方法进行证明。
应用方面,几何平均数不等式可以用于处理带有乘方项的优化问题,如优化几何平均数、加权几何平均数等;还可以用于证明其他不等式,如证明柯西-施瓦茨不等式的基本形式。
三、调和平均数不等式调和平均数不等式是指对于任意正实数$a_1,a_2,\cdots,a_n$,有:$$\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a _n}}\leq\frac{a_1+a_2+\cdots+a_n}{n}$$等号成立的充分必要条件是 $a_1=a_2=\cdots=a_n$。
第45炼 均值不等式--高考数学
第45炼 利用均值不等式求最值一、基础知识:1、高中阶段涉及的几个平均数:设()01,2,,i a i n >= (1)调和平均数:12111n nnH a a a =+++(2)几何平均数:n G =(3)代数平均数:12nn a a a A n+++=(4)平方平均数:n Q =2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a === 特别的,当2n =时,22G A ≤⇒2a b+≤即基本不等式 3、基本不等式的几个变形:(1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈4、利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求23y x x =+的最小值。
此时若直接使用均值不等式,则23y x x=+≥右侧依然含有x ,则无法找到最值。
① 求和的式子→乘积为定值。
例如:上式中24y x x =+为了乘积消掉x ,则要将3x拆为两个② 乘积的式子→和为定值,例如302x <<,求()()32f x x x =-的最大值。
则考虑变积为和后保证x 能够消掉,所以()()()2112329322322228x x f x x x x x +-⎛⎫=-=⋅-≤= ⎪⎝⎭(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。
常见均值不等式
四个常用均值不等式
均值不等式公式如下:
不等式在初中、高中甚至竞赛中都是比较相对综合、有难度的一块内容,经常会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。
公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
基本性质
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)。
高中数学公式(均值不等式)
均值不等式归纳总结1.(1)若R b a ∈,,则abb a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2.(1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则abb a 2≥+(当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎟⎠⎞⎜⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥(当且仅当1x =时取“=”)若0x <,则12x x+≤−(当且仅当1x =−时取“=”)若0x ≠,则11122-2x x x xx x+≥+≥+≤即或(当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或(当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x2+12x2(2)y=x+1x解:(1)y=3x2+12x2≥23x2·12x2=6∴值域为[6,+∞)(2)当x>0时,y=x+1x≥2x·1x=2;当x<0时,y=x+1x =-(-x-1x )≤-2x·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例已知54x <,求函数14245y x x =−+−的最大值。
解:因450x −<,所以首先要“调整”符号,又1(42)45x x −−i不是常数,所以对42x −要进行拆、凑项,5,5404x x <∴−>∵,11425434554y x x x x ⎛⎞∴=−+=−−++⎜⎟−−⎝⎠231≤−+=当且仅当15454x x−=−,即1x =时,上式等号成立,故当1x =时,max 1y =。
高考数学不等式方法技巧及题型全归纳(100页)
g(x) 0
f
(x)
0
(2) f (x) 0 f x g x 0
g(x)
f (x) g(x)
0
f (x) g(x) g(x) 0
0
2.2 含有绝对值的不等式
(1) f x g x f (x) g(x) 或 f (x) g(x) ;
(2)| f (x) | g(x) g(x) f (x) g(x) ;
到的 与原式是恒等的,则称 1, 2, ⋅⋅⋅ , 是完全对称的.
如
+
+
,
b
a
c
c
b
a
a
c
b
等.
设 ( 1, 2, ⋅⋅⋅ , )是一个 元函数. 若作置换 1 → 2, 2 → 3, ⋅⋅⋅ , −1 → , → 1,得到
的 与原式是恒等的,则称 ( 1, 2, ⋅⋅⋅ , )是轮换对称的.
如3
+
3
+
3 , a b c 等. ab bc ca
显然,完全对称的一定是轮换对称的.
2
2、重要不等式
2.1 无理式、分式
(1)
f
(x)
g(x)
g(x) 0
f
(x)
0
g(x) 0
或
f
(x)
g 2(x)
g(x) 0
f
(x)
g(x)
f
(x)
0
f (x) g 2 (x)
f (x)
g(x) 0 g(x) 0 或
2.1 无理式、分式............................................................................................................... 3 2.2 含有绝对值的不等式................................................................................................... 3 2.3 一元二次不等式........................................................................................................... 3 2.4 基本不等式................................................................................................................... 4 2.5 柯西不等式................................................................................................................... 4
均值不等式公式完全总结归纳(非常实用)
均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xx x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
均值不等式公式完全总结归纳非常实用
均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
均值不等式公式完全总结归纳(非常实用)
均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第45 利用均值不等式求最值一、基础知识:1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=(1)调和平均数:12111n nnH a a a =+++(2)几何平均数:n G =(3)代数平均数:12nn a a a A n+++=(4)平方平均数:n Q =2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===特别的,当2n =时,22G A ≤⇒2a b+≤即基本不等式 3、基本不等式的几个变形:(1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈4、利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求23y x x =+的最小值。
此时若直接使用均值不等式,则23y x x=+≥,右侧依然含有x ,则无法找到最值。
① 求和的式子→乘积为定值。
例如:上式中24y x x =+为了乘积消掉x ,则要将3x拆为两个2x,则22422y x x x x x =+=++≥=② 乘积的式子→和为定值,例如302x <<,求()()32f x x x =-的最大值。
则考虑变积为和后保证x 能够消掉,所以()()()2112329322322228x x f x x x x x +-⎛⎫=-=⋅-≤=⎪⎝⎭(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。
5、常见求最值的题目类型(1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。
例如:已知0,0,231x y x y >>+=,求32x y+的最小值 解:()3232942366y x x y x y x y x y⎛⎫+=++=+++ ⎪⎝⎭94121224y x x y =++≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得24x y +≥,即()min 24x y +=- 注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈ 二、典型例题:例1:设1x >-,求函数(5)(2)1x x y x ++=+的最小值为_______________思路:考虑将分式进行分离常数,(5)(2)41511x x y x x x ++==+++++,使用均值不等式可得:59y ≥=,等号成立条件为4111x x x +=⇒=+,所以最小值为9 答案:9例2:已知0,0x y >>,且115x y x y+++=,则x y +的最大值是________ 思路:本题观察到所求x y +与11x y+的联系,从而想到调和平均数与算术平均数的关系,即2114112x y x y x yx y+≤⇒+≥++,代入方程中可得: ()()()()245540x y x y x y x y ++≤⇒+-++≤+,解得:14x y ≤+≤,所以最大值为4 答案:4例3:已知实数,m n ,若0,0m n ≥≥,且1m n +=,则2221m n m n +++的最小值为( ) A.14 B. 415C. 18D. 13思路:本题可以直接代入消元解决,但运算较繁琐。
考虑对所求表达式先变形再求值,可用分离常数法将分式进行简化。
2241212121m n m n m n m n +=-+-++++++,结合分母可将条件1m n +=,变形为()()214m n +++=,进而利用均值不等式求出最值解:222244114121212121m n m n m n m n m n m n -+-++=+=-++-+++++++ ()4141322121m n m n m n =+-++=+-++++ ()()1214m n m n +=⇒+++= ()()()414141112214121214421n m m n m n m n m n +⎛⎫+⎛⎫∴+=+⋅+++=+++⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭19544⎛≥+= ⎝ 229122144m n m n ∴+≥-=++,即2221m n m n +++的最小值为14答案:A例4:已知正实数,x y 满足24xy x y ++=,则x y +的最小值为__________思路:本题所求表达式x y +刚好在条件中有所体现,所以考虑将x y +视为一个整体,将等式中的项往x y +的形式进行构造,()()()21xy x y xy x x y x y x y ++=+++=+++,而()1x y +可以利用均值不等式化积为和,从而将方程变形为关于x y +的不等式,解不等式即可解:()()()24414xy x y xy x x y x y x y ++=⇔+++=⇔+++=()()2112x y x y ++⎡⎤+≤⎢⎥⎣⎦ ∴方程变形为:()()2142x y x y ++⎡⎤++≥⎢⎥⎣⎦()()21416x y x y ∴++++≥⎡⎤⎣⎦()()26150x y x y ∴+++-≥解得:3x y +≥= 答案:()x y +的最小值为3 例5:已知20a b >>,则4(2)a b a b +-的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为()2b a b -,所以可将a 构造为()112222a a b b ⋅=⋅-+⎡⎤⎣⎦,从而三项使用均值不等式即可求出最小值:4181(2)3(2)2(2)2a a b b b a b b a b ⎡⎤+=-++≥⋅=⎢⎥--⎣⎦思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得()()2222b a b b a b a +-⎡⎤-≤=⎢⎥⎣⎦,从而244(2)a a b a b a +≥+-,设()24f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:()24322a a f a a =++≥= 答案:3小有话说:(1)和式中含有分式,则在使用均值不等式时要关注分式分母的特点,并在变形的过程中倾向于各项乘积时能消去变量,从而利用均值不等式求解 (2)思路二体现了均值不等式的一个作用,即消元(3)在思路二中连续使用两次均值不等式,若能取得最值,则需要两次等号成立的条件不冲突。
所以多次使用均值不等式时要注意对等号成立条件的检验 例6:设二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞,则1919c a +++的最大值为__________思路:由二次函数的值域可判定0a >,且04ac ∆=⇒=,从而利用定值化简所求表达式:19918918511999913913a c a c c a ac a c a c a c +++++====++++++++++,则只需确定9a c +的范围即可求出1919c a +++的最值。
由均值不等式可得:912a c +≥,进而解出最值 解:二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞16404ac ac a ∆=-=⇒=⎧∴⎨>⎩ ()()()9911991891851191999913913a c a c a c c a c a ac a c a c a c ++++++++====++++++++++++912a c +≥=195611912135c a ∴+≤+=+++ 答案:65例7:已知,,x y z R +∈,则222xy yzx y z μ+=++的最大值是________思路:本题变量个数较多且不易消元,考虑利用均值不等式进行化简,要求得最值则需要分子与分母能够将变量消掉,观察分子为,xy yz 均含y ,故考虑将分母中的2y 拆分与22,x z 搭配,即22222221122xy yz xy yzx y z x y y z μ++==++⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,而222211,22x y z y +≥=+≥=,所以2μ≤=答案:2小有话说:本题在拆分2y 时还有一个细节,因为分子,xy yz 的系数相同,所以要想分子分母消去变量,则分母中,xy yz 也要相同,从而在拆分2y 的时候要平均地进行拆分(因为22,x z 系数也相同)。
所以利用均值不等式消元要善于调整系数,使之达到消去变量的目的。
例8:已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围为________思路:首先对恒成立不等式可进行参变分离,()1a x y x y≤+++。
进而只需求得()1x y x y+++的最小值。
将x y +视为一个整体,将3x y xy ++=中的xy 利用均值不等式换成x y +,然后解出x y +的范围再求最小值即可 解:()21()()10x y a x y a x y x y+-++≥⇒≤+++,0x y > 22x y xy +⎛⎫∴≤ ⎪⎝⎭232x y x y xy +⎛⎫∴++=≤ ⎪⎝⎭()()2412x y x y ∴++≤+ 解得:6x y +≥或2x y +≤-(舍)()min 1137666x y x y ⎡⎤∴++=+=⎢⎥+⎣⎦ (在6x y +=时取得) 376a ∴≤例9:已知1,0,0x y y x +=>≠,则121x x y ++的最小值是___________ 思路:观察到所求121x x y ++的两项中x 部分互为倒数,所以想到利用均值不等式构造乘积为定值,所以结合第二项的分母变形12x的分子。