第7册第三章应用题(二)
人教版七年级上册数学第三章一元一次方程应用题——销售问题
人教版七年级上册数学第三章一元一次方程应用题——销售问题1.某商厦以每件80元的价格购进了某品牌T恤500件,并以每件120元的价格销售400件,商场准备采取促销措施,将剩下的衬衫降价销售,请你帮商场计算一下,当每件衬衫降价多少元时,销售完这批衬衫,正好达到盈利45%的预期目标.2.我校计划从某公司购买A,B两种型号的小黑板,经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.请你帮助求购买一块A型小黑板、一块B型小黑板各需多少元?(用一元一次方程求解)3.学校为促进“阳光体育运动”开展,准备添置一批篮球,原计划订购60个,每个售价100元.商店表示:如果多购可以优惠.结果校方买了70个,每个只售97元,但商店所获利润不变,求每个篮球的成本价.(1)找出题中能体现等量关系的关键句子,并列出等量关系;(2)根据所列等量关系设未知数,并列方程解决问题.4.用方程解决问题:某家用电器商场的一台洗衣机的进价是2000元,为了吸引顾客,商场准备以标价的8折销售,预计每天能卖出20台.要使得每天的利润达到3200元,该品牌洗衣机的标价应该是多少元?5.某超市出售一种商品,其原价为四元,现有三种调价方案:方案一,先提价10%,再降价10%;方案二,先提价20%,再降价20%;方案三,先降价20%,再提价20%.(2)在方案三中,若先降价20%,要想恢复原价,需提价百分之几?(列方程解决)6.某种商品每件的标价是220元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为多少元?7.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?8.某商场计划销售一批商品,如果每天销售10件,可以按计划完成销售任务,如果每天多销售2件,就可以提前1天完成任务.(1)该商场计划几天完成销售任务?(2)若该商品的标价为200元/件,按标价的八折进行促销,每件仍可以盈利60元,该批商品的总成本为多少元?9.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?10.甲、乙两种商品成本共240元,已知甲商品按40%的利润率定价,乙商品按45%的利润率定价,后来甲打9折出售,乙打8折出售.结果共获利润48元,两种商品成本各为多少元?11.一家商店将某种自行车按成本价加价30%作为标价,为了吸引顾客,商家又以标价的八折售出,结果每辆自行车仍可获利26元,问这辆自行车的标价是多少元?12.某商家在“618购物节”活动中将某种服装按成本价加价40%作为标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,这件服装的实际售价是多少元?13.某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按50%和40%的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?14.一款电脑原售价4500元,元旦商店搞促销,打八折出售,此时每售出一台电脑仍可获利20%,求:(1)这款电脑的成本价是多少?(2)若按原价出售,商店所获盈利率是多少?15.一家商店将某种服装每件按进价加价40%作为标价,随后又打出八折优惠大促销,结果每件服装还可获利60元.问这件服装每件的进价是多少元?16.某商人一次卖出了两件衣服,售价都是9775元,已知其中一件盈利15%,另一件亏损15%,问这位商人总的来说是盈利还是亏损,或是不盈不亏?17.某商场打算购进西装和衬衫共55件,其中西装的单价是1000元/件,衬衫的单价是200元/件.采购部进行了预算,打算领取32000元,会计计算后说:“如果用这些钱共买这两种产品,那么账肯定算错了”.试用学过的方程知识解释会计这样说的理由.18.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调共100台,问盈利多少元?19.某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?20.某超市用5000元购进了甲、乙两种商品,其中甲种商品140件,乙种商品180件.已知乙种商品每件进价比甲种商品每件进价贵10元,甲种商品售价为15元/件,乙种商品售价为35元/件.(注:利润=售价﹣进价)(1)该超市购进甲、乙两种商品每件各多少元?(2)该超市将购进的甲、乙两种商品全部销售完后一共可获得多少利润?。
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案) (90)
人教版七年级数学上册第三章实际问题与一元一次方程解答题复习题二(含答案)某商场推出新年大促销活动,其中标价为1800元的某种商品打9折销售,该种商品的利润率为8%.(1)求该商品的成本价的多少?(2)该商品在降价前一周的销售额达到了97200元,要使该商品降价后一周内的销售额也达到97200元,降价后一周内的销售数量应该比降价前一周内的销售数量增加多少?【答案】(1)该商品的成本价为1500元;(2)降价后一周内的销售数量应该比降价前一周内的销售数量增加6件.【解析】【分析】(1)设该商品的成本价为x元,根据该种商品的利润率为8%列出方程并解答;(2)设降价后一周内的销售数量应该比降价前一周内的销售数量增加m 件,根据销售额不变列出方程并解答.【详解】解:(1)设该商品的成本价为x元,依题意得:(1+8%)x=1800×0.9解得x=1500答:该商品的成本价为1500元;(2)设降价后一周内的销售数量应该比降价前一周内的销售数量增加m件,依题意得:(97200÷1800+m )×1800×0.9=97200解得m =6答:降价后一周内的销售数量应该比降价前一周内的销售数量增加6件.【点睛】此题考查了一元一次方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系,列出方程并解答.92.已知:b 是最小的正整数,且a 、b 满足2(c 5)a b 0-++=,请回答问题()1请直接写出a 、b 、c 的值:a =______,b =______,c =______;()2a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一个动点,其对应的数为x ,点P 在0到2之间时(即0x 2≤≤时),请化简x 1x 22x 5(+--++请写出化简过程);()3在()()12的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动同时,点B 和点C 分别以每秒6个单位长度和2个单位长度的速度向右运动,设运动时间为t ,是否存在t ,使A 、B 、C 中一点为其它两点组成的线段的中点?如果存在,请求出t ;如果不存在,请说明理由.【答案】(1)1-,1,5(2)2x 13+(3)存在t 为211秒时,点B 是线段AC 的中点;t 为10秒时,点C 是线段AB 的中点【解析】【分析】()1利用非负数的性质即可求得;()2由绝对值的意义即可进行化简;()3用变量t 分别表示A 、B 、C 所表示的数,分情况讨论即可求得.【详解】()1由2(c 5)a b 0-++=得,c 50-=,a b 0+=,又b 是最小的正整数,即b 1=,解得a 1=-,c 5=.故答案为1-,1,5.()2由0x 2≤≤,得x 10+>,x 20-≥,x 50+>,x 1x 22x 5∴+--++,x 1x 22x 10=+-+++,2x 13=+,故答案为2x 13+()3设经过t 秒后,A 为1t --,B 为16t +,C 为52t +,分以下两种情况:①当点B 是线段AC 的中点时,则有:()216t 1t 52t +=--++,解得2t 11=; ②当点C 是线段AB 的中点时,则有:()252t 1t 16t +=--++,解得t 10=.故存在t 为211秒时,点B 是线段AC 的中点;t 为10秒时,点C 是线段AB 的中点.【点睛】本题考查了非负数的性质、绝对值的化简及动点问题,对于实数的基础运算要掌握好,另外要善于在动点运动中找规律.93.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.【答案】(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元. ()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.94.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5.将长方形OABC 沿数轴水平移动,O ,A ,B ,C 移动后的对应点分别记为O 1, A 1, B 1, C 1,移动后的长方形O 1A 1B 1C 1与原长方形OABC 重叠部分的面积记为S(1)当S恰好等于原长方形面积的一半时,数轴上点A1表示的数是多少? (2)设点A的移动距离AA1=x①当S=10时,求x的值;②D为线段AA1的中点,点E在线段OO1上,且OE=13OO1,当点D,E所表示的数互为相反数时,求x的值.【答案】(1)A1表示的数是3或9;(2)①x=4,②x=365.【解析】【分析】(1)根据长方形的面积可得OA长即点A表示的数,在由已知条件得S=15,根据题意分情况讨论:①当向左移动时,②当向右移动时,根据长方形面积公式分别计算、分析即可得出答案.(2)①由(1)知:OA=O1A1=6,OC=O1C1=5,由AA1=x得OA1=6-x,由长方形面积公式列出方程,解之即可.②当向左移动时,由AA1=x得OA1=6-x,OO1=x,根据题意分别得出点E、点D表示的数,由点E和点D表示的数互为相反数列出方程,解之即可;当向右移动时,点D、E表示的数都是正数,不符合题意.【详解】(1)解:∵S长方形OABC=OA·OC=30,OC=5,∴OA=6,∴点A表示的数是6,∵S=12S长方形OABC=12×30=15,当向左移动时,OA1·OC=15,∴OA1=3,∴A1表示的数是3;②当向右移动时,∴O1A·AB=15,∴O1A=3,∵OA=O1A1=6,∴OA1=6+6-3=9,∴A1表示的数是9;综上所述:A1表示的数是3或9.(2)解:①由(1)知:OA=O1A1=6,OC=O1C1=5,∵AA1=x,∴OA1=6-x,∴S=5×(6-x)=10,解得:x=4.②当长方形OABC沿数轴正方向运动时,点D,E表示的数均为正数,不符合题意;当点D,E所表示的数互为相反数时,长方形OABC沿数轴负方向运动,画图如下:∵AA1=x,∴OA1=6-x,OO1=x,∴OE=13OO1=13x,∴点E表示的数为-13 x,又∵点D为AA1中点,∴A1D=12AA1=12x,∴OD=OA1+A1D=6-x+12x=6-12x,∴点D表示的数为6-12 x,又∵点E和点D表示的数互为相反数,∴6-12x-13x=0,解得:x=365.故答案为(1)A1表示的数是3或9;(2)①x=4,②x=365.【点睛】本题考查数轴的相关知识,一元一次方程的应用.理解图形运动轨迹,表示点对应数字是解题关键.95.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.【答案】(1)24 (2)加工的螺栓和螺帽不能恰好配套.理由见解析(3)n是5的整数倍,且n为正整数.【解析】【分析】(1)设用x块金属原料加工螺栓,则用(20-x)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数,列出方程求解即可;(2)设用y块金属原料加工螺栓,则用(26-y)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解,如果解是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a块金属原料加工螺栓,则用(n-a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n与a的关系,进而求解即可.【详解】解:(1)设用x块金属原料加工螺栓,则用(20-x)块金属原料加工螺帽.由题意,可得2×3x=4(20-x),解得x=8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y块金属原料加工螺栓,则用(26-y)块金属原料加工螺帽.由题意,可得2×3y=4(26-y),解得y=10.4.由于10.4不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n-a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n-a),解得a=25n,则n-a=35n,即n所满足的条件是:n是5的整数倍,且n为正整数.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.96.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.()1求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答) ()2若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?【答案】()1甲的速度是每分钟350米,乙的速度是每分钟150米;()250米.【解析】【分析】(1) 设乙的速度为每分钟x米,则甲的速度为每分钟(200)x+米,两人同向而行相遇属于追及问题,等量关系:甲的路程与乙的路程之差等于环形场地的路程,即可列出方程。
人教版七年级数学上册第三章《一元一次方程》应用题填空题专题训练(二)
人教版七年级数学上册第三章《一元一次方程》应用题专题训练1.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.2.我国明代著名数学家程大位的《算法统宗》一书中记载了一些诗歌形式的算题,其中有一个“白羊问题”:甲赶羊逐草茂,乙拽肥羊一只随其后;戏剧问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半群.得你一只来方凑,玄机奥妙谁猜透.题目的意思是:甲赶了一群羊在草地上往前走,乙牵了一只肥羊紧跟在甲的后面.乙问甲:“你这群羊有一百只吗?”甲说:“如果再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只.”请问甲原来赶的羊一共有只?3.某品牌手机进价为2000元,若按标价八折出售,仍可获利20%,则该手机的标价为元.4.有一列数,按一定规律排列成1、﹣4、16、﹣64、256…,其中某相邻三个数的和是﹣832,那么这三个数中最大的数是.5.某商场在“庆元旦”的活动中将某种服装打折销售,如果每件服装按标价的6折出售将亏10元,而按标价的9折出售将赚50元,则每件服装的标价是元.6.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.7.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了小时.8.小明爸爸带着小明和小明弟弟去离家66千米的外婆家,小明爸爸有一辆摩托车,只坐一人时速度为50千米/小时,坐两人时速度为40千米/小时(交通法规定:摩托车最多只能坐两人).小明和小明弟弟如果步行速度均为10千米/小时,为尽快达到外婆家,出发时,小明步行,小明爸爸将小明弟弟载了一段路程后让其步行前往外婆家,并立即返回接步行的小明,再到外婆家,结果与小明弟弟同时到达外婆家,则小明从家到外婆家步行的时间为.9.某超市在“十一”黄金周活动期间,推出如下购物优惠方案:①一次性购物在200元(不含200元)以内,不享受优惠;②一次性购物在200元(含200元)以上,400元(不含400元)以内,一律享受九折优惠;③一次性购物在400元(含400元)以上,一律享受八折优惠;李兰妈妈在该超市两次购物分别付款189元和440元,如果李兰妈妈把这两次购物合并为一次性购物,则应付款元.10.甲、乙两人从长度为400m的环形运动场同一起点同向出发,甲跑步速度为200m/min,乙步行,当甲第五次超越乙时,乙正好走完第三圈,再过min,甲、乙之间相距100m,(在甲第六次超越乙前)11.一列火车匀速行驶,经过一条长510m的隧道需要25s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是8s.这列火车的长度为m.12.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.13.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.14.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A 港和B港相距km.15.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.16.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为米.17.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.18.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是元.19.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为元.20.如图,a、b、c、d、e、f均为有理数,图中各行、各列及两条对角线上三个数的和都相等,则a+b+c+d+e+f的值是.4 ﹣1 ab 3 cd e f21.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了道题.22.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了道题.23.商场将一件商品在进价的基础上加价80%标价,再九折出售,结果获利62元,则这件商品的进价为元.24.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是.参考答案1.解:设商店打x折,依题意,得:180×﹣120=120×20%,解得:x=8.故答案为:8.2.解:设甲原来赶的羊一共有x只,依题意,得:x+x+x+x+1=100,解得:x=36.故答案为:36.3.解:设该手机的标价为x元,根据题意得:80%x﹣2000=2000×20%,解得:x=3000,则该手机的标价为3000元,故答案为:30004.解:∵有一列数,按一定规律排列成1、﹣4、16、﹣64、256…,∴这列数中每个数都是前面相邻数的﹣4倍,设这三个相邻的数中的中间数为x,则第一个数为﹣,第三个数为﹣4x,﹣+x+(﹣4x)=﹣832,解得:x=256,∴﹣4x=﹣4×256=﹣1024,﹣=﹣64,∴这三个数﹣64,256,﹣1024,∴这三个数中最大的数是256,故答案为:256.5.解:设每件服装的标价是x元,可得:0.6x+10=0.9x﹣50,解得:x=200,答:每件服装的标价是200元;故答案是:200.6.解:设制作大花瓶的x人,则制作小饰品的有(20﹣x)人,由题意得:12x×5=10(20﹣x)×2,解得:x=5,20﹣5=15(人).答:要安排5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.故答案是:5.7.解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为:=10(小时)故答案是:10.8.解:设小明家为点A,小明上车的地点为点B,弟弟下车的地点为点C,外婆家为点D,如图所示.∵小明与弟弟步行速度、乘车速度都是相同的,且同时到达,∴两人步行路程相同,即AB=CD.设小明步行路程为x千米,则AB=CD=x,BC=66﹣2x.∵爸爸由C到B是一人乘坐摩托车,∴爸爸一共用的时间为()小时,小明一共用的时间为()小时.∵爸爸所用的时间=小明所用的时间,∴,解得:x=18,∴小明从家到外婆家步行的时间为18÷10=1.8(小时).故答案为:1.8小时.9.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<200时,x=189;当200≤x<400时,0.9x=189,解得:x=210;∵0.8y=440,∴y=550.∴0.8(x+y)=591.2或608.故答案为:591.2或608.10.解:设乙步行的速度为xm/min,依题意,得:x=400×3,解得:x=75,∴=或=.故答案为:或.11.解:设这列货车的长度为xm,依题意,得:=,解得:x=240.故答案为:240.12.解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+36,解得:x=300,故答案为:300元.13.解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.14.解:设A港与B港相距xkm,根据题意得:+3=,解得:x=504,则A港与B港相距504km.故答案为:504.15.解:设需x天完成,则x(+)=1,解得x=4,故需4天完成.16.解:设火车的长度为x米,则火车的速度为,依题意得:45×=600+x,解得x=300故答案是:300.17.解:设标价是x元,根据题意有:0.8x=40(1+30%),解得:x=65.故标价为65元.故答案为:65.18.解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.19.解:设这种商品每件的进价为x元,根据题意得:110×80%﹣x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为:80.20.解:依题意知4﹣1+a=d+3+a,解得d=0;又∵4+b+0=b+3+c为等式,∴c=1.又4﹣1+a=a+1+f,∴f=2,∴a=6,b=5,e=7,∴a+b+c+d+e+f=6+5+1+0+7+2=21.故答案为21.21.解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.故答案是:19.22.解:设他做对了x道题,则做错了(25﹣x)道题,依题意得:4x﹣(25﹣x)=85,解得x=22.故答案是:22.23.解:设这件商品的进价为x元,由题意得:90%(1+80%)x﹣x=62解得:x=100∴这件商品的进价为100元,故答案为:100.24.解:设个位上的数为a,则十位上的数为由题意得:a=9,解得:a=6,=3,所以,这个两位数是36.。
人教版七年级上册数学第三章一元一次方程应用题--工程问题
人教版七年级上册数学第三章一元一次方程应用题--工程问题1.整理一批图书,如果由一个人单独做要花40小时.现先由一部分人用1小时整理,随后增加5人和他们一起又做了2小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?2.整理一批快递,如果由一个人单独做要用20小时,现先安排一部分人用1小时整理,随后又增加4人和他们一起做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么应先安排多少人整理这批快递?3.整理一批数据,由一人做需100h完成.现计划由一部分人先做2h,然后增加5人和他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?4.某公司需要加工一批零件,甲每天可以加工16个零件,乙每天可以加工24个零件,甲单独加工这批零件比乙单独加工这批零件多用20天,甲每天的人工费为80元,乙每天的人工费为120元.(1)问这批零件共有多少个?(2)在加工零件过程中,公司要派一名质量监督员,并且每天支付他15元补助费,现有三种加工方案:①由甲单独加工这批零件;①由乙单独加工这批零件;①甲、乙合作同时加工这批零件,你认为哪种方案最省钱,为什么?5.某公司计划租用甲、乙两辆车运送一批货物,已知甲车单独运送这批货物需要20天,乙车单独运送需要10天,现由甲车先运5天,然后甲、乙两车合作运完剩下的货物.(2)已知甲车每天的租金比乙车少100元,运完这批货物公司共支付了租金6650元,则甲乙两车的租金每天分别是多少元?6.一项工程由甲工程队单独完成需要12天,由乙工程队单独完成需要16天,甲工程队单独施工5天后,为加快工程进度,又抽调乙工程队加入该工程施工,问还需多少天可以完成该工程?7.现有一工程打算让甲、乙两个工程队完成,甲队单独完成这项工程需要60天,乙队单独完成这项工程需90天;若由甲队先做10天,剩下的工程由甲、乙两队合作完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款4万元,乙队施工一天需付工程款2.5万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?8.一项工程由甲单独完成需要20天;由乙单独完成需要30天.(1)若该项工程由甲、乙合作完成,则需要多少天?(2)由于场地限制,两人不能同时施工,若先安排甲单独施工完成一部分后,再由乙单独施工完成剩余工程.已知完成该项工程共用了25天,问甲、乙分别单独施工了几天?9.“开福,开启幸福的地方”,开福区绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对开福大道的某段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元,购买两种树苗的总金额为90000元.(1)求需购买甲、乙两种树苗各多少棵?(2)若栽种一棵甲种树苗需人工费50元,栽种一棵乙种树苗需人工费40元,则这批树苗共需人工费多少元?10.完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?11.某车间的工人,分两队参加义务植树活动,甲队人数是乙队人数的两倍,由于任务的需要,从甲队调16人到乙队,则甲队剩下的人数是乙队人数的一半少3人,求甲、乙两队原有的人数12.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间,且单独粉刷这些墙面甲工程队比乙工程队要多用20天.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?13.新学期校服公司计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服80件,乙工厂每天能加工这种校服120件,且单独加工这批校服甲工厂比乙工厂要多用20天.(1)求这批校服共有多少件?(2)若校服公司决定由甲乙两厂合作完成,甲、乙两厂按原工作效率合作一段时间后,甲工厂停工了,而乙工厂改进加工技术,每天的工作效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间是甲工厂工作时间的3倍还多2天,若在加工过程中,该校服公司需付甲工厂每天费用300元,付乙工厂每天费用450元.这批校服全部加工完成后,校服公司需支付甲、乙两工厂共多少元?。
人教版七年级上册数学第三章一元一次方程应用题--销售问题
人教版七年级上册数学第三章一元一次方程应用题--销售问题1.某种自创品牌的服装打折销售.如果每件服装按标价的6折出售,可盈利80元;若每件服装按标价的5折出售,则亏损80元.(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价7.5折出售一部分后,将余下服装按标价的5折全部出售,结算时发现共获利5600元,求按7.5折出售的服装有多少件?2.天誉百货商场经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装每件售价1200元,可盈利50%.(1)每件甲种服装利润率为______,乙种服装每件进价为______元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?3.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调共100台,问盈利多少元?4.某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?5.某年级一位老师带部分学生去旅游,甲旅行社说:“如果这位老师买全票,则其余学生可享受五价优惠.”乙旅行社说:“包括这位老师在内全部按全票价的六折优惠.”(1)学生多少人时,甲、乙两家旅行社收费一样多?(2)根据学生人数讨论哪一旅行社更合算.6.某商店投入4600元资金购进甲、乙两种节能灯共500只,成本价和销售价如表所示:(1)该商店购进甲、乙两种节能灯各多少只?(2)全部售完500只节能灯,该商场共获得利润多少元?7.某店卖出甲、乙两套服装,每套均售得a元,其中甲服装亏本10%,乙服装盈利10%.(1)用代数式表示甲、乙服装的成本价;(2)设此店在这两笔交易中的总盈亏为p元,请求出用a表示p的代数式,并说明a 时的盈亏情况.1988.某商场销售的一款空调机每台的标价是1375元,在一次促销活动中,按标价的八折销可盈利10%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?9.目前节能灯已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下图所示:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?10.某超市用6800元购进A、B两种型号计算器共120台,进价、标价如表:(1)这两种计算器各购进多少台?(2)如果A型计算器每台按标价的九折出售,B型计算器每台按能获利20%的价格出售,那么这批计算器全部售出后,超市共获利多少元?11.某商店用41000元购买甲、乙两种服装共500件,服装的成本价与销售单价如下表所示.(1)该商店购买甲、乙两种服装各多少件?(2)若将这500件衣服全部售完,可获利多少元?。
《好题》人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(含答案解析)(2)
一、选择题1.(0分)[ID :68193]已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( ) A .①②③④B .①③④C .②③④D .①②2.(0分)[ID :68189]新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 3.(0分)[ID :68184]方程2424x x -=-+的解是 ( ) A .x =2B .x =−2C .x =1D .x =04.(0分)[ID :68254]下列方程中,是一元一次方程的是( ) A .243x x -=B .0x =C .21x y +=D .11x x-=5.(0分)[ID :68251]解方程-3x=2时,应在方程两边( ) A .同乘以-3B .同除以-3C .同乘以3D .同除以36.(0分)[ID :68246]已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2B .x =2C .x =-12D .x =127.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( ) A .2 B .2- C .6 D .6- 8.(0分)[ID :68233]下列方程中,其解为﹣1的方程是( )A .2y=﹣1+yB .3﹣y=2C .x ﹣4=3D .﹣2x ﹣2=4 9.(0分)[ID :68229]若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( ) A .1B .﹣1C .2D .010.(0分)[ID :68219]如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D11.(0分)[ID :68210]一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道. A .17B .18C .19D .2012.(0分)[ID :68180]商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折B .八五折C .八折D .七五折13.(0分)[ID :68179]一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m14.(0分)[ID :68177]已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-215.(0分)[ID :68175]甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( )A .吨B .吨C .吨D .吨二、填空题16.(0分)[ID :68354]一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.17.(0分)[ID :68341]某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元18.(0分)[ID :68336]已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.19.(0分)[ID :68329]如果34x x =-+,那么3x +________4=. 20.(0分)[ID :68324]定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________.21.(0分)[ID :68315]猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x-亥61=-的x 的值为__________.22.(0分)[ID :68303]一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.23.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.24.(0分)[ID :68271]用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.25.(0分)[ID :68270]将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.26.(0分)[ID :68279]甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.27.(0分)[ID :68261]某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).三、解答题28.(0分)[ID :68413]如表是中国电信两种“4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费)(1)若小萱某月主叫通话时间为220分钟,上网流量为800MB ,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB .(2)若上网流量为540MB ,是否存在某主叫通话时间t (分),按套餐1和套餐2计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB ,直接写出当主叫通话时间t (分)满足什么条件时,选择套餐1省钱;当主叫通话时间t (分)满足什么条件时,选择套餐2省钱.月基本费/元 主叫通话时间/分 上网流量/MB 套餐1 49 200 500 套餐269 250 600接听超时费(元/分)超流量费(元/MB )套餐1 免费 0.2 0.3 套餐2免费0.150.229.(0分)[ID :68391]对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d .我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 30.(0分)[ID :68373]如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,求A ,B 两点间距离.(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.A 3.A4.B5.B6.A7.B8.A9.A10.A11.C12.A13.B14.B15.C二、填空题16.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系17.【分析】设亏本的那双皮鞋的进价为x元则亏本的那双皮鞋的售价为(1-10)x元盈利的那双皮鞋的售价为200-(1-10)x元盈利的那双皮鞋的进价为元根据商贩在这次销售中要有盈利即可得出关于x的一元一次18.【分析】先求出m的值再代入求出x的值即可【详解】因为原方程是关于x的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握19.x【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x得3x+x=4故答案为:x【点睛】本题考查的是等式的性质熟知等式20.【分析】根据定义新运算及求出x的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题21.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键22.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x=﹣4解得:x=﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相23.【解析】【分析】先根据一元一次方程的定义列出关于a的不等式组求出a的值即可【详解】∵是关于x的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元24.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答25.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x厘米由题意得:解得:x=15625答:锻压后26.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点27.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可. 【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④. 故选:B. 【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程.2.A解析:A 【分析】设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积. 【详解】解:设小长方形的长为x ,则宽为2x , 根据题意得2(2x+2x+x )=150, 解得x=15, 2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm 2. 故选A . 【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.3.A解析:A【分析】利用等式的性质解方程即可解答.【详解】x=解:移项得:2+2x4+4x=合并同类项得:48x=系数化为1得:2故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.4.B解析:B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、最高项的次数是2,故不是一元一次方程,选项不符合题意;B、正确,符合题意;C、含有2个未知数,故不是一元一次方程,选项不符合题意;D、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.B解析:B【分析】利用等式的性质判断即可.【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3,故选:B.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.A解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+, 去括号,得646x x -=+, 移项,得646x x -=+, 合并同类项,得510x -=, 系数化为1,得2x =-, 故选:A . 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.7.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.8.A解析:A 【分析】分别求出各项中方程的解,即可作出判断. 【详解】解:A 、方程2y=-1+y , 移项合并得:y=-1,符合题意; B 、方程3-y=2, 解得:y=1,不合题意; C 、方程x-4=3,移项合并得:x=7,不合题意; D 、方程-2x-2=4, 移项合并得:-2x=6, 解得:x=-3,不合题意, 故选A . 【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.A解析:A 【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A.考点:1.解一元一次方程;2.相反数;3.代数式求值.10.A解析:A【分析】设运动x秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,将其代入2x中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x秒后,乌龟和兔子第2020次相遇,依题意,得:2x+6x=2×4×2020,解得:x=2020,∴2x=4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A.故选:A.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.C解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.12.A解析:A【分析】设该商品的打x折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。
人教版七年级上册数学第三章一元一次方程应用题——工程问题训练
人教版七年级上册数学第三章一元一次方程应用题——工程问题训练1.有一批零件,甲单独生产需要40天完工,乙单独生产需要80天完工.(1)若甲、乙共同生产20天,乙再单独生产,求共需要多少天才能完工?(2)若乙因工作需要,他生产的时间不超过30天,求甲至少需要生产多少天才能完工?2.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天.()1若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅()2若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?3.某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务.求:(1)按照原计划,平均每天铺设多少米?(2)这段输油管道有多长?4.为了保证某机场按时通航,通往机场公路需要及时翻修完工,已知甲队单独做需要10天完成,乙队单独做需要15天完成,若甲乙合作5天后,再由乙队单独完成剩余工作量,共需要多少天?5.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若租用甲、乙两车各运12趟需支付运费4800元,且乙车每趟运费比甲车少200元.求单独租用一台车,租用哪台车合算?6.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?7.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,求该班组原计划要完成的零件任务是多少个?8.一段长为250km的高速公路需要维修,现由甲、乙两个工程队先后接力完成,共用时15天,已知甲工程队每天维修20km,乙工程队每天维修15km.求甲、乙两个工程队分别维修了多长的高速公路?(用一元一次方程解决问题)9.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.10.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?11.完成一项工作,如果安排两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?12.整理一批图书,由一个人完成需要20h.现计划由一部分人先做4h,然后增加4人与他们一起做2h,完成这项工作.假设这些人的工作效率相同.(1)先安排整理的人员有多少人?(2)先安排的这部分人员一共完成了多少工作量?13.某地为了打造风光带,将一段长为360米的河道整治任务交由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治16米,乙工程队每天整治20米,求甲、乙工程队分别整治了多长的河道?14.某工人计划在一定时间内加工一批零件,如果每天加工44个就比任务量少加工20个,如果每天加工50个则超额加工10个,求计划加工的天数15.整理一批图书,由一个人做要20 h完成.现计划由一部分人先做2 h,然后增加2人与他们一起再做4 h,完成了这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?16.一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合作8天后,余下的工程由乙队完成。
人教版七年级上册数学第三章一元一次方程应用题——销售问题训练
人教版七年级上册数学第三章一元一次方程应用题——销售问题训练1.某商场进行元旦促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证,不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为4000元的冰箱,他按合算的方案(买卡或不买卡),买下这台冰箱,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?2.商场经销甲、乙两种商品,甲种商品每件售价70元,利润率为40%,乙种商品每件进价60元,售价90元.(1)甲种商品每件进价为元,每件乙种商品利润率为(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2700元,求购进甲种商品多少件?3.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?4.某种自创品牌的服装打折销售.如果每件服装按标价的7.5折出售,可盈利60元;若每件服装按标价的5折出售,则亏损60元.(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价8折出售一部分后,将余下服装按标价的5折全部出售,结算时发现共获利2400元,求按8折出售的服装有多少件?5.一件商品先按成本价提高50%标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少(用一元一次方程解答)?(2)求此件商品的利润率.6.某商场销售的一款空调机每台的标价是1375元,在一次促销活动中,按标价的八折销可盈利10%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?7.某商店为尽快卖出积压服装,准备进行大减价,若按定价的六五折出售将赔30元,按定价的八折出售将赚15元,这种商品的定价是多少元?8.某商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提升20%,乙降价30%后,实际以1600元售出,则甲乙商品的实际售价分别是多少元?9.某饮品店推出A、B两款新口味饮品,经统计发现上周两款饮品销量一致,本周A款饮品销量减少了10%,但总销量却增加了5%,则本周B款饮品销量比上周增加了多少?10.一家商场将某种商品按成本价提高50%后标价出售,元旦期间,为答谢新老顾客对商场的光顾,打八折销售,每件商品仍可获利40元,请问这件商品的成本价是多少元?(列一元一次方程求解)11.某商场购进一批服装,一件服装的标价为400元.(1)若按标价的6折销售,则实际售价是多少?(2)在(1)的条件下销售这件服装仍可获利20%,问这件服装每件的进价为多少元?12.一盒“二代”冬枣的标价为200元,按标价的五折销售仍可获利20元.(1)一盒“二代”冬枣的成本价是多少钱?(2)一盒“二代”冬枣几折销售可获得利润80元?13.某商场以每部500元的价格购进某品牌手机共100部,加价50%后标价销售.在国庆期间,商场计划降价销售.如果商场按降价后的价格售完这批手机,仍可盈利20%,求应按几折销售.14.一水果经营户花380元从水果批发市场批发了香蕉和哈密瓜共50kg,到市场去卖,已知香蕉和哈密瓜当天的批发价和零售价如下表所示:(1)该水果经营户批发的香蕉和哈密瓜各是多少千kg?(2)他当天卖完这些香蕉和哈密瓜可赚多少元?15.某商店将甲种商品降价30%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为2400元,顾客A参加此次活动购买甲、乙两种商品各一件,共付1830元.(1)求甲、乙两种商品的原销售单价各是多少元?(2)若商店在这次与顾客A的交易中,甲种商品亏损25%,乙种商品盈利25%,求商店在这次与顾客A 的交易中总的盈亏情况.16.某商场从厂家购进了A、B两种品牌的运动裤共100件,已知购买B品牌运动裤比购买A品牌运动裤多花6000元,其中A品牌运动裤每件进价是150元,B品牌运动裤每件进价是200元.(1)求购进A、B两种品牌运动裤各多少件?(2)在销售过程中,A品牌运动裤每件售价是230元,很快全部售出;B品牌运动裤每件按进价加价100%销售,售出一部分后,出现滞销,商场决定打七折出售剩余的B品牌运动裤,两种品牌运动裤全部售出后共获利14000元,有多少件B品牌运动裤打七折出售?17.目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共600只,这两种节能灯的进价、售价如表:(1)要使进货款恰好为23000元,甲、乙两种节能灯应各进多少只?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?18.某个体商人以10%的年利率向别人借了5万元,第一年末还款25000元,第二年末以某种货物50件还了一部分.第三年末还款11000元,全部还清.他第二年年末用来还款的货物每件价值多少元?19.某种商品零售价每件900元,为了适应市场的竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%.(1)这种商品每件的进价为多少元?(2)商店销售了这种商品100件,获利多少元?20.甲、乙两个玩具的成本共300元,商店老板为获取利润,并快速出售玩具,决定甲玩具按60%的利润率标价出售,乙玩具按50%的利润率标价出售.在实际出售时,应顾客要求,两个玩具均按标价9折出售,这样商店共获利114元.(1)求甲、乙两个玩具的成本各是多少元?(2)商店老板决定投入1000元购进这两种玩具,且为了吸引顾客,每个玩具至少购进1个,那么可以怎样安排进货?。
人教版七年级上册第3章《一元一次方程》应用题分类:数轴类专项练(二)
七年级上册第3章《一元一次方程》应用题分类:数轴类专项练(二)1.如图,点A和点B在数轴上对应的数分别为a和b,且(a+2)2+|b﹣8|=0 (1)线段AB的长为.(2)点C在数轴上所对应的为x,且x是方程x﹣1=x+1的解,在线段AB上是否存在点D.使AD+BD=CD?若存在,请求出点D在数轴上所对应的数,若不存在:请说明理由:.(3)在(2)的条件下,线段AD和BC分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t秒,点M为线段AD的中点,点N为线段BC的中点,若MN=5,求t的值.2.已知多项式2x4y2﹣3x2y﹣x﹣4,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.设点C在数轴上对应的数为x,当|CA|+|CB|=12时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度/秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.3.数轴是我们进入七年级后研究的一个很重要的数学工具,它不但让我们在数轴上表示所有的有理数,让数变得具体而形象,还帮助我们理解了相反数和绝对值;当然,数轴也可以解决一些实际问题:小华家,小明家,学校在一条东西的大街上,小华家在学校的东面距学校500米,小明家在学校的西面距学校300米.(1)画出如图的数轴(学校为原点,小华家为A点,小明家为B点),数轴的单位长度为实际的米.(2)列算式表示小华与小明家之间的距离.(3)周末小明自西向东,小华自东向西出去玩,他们每分钟都走80米,问几分钟后两人相遇?相遇地点在学校的哪边?在数轴上用点C表示出来.4.在多项式3x+xy﹣20y2+5y﹣34x3﹣9中,a表示这个多项式的项数,b表示这个多项式中三次项的系数.在数轴上点A与点B所表示的数恰好可以用a与b分别表示.有一个动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)a=,b=,线段AB=个单位长度;(2)点P所表示数是(用含t的多项式表示);(3)求当t为多少时,线段PA的长度恰好是线段PB长度的三倍?5.【阅读理解】若数轴上两点A、B所表示的数分别为a和b,则有①A、B两点的中点表示的数为;②当b>a时,A、B两点间的距离为AB=b﹣a.【解决问题】数轴上两点A、B所表示的数分别为a和b,且满足|a+2|+(b﹣8)2020=0(1)求出A、B两点的中点C表示的数;(2)点D从原点O点出发向右运动,经过2秒后点D到A点的距离是点D到C点距离的2倍,求点D的运动速度是每秒多少个单位长度?【数学思考】(3)点E以每秒1个单位的速度从原点O出发向右运动,同时,点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,以每秒10个单位的速度向右运动,P、Q分别为ME、ON的中点.思考:在运动过程中,的值是否发生变化?请说明理由.6.如图,已知A、B、C是数轴上三点,点O为原点,点C表示的数为6,BC=4,AB =12.(1)写出数轴上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,沿数轴向右匀速运动.点P的速度是每秒6个单位长度,点Q的速度是每秒3个单位长度,点M为AP的中点,点N在线段CQ 上,且CN=CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②当M、B、N三个点中的其中一个点是另两点构成的线段的中点的时候,求t的值.7.如图1,在一条可以折叠的数轴上,点A,B分别表示数﹣9和4.(1)A,B两点之间的距离为.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A.B两点相距4个单位长度?8.已知数轴上点A与点B之间的距离为12个单位长度,点A在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A点出发,以每秒2个单位长度的速度向点C移动,设移动时间为t秒.(1)点A表示的数为,点B表示的数为,点C表示的数为.(2)用含t的代数式分别表示点P到点A和点C的距离:PA=,PC=.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位长度的速度向C点运动,点Q到达C点后,立即以同样的速度返回点A,在点Q开始运动后,当P,Q两点之间的距离为2个单位长度时,求此时点P表示的数.9.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是;表示﹣3和2的两点之间的距离是;表示数a和﹣1的两点之间的距离是3,那么a=;一般地,数轴上表示数a和数b的两点之间的距离等于.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.(3)是否存在数a,使代数式|a+3|+|a﹣2|+|a﹣4|的值最小?如果存在,请写出数a =,此时代数式|a+3|+|a﹣2|+|a﹣4|的最小值是.10.如图,数轴上A、B、C三点表示的数分别为a、b、c,其中AC=2BC,a、b满足|a+6|+(b﹣12)2=0.(1)则a=,b=,c=.(2)动点P从A点出发,以每秒2个单位的速度沿数轴向右运动,到达B点后立即以每秒3个单位的速度沿数轴返回到A点,设动点P的运动时间为t秒.①P点从A点向B点运动过程中表示的数(用含t的代数式表示).②求t为何值时,点P到A、B、C三点的距离之和为18个单位?参考答案1.解:(1)∵(a+2)2+|b﹣8|=0∴a+2=0,b﹣8=0∴a=﹣2,b=8∴线段AB的长为8﹣(﹣2)=10故答案为:10;(2)在线段AB上存在点D.使AD+BD=CD.理由如下:∵x﹣1=x+1∴解得x=14,即点C在数轴上对应的数为14∵点D在线段AB上∴AD+BD=AB=10∵AD+BD=CD∴CD=10∴CD=12∴14﹣12=2即点D对应的数为2故答案为:2;(3)∵点M为线段AD的中点,点N为线段BC的中点,∴M对应的数是=0,N对应的数是=11即M、N初始位置对应的数分别为0,11又∵M在AD上,N在BC上∴可知M在0处向右,速度为6个单位/秒,N在11处向右,速度为5个单位/秒运动t秒后,M对应的数为:6t,N对应的数为:11+5t∵MN=5∴|(11+5t)﹣6t|=5解得:t=6或16.∴t的值为6或16.2.解:(1)由多项式的次数是6可知b=6,又3a和b互为相反数,故a=﹣2.①当C在A左侧时,∵|CA|+|CB|=12,∴﹣2﹣x+6﹣x=12,x=﹣4;②C在A和B之间时,∵|CA|+|CB|=|AB|=8≠12,∴点C不存在;③点C在B点右侧时,∵|CA|+|CB|=12,∴x+2+x﹣6=12,∴x=8;故答案为:﹣4或8.(2)依题意得:﹣2﹣1+2﹣3+4﹣5+6﹣7+……+2018﹣2019=﹣2+1009﹣2019=﹣1012.∴点P对应的有理数为﹣1012.(3)①甲、乙两小蚂蚁均向左运动,即0≤t≤3时,此时OA1=2+t,OB1=6﹣2t,∵OA1=OB1,∴2+t=6﹣2t解得,t=;②甲向左运动,乙向右运动时,即t>3时,此时OA1=2+t,OB1=2t﹣6,依题意得,2+t=2t﹣6,解得,t=8.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.3.解:(1)数轴的单位长度为实际的100米,故答案为:100;(2)5﹣(﹣3)=5+3=8,8×100=800(米),答:小华与小明家之间的距离为800米;(3)设x分钟后两人相遇,由题意得:80x+80x=800,解得:x=5,500﹣5×80=100,相遇地点在学校右边100米处,在数轴上表示为:.4.解:(1)∵在多项式3x+xy﹣20y2+5y﹣34x3﹣9中,a表示这个多项式的项数,b 表示这个多项式中三次项的系数,∴a=6,b=﹣34,∴AB=6﹣(﹣34)=40.故答案为:6;﹣34;40.(2)当运动时间为t秒时,点P表示的数为6﹣2t.故答案为:(6﹣2t).(3)∵点A表示的数为6,点B表示的数为﹣34,点P表示的数为6﹣2t,∴PA=6﹣(6﹣2t)=2t,PB=|6﹣2t﹣(﹣34)|=|40﹣2t|.∵PA=3PB,∴2t=3×|40﹣2t|,即2t=3×(40﹣2t)或2t=3×(2t﹣40),解得:x=15或x=30.答:当t为15秒或30秒时,线段PA的长度恰好是线段PB长度的三倍.5.解:(1)∵|a+2|+(b﹣8)2020=0∴a=﹣2,b=8,∴A、B两点的中点C表示的数是:;(2)设点D的运动速度为v,①当点D运动到点C左边时:由题意,有2v﹣(﹣2)=2(3﹣2v),解之得;②当点D运动到点C右边时:由题意,有2v﹣(﹣2)=2(2v﹣3),解之得v=4;∴点D的运动速度是每秒个单位长度,或每秒4个单位长度;(3)设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣7t,点N对应的数是8+10t.∵P是ME的中点,∴P点对应的数是,又∵Q是ON的中点,∴Q点对应的数是,∴MN=(8+10t)﹣(﹣2﹣7t)=10+17t,OE=tPQ=(4+5t)﹣(﹣1﹣3t)=5+8t,∴(定值).6.解:(1)点A表示﹣10,点B表示2;(2)①由题意得:AP=6t,CQ=3t,如图1所示:由M为AP中点,得AM=AP=3t,点M表示的数是﹣10+3t,∵点N在CQ上,CN=CQ,∴CN=t,点N表示的数是6+t.②由题意得,分三种情况:i)当点M在点B的左侧时,点B为MN中点:∵MB=12﹣3t,BN=4+t,∴12﹣3t=4+t,解得t=2;ii)当点M在点B的右侧,点N的左侧时,点M为BN中点:∵MB=﹣12+3t,MN=16﹣2t,∴﹣12+3t=16﹣2t,解得t=;iii)当点M在点N的右侧,点N为BM中点:∵NB=4+t,MN=﹣16+2t,∴4+t=﹣16+2t,解得t=20,综上所述,当t为2秒或秒或20秒时,M、B、N三个点中的其中一个点是其他两点构成的线段的中点.7.解:(1)4﹣(﹣9)=13.故答案为:13.(2)设点C表示的数为x,则AC=x﹣(﹣9),BC=4﹣x,依题意,得:x﹣(﹣9)=4﹣x+1,解得:x=﹣2.故答案为:﹣2.(3)当运动时间为t秒时,点A表示的数为3t﹣9,点B表示的数为2t+4.∵AB=4,∴3t﹣9﹣(2t+4)=4或2t+4﹣(3t﹣9)=4,解得:t=9或t=17.答:经过9秒或17秒时,A.B两点相距4个单位长度.8.解:(1)如图,点A表示的数为﹣24,点B表示的数为﹣12,点C表示的数为12.故答案是:﹣24,﹣12,12.(2)由题意知,PA=2t,PC=36﹣2t.故答案是:2t,36﹣2t.(3)设P、Q两点之间的距离为2时,点Q的运动时间为m秒,此时点P表示的数是﹣12+2m.①当m≤9时,m秒时点Q表示的数是﹣24+4m,则PQ=﹣24+4m﹣(﹣12+2m)=2,解得m=5或7,此时点P表示的数是﹣2或2;②当m>9时,m秒后点Q表示的数是12﹣4(m﹣9),则PQ=12﹣4(m﹣9)﹣(﹣12+2m)=2,解得或,此时点P表示的数是或.综上,当P、Q两点之间的距离为2时,此时点P表示的数可以是﹣2,2,,.9.解:(1)数轴上表示1和4的两点之间的距离是3;表示﹣3和2的两点之间的距离是5;表示数a和﹣1的两点之间的距离是3,那么a=﹣4或2;一般地,数轴上表示数a和数b的两点之间的距离等于|a﹣b|;(2)根据题意得:﹣4<a<2,即a+4>0,a﹣2<0,则原式=a+4+2﹣a=6;|a+3|+|a﹣2|+|a﹣4|(3)①a≤﹣3时,原式=﹣a﹣3+2﹣a+4﹣a=3﹣3a,则a=﹣3;②﹣3≤a≤2时,原式=a+3+2﹣a+4﹣a=9﹣a,则a=2;③2≤a≤4时,原式=a+3+a﹣2+4﹣a=a+5,则a=2;③a>4时,原式=a+3+a﹣2+a﹣4=3a﹣3>9,综上所述,当a=2时,原式有最小值7.故答案为:(1)3,5,2或﹣4,|a﹣b|;(2)6;(3)2,7.10.解:(1)∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12.∵AC=2BC,∴c﹣(﹣6)=2×(12﹣c),∴c=6.故答案为:﹣6;12;6.(2)①AB=12﹣(﹣6)=18,18÷2=9(秒),18÷3=6(秒),9+6=15(秒).当0≤t≤9时,点P表示的数为2t﹣6;当9<t≤15时,点P表示的数为12﹣3(t﹣9)=39﹣3t.故答案为:.②(方法一)当0≤t≤9时,PA=|2t﹣6﹣(﹣6)|=2t,PB=|2t﹣6﹣12|=18﹣2t,PC=|2t﹣6﹣6|=|2t﹣12|,∵PA+PB+PC=18,∴2t+18﹣2t+|2t﹣12|=18,解得:t=6;当9<t≤15时,PA=|39﹣3t﹣(﹣6)|=45﹣3t,PB=|39﹣3t﹣12|=3t﹣27,PC =|39﹣3t﹣6|=|33﹣3t|,∵PA+PB+PC=18,∴45﹣3t+3t﹣27+|33﹣3t|=18,解得:t=11.答:当t为6秒或11秒时,点P到A、B、C三点的距离之和为18个单位.(方法二)∵PA+PB=18,PA+PB+PC=18,∴PC=0,即点P与点C重合.[6﹣(﹣6)]÷2=6(秒),9+(12﹣6)÷3=11(秒).答:当t为6秒或11秒时,点P到A、B、C三点的距离之和为18个单位.。
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题2(含答案)
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题21.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?2.小明早上赶到距家1000米的学校上学,一天,小明以60米/分的速度出发,5分钟后,小明的爸爸发现了他忘了带课文书,于是爸爸立即以110米/分的速度去追小明,并且在途中追上他.求:(1)爸爸追上小明用了多长时间?(2)爸爸追上小明时距离学校还有多远?3.列方程解应用题:武广高铁客运专线于12月26日正式通车运行,这标志着我国步入高速铁路新时代.武广铁路客运专线,是世界上一次建成最长、时速最快的高速铁路,其高速动车组“和谐号”是我国自主研发、目前世界上最先进的高速动车组.它的运行,使得旅客从广州到武汉的乘车时间缩短了7小时,平均速度达到每小时350千米,是普通客车平均时速的3倍.你知道从广州到武汉的高铁客运专线约多少千米吗?4.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?5.如图,A、B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A、B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”,与甲队共同作业.若滑坡受损公路长1 km,甲队行进的速度是乙队的倍多5 km,求甲、乙两队赶路的速度.6.小明和小亮的家以及他们所在的学校都在一条东西走向的马路旁,其中,小明家在学校西边3千米处,小亮家在学校的东边(见图).一天放学后,小亮邀小明到自己家观看自己新配置的电脑.他们约定,小亮直接从学校步行回自己家,小明先回自己家取自行车(取车时间忽略不计),然后骑车去小亮家.设小明和小亮的步行速度相同,小明骑自行车的速度是步行速度的4倍.如果小明在距离小亮家西边0.2千米处追上小亮,求小亮家到学校的距离.。
人教版七年级数学上册第三章《一元一次方程》应用题拔高训练(二)
第三章《一元一次方程》应用题专项拔高训练1.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价的8折以96元出售,很快就卖掉了,则这次生意的赢亏情况为()A.亏4元B.亏24元C.赚6元D.不亏不赚2.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.83.甲、乙两运动员在长为400m的环形跑道上进行匀速跑训练,两人同时从起点出发,同向而行,若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后500s内,两人相遇的次数为()A.0 B.1 C.2 D.34.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元5.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为32,则这9个数的和为()A.32 B.126 C.135 D.1446.某款服装进价120元/件,标价x元/件,商店对这款服装推出“买两件,第一件原价,第二件打六折”的促销活动,按促销方式销售两件该款服装,商店仍获利48元,则x的值为()A.185 B.190 C.180 D.1957.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为()A.10和2 B.8和4 C.7和5 D.9和38.将一笔资金按一年定期存入银行,设年利率为2%,到期支取时,得本息和7 140元,则这笔资金是()A.6 000元B.6 500元C.7 000元D.7 100元9.一个两位数的十位数字与个位数字之和是7,如果这两位数加上45,恰巧等于原数的个位数字与十位数字对调后所得的两位数,则原来的两位数为()A.25 B.16 C.61 D.3410.如图是某商品价格标签的一部分.那么它的原价是()A.25元B.24元C.26元D.27元11.甲与乙比赛登楼,他俩从36层的某大厦底层(0层)出发,当甲到达6层时,乙刚到达5层,按此速度,当甲到达顶层时,乙可达()A.31层B.30层C.29层D.28层12.某船顺流而下的速度是20千米/时,逆流航行的速度为16千米/时,则船在静水中的速度是()千米/时.A.2 B.4 C.18 D.3613.甲、乙两班分别有48人和52人,现从外校转来30人,插入甲、乙两班,已知插入后,甲班学生人数与乙班学生人数相等,插入甲班多少人()A.13 B.15 C.17 D.1914.有一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得数与原数之和是77,则这个两位数是()A.41 B.42 C.51 D.5215.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米16.张华同学以八折的优惠价格购买了一件物品,节省了10元,那么他买这件物品实际用了()A.30元B.40元C.50元D.75元17.布凯姆(Bookem)城有一组十分奇怪的限速规定:在离城1公里处有一个120公里/小时的标牌,在离城公里处有一个60公里/小时的标牌,在离城公里处有一个40公里/小时的标牌,在离城公里处有一个30公里/小时的标牌,在离城公里处有一个24公里/小时的标牌,在离城公里处有一个20公里/小时的标牌.如果你从120公里/小时的标牌处出发一直以限定时速行驶,那么到达布凯姆城需要的时间是()A.30秒B.1分13.5秒C.1分42秒D.2分27秒18.一个水池,单独打开进水管,3小时可将水池注满,单独打开出水管,4小时可将水池中的水放完,若同时打开两管,则需几小时才能将水池注满()A.7小时B.9小时C.12小时D.以上答案都不对19.张大爷经营一家小商店,一天,一位顾客拿来一张50元的人民币买烟,因为没钱找,张大爷到隔壁的书店换了零钱回来.一盒烟16元,张大爷找了顾客34元钱.过了一会,书店的老板找来,原来刚才那张50元钱是假币,张大爷只好把50元假币收回来.若张大爷卖一盒烟能赚2元钱,在这笔买卖中张大爷赔了()A.100元B.102元C.48元D.84元20.某商场的服装按原价九折出售,要使销售总收入不变,那么销售量应增加()A.B.C.D.21.一艘轮船从A港到B港顺水航行,需6小时,从B港到A港逆水航行,需8小时,若在静水条件下,从A港到B港需()A.7小时B.7小时C.6小时D.6小时22.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.14 B.33 C.66 D.6923.日历中,2×2的正方形中,最小的数为x,则最大数表示为()A.x+7 B.x+1 C.x+2 D.x+824.王华把400元存入银行,年利率为6.66%,到期时王华得到利息133.20元,她一共存了()A.6年B.5年C.4年D.3年25.甲、乙两种衣服售价均为60元,其中一件衣服赢利20%,另一件衣服亏损20%.当商家同时卖出这两种衣服各一件时()A.不赢不亏B.赢利5元C.亏损5元D.赢利6元参考答案1.根据题意:设未知进价为x,可得:x•(1+20%)•(1﹣20%)=96解得:x=100;有96﹣100=﹣4,即亏了4元.故选:A.2.解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.3.解:设甲、乙同向而跑,经过xs时间甲乙能相遇,依题意有:(5﹣4)x=400,解得x=400.由于1<=<2.所以两人相遇的次数为1.故选:B.4.解:设这件商品的进价为x元,根据题意得:200×0.6﹣x=20%x,解得:x=100.答:这件商品的进价为100元.故选:C.5.解:设这9个数中最大的数为x,依题意有x﹣16+x=32,解得x=24.所以x﹣16+x﹣15+x﹣14+x﹣9+x﹣8+x﹣7+x﹣2+x﹣1+x=9x﹣72=144.故选:D.6.解:设标价x元/件,依题意有x+0.6x﹣120×2=48,解得x=180.故选:C.7.解:设这个长方形的长是x,根据题意列方程得:x﹣(12﹣x)=4,解得x=8,则宽就是12﹣8=4.这个长方形的长宽分别为8和4.故选:B.8.解:设这笔资金为x元,由题意得,x×(1+2%)=7140,解得:x=7 000.故选:C.9.解:设十位数字为x,则个位数字为(7﹣x),由题意,得10x+(7﹣x)+45=10(7﹣x)+x,解得:x=1,7﹣x=7﹣1=6,故原来的两位数为16.故选:B.10.解:设原价x元/台,由题意得:60%x=15,解得:x=25.即:原价为25元.故选:A.11.解:设乙可达x层.根据两人的速度比不变,可列方程:5:4=35:x﹣1,解得x=29选C.12.解:设船在静水中的速度是x千米/时,20﹣x=x﹣16,解得x=18,故选:C .13.解:插入甲班x 人,依题意有48+x =52+(30﹣x ),解得x =17.答:插入甲班17人.故选:C .14.解:设原个位数字为x ,则十位数字为3+x ,由题意得:(10x +3+x )+10(3+x )+x =77,解之得:x =2,则原数为10(3+2)+2=52.答:这个两位数是52.故选:D .15.解:设乙每小时行x 千米,则甲每小时走(x +5)千米,则2x +2(x +5)=170,解得x =40,故选:B .16.解:设实际价格为x 元,则原价为x ÷80%,∴x ÷80%=x +10,解得x =40.故选:B .17.解:t 1=,t 2=,t 3=,t 4=,t 5=,t 6=, 则t =t 1+t 2+t 3+t 4+t 5=1分13.5秒.故选:B .18.解:设需x 小时才能将水池注满,列方程得=1解得:x =12,则需12小时才能将水池注满.故选:C .19.解:一盒烟16元,张大爷卖一盒烟能赚2元钱,则烟的进价=16﹣2=14元;张大爷找给顾客34元钱和属于赔钱的范围,则张大爷在这次买卖中赔的钱数=14+34=48(元).故选:C.20.解:设销售量增加x,根据题意得:90%(1+x)=1解得:x=故选:C.21.解:设静水行完全程需t小时.则﹣=﹣解得:t=.故选:C.22.解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7),∴三个数的和为3的倍数,由四个选项可知只有A不是3的倍数.故选:A.23.解:日历中最小的数在正方形的左上方,最大的数在右下方;又知日历中横行上相邻两个数相差为1,右边的比左边的大1,日历中竖列上相邻两个数相差为7,下边的比上边的大7;那么最小数右边与它相邻的数是(x+1),最大的数是在(x+1)的下方,它们相隔为7,所以最大数应表示为(x+8).故选:D.24.解:设一共存了x年,由题意得:400×6.66%×x=133.20,解得x=5,故选:B.25.解:设盈利20%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.20x=60,解得:x=50,类似地,设另一件亏损衣服的进价为y元,它的商品利润是﹣20%y元,列方程y+(﹣20%y)=60,解得:y=75.那么这两件衣服的进价是x+y=125元,而两件衣服的售价为120元.∴120﹣125=﹣5元,所以,这两件衣服亏损5元.故选:C.。
人教版七年级上册数学第三章一元一次方程应用题--工程问题
人教版七年级上册数学第三章一元一次方程应用题--工程问题1.学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人,已知师傅单独完成需4天,徒弟单独完成需6天.现由徒弟先做1天,再两人合作,问还需几天可以完成这项工作?2.一项工程,甲公司单独做需要20天完成,乙公司单独做所用时间是甲公司的1.5倍.(1)若甲、乙两公司合作完成这项工程需要多少天?(2)若甲、乙两公司合作完成这项工程,在第10天结束时,甲公司有别的任务,不能继续合作,剩余部分由乙公司单独完成,则乙公司还需要做几天?3.同一建设工地,在甲处劳动的有25人,在乙处劳动的有17人,现调来30人支援,使得甲处的人数是乙处人数的2倍少3人,问该如何分配调来的30人?4.某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.(1)甲、乙两车合作还需要多少天运完垃圾?(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?5.某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求m的值.6.完成一项工作,如果安排两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?7.学校修建运动场,让甲工程队单独做需要15天完成,让乙工程队单独做需要10天完成.(1)如果让甲、乙工程队合做3天后,剩下的工程由乙工程队完成,还需要多少天?(2)已知甲队每天的费用为1000元,乙队每天的费用为1600 元,从节约资金的角度,认为是甲、乙队单独做,还是两队合做完成?8.学校有一批桌椅需要维修,现有甲、乙两个维修队,甲每天能维修16套,乙每天比甲多维修8套,甲单独完成维修任务比乙单独完成维修任务多用10天,问:学校这批需要维修的桌椅一共有多少套?9.茶厂用A B、两型机器同时生产一批相同的盒装茶叶(由若干听包装而成).已知3台A型机器一天生产的听装茶叶,包装成20盒后还剩2听,2台B型机器一天生产的听装茶叶,包装成15盒后还剩1听,每台A型机器比B型机器一天少生产4听茶叶.求每盒包装多少听茶叶?10.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬900元,如果按各人完成的工作量计算报酬,那么该如何分配11.某校七年级科技兴趣小组计划制作一批飞机模型,如果每人做6个,那么比计划多做了10个,如果每人做5个,那么比计划少做了14个.该兴趣小组共有多少人?计划做多少个飞机模型?12.整理一批图书,如果由一人单独做要用28h,现先安排一部分人用lh整理,随后又增加5人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?13.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)甲、乙两工程队合作修建需几个月完成?(2)合作修建共耗资多少万元?14.甲乙两个工程队承包了地铁某标段全长3900米的施工任务,分别从南,北两个方向同时向前掘进。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)
1.小颖购买练习本可以到甲店购买,也可以到乙店购买,已知两店的标价都是每本 1 元,甲店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%出售;乙商店的 优惠条件是:从第 1 本开始按标价的 80%出售. (1)小颖要买 20 本练习本时,到哪个店购买较省钱? (2)买多少本练习本时,在两店购买练习本付的费用相等? (3)小颖现有 24 元,最多可买多少本练习本?
9.一种蔬菜在某市场上的销售价格如下: 购买数量 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
价格
5 元/千克
4 元/千克
3 元/千克
已知小明两次购买了此种蔬菜共 70 千克(第二次购买数量多于第一次). (1)若第一次购买 15 千克,则两次的总费用为________元; (2)若两次购买蔬菜的总费用为 236 元,求第一次、第二次分别购买此种蔬菜多少千克?
(1)分别用含 x 的式子表示 M,N; (2)交费时间为多少个月时,两种方案费用相同? (3)若交费时间为 12 个月《义务教育课程方案》和课程标准(2022 年版),将劳动从原 来的综合实践活动课程中独立出来.我县某中学初中部为了让学生体验农耕劳动,开辟 了一处种植园,需要采购一批某种菜苗开展种植活动,已知甲、乙两菜苗基地该种菜苗 每捆的标价都是 6 元(菜苗的质量一样好),但甲、乙两菜苗基地的优惠条件却不同. 甲菜苗基地:若购买不超过 15 捆,则按标价付款;若一次购 15 捆以上,则超过 15 捆 的部分按标价的 60%付款; 乙菜苗基地:按标价的 80%付款. (1)若学校决定购买该种菜苗 20 捆,则在甲菜苗基地购买,需付款________元,在乙菜 苗基地购买,需付款________元; (2)若学校决定购买该种菜苗 x 捆( x 15),请用含 x 的式子分别表示在甲、乙两个菜苗 基地购买该种菜苗的费用; (3)学校决定购买该种菜苗多少捆时,到甲、乙两菜苗基地用的钱一样多?说明理由.
人教版七年级上册数学第三章一元一次方程应用题——配套问题
人教版七年级上册数学第三章一元一次方程应用题——配套问题1.某工厂甲、乙两个车间共有22名工人,每人每天可以生产1200个螺钉或2000个螺母.(1)如果甲车间的人数比乙车间的人数多4人,那么两个车间各有多少人?(2)如果1个螺钉需配2个螺母,为使每天生产的螺钉和螺母刚好匹配,工厂应安排其中多少人生产螺母?2.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作15个桌面,或者制作300条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?最多能制作多少张桌子?3.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3.现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?4.某中学有住宿生若干人,若每个房间住8人,则有3人无处住;若每个房间住9人则有两张空床位,问该中学有宿舍多少间,住宿生有多少人?5.在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则甲、乙两种部件各应生产多少天?6.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,已知1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?7.某车间有技术工人58人,平均每天每人可加工甲种部件16个或乙种部件10个,1个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?8.某车间每天能生产甲种零件150个,或乙种零件100个,甲、乙两种零件分别取3个、1个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?9.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天可以生产多少套这样成套的产品?10.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套?11.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?12.某车间有75个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件15个或乙种零件20个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?13.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?14.某车间每天能制作甲种零件500个,或者制作乙种零件250个,甲乙两种零件各一个配成一套产品,现要在30天内制作最多的成套产品,则甲种零件制作多少天?15.某班统计数学考试成绩,平均成绩是84.3分:后来发现莉莉的成绩是97分,而被错误地统计为79分.重新计算后,平均成绩是84.7分.这个班有多少名学生?16.配制一种黑色火药,硫磺、硝、木炭的比为1:2:3,要配火药1218千克,各需多少千克硫磺、硝、木炭?(设未知数,只列方程)17.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元,求钢笔和毛笔的单价各为多少元?18.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?19.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,要使桌面和桌腿正好配套,应分别计划用多少立方米木材制作桌面和桌腿?20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件,几个工人加工乙种零件?。
人教版七年级上册第三章《一元一次方程》实际应用题专项练习(含解析)
《一元一次方程》实际应用题专项练习(二)一.选择题1.如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB2.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1 B.3 C.4 D.63.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元4.某种商品的进价为100元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为()A.116元B.145元C.150元D.160元5.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A.5 折B.5.5折C.7折D.7.5折6.欣欣服装店某天用相同的价格a(a≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.亏损B.盈利C.不盈不亏D.与进价有关7.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元8.已知某种商品的销售标价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是()A.133 B.134 C.135 D.1369.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.5 10.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8 B.6 C.3 D.2二.填空题11.为节约用电,长沙市实“阶梯电价”具体收费方法是第一档每户用电不超过240度,每度电价0.6元;第二档用电超过240度,但不超过400度,则超过部分每度提价0.05元;第三档用电超过400度,超过部分每度提高0.3元,某居民家12月份交电费222元,则该居民家12月份用电度.12.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.13.在“五一节”期间,某商场对该商场商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施小于等于400元不优惠超过400元,但不超过600元按售价打九折超过600元其中600元部分八折优惠,超过600元的部分打六折优惠按上述优惠条件,若小华一次性购买售价为80元/件的商品n件时,实际付款504元,则n=.14.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.15.如图,一块长4厘米、宽1厘米的长方形纸板①,一块长5厘米、宽2厘米的长方形纸板②与一块正方形纸板③以及另两块长方形纸板④和⑤,恰好拼成一个大正方形,则大正方形的面积是平方厘米.三.解答题16.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?17.列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过5050张以上张每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?18.为了鼓励节约用电,电业局规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小明家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小明家一个月用电a度(a>150),那么这个月应缴纳电费多少元?(用含a的代数式表示)(3)如果这个月小明家缴纳电费为87.8元,那么他们家这个月用电多少度?19.【新定义】:A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的幸运点.【特例感知】(1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是【A,B】的幸运点.①【B,A】的幸运点表示的数是;A.﹣1;B.0;C.1;D.2②试说明A是【C,E】的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则【M,N】的幸运点表示的数为.【拓展应用】(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以3个单位每秒的速度向左运动,到达点A停止.当t 为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?20.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?参考答案一.选择题1.解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.2.解:由题意,可得8+x=2+7,解得x=1.故选:A.3.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180.∵135﹣108+(135﹣180)=﹣18,∴该商贩赔18元.故选:C.4.解:8折=0.8,设标价为x元,由题意得:0.8x﹣100=160.8x=100+160.8x=116x=145故选:B.5.解:设第一件商品x元,买两件商品共打了y折,根据题意可得:x+0.5x=2x•,解得:y=7.5即相当于这两件商品共打了7.5折.故选:D.6.解:设第一件衣服的进价为x元,第二件衣服的进价为y元,由题意得:(1+20%)x=a,(1﹣20%)y=a∴(1+20%)x=(1﹣20%)y整理得:3x=2y∴y=1.5x∴该服装店卖出这两件服装的盈利情况是:20%x﹣20%y=0.2x﹣0.2y×1.5=﹣0.1x<0即赔了0.1x元.故选:A.7.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.8.解:设商品的成本价是x元,依题意得:204(1﹣20%)=1.2x,解得:x=136元.则该商品的成本价是136元.故选:D.9.解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选:A.10.解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,故选:D.二.填空题(共5小题)11.解:因为222<0.6×240+(400﹣240)×0.65=248,所以该居民家今年12月份的用电量是多于240度而少于400度.设该居民家12月份的用电量为x,则240×0.6+(x﹣240)×0.65=222,解得x=360.答:该居民家12月份用电360度.故答案是:360.12.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2,故答案为:2.13.解:设小华打折前应付款x元,①打折前购物金额超过400元,但不超过600元,由题意得0.9x=504,解得:x=560,560÷80=7(件),②打折前购物金额超过600元,600×0.8+(x﹣600)×0.6=504,解得:x=640,640÷80=8(件),综上可得小华在该商场购买商品件7件或8件.故答案为:7或8.14.解:设商店打x折,依题意,得:180×﹣120=120×20%,故答案为:8.15.解:设小正方形的边长为x,依题意得1+x+2=4+5﹣x,解得x=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案是:36.三.解答题(共5小题)16.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.17.解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.18.解:(1)0.5×128=64(元)答:这个月应缴纳电费64元;(2)0.5×150+0.8(a﹣150)=75+0.8a﹣120=0.8a﹣45答:这个月应缴纳电费(0.8a﹣45)元;(3)∵87.8>150×0.5∴所用的电超过了150度设此时用电a度,根据题意得:0.5×150+0.8(a﹣150)=87.8∴75+0.8a﹣120=87.8∴a=166答:他们家这个月用电166度.19.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,P表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,AB=60,BP=3t,AP=60﹣3t,①当P是【A,B】的幸运点时,PA=3PB,∴60﹣3t=3×3t,∴t=5;②当P是【B,A】的幸运点时,PB=3PA,∴3t=3×(60﹣3t),∴t=15;③当A是【B,P】的幸运点时,AB=3PA,∴60=3(60﹣3t)∴t =;④当B是【A,P】的幸运点时,AB=3PB,∴60=3×3t,∴t =;∴t为5秒,15秒,秒,秒时,P、A、B中恰好有一个点为其余两点的幸运点.20.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.11。
(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。
七年级上册数学第三章测试卷【含答案】
七年级上册数学第三章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{5}{7}$C. $\frac{6}{8}$D. $\frac{7}{9}$5. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 36厘米B. 26厘米C. 46厘米D. 42厘米二、判断题(每题1分,共5分)6. 任何两个偶数相加的和都是偶数。
()7. 一个正方形的对角线把它分成两个相等的直角三角形。
()8. 任何一个合数都可以分解为几个质数的乘积。
()9. 如果两个角是对顶角,那么这两个角一定相等。
()10. 在三角形中,最长边所对的角一定是直角。
()三、填空题(每题1分,共5分)11. 一个数的因数是______和______。
12. 一个长方体的表面积是______。
13. 等边三角形的每个内角是______度。
14. 如果一个数是6的倍数,那么这个数最小可能是______。
15. 1千米等于______米。
四、简答题(每题2分,共10分)16. 请简述质数和合数的区别。
17. 什么是等腰三角形?它有什么特点?18. 请解释长方体的体积是如何计算的。
19. 什么是比例?请给出一个比例的例子。
20. 请解释什么是平行线,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
22. 一个等边三角形的周长是24厘米,求这个三角形的边长。
人教版七年级上册第三章《一元一次方程》应用题分类:分类计费问题综合练习
《一元一次方程》应用题分类:分类计费问题综合练习1.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为千克;②甲班第一次、第二次分别购买多少千克?2.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格.阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0﹣300(含)a 3第二阶梯300﹣600(含)a+0.5 3.5第三阶梯600以上a+1.5 5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?3.阅读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表:本市居民用水阶梯水价表:(单位:元/立方米)供水类型阶梯户年用水量x(立方米)水价自来水第一阶梯0≤x≤180 5第二阶梯180<x≤260 7第三阶梯x>260 9如某户居民去年用水量为190立方米,则其应缴纳水费为180×5+(190﹣180)×7=970元.(1)若小明家去年用水量为100立方米,则小明家应缴纳的水费为元;(2)若截止10月底,小明家今年共纳水费1145元,则小明家共用水立方米;(3)若小明家全年用水量x不超过270立方米,则应缴纳的水费为多少元?(用含x的代数式表示)4.超市在元旦期间对顾客优惠,规定如表:一次性购物优惠方法少于200元不予优惠低于400元但不低于200元购买商品全部九折优惠400元或超过400元其中400元部分给予九折优惠,超过400元部分给予八折优惠(1)若一次性购物500元,实际付款元;(2)如果顾客在该超市一次性购物x(其中x≥200元)实际付款多少元?(用含x的代数式表示)(3)如果小明两次购物货款共560元且第一次购物的货款为a元(其中a<200),求两次购物实际付款共多少元?(用含a的代数式表示)5.下表中有两种移动电话计费方式:月使用费(元)主叫限定时间(分钟)主叫超时费(元/分钟)被叫方式一30 400 0.15 免费方式二45 600 a免费说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费.(1)若李明某月主叫通话时间为700分钟,则他按方式一计费需元,按方式二计费元(用含a的代数式表示);若他按方式一计费需60元,则主叫通话时间为分钟.(2)若方式二中主叫超时费a=0.2(元/分钟),是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)若主叫时间为750分钟时,两种方式的计费相等,直接写出a的值为;请你通过计算分析后,直接给出当月主叫通话时间(分钟)满足什么条件时,选择方式二省钱?6.某通讯公司推出了移动电话的两种计费方式(详情见表).月使用费/元主叫限定时间/分主叫超时费/(元/被叫分)方式一58 150 0.25 免费方式二88 350 0.19 免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150 150<t<350 t=350 t>350 方式一计费/元58 108方式二计费/元88 88 88(Ⅱ)当t为何值时,两种计费方式的费用相等?(Ⅲ)请根据(Ⅰ)和(Ⅱ)的计算及生活经验,直接写出不同时间段,选用哪种计费方式省钱.7.公园门票价格规定如表:购票张数1~50张50~100张100张以上每张票的价格15元13元11元某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?(2)如果七年级(1)班单独组织去游园,作为组织者的你如何购票才最省钱?8.成都华联商场经销甲、乙两种商品,甲种商品每件进价150元,售价200元;乙种商品每件进价350元,售价450元.(1)该商场在“十一”黄金周期间销售甲、乙两种商品共100件,销售额为35000元,求甲、乙两种商品各销售了多少件?(2)假若该商场在“十一”黄金周期间销售甲、乙两种商品进行如表优惠活动:打折前一次性购物总金额优惠措施不超过3000元不优惠超过3000元且不超过4000元总售价打九折超过4000元总售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款2000元,第二天只购买乙种商品打折后一次性付款3240元,那么这两天他在该商场购买甲、乙两种商品一共多少件?9.县城甲、乙两超市在元旦节期间分别推出如下促销方式:甲超市乙超市全场商品一律优惠15% 购物不超过200元,不优惠;购物超过200元而不超过500元,一律八折;购物超过500元,其中的500元优惠10%,超过的部分打七五折.已知两家超市相同商品的标价都一样.(1)当购物总额是多少时,甲、乙两家超市实付款相同?(2)某顾客在乙超市购物实际付款480元,试问该顾客的选择划算吗?试说明理由.10.2019年11月11日24时,天猫双11成交额达到2684亿元.同一天,各电商平台上众品牌网上促销如火如荼,纷纷推出多种销售玩法吸引顾客让利消费者.某品牌标价每件100元的商品就推出了如下的优惠促销活动:一次性购物总金额优惠措施少于或等于700元一律打八折超过700元,但不超过900元一律打六折超过900元其中900元部分打五折,超过900元的部分打三折优惠(1)王教授一次性购买该商品12件,实际付款元.(2)李阿姨一次性购买该商品若干件,实际付款480元,请认真思考求出李阿姨购买该商品的件数的所有可能.参考答案1.解:(1)256﹣8×30=256﹣240=16(元)答:乙班比甲班少付出16元.(2)①设甲班第一次购买了苹果x千克,则第二次购买苹果(30﹣x)千克,故答案为(30﹣x).②第一次不超过10千克,第二次10千克以上,但不超过20千克,10x+9(30﹣x)=256解得x=﹣14(舍弃),不符合题意.第一次不超过10千克,第二次20千克以上,10x+8(30﹣x)=256解得x=8,因为30﹣8=22>10,所以符合题意.两次都10千克以上,但不超过20千克,30×9=270,不符合题意,答:甲班第一次购买了苹果8千克,则第二次购买苹果22千克.2.解:(1)甲用户家2018年用气总量为280立方米,则总费用为280a元.(2)根据题意,可得:300a+(450﹣300)(a+0.5)=1200∴300a+150a+75=1200,∴450a=1125,解得a=2.5.(3)设丙用户2019年用气x立方米,则2018年用气(1200﹣x)立方米,①2019年的用气量不超过300立方米时,则2018年用气量1200﹣x>900,3x+2.5×300+(2.5+0.5)×(600﹣300)+(2.5+1.5)×(1200﹣x﹣600)=3625,解得x=425,∵425>300,∴不符合题意.②2019年的用气量超过300立方米,但不超过600立方米时,3×300+3.5×(x﹣300)+750+900+4(600﹣x)=3625,解得x=550,符合题意,1200﹣550=650(立方米)答:该用户2018年和2019年分别用气650立方米、550立方米.故答案为:280a.3.解:(1)∵0<100<180,∴小明家应缴纳的水费为=100×5=500(元),故答案为500;(2)设小明家共用水x立方米,∵180×5<1145<180×5+80×7,∴180<x<260,根据题意得:180×5+(x﹣180)×7=1145解得:x=215,故答案为:215;(3)当0≤x≤180时,水费为5x元,当180<x≤260时,水费为180×5+7×(x﹣180)=(7x﹣360)元,当260<x≤270时,水费为180×5+7×80+9×(x﹣260)=(9x﹣880)元.4.解:(1)根据题意得:购物400元的部分实际付款:400×0.9=360(元),购物超过400元的部分实际付款:(500﹣400)×0.8=80(元),则若一次性购物500元,实际付款:360+80=440(元),故答案为:440,(2)根据题意得:若200≤x<400,实际付款:0.9x(元),若x≥400,实际付款:0.8(x﹣400)+400×0.9=0.8x+40(元),答:如果顾客在该超市一次性购物x(其中x≥200元),若200≤x<400,实际付款0.9x 元,若x≥400,实际付款0.8x+400元,(3)根据题意得:若0<a≤160,则560﹣a≥400,两次购物实际付款:0.8(560﹣a)+40+a=0.2a+488(元),若160<a<200,则200<560﹣a<400,两次购物实际付款:0.9(560﹣a)+a=0.1a+494(元),答:若0<a≤160,两次购物实际付款0.2a+488元,若160<a<200,两次购物实际付款0.1a+494元.5.解:(1)按方式一计费:30+0.15×(700﹣400)=30+45=75(元);按方式二计费:45+(700﹣600)a=(45+100a)(元)若他按方式一计费需60元,设其主叫通话时间为t分钟.则有:30+0.15×(t﹣400)=60解得:t=600故答案为:75;(45+100a);600.(2)当400<t≤600时,由题意得:30+0.15×(t﹣400)=45解得:t=500当t>600时,由题意得:30+0.15×(t﹣400)=45+(t﹣600)×0.2解得:t=900∴存在t=500(分钟)或t=900(分钟)时,按方式一和方式二的计费相等.(3)由题意得:30+0.15×(750﹣400)=45+(750﹣600)×a解得:a=0.25故答案为:0.25;当400<t≤600时,由题意得:30+0.15×(t﹣400)>45解得:500<t≤600;当t>600时,由题意得:30+0.15×(t﹣400)>45+(t﹣600)×0.25解得:600<t<750综上所得,当500<t<750时,选择方式二省钱.6.解:(Ⅰ)①当150<t<350时,方式一收费:58+0.25(t﹣150)=0.25t+20.5;②当t>350时,方式一收费:108+0.25(t﹣350)=0.25t+20.5;③方式二当t>350时收费:88+0.19(t﹣350)=0.19t+21.5.故答案是:0.25t+20.5;0.25t+20.5;0.19t+21.5;(Ⅱ)∵当t>350时,(0.25t+20.5)﹣(0.19t+21.5)=0.06t﹣1>0,∴当两种计费方式的费用相等时,t的值在150<t<350取得.∴列方程0.25t+20.5=88,解得t=270.即当主叫时间为270分时,两种计费方式的费用相等.(Ⅲ)当t<270时,选择方式一省钱;当t=270时,两种方式收费一样多;当t>270时,选择方式二省钱.7.解:(1)设(1)班有x人,则15x+13(102﹣x)=1422解得:x=48答:(1)班有48人,(2)班有54人.(2)1422﹣102×11=300(元)答:两个班联合购票比分别购票要少300元.(3)七(1)班单独组织去游园,如果按实际人数购票,需花费:48×15=720(元),若购买51张票,需花费:51×13=663(元),∵663<720,∴七(1)班单独组织去游园,直接购买51张票更省钱.8.解:(1)设甲种商品销售了x件,则乙种商品销售了(100﹣x)件,依题意,得:200x+450(100﹣x)=35000,解得:x=40,∴100﹣x=60.答:甲种商品销售了40件,乙种商品销售了60件.(2)设小王在该商场购买甲种商品m件,购买乙种商品n件,依题意,得:200m=2000,450×0.9n=3240或450×0.8n=3240,解得:m=10,n=8或n=9,∴m+n=18或19.答:这两天他在该商场购买甲、乙两种商品一共18件或19件.9.解:(1)设购物总额是x元时,甲、乙两家超市实付款相同由题意,知x>500∴x(1﹣15%)=500(1﹣10%)+(x﹣500)×0.75,∴0.85x=500×0.9+0.75x﹣375,∴0.1x=75,∴x=750,故购物总额是750元时,甲、乙两家超市实付款相同;(2)∵500×0.8=400<480,∴该顾客在乙超市购物实际总额多于500元,设该顾客在乙超市购物总额为y元,y>500则500(1﹣10%)+(y﹣500)×0.75=480,解之得y=540,若该顾客在甲超市购物,购买总额540元的商品,实际付款为540(1﹣15%)=459<480,∴该顾客选择在乙超市购物不划算.10.解:(1)由于12×100=1200(元).根据题意知,900×0.5+(1200﹣900)×0.3=450+90=540(元)故答案是:540;(2)设李阿姨购买该商品的件数是x件,①一次性购物总金额少于或等于700元时,0.8×100x=480.解得x=6;②一次性购物总金额超过700元,但不超过900元时,0.6×100x=480.解得x=8;③一次性购物总金额超过900元时,0.5×900+(100x﹣900)×0.3=480.解得x=10.综上所述,李阿姨购买该商品的件数可以是6件或8件或10件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[第7册第三章应用题(二)]
教学目的 1.使学生学会列含有未知数的等式解答应用题. 2.培养学生分析推理的能力和分析数量关系的能力.教学重点分析数量关系.教学难点找数量关系.教学过程一、课前复习. 1.提问乘法各部分间的关系是什么?除法各部分间的关系是什么? 2.列出含有未知数的的等式并说出列式的根据是什么. 56与什么数相乘得4368? 8576是什么数的32倍?一个数除以14得10,这个数是多少?教师谈话:今天在前面学习的基础上,我们继续学习新的知识.(板书课题:应用题)二、探究新知. 1.出示例8、汽艇每分钟行630米,它的速度是帆船的3倍.求帆船的速度?(教师出示图片“例8”)教师提问:题目中已知条件是什么?求什么?你准备用什么方法来解答?(学生分组讨论)教师板书:教师提问:为什么列的等式不同,而答案却相同呢? 2.练习.一本数学课本有192页,是一本日记本的4倍.这本日记本有多少页?教师提问:这道题你准备用什么方法来解答?三、巩固练习,掌握新知. 1.枫叶鞋厂五月份生产了凉鞋19800双,是四月份生产的6倍.四月份生产了多少双?(两种方法) 2.光明小学有学生986人,其中男生478人.求女生有多少人?(两种方法)四、总结.今天我们一起共同研究了什么知识,对你有什么启发?五、布置作业. 1.一艘潜水艇从上午8时到下午5时共航行261千米.它的航行速度是多少?2.飞机每分钟飞行30000米,是火车每分钟行的15倍.火车每分钟行多少米?(你能用两种方法解答吗?) 3.光明小学图书馆新买来128本书,一共有三种.其中连环画32本,故事书和科技书同样多.买来的故事书和科技书各多少本?六、板书设计第7册第三章应用题(二)。