2019版高考数学一轮复习第10章计数原理概率随机变量及其分布10.4随机事件的概率学案理
高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 10.4 随机事件的概率课件(理)
ห้องสมุดไป่ตู้D.不是互斥事件
解:显然两个事件不可能同时发生,但两者可能同时 不发生,因为红牌可以分给乙、丙两人,综上,这两个事 件为互斥但不对立事件.故选 C.
(2014·江南十校联考)从正五边形的五个顶点中,随机选择三个顶
点连成三角形,对于事件 A:“这个三角形是等腰三角形”,下列推断正
确的是( ) A.事件 A 发生的概率等于15
交事件 若某事件发生当且仅当事件 A 发生____事件 B 发 (积事件) 生,则称此事件为事件 A 与事件 B 的交事件
互斥事件 若______为不可能事件,则事件 A 与事件 B 互斥
对立事件 若________为不可能事件,________为必然事 件,那么称事件 A 与事件 B 互为对立事件
3.事件的关系与运算(类比集合的关系与运算)
定义 包含关系 如果事件 A 发生,则事件 B 一定发生,这时称事
件 B______事件 A(或称事件 A 包含于事件 B)
相等关系
若 B⊇A 且 A⊇B
并事件 若某事件发生当且仅当事件 A 发生______事件 B (和事件) 发生,称此事件为事件 A 与事件 B 的并事件
符号表示 ____________ (或 A⊆B)
____________
A∪B(或 A+B)
A∩B(或 AB)
A∩B=______ A∩B=______ P(A∪B)=P(A)+P(B)=
2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.2排列
第一节课有 A5 数学课排在第四节课也有 A5 5种方法, 5种方法, 体育课排在第一节课且数学课排在第四节课有 A4 4种方法,
5 4 由排除法得这天课表的不同排法种数为 A6 - 2A + A 6 5 4=504.
故选 D.
3.某班级举办的演讲比赛中,共有 5 位选手参加,其 中 3 位女生、2 位男生.如果 2 位男生不能连续出场,且女 生甲不能排在第一个,那么出场顺序的排法种数为( A.90 B.60 C.48 D.36
2 百位.∴排成的三位奇数有 C2 A 3 2=6 个. 2 ②当选数字 2 时,再从 1,3,5 中取 2 个数字有 C3 种方
法.然后将选中的两个奇数数字选一个排在个位,其余 2
1 2 个数字全排列.∴排成的三位奇数有 C2 C 3 2A2=12 个.
∴由分类加法计数原理,共有 18 个符合条件的三位奇 数.故选 B.
解析 若大一的孪生姐妹乘坐甲车, 则时甲车中的另1 1 外 2 人分别来自不同年级,有 C2 3C2C2=12 种,若大一的孪
生姐妹不乘坐甲车,则有 2 名同学来自同一个年级,另外 2
1 1 1 名分别来自不同年级,有 C3 C2C2=12 种,所以共有 24 种乘
坐方式,故选 A.
8.在航天员进行的一项太空实验中,先后要实施 6 个 程序,其中程序 A 只能出现在第一步或最后一步,程序 B 和 C 实施时必须相邻, 请问实验顺序的编排方法共有( ) A.34 种 B.48 种 C.96 种 D.144 种 解析 由题意知程序 A 只能出现在第一步或最后一步,
4.(2018· 山西质量监测)A,B,C,D,E,F 六人围坐 在一张圆桌周围开会,A 是会议的中心发言人,必须坐最北 面的椅子,B,C 二人必须坐相邻的两把椅子,其余三人坐 剩余的三把椅子,则不同的座次有( ) A.60 种 B.48 种 C.30 种 D.24 种
2019版高考数学一轮复习第10章计数原理概率随机变量及其分布10.4随机事件的概率学案理
10.4 随机事件的概率[知识梳理] 1.事件的分类2.频率和概率(1)在相同的条件S 下重复n 次实验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n为事件A 出现的频率.(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.3.事件的关系与运算4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).[诊断自测]1.概念思辨(1)若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( ) (2)在大量重复试验中,概率是频率的稳定值.( )(3)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.( )(4)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含结果组成集合的补集.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(必修A3P 113T 1)下列事件中不可能事件的个数为( )①如果a >b ,c >d ,则a -d >b -c ;②对某中学的毕业生进行一次体检,每个学生的身高都超过2 m ;③某电视剧收视率为40%;④从10个玻璃杯(其中8个正品,2个次品)中,任取2个,2个都是次品;⑤在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态.A .1B .2C .3D .4 答案 B解析 ①是必然事件;②⑤是不可能事件;③④是随机事件.故选B.(2)(必修A3P 124A 组T 6)一袋中装有100个除颜色不同外其余均相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别为0.40和0.35,那么黑球共有________个.答案 25解析 设红球、白球各有x 个和y 个,则⎩⎪⎨⎪⎧x100=0.40,y100=0.35,解得⎩⎪⎨⎪⎧x =40,y =35,所以黑球的个数为100-40-35=25.3.小题热身(1)(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 答案 B解析 记3件合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,从5件产品中任取2件,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共10种可能.其中恰有一件次品有6种可能,由古典概型概率公式得所求事件概率为610=0.6.故选B.(2)(2017·浙江瑞安中学高三月考)一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,现将这颗骰子抛掷三次,观察向上的点数,则三次点数之和等于15的概率为________.答案5108解析 将这颗骰子抛掷三次,共63=216(种)情况.而三次点数之和等于15的有10个(555共1个,456共6个,366共3个).所以三次点数之和等于15的概率P =10216=5108.题型1 随机事件典例 某县城有甲、乙两种报纸供居民订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报”,事件E 为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:(1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .用集合的观点分析.A ∩B =∅为互斥事件,A ∩B =∅且A ∪B =U 为对立事件.解 (1)由于事件C “至多订一种报纸”中包括“只订甲报”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故事件B 与E 是互斥事件;由于事件B 发生会导致事件E 一定不发生,且事件E 发生会导致事件B 一定不发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”“只订乙报纸”“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”“只订甲报纸”“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.方法技巧1.准确把握互斥事件与对立事件的概念(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.见典例.2.判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.见典例.冲关针对训练口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的2球同色”,B =“取出的2球中至少有1个黄球”,C =“取出的2球至少有1个白球”,D =“取出的2球不同色”,E =“取出的2球中至多有1个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C ∪E )=1;⑤P (B )=P (C ).答案 ①解析 当取出的2个球中一黄一白时,B 与C 都发生,②不正确.当取出的2个球中恰有一个白球时,事件C 与E 都发生,则③不正确.显然A 与D 是对立事件,①正确;C ∪E 不一定为必然事件,P (C ∪E )≤1,④不正确.由于P (B )=45,P (C )=35,所以⑤不正确.题型2 随机事件的频率与概率典例 (2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.采用公式法f n (A )=nA n.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.1925a .因此,续保人本年度平均保费的估计值为1.1925a .[结论探究1] 若本例条件不变,结论变为“试求一续保人本年度的保费高于基本保费的估计值”.解 1-60+50200=0.45或30+30+20+10200=0.45.[结论探究2] 若本例条件不变,结论变为“试求一续保人本年度的保费不低于基本保费的估计值”.解 1-60200=0.7或50+30+30+20+10200=0.7.方法技巧1.计算简单随机事件频率或概率的解题思路 (1)计算出所求随机事件出现的频数及总事件的频数. (2)由频率与概率的关系得所求.2.求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键,由所给频率分布表,频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求.冲关针对训练(2018·福建基地综合测试)某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.(1)若商店一天购进该商品10件,求日利润y (单位:元)关于日需求量n (单位:件,n ∈N )的函数解析式;(2)商店记录了50天该商品的日需求量n (单位:件),整理得下表:15①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求日利润在区间[400,550]内的概率.解 (1)当日需求量n ≥10时,日利润为y =50×10+(n -10)×30=30n +200, 当日需求量n <10时,利润y =50×n -(10-n )×10=60n -100. 所以日利润y 与日需求量n 的函数解析式为y =⎩⎪⎨⎪⎧30n +200,n ≥10,n ∈N ,60n -100,n <10,n ∈N .(2)50天内有9天获得的日利润为380元,有11天获得的日利润为440元,有15天获得日利润为500元,有10天获得的日利润为530元,有5天获得的日利润为560元.所以①这50天的日利润(单位:元)的平均数为 380×9+440×11+500×15+530×10+560×550=477.2.②日利润(单位:元)在区间[400,550]内的概率为 P =11+15+1050=1825.题型3 互斥事件与对立事件的概率典例 (2014·陕西高考)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解 (1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率得P (A )=1501000=0.15,P (B )=1201000=0.12. 由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,知样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.方法技巧求复杂的互斥事件的概率的两种方法1.直接求解法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.2.间接求法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A -),即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就显得较简便.提醒:间接法体现了“正难则反”的思想方法.冲关针对训练经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率.解 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 彼此互斥.(1)记“至多2人排队等候”为事件G , 则G =A +B +C ,所以P (G )=P (A +B +C ) =P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)解法一:记“至少3人排队等候”为事件H ,则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.1.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 设“两人下成和棋”为事件A ,“甲获胜”为事件B .事件A 与B 是互斥事件,所以甲不输的概率P =P (A +B )=P (A )+P (B )=12+13=56,故选A.2.(2018·湖南衡阳八中模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3 答案 C解析 ∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率P =1-P (A )=1-0.65=0.35.故选C.3.(2014·全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.答案 23解析 设2本不同的数学书为a 1,a 2,1本语文书为b ,在书架上的排法有a 1a 2b ,a 1ba 2,a 2a 1b ,a 2ba 1,ba 1a 2,ba 2a 1,共6种,其中2本数学书相邻的有a 1a 2b ,a 2a 1b ,ba 1a 2,ba 2a 1,共4种,因此2本数学书相邻的概率P =46=23.4.(2017·安徽池州模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.答案112解析 小明输入密码后两位的所有情况为(4,A ),(4,a ),(4,B ),(4,b ),(5,A ),(5,a ),(5,B ),(5,b ),(6,A ),(6,a ),(6,B ),(6,b ),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112.[基础送分 提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56 答案 B解析 分别记《爱你一万年》《十年》《父亲》《单身情歌》为A 1,A 2,A 3,A 4,从这四首歌中选出两首歌进行表演的所有可能结果为A 1A 2,A 1A 3,A 1A 4,A 2A 3,A 2A 4,A 3A 4,共6个,其中A 1未被选取的结果有3个,所以所求概率P =36=12.故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 答案 C解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.3.(2017·安徽“江南十校”联考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15 答案 D解析 令选取的a ,b 组成实数对(a ,b ),则有C 13C 15=15种情况,其中b >a 的有(1,2),(1,3),(2,3)3种情况,所以b >a 的概率为315=15.故选D.4.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,2),则向量m 与向量n 不共线的概率是( )A.16B.1112C.112D.118 答案 B解析 若m 与n 共线,则2a -b =0.而(a ,b )的可能性情况为6×6=36个.符合2a =b 的有(1,2),(2,4),(3,6)共三个.故共线的概率是336=112,从而不共线的概率是1-112=1112.故选B.5.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( )A.116B.316C.14D.716答案 B解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为27144=316.故选B. 6.(2018·湖南常德模拟)现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为( )A.13B.12C.23D.1136答案 D解析 将这枚骰子先后抛掷两次的基本事件总数为6×6=36(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个.∴这两次出现的点数之和大于点数之积的概率P =1136.故选D. 7.(2018·安徽黄山模拟)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A.310B.15C.12D.35答案 A 解析 从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C 35=10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P =310.故选A. 8.(2018·河南开封月考)有5张卡片,上面分别写有数字1,2,3,4,5.从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为( )A.13B.23C.710D.310答案 C解析 从5张卡片中随机抽取2张共有C 25=10种等可能情况;2张卡片上的数字之积为偶数的为1奇1偶和2偶,共有C 13C 12+C 22=7种等可能情况,故所求概率为P =710.故选C. 9.(2018·广东海珠综合测试)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为( )A.427B.827C.49D.89 答案 C解析 因为3种不同的精美卡片随机放进4袋食品中,根据分步乘法计数原理可知共有34=81种不同放法,4袋食品中共有3种不同的卡片的放法有3×C 24×A 22=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C. 10.(2017·湖南郴州三模)从集合A ={-2,-1,2}中随机抽取一个数记为a ,从集合B ={-1,1,3}中随机抽取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14答案 A解析 (a ,b )所有可能的结果为C 13C 13=9种.由ax -y +b =0得y =ax +b ,当⎩⎪⎨⎪⎧ a ≥0,b ≥0时,直线不经过第四象限,符合条件的(a ,b )的结果为(2,1),(2,3),共2种,∴直线ax -y +b =0不经过第四象限的概率P =29,故选A.二、填空题11.(2017·陕西模拟)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案 35解析 如图,从A ,B ,C ,D ,O 这5个点中任取2个,共有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6种,因此所求概率P =610=35. 12.(2017·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.答案 1928解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.答案 8151415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C “取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P (C )=715+115=815. (2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415. 14.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25. 三、解答题15.(2018·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟). (2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110. P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710. 16.(2015·北京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2. (2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3. (3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1. 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 10.4 随机事件的概率课件
概率小于乙中奖的概率.( × )
12/11/2021
第十三页,共四十页。
2.小题热身
(1)将一枚硬币向上抛掷 10 次,其中“正面向上恰有 5 次”是( B )
A.必然事件
B.随机事件
C.不可能事件
D.无法确定
(2)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立
12/11/2021
第二十六页,共四十页。
(1)下面是根据统计数据得到的频率分布表,求出 a,b 的值,并估
计该景区 6 月份游客人数的平均值(同一组中的数据用该组区间的中点
值作代表);
游客数量 (单位:百 [0,10
0) 人)
[100,2 00)
[200,3 00)
[300,4 00]
天数
a 10
事件是( D )
A.至多有一次中靶 B.两次都中靶
C.只有一次中靶
D.两次都不中靶
12/11/2021
第十四页,共四十页。
(3)一个盒子里装有标号为 1,2,3,4 的 4 张卡片,随机地抽取 2 张,
则取出的 2 张卡片上的数字之和为奇数的概率是( D )
1
1
A.4
B.3
1
2
C.2
D.3
5
(4)同时掷两个骰子,向上点数不相同的概率为 6 .
A.A 与 B 是不可能事件 B.A+B+C 是必然事件 C.A 与 B 不是互斥事件 D.B 与 C 既是互斥事件也是对立事件
12/11/2021
第十九页,共四十页。
(2)一袋中装有 5 个大小形状完全相同的小球,其中红球 3 个,白
2019年高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 第1节 分类加法计数原理与分
第一节分类加法计数原理与分步乘法计数原理[考纲传真] (教师用书独具)1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.(对应学生用书第169页)[基础知识填充]1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1m2种方法,…,在第n类办法中有m n种方法.那么,完成这件事共有(也称加法原理)2.分步乘法计数原理完成一件事需要经过n m2种方法,…,做第n步有m n3区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )[答案](1)×(2)√(3)√(4)×2.(教材改编)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有( )A.30 B.20 C.10 D.6D[从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.]3.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从第1,2,3层分别各取1本书,则不同的取法种数为( )A.3 B.15C.21 D.120D[由分步乘法计数原理知,从第1,2,3层各取1本书,不同的取法种数为4×5×6=120.故选D.]4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( ) A.30个B.42个C.36个D.35个C[∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.]5.如图1011,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路;从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.图101132 [不同路线共有3×4+4×5=32(条).](1)7 (2)13[(1)至少买其中一本的实质是买一本或买两本或买三本,故分三类完成.第一类:买一本有3种;第二类:买两本有3种;第三类:买三本有1种.共有3+3+1=7(种)买法.(2)①当a=0时,有x=-b2,b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)当a=-1时,b=-1,0,1,2,有4种可能;(ⅱ)当a=1时,b=-1,0,1,有3种可能;(ⅲ)当a=2时,b=-1,0,有2种可能.所以有序数对(a,b)共有4+4+3+2=13个.]根据题目特点恰当选择一个分类标准分类时应注意完成这件事情的任何一种方法必须属于某一类,且只能属于某一类即标准明确,不重不漏[跟踪训练] 椭圆m +n=1的焦点在x轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.【导学号:79140337】10 [因为焦点在x轴上,所以m>n.以m的值为标准分类,可分为四类:第一类,m=5时,使m>n,n有4种选择;第二类,m=4时,使m>n,n有3种选择;第三类,m=3时,使m>n,n有2种选择;第四类,m=2时,使m>n,n有1种选择.由分类加法原理知,符合条件的椭圆共有4+3+2+1=10个.](1)(2016·全国卷Ⅱ)如图1012,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图1012A.24 B.18C.12 D.9(2)从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).(1)B(2)18 6[(1)分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路程.(2)一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c 的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b =0,同上可知共有3×2=6(个)偶函数.] 要按事件发生的过程合理分步,即分步是有先后顺序的各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事对完成每一步的不同方法数要根据条件准确确定[跟踪训练乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有________种(用数字作答).(2)设集合A ={-1,0,1},B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数为________.(1)36 (2)10 [(1)从3人中选择两人同乘一部电梯有C 23=3种选择,这两人乘坐的电梯有4种选择,最后1个乘坐的电梯有3种选择,所以不同的乘坐方式有3×4×3=36种.(2)易知A ∩B ={0,1},A ∪B ={-1,0,1,2,3},图1013A .24B .48C .72D .96(1)D (2)C [(1)个位数字是2或6时,不同的偶数个数为C 12·A 552=120;个位数字是4,不同的偶数个数为A55=120,则不同的偶数共有120+120=240个,故选D.(2)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有4×3×2=24(种)涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48(种)涂法.故共有24+48=72种涂色方法.]在综合应用两个原理解决问题时,一般是先分类再分步,但在分步时可能又会用到分类加法计数原理对于较复杂的两个原理综合应用的问题,可恰当地画出示意图或列出表格,化抽象为直观.[跟踪训练对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )A.48 B.18C.24 D.36(2)(2017·杭州调研)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对任意x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.【导学号:79140338】(1)D(2)17[(1)分类讨论:第一类,对于每一条棱,都可以与两个面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第二类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(2)当A={1}时,B有23-1种情况;当A={2}时,B有22-1种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以满足题意的“子集对”共有7+3+1+3+3=17(个).]。
2019版高考数学(理)高分计划一轮课件:第10章 计数原理、概率、随机变量及其分布 10-2
解 (1)站成两排(前 3 后 4),共有 A77=5040 种不同的 排法.
(2)第一步,从甲、乙、丙三人选一个加到前排,有 3 种,第二步,前排 3 人形成了 4 个空,任选一个空加一人, 有 4 种,第三步,后排 4 人形成了 5 个空,任选一个空加 一人有 5 种,此时形成 6 个空,任选一个空加一人,有 6 种,根据分步计数原理有 3×4×5×6=360 种方法.
(3)甲、乙、丙、丁四个好朋友相互发微信,共有多少 条微信?此题属于组合问题.( × )
(4)若组合式 Cxn=Cmn ,则 x=m 成立.-3P18 例 3)6 名同学排成一排,其中甲、乙 两人必须排在一起的不同排法有( ) A.720 种 B.360 种 C.240 种 D.120 种
方法技巧 1.组合问题的常见题型及解题思路 (1)常见题型:一般有选派问题、抽样问题、图形问题、 集合问题、分组问题等. (2)解题思路:①分清问题是否为组合问题;②对较复 杂的组合问题,要搞清是“分类”还是“分步”,一般是先 整体分类,然后局部分步,将复杂问题通过两个原理化归为 简单问题.见本例(4).
解 7 位同学站成一排,共有 A77种不同的排法; 甲、乙和丙三个同学都相邻的排法共有 A55A33=720 种. 故共有 A77-A55A33=4320 种不同的排法.
[结论探究 3] (1)若将 7 人站成两排,前排 3 人,后排 4 人,共有多少种不同的排法?
(2)若现将甲、乙、丙三人加入队列,前排加 1 人,后 排加 2 人,其他人保持相对位置不变,则有多少种不同的 加入方法?
3.排列数、组合数的公式及性质
4.常用结论 (1)①Amn =(n-m+1)Amn -1; ②Amn =n-n mAmn-1; ③Amn =nAmn--11. (2)①nAnn=Ann+ +11-Ann; ②Amn+1=Amn +mAmn -1. (3)1!+2·2!+3·3!+…+n·n!=(n+1)!-1.
2019版高考一轮总复习数学第10章 计数原理、概率、随机变量及分布列 10-6 板块一 知识梳理 自主学习
3.在几何概型定义中的区域可以是线段、平面图形、
立体图形.( √ )
4.随机模拟方法是以事件发生的频率估计概率.( √ )
5.与面积有关的几何概型的概率与几何图形的形状有
关.( × )
6.从区间[1,10]内任取一个数,取到 1 的概率是 P=
1 9.(
×
)
二、小题快练
1.[2017·新余模拟]如图,将半径为 1 的圆分成相等的
例 3 在区间[1,5]和[2,4]上分别取一个数,记为 a,b, 则方程ax22+by22=1 表示焦点在 x 轴上且离心率小于
23的椭圆的概率为(
)
1
15
A.2
B.32
17 C.32
31 D.32
[解析] ∵ax22+by22=1 表示焦点在 x 轴上且离心率小于
23的椭圆,∴a>b>0,a<2b,它对应的平面区域如图中阴 影部分所示,则方程ax22+by22=1 表示焦点在 x 轴上且离心率
4 入孔中的概率是___9_π____.
解析
依题意,所求概率为 P=π·13222=94π.
板块二 典例探究·考向突破
考向 与长度有关的几何概型
例 1 [2015·山东高考]在区间[0,2]上随机地取一个数 x,
则事件“-1≤log1 2
x+12≤1”发生的概率为(
四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往
圆内任投一点,此点落在星形区域内的概率为(
)
A.4π-1
1 B.π
C.1-1π
2 D. π
解析 顺次连接星形的四个顶点,则星形区域的面积 等于( 2)2-414×π×12-12×12=4-π,又因为圆的面积等 于 π×12=π,因此所求的概率等于4- π π=4π-1.
2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.5古典概型课件理
2 = .故选 B. 5
典例2
(2017· 山西一模)现有 2 名女教师和 1 名男教
师参加说题比赛,共有 2 道备选题目,若每位选手从中有放 回地随机选出一道题进行说题, 其中恰有一男一女抽到同一 道题的概率为( 1 A. 3 ) 2 1 3 B. C. D. 3 2 4
简单古典概型的求解 (2016· 北京高考)从甲、乙等 5 名学生中随机 )
选出 2 人,则甲被选中的概率为( 2 8 9 B. C. D. 5 25 25
解析 设其他 3 名学生为丙、丁、戊,从中任选 2 人 的所有情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙, 丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊), 共 4+3+2+1=10 种. 其中甲被选中的情况有 (甲,乙),(甲,丙),(甲,丁),
第10章
计数原理、概率、随机 变量及其分布
10.5 古典概型
基础知识过关
[知识梳理] 1.基本事件的特点
互斥 (1)任何两个基本事件都是____________ 的. 基本事件 (2)任何事件(除不可能事件)都可以表示成___________
的和. 2.古典概型 具有以下两个特点的概率模型称为古典概率模型, 简称 古典概型. (1)有限性:试验中所有可能出现的基本事件 只有有限个. ____________
(2)等可能性:每个基本事件出现的可能性 相等. ____________ 3.如果一次试验中可能出现的结果有 n 个,而且所有 结果出现的可能性都相等, 那么每一个基本事件的概率都是
1 ____________ ;如果某个事件 A 包括的结果有 m 个,那么 n m n 事件 A 的概率 P(A)=____________ .
(通用版)2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布1第1讲分类加法计数原理与分步乘
第1讲 分类加法计数原理与分步乘法计数原理理解排列、组合的概念.能用计数原理证明二项式定理.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了理解古典概型及其概率计算公式.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对1.两个计数原理分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( ) (3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( ) (4)在分步乘法计数原理中,事件是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )答案:(1)×(2)√ (3)√ (4)×从0,1,2,3,4,5这六个数字中,任取两不同数字相加,其和为偶数的不同取法的种数有( )A .30B .20C .10D .6解析:选D.从0,1,2,3,4,5六个数字中,任取两不同数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N =3+3=6(种).某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为( )A .504B .210C .336D .120解析:选A.3个新节目一个一个插入节目单中,分别有7,8,9种方法,所以不同的插法种数为7×8×9=504.某同学逛书店,发现有三本喜欢的书,决定至少买其中一本,则购买的方案有________种.解析:至少买其中一本的意思是买一本或买两本或买三本,故分三类.第一类:买一本有3种;第二类:买两本有3种;第三类:买三本有1种.共有3+3+1=7种购买方案.答案:7(教材习题改编)书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从书架上任取1本书,不同的取法种数为________,从第1,2,3层分别各取1本书,不同的取法种数为________.解析:由分类加法计数原理知,从书架上任取1本书,不同的取法总数为4+5+6=15.由分步乘法计数原理知,从1,2,3层分别各取1本书,不同的取法总数为4×5×6=120.答案:15 120分类加法计数原理[典例引领](1)椭圆x 2m +y 2n=1(m >0,n >0)的焦点在x 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为( )A .10B .12C .20D .35(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为________. 【解析】 (1)因为焦点在x 轴上,m >n ,以m 的值为标准分类,由分类加法计数原理,可分为四类:第一类:m =5时,使m >n ,n 有4种选择;第二类:m =4时,使m >n ,n 有3种选择;第三类:m =3时,使m >n ,n 有2种选择;第四类:m =2时,使m >n ,n 有1种选择.故符合条件的椭圆共有10个.故选A.(2)根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个). 【答案】 (1)A (2)361.在本例(1)中,若m ∈{1,2,…,k },n ∈{1,2,…,k }(k ∈N *),其他条件不变,这样的椭圆的个数为________.解析:因为m >n .当m =k 时,n =1,2,…,k -1. 当m =k -1时,n =1,2,…,k -2. …当m =3时,n =1,2. 当m =2时,n =1.所以共有1+2+…+(k -1)=k (k -1)2(个).。
2019版高考数学一轮复习第10章计数原理概率随机变量及其分布10.1分类加法计数原理与分步乘法计数原理课后作
10.1 分类加法计数原理与分步乘法计数原理[基础送分提速狂刷练]一、选择题1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )A.21种 B.315种 C.143种 D.153种答案 C解析可分三类:一类:语文、数学各1本,共有9×7=63种;二类:语文、英语各1本,共有9×5=45种;三类:数学、英语各1本,共有7×5=35种;∴共有63+45+35=143种不同选法.故选C.2.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.( ) A.8 B.12 C.14 D.9答案 B解析由题意知本题是一个分类计数问题.当组成的数字有三个1,三个2,三个3,三个4共有4种情况,当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类计数原理得到共有12种结果,故选B.3.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种 B.18种 C.37种 D.48种答案 C解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37种.故选C.4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为( )A.42 B.30 C.20 D.12答案 A解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).故选A.5.(2017·石家庄模拟)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A.10种 B.25种 C.52种 D.24种答案 D解析每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.故选D.6.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A.60 B.48 C.36 D.24答案 B解析长方体的6个表面构成的“平行线面组”个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.故选B.7.(2017·山东模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252 C.261 D.279答案 B解析由分步乘法计数原理知:用0,1,…,9十个数字组成三位数(可有重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252,故选B.8.(2018·南宁调研)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A.18个 B.15个 C.12个 D.9个答案 B解析依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15(个).故选B.9.有A,B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,若从三名工人中选2名分别去操作以上车床,则不同的选派方法有( )A.6种 B.5种 C.4种 D.3种答案 C解析若选甲、乙2人,则包括甲操作A车床,乙操作B车床或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙2人,则只有甲操作B车床,丙操作A车床这1种选派方法;若选乙、丙2人,则只有乙操作B车床,丙操作A车床这1种选派方法.∴共有2+1+1=4种不同的选派方法.故选C.10.(2018·湖南长沙模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有( ) A.12对 B.18对 C.24对 D.30对答案 C解析依题意,注意到在正方体ABCD-A1B1C1D1中,与直线AC构成异面直线且所成的角为60°的直线有BC 1,BA 1,A 1D ,DC 1,注意到正方体ABCD -A 1B 1C 1D 1中共有12条面对角线,可知所求的“黄金异面直线对”共有4×122=24对,故选C. 二、填空题11.已知集合M ={1,2,3,4},集合A ,B 为集合M 的非空子集,若对∀x ∈A ,y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有________个.答案 17解析 当A ={1}时,B 有23-1=7种情况;当A ={2}时,B 有22-1=3种情况;当A ={3}时,B 有1种情况;当A ={1,2}时,B 有22-1=3种情况;当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况.故满足题意的“子集对”共有7+3+1+3+3=17个.12.(2018·湖南十二校联考)若m ,n 均为非负整数,在做m +n 的加法时各位均不进位(例如:134+3802=3936),则称(m ,n )为“简单的”有序对,而m +n 称为有序对(m ,n )的值,那么值为1942的“简单的”有序对的个数是________.答案 300解析 第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式; 第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1942的“简单的”有序对的个数为2×10×5×3=300.13.已知数列{a n }是公比为q 的等比数列,集合A ={a 1,a 2,…,a 10},从A 中选出4个不同的数,使这4个数成等比数列,这样得到4个数的不同的等比数列的个数为________.答案 24解析 当公比为q 时,满足题意的等比数列有7种,当公比为1q时,满足题意的等比数列有7种,当公比为q 2时,满足题意的等比数列有4种,当公比为1q 2时,满足题意的等比数列有4种,当公比为q 3时,满足题意的等比数列有1种,当公比为1q 3时,满足题意的等比数列有1种,因此满足题意的等比数列共有7+7+4+4+1+1=24(种).14.如图,一个地区分为5个行政区域,现给地图着色,若要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有________种(用数字作答).答案72解析解法一:区域1有C14种着色方法;区域2有C13种着色方法;区域3有C12种着色方法;区域4,5有3种着色方法(4与2同色有2种,4与2不同色有1种).∴共有4×3×2×3=72种不同着色方法.解法二:区域1与其他四个区域都相邻,宜先考虑.区域1有4种涂法.若区域2,4同色,有3种涂色,此时区域3,5均有两种涂法,涂法总数为4×3×2×2=48种;若区域2,4不同色,先涂区域2有3种方法,再涂区域4有2种方法.此时区域3,5也都只有1种涂法,涂法总数为4×3×2×1×1=24种.因此涂法共有48+24=72种.三、解答题15.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,则不同的放法有多少种?解根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法.(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得,3×2×1=6种不同的放法.(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C,D,E有3×2×1=6种不同的放法,根据分步乘法计数原理得,3×6=18种不同的放法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.16.(2018·江阴模拟)用n(n∈N*)种不同颜色给如图的4个区域涂色,要求相邻区域不能用同一种颜色.(1)当n=6时,图①、图②各有多少种涂色方案?(要求:列式或简述理由,结果用数字作答)(2)若图③有180种涂色法,求n的值.解(1)当n=6时,图①A有6种方法,B有5种方法,C有4种方法,D有5种方法,共有涂色方法6×5×4×5=600种.图②若A,C相同,则A有6种方法,B有5种方法,D有4种方法,共有6×5×4=120种.若A,C不同,则A有6种方法,B有5种方法,C有4种方法,D有3种方法,共有6×5×4×3=360种.∴共有涂色方法120+360=480种.(2)A有n种方法,B有n-1种方法,C有n-2种方法,D有n-2种方法,共有涂色方法n(n-1)(n-2)·(n-2)种,由n(n-1)(n-2)(n-2)=180,解得n=5.。
【配套K12】[学习]2019届高考数学一轮复习 第十篇 计数原理、概率、随机变量及其分布 第4节
第4节随机事件的概率基础巩固(时间:30分钟)1.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增加,有( D )(A)f(n)与某个常数相等(B)f(n)与某个常数的差逐渐减小(C)f(n)与某个常数差的绝对值逐渐减小(D)f(n)在某个常数附近摆动并趋于稳定解析:随着n的增大,频率f(n)会在概率附近摆动并趋于稳定,这也是频率与概率的关系.故选D.2.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并(A)0.53 (B)0.5 (C)0.47 (D)0.37解析:取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为=0.53.故选A.3.从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是( C )(A)(B)(C)(D)解析:“取出的2个球全是红球”记为事件A,则P(A)=.因为“取出的2个球不全是红球”为事件A的对立事件,所以其概率为P()=1-P(A)=1-=.故选C.4.一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则( D )(A)A与B是互斥而非对立事件(B)A与B是对立事件(C)B与C是互斥而非对立事件(D)B与C是对立事件解析:根据互斥与对立的意义作答,A∩B={出现点数1或3},事件A,B不互斥更不对立;B∩C= ,B∪C=Ω(Ω为基本事件的集合),故事件B,C是对立事件.故选D.5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( D )(A)0.3 (B)0.5 (C)0.8 (D)0.7解析:由互斥事件概率加法公式知,重量不小于30克的概率为1-0.3=0.7.故选D.6.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是( C )(A) (B)(C)(D)1解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)= +=.即任意取出2粒恰好是同一色的概率为.故选C.7.若随机事件A,B互斥,A,B发生的概率均不等于0,且分别为P(A)=2-a,P(B)=3a-4,则实数a 的取值范围为.解析:由题意可得所以解得<a≤.答案:(,)8.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率为0.28,若红球有21个,则黑球有个.解析:1-0.42-0.28=0.30,21÷0.42=50,50×0.30=15.答案:15能力提升(时间:15分钟)9.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一产品是正品(甲级)的概率为( C )(A)0.95 (B)0.97 (C)0.92 (D)0.08解析:记抽验的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而抽验的产品是正品(甲级)的概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.故选C.10.(2017·银川模拟)已知甲、乙两人下棋,和棋的概率为,乙胜的概率为,则甲胜的概率和甲不输的概率分别为( C )(A), (B),(C), (D),解析:“甲胜”是“和棋或乙胜”的对立事件,所以甲胜的概率为1--=.设“甲不输”为事件A,则A可看作是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A)= +=.(或设“甲不输”为事件A,则A可看作是“乙胜”的对立事件,所以P(A)=1-=.0故选C.11.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率为.解析:由题意知“出现奇数点”的概率是事件A的概率,“出现2点”的概率是事件B的概率,事件A,B互斥,则“出现奇数点或2点”的概率为P(A)+P(B)= +=.答案:12.据统计,某食品企业在一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1,则该企业在一个月内被消费者投诉不超过1次的概率为.解析:法一记“该食品企业在一个月内被消费者投诉的次数为0”为事件A,“该食品企业在一个月内被消费者投诉的次数为1”为事件B, “该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉不超过1次”为事件D,由题意知事件A,B,C彼此互斥,而事件D包含事件A与B,所以P(D)=P(A)+P(B)=0.4+0.5=0.9.法二记“该食品企业在一个月内被消费者投诉的次数为2”为事件C,“该食品企业在一个月内被消费者投诉不超过1次”为事件D,由题意知C与D是对立事件,所以P(D)=1-P (C)=1-0.1=0.9.答案:0.913.甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A);(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?说明理由.解:(1)甲、乙各出1到5根手指头,共有5×5=25种可能结果,和为6有5种可能结果,所以P(A)==.(2)B与C不是互斥事件,理由如下:B与C都包含“甲赢一次,乙赢两次”,事件B与事件C可能同时发生,故不是互斥事件.(3)和为偶数有13种可能结果,其概率为P=>,故这种游戏规则不公平.14.(2017·浙江绍兴模拟)如图所示,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:(1)试估计40分钟不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站有12+12+16+4=44人.所以用频率估计相应的概率为0.44.12(3)A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)得P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),所以乙应选择L2.15.黄种人人群中各种血型的人数所占的比例见下表:已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解:(1)任找一人,其血型为A,B,AB,O型血分别记为事件A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“任找一个人,其血可以输给小明”为事件B′∪D′,根据概率加法公式,得P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件A′∪C′,且P(A′∪C′)=P(A′)+P(C′)=0.28+0.08=0.36.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.4 随机事件的概率[知识梳理] 1.事件的分类2.频率和概率(1)在相同的条件S 下重复n 次实验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n为事件A 出现的频率.(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.3.事件的关系与运算4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).[诊断自测]1.概念思辨(1)若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1.( ) (2)在大量重复试验中,概率是频率的稳定值.( )(3)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.( )(4)事件A 的对立事件A -所含的结果组成的集合,是全集中由事件A 所含结果组成集合的补集.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(必修A3P 113T 1)下列事件中不可能事件的个数为( )①如果a >b ,c >d ,则a -d >b -c ;②对某中学的毕业生进行一次体检,每个学生的身高都超过2 m ;③某电视剧收视率为40%;④从10个玻璃杯(其中8个正品,2个次品)中,任取2个,2个都是次品;⑤在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态.A .1B .2C .3D .4 答案 B解析 ①是必然事件;②⑤是不可能事件;③④是随机事件.故选B.(2)(必修A3P 124A 组T 6)一袋中装有100个除颜色不同外其余均相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别为0.40和0.35,那么黑球共有________个.答案 25解析 设红球、白球各有x 个和y 个,则⎩⎪⎨⎪⎧x100=0.40,y100=0.35,解得⎩⎪⎨⎪⎧x =40,y =35,所以黑球的个数为100-40-35=25.3.小题热身(1)(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 答案 B解析 记3件合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,从5件产品中任取2件,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共10种可能.其中恰有一件次品有6种可能,由古典概型概率公式得所求事件概率为610=0.6.故选B.(2)(2017·浙江瑞安中学高三月考)一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,现将这颗骰子抛掷三次,观察向上的点数,则三次点数之和等于15的概率为________.答案5108解析 将这颗骰子抛掷三次,共63=216(种)情况.而三次点数之和等于15的有10个(555共1个,456共6个,366共3个).所以三次点数之和等于15的概率P =10216=5108.题型1 随机事件典例 某县城有甲、乙两种报纸供居民订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报纸”,事件C 为“至多订一种报纸”,事件D 为“不订甲报”,事件E 为“一种报纸也不订”.判断下列事件是不是互斥事件;如果是,再判断它们是不是对立事件:(1)A 与C ;(2)B 与E ;(3)B 与C ;(4)C 与E .用集合的观点分析.A ∩B =∅为互斥事件,A ∩B =∅且A ∪B =U 为对立事件.解 (1)由于事件C “至多订一种报纸”中包括“只订甲报”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B “至少订一种报纸”与事件E “一种报纸也不订”是不可能同时发生的,故事件B 与E 是互斥事件;由于事件B 发生会导致事件E 一定不发生,且事件E 发生会导致事件B 一定不发生,故B 与E 还是对立事件.(3)事件B “至少订一种报纸”中有这些可能:“只订甲报纸”“只订乙报纸”“订甲、乙两种报纸”,事件C “至多订一种报纸”中有这些可能:“一种报纸也不订”“只订甲报纸”“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(4)由(3)的分析,事件E “一种报纸也不订”是事件C 的一种可能,即事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.方法技巧1.准确把握互斥事件与对立事件的概念(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.见典例.2.判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.见典例.冲关针对训练口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的2球同色”,B =“取出的2球中至少有1个黄球”,C =“取出的2球至少有1个白球”,D =“取出的2球不同色”,E =“取出的2球中至多有1个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C ∪E )=1;⑤P (B )=P (C ).答案 ①解析 当取出的2个球中一黄一白时,B 与C 都发生,②不正确.当取出的2个球中恰有一个白球时,事件C 与E 都发生,则③不正确.显然A 与D 是对立事件,①正确;C ∪E 不一定为必然事件,P (C ∪E )≤1,④不正确.由于P (B )=45,P (C )=35,所以⑤不正确.题型2 随机事件的频率与概率典例 (2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”.求P (A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.采用公式法f n (A )=nA n.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.1925a .因此,续保人本年度平均保费的估计值为1.1925a .[结论探究1] 若本例条件不变,结论变为“试求一续保人本年度的保费高于基本保费的估计值”.解 1-60+50200=0.45或30+30+20+10200=0.45.[结论探究2] 若本例条件不变,结论变为“试求一续保人本年度的保费不低于基本保费的估计值”.解 1-60200=0.7或50+30+30+20+10200=0.7.方法技巧1.计算简单随机事件频率或概率的解题思路 (1)计算出所求随机事件出现的频数及总事件的频数. (2)由频率与概率的关系得所求.2.求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键,由所给频率分布表,频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求.冲关针对训练(2018·福建基地综合测试)某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.(1)若商店一天购进该商品10件,求日利润y (单位:元)关于日需求量n (单位:件,n ∈N )的函数解析式;(2)商店记录了50天该商品的日需求量n (单位:件),整理得下表:15①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求日利润在区间[400,550]内的概率.解 (1)当日需求量n ≥10时,日利润为y =50×10+(n -10)×30=30n +200, 当日需求量n <10时,利润y =50×n -(10-n )×10=60n -100. 所以日利润y 与日需求量n 的函数解析式为y =⎩⎪⎨⎪⎧30n +200,n ≥10,n ∈N ,60n -100,n <10,n ∈N .(2)50天内有9天获得的日利润为380元,有11天获得的日利润为440元,有15天获得日利润为500元,有10天获得的日利润为530元,有5天获得的日利润为560元.所以①这50天的日利润(单位:元)的平均数为 380×9+440×11+500×15+530×10+560×550=477.2.②日利润(单位:元)在区间[400,550]内的概率为 P =11+15+1050=1825.题型3 互斥事件与对立事件的概率典例 (2014·陕西高考)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解 (1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率得P (A )=1501000=0.15,P (B )=1201000=0.12. 由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,知样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.方法技巧求复杂的互斥事件的概率的两种方法1.直接求解法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.2.间接求法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A -),即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就显得较简便.提醒:间接法体现了“正难则反”的思想方法.冲关针对训练经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率.解 记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 彼此互斥.(1)记“至多2人排队等候”为事件G , 则G =A +B +C ,所以P (G )=P (A +B +C ) =P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)解法一:记“至少3人排队等候”为事件H ,则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.1.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 设“两人下成和棋”为事件A ,“甲获胜”为事件B .事件A 与B 是互斥事件,所以甲不输的概率P =P (A +B )=P (A )+P (B )=12+13=56,故选A.2.(2018·湖南衡阳八中模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3 答案 C解析 ∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率P =1-P (A )=1-0.65=0.35.故选C.3.(2014·全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.答案 23解析 设2本不同的数学书为a 1,a 2,1本语文书为b ,在书架上的排法有a 1a 2b ,a 1ba 2,a 2a 1b ,a 2ba 1,ba 1a 2,ba 2a 1,共6种,其中2本数学书相邻的有a 1a 2b ,a 2a 1b ,ba 1a 2,ba 2a 1,共4种,因此2本数学书相邻的概率P =46=23.4.(2017·安徽池州模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.答案112解析 小明输入密码后两位的所有情况为(4,A ),(4,a ),(4,B ),(4,b ),(5,A ),(5,a ),(5,B ),(5,b ),(6,A ),(6,a ),(6,B ),(6,b ),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112.[基础送分 提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56 答案 B解析 分别记《爱你一万年》《十年》《父亲》《单身情歌》为A 1,A 2,A 3,A 4,从这四首歌中选出两首歌进行表演的所有可能结果为A 1A 2,A 1A 3,A 1A 4,A 2A 3,A 2A 4,A 3A 4,共6个,其中A 1未被选取的结果有3个,所以所求概率P =36=12.故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 答案 C解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.3.(2017·安徽“江南十校”联考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15 答案 D解析 令选取的a ,b 组成实数对(a ,b ),则有C 13C 15=15种情况,其中b >a 的有(1,2),(1,3),(2,3)3种情况,所以b >a 的概率为315=15.故选D.4.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,2),则向量m 与向量n 不共线的概率是( )A.16B.1112C.112D.118 答案 B解析 若m 与n 共线,则2a -b =0.而(a ,b )的可能性情况为6×6=36个.符合2a =b 的有(1,2),(2,4),(3,6)共三个.故共线的概率是336=112,从而不共线的概率是1-112=1112.故选B.5.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( )A.116B.316C.14D.716答案 B解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为27144=316.故选B. 6.(2018·湖南常德模拟)现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为( )A.13B.12C.23D.1136答案 D解析 将这枚骰子先后抛掷两次的基本事件总数为6×6=36(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个.∴这两次出现的点数之和大于点数之积的概率P =1136.故选D. 7.(2018·安徽黄山模拟)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A.310B.15C.12D.35答案 A 解析 从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C 35=10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P =310.故选A. 8.(2018·河南开封月考)有5张卡片,上面分别写有数字1,2,3,4,5.从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为( )A.13B.23C.710D.310答案 C解析 从5张卡片中随机抽取2张共有C 25=10种等可能情况;2张卡片上的数字之积为偶数的为1奇1偶和2偶,共有C 13C 12+C 22=7种等可能情况,故所求概率为P =710.故选C. 9.(2018·广东海珠综合测试)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为( )A.427B.827C.49D.89 答案 C解析 因为3种不同的精美卡片随机放进4袋食品中,根据分步乘法计数原理可知共有34=81种不同放法,4袋食品中共有3种不同的卡片的放法有3×C 24×A 22=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C. 10.(2017·湖南郴州三模)从集合A ={-2,-1,2}中随机抽取一个数记为a ,从集合B ={-1,1,3}中随机抽取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14答案 A解析 (a ,b )所有可能的结果为C 13C 13=9种.由ax -y +b =0得y =ax +b ,当⎩⎪⎨⎪⎧ a ≥0,b ≥0时,直线不经过第四象限,符合条件的(a ,b )的结果为(2,1),(2,3),共2种,∴直线ax -y +b =0不经过第四象限的概率P =29,故选A.二、填空题11.(2017·陕西模拟)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案 35解析 如图,从A ,B ,C ,D ,O 这5个点中任取2个,共有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6种,因此所求概率P =610=35. 12.(2017·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.答案 1928解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.答案 8151415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C “取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P (C )=715+115=815. (2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415. 14.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25. 三、解答题15.(2018·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟). (2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110. P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710. 16.(2015·北京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2. (2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3. (3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1. 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。