第二章 第1课时 整式(1)

合集下载

【人教版】七年级数学上册:第二章《整式的加减》全章教学设计

【人教版】七年级数学上册:第二章《整式的加减》全章教学设计

课题: 2.1 整式(第 1 课时)一、教学目标1. 经历列单项式表示数量关系的过程,发展符号感.2. 知道单项式及其系数、次数的意义,会准确确定一个单项式的系数和次数.二、教学重点和难点1. 重点:列单项式表示数量关系,单项式及其系数、次数的意义.2.难点:列单项式表示数量关系 .三、教学过程(一)基本训练,巩固旧知1. 填空:幂x3的指数是,底数是;幂a2的指数是,底数是;幂 n 的指数是,底数是.(二)创设情境,导入新课师:前面我们学习了第一章有理数,从今天开始,我们要学习第二章整式的加减. (板书:第二章整式的加减)同学们自然会问:什么是整式?我们将在本节课和下节课学习什么是整式 . (板书: 2.1 整式)这节课我们首先学习整式的一种,叫单项式 . (板书:(单项式))(三)尝试指导,讲授新课师:什么样的式子是单项式呢?请大家看一个例子. (师出示下面的板书)一种笔记本售价是每本 2 元,那么买 2 本所需钱是元,买5本所需钱是元,买 10 本所需钱是元,买100本所需钱是元,买 x 本所需钱是元.师:(指板书)一种笔记本售价是每本 2 元,那么买 2 本所需钱是多少元?生: 4 元 . (师板书: 4)师:(指板书)那么买5 本所需钱是多少元?生: 10 元. (师板书: 10)师:(指板书)那么买10 本所需钱是多少元?买100 本所需钱是多少元?生: 20 元,200 元 . (师板书: 20,200 )师:(指板书)一种笔记本售价是每本 2 元,那么买 x 本所需钱是多少元?生:(多让几位同学发表看法)师:(指板书)一种笔记本售价是每本2 元,那么买 x 本所需钱是 2×x 元 . (边讲边板书:2×x)为了书写方便,(指乘号)通常将乘号写成“·”,(边讲边将“2×x”改为“ 2·x”)或者将乘号省略不写 . (边讲边用彩笔将“ 2·x ”改为“ 2x”) 2x 就表示 2×x.师:(板书: 2x 并指 2x)2x 就是一个单项式 . 单项式当然不只2x 这么一个,在现实生活中,存在大量的其它的单项式,同学们通过把下面的问题列成式子,就能找到大量的单项式 .(四)试探练习,回授调节2.填空:(1)一支铅笔的售价是 x 元,一支圆珠笔的售价是铅笔的 2.5 倍,一支圆珠笔的售价是元;(2)边长为 a 的正方形面积为;(3)边长为 a 正方体的体积为;(4)一辆汽车的速度是每小时v 千米,它 t 小时行驶的路程为千米;( 5)数 n 的相反数是.(生做题,师巡视指导,完成后,生报答案,如果必要,酌情讲解,并将2.5x ,a2,a3, vt ,- n 板书出来)(五)尝试指导,讲授新课师:(指准板书) 2x 是单项式, 2.5x , a2,a3,vt ,-n 这些式子也是单项式 . 现在请问:什么样的式子叫做单项式?生:(多让几名学生发表看法,要肯定学生回答中合理的部分)师:这些式子有一个共同的特点,什么特点呢?它们都是数字与字母的积. (指准式子) 2x 是数 2 与字母 x 的积, 2.5x 是数 2.5 与字母 x 的积 . a 2是数 1 与字母 a2的积, a3是数 1 与字母 a3的积, vt 是数 1 与字母 v、t 的积,- n 是数- 1 与字母 n 的积 .师:通过上面的分析,哪位同学知道:什么叫做单项式?生:师:数字与字母的积,这样的式子叫做单项式. (板书:数字与字母的积,这样的式子叫做单项式)师:需要指出的是,单独一个数或一个字母也是单项式. (板书:单独一个数或一个字母也是单项式)譬如,单独一个数5,-1,2008 等都是单项式;又譬如,2单独的一个字母x 也是单项式 .(六)试探练习,回授调节3.判断下列式子是不是单项式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)尝试指导,讲授新课师:(板书:- 4x2y)我们都知道,- 4x2y 是单项式,(指准式子)它是数字-4 与字母 x2、y 的积,换一种说法,- 4 是数字因数, x2、y 是字母因数,我们把数字因数- 4 叫做这个单项式的系数 . (板书:的系数是- 4)师:(指已板书的单项式2x)哪位同学知道2x 这个单项式的系数?生: 2.(以下师让生回答已板书的其它单项式的系数)师:明确了单项式系数的概念,下面我们再来看单项式的次数的概念. (板书:次数)师:(指准- 4x2y)这个单项式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,所有字母的指数和是 3,我们把单项式- 4x2y 所有字母指数的和 3 叫做这个单项式的次数 . (板书:是 3)师:一个单项式的次数是几次,我们就把这个单项式叫做几次单项式. (指- 4x2y)这个单项式的次数是3,就叫做三次单项式 . (板书:是三次单项式)师:(指已板书的单项式2x)这个单项式的次数是几次?生:师:(指 2x)这个单项式只含有一个字母,x 的指数是 1,所以所有字母指数的和也是 1,所以这个单项式的次数是 1,这个单项式是一次单项式 .(以下师让生回答已板书的其它单项式的次数)(八)试探练习,回授调节4.填空:( 1)单项式 2a2的系数是,次数是,是次单项式;( 2)单项式- 1.2h 的系数是,次数是,是次单项式;( 3)单项式 x2y 的系数是,次数是,是次单项式;( 4)单项式- t 2的系数是,次数是,是次单项式;( 5)单项式 5a4b 的系数是,次数是,是次单项式;( 6)单项式 x 的系数是,次数是,是次单项式;( 7)单项式3xyz 的系数是,次数是,是次单项式;5( 8)单项式2vt,次数是,是次单项式 .的系数是35.用单项式填空:( 1)每包书有 12 册, n 包书有册;( 2)一个长方形的长是0.9 ,宽是 a,这个长方形的面积是;(3)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是;(4)产量由 m千克增长 10%,就达到千克.(九)归纳小结,布置作业师:本节课我们学习了什么?学习了本节课你有什么收获?生:(多让几位同学概括总结)(作业: P59习题 1. )四、板书设计第二章整式的加减2.1 整式(单项式)232.5x , a,a , vt ,- n一种笔记本售价是每本 2 元叫做单项式那么单独一个数或一个字母也是单项式- 4x2y 的系数是- 4,次数是 3,是三次单项式课题: 2.1 整式(第 2 课时)一、教学目标1. 知道多项式及其项、常数项、次数的意义,会指出多项式的各项与多项式次数.2.知道整式的意义 .二、教学重点和难点1.重点:多项式及其项、常数项、次数的概念 .2.难点:指出多项式的各项 .三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√” ,错的画“×” .(1)5y 是单项式;()(2)5y+1 是单项式;()(3)1是单项式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的路程是千米,3小时行驶的路程是千米, t 小时行驶的路程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后到达相距 s 千米的尼木县城,这辆长途汽车的平均速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)出售,这台电视机现在的售价为元 .(二)创设情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)尝试指导,讲授新课(师出示下面的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特点?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 可以转化为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 可以看成是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 可以转化为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 可以看成是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特点都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生: 7. (板书:常数项是7)(四)试探练习,回授调节4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)尝试指导,讲授新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)试探练习,回授调节5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,布置作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 其中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教学目标1.巩固单项式、多项式的有关概念 .2.会列较简单的多项式表示数量关系,发展符号感 .二、教学重点和难点1.重点:列多项式表示数量关系 .2.难点:列多项式表示数量关系 .三、教学过程(一)基本训练,巩固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和仍是多项式;()(4)单项式和多项式统称整式 .()(二)创设情境,导入新课师:上节课,我们学习了多项式的概念,本节课我们要学习用多项式表示数量关系. 请看例 1.(三)尝试指导,讲授新课例 1 用多项式填空:(1)温度由 t 度下降 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和可以表示为;32( 3)如图,圆环的面积为.r(四)试探练习,回授调节4. 用多项式填空:R( 1)温度由- 3 度下降 t度后是度;(2)温度由- 3 度上升 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增加 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如图,是一所住宅的建筑平面图,这所住宅的建筑面积是x 米平方米 .x米6米4米6. 思考题:如图,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教学建议:对不少学生而言,这些练习可能有一定难度. 要给学生充分时间思考,要让学生安下心来做题,快者快做,慢者慢做,不要催学生,不要求所有学生完成所有练习,差生能真正独立思考完成二三小题就不错了,中下生能完成 4 题就很好了 . 老师要加强巡视指导,给各类学生以适当鼓励)(五)归纳小结,布置作业师:今天我们学习了什么?通过本节课学习,你有什么收获?生:(多让几位同学回答)(作业: P60习题 2. )四、板书设计例1课题: 2.2 整式的加减(第 1 课时)一、教学目标1. 经历同类项概念的形成过程,知道什么是同类项.2. 经历合并同类项法则的形成过程,会合并同类项.二、教学重点和难点1.重点:同类项的概念,合并同类项 .2.难点:同类项概念的形成 .三、教学过程(一)创设情境,导入新课师:前面我们学习了整式的概念,从本节课开始,我们学习整式的加减. (板书课题:2.2 整式的加减)整式的加减实质上就是合并同类项,本节课我们先来学习合并同类项 . (板书:(合并同类项))(二)尝试指导,讲授新课师:要合并同类项,我们首先要弄清什么是同类项 . 让我们一起来看下面的例子 .师: 5 个 x 加上 2 个 x 等于什么?(边讲边板书: 5x+2x=)生: 7 个 x. (师板书: 7x)2222师:- 5ab 加上 3ab 等于什么?(边讲边板书:-5ab +3ab =)师:根据分配律,- 5ab2+3ab2= ( - 5+ 3)ab 2(边讲边板书: ( - 5+ 3)ab 2)等于-2ab2 . (板书:=- 2ab2)师:(指准 5x+ 2x=7x)这个式子的左边是5x 与 2x 两项,右边只有 7x 一项,这就是说,左边的两项可以合并成右边的一项.师:(指准- 5ab2+ 3ab2=- 2ab2)这个式子的左边也有两项-5ab2,3ab2,右边只有一项- 2ab2,这就是说,左边的两项也可以合并成一项.师:(指式子)观察、分析这两个式子,请大家分组讨论这么一个问题:怎么样的两项可以合并成一项?(出示板书:怎么样的两项可以合并成一项?)(生分组讨论,师巡视指导)师:哪位同学知道怎么样的两项可以合并成一项?生:(多让几位同学发表看法)师:(在- 5ab2,3ab2下面划线,并指准)两项所含字母相同,-5ab2这一项所含字母是 a,b,3ab2这一项所含字母也是 a, b. (板书:所含字母相同) 2 2这一项字母 a 的指数也是 1;这一项字母 b 的指数是 2,这一项字母 b 的指数也是2. (板书:并且相同的字母的指数也相同)师:(指- 5ab2,3ab2)像这样所含字母相同,相同字母的指数也相同的项,叫做同类项 . (板书:的项,叫做同类项)师:现在,我们再回到原来的问题:怎么样的两项可以合并成一项?生:师:同类项可以合并成一项,而且只有同类项才可以合并成一项,不是同类项不能合并成一项 .(三)试探练习,回授调节1.判断下列各组的两项是不是同类项:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(由于- 25 与 12 可以合并成一项- 13,因此,常数项与常数项也是同类项)2.找出多项式 4x2-8x+ 5-3x2+6x-2 中的同类项:( 1) 4x2与是同类项;( 2)- 8x 与是同类项;( 3) 5 与是同类项.(四)尝试指导,讲授新课师:我们已经知道,同类项是可以合并在一起的合并成一项,叫做合并同类项.. (指板书的课题)把几个同类项师:(指板书的两个式子)从这两个式子,哪位同学知道怎么合并同类项?生:(多让几位同学发表看法)师:系数相加,字母部分不变. (板书:系数相加,字母部分不变)例 1合并下列各式的同类项:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先让生尝试,师再板演讲解,讲解时要紧扣法则)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 合并下列各式的同类项:( 1)- 8x2-7x2=( 2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正误:对的画 " √" ,错的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思考题:如图,大圆的半径是 R,小圆的面积是大圆面积的4,则阴影部分的面9积为.R(五)归纳小结,布置作业. (指准- 5ab2+3ab2师:本节课,我们学习了什么是同类项及怎么合并同类项这个式子)所含字母相同,并且相同字母的指数也相同的项叫做同类项. 合并同类项的方法是系数相加,字母部分不变. 合并同类项的这个方法是根据什么得到的?生:(根据分配律)(作业: P66练习 1.2. )四、板书设计2.2 整式的加减(合并同类项)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎样的两项可以合并成一项?叫做同类项 .系数相加,字母部分不变.课题: 2.2 整式的加减(第 2 课时)一、教学目标1.会合并多项式中的同类项 .2.会先合并同类项,再求多项式的值 .二、教学重点和难点1.重点:合并多项式中的同类项 .2.难点:把多项式中的同类项写在一起 .三、教学过程(一)基本训练,巩固旧知1.判断下列各组中的两项是不是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.合并下列各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(强调:交换多项式的项,要连同符号一起交换)(二)创设情境,导入新课师:上节课我们学习了什么是同类项及怎么合并同类项,本节课我们将学习如何合并多项式中的同类项 . 请看例 1.(三)尝试指导,讲授新课例 1 合并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一起;=- 4x2+5x+5第三步:合并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)试探练习,回授调节4.合并下列各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)尝试指导,讲授新课例 2求多项式 3a+abc-1c2-3a+1c2的值,其中,a=-1, b= 2,c =- 3. 336(先合并多项式的同类项,再代入数值,最后得到结果,解题格式要与教材相同)(六)试探练习,回授调节5.求多项式 2x2- 5x+x2+ 4x-3x2-2 的值,其中 x=1 . 2(五)归纳小结,布置作业师:本节课我们学习了合并多项式的同类项,合并多项式的同类项有三步,是哪三步?生:(作业: P71习题 1.P 76复习题 2. )四、板书设计例 1例2课题: 2.2 整式的加减(第 3 课时)一、教学目标1.经历去括号法则的形成过程,知道去括号法则 .2.会去括号 .二、教学重点和难点1.重点:去括号 .2.难点:去括号法则的形成过程 .三、教学过程(一)基本训练,巩固旧知1.合并下列多项式的同类项:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多项式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的值,其中 x=- 4.3. 填空:分配律是a(b +c) =,利用分配律可得:6(x - 3) =,- 6(x - 3) =.(二)创设情境,导入新课师:(板书: 8a+ 2b-(5a -b) )这个式子合并同类项的结果是什么?生: 3a+b.师:这个结果是错误的!为什么呢?因为这个式子中含有括号,(用彩笔标括号)要合并含有括号的式子的同类项,先要去括号 . 如何去括号呢?这就是我们这节课要学习的内容 . (板书课题: 2.2 整式的加减(去括号))(三)尝试指导,讲授新课师:如何去括号呢?先看两个去括号的例子.师:(板书: 6(x -3) =)利用分配律, 6(x -3) 等于什么?生: 6x-18. (师板书: 6x-18)师:(板书:- 6(x - 3) =)利用分配律,- 6(x -3) 等于什么?生:- 6x+18. (师板书:- 6x+ 18)师:从这两个例子,我们可以看到,(指准-6(x-3)=-6x+18)去括号实际上就是运用分配律,把括号外的因数分别乘括号内的各项 .(师板书:+ (x -3) =-(x-3)=)师:运用分配律,我们又怎么去掉(指式子)这两个式子中的括号呢?请大家自己动笔先试一试 . (生尝试,师巡视)师:(指+ (x -3) )这个式子不好用分配律,我们可以把+(x -3) 写成 1× (x -3) ,(边讲边板书: 1×(x -3) )这样就可以用分配律了,运用分配律得到的结果是什么?生: x-3. (师板书:= x-3)师:(指- (x - 3) )这个式子也不好用分配律,我们可以把-(x - 3) 写成 ( -1) ×(x - 3) ,(边讲边板书: ( -1) × (x -3) )这样就可以用分配律了,运用分配律得到的结果是什么?生:- x+ 3. (师板书:=- x+3)师:从上面的四个例子说明,去括号的过程实际上就是运用分配律的过程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分配律去括号,而后两个式子(指+ (x -3) ,- (x -3) )用分配律去括号比较麻烦,这就有必要寻找去括号的规律 .师:去掉中间过程,(擦掉中间过程,板书成+(x - 3) =x -3,- (x -3) =- x +3)得到+ (x -3) = x-3,- (x -3) =- x+3. 从这两个式子,同学们发现去括号有什么规律吗?(生分组讨论,师巡视指导)师:哪位同学发现了去括号的规律?生:(多让几位同学发表看法)师:从这两个式子,我们可以发现,(指准+ (x -3) =x-3)如果括号前是“+”号,去括号后括号里的各项都不变符号;(板书上面这句话)(指准- (x - 3) =-x+3)如果括号前是“-”号,去括号后括号里各项都改变符号 . (板书上面的这句话)请大家把这两句话读一遍 . (生读)例1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)试探练习,回授调节4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)尝试指导,讲授新课例 2 先去括号,再合并同类项:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先尝试,师再板演讲解;(2)题除教材中的解法,也可以用分配律直接去掉括号)(六)试探练习,回授调节5.化简:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,布置作业师:本节课我们学习了如何去括号. (指准+ (x -3) =x-3)如果括号前是“+”号,去括号后括号里各项都不变符号;(指准- (x - 3) =- x+3)如果括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)如果括号前是其它因数,那么用分配律可以直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3如果括号前是“+”号-(x -3) =- x+ 3如果括号前是“-”号课题: 2.2 整式的加减(第 4 课时)一、教学目标1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教学重点和难点1.重点:进行整式加减运算 .2.难点:求值 .三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)创设情境,导入新课师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减. (板书课题:2.2 整式的加减)进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项 . 请看例 1.(三)尝试指导,讲授新课例1 计算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、合并同类项两步先让生尝试)例2 计算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)试探练习,回授调节3.计算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和为,差为.(五)尝试指导,讲授新课例3 求1x- 2(x -1y2) +( -3x+1y2) 值,其中 x=- 2,y=2. 23233(按教材格式板演)(六)试探练习,回授调节5.先化简,再求值:5(3a 2b-ab2) - (ab 2+3a2b) ,其中 a=1,b=1.23(七)归纳小结,布置作业师:本节课我们学习了整式的加减,进行整式的加减运算有两步,是哪两步?生:(作业: P 习题 3.4. )71四、板书设计2.2整式的加减例 1例 2例 3课题: 2.2 整式的加减(第 5 课时)一、教学目标1.会列式计算整式加减的文字题 .2.会列较简单的整式加减式子表示实际问题中的数量关系,发展符号感.二、教学重点和难点1.重点:列较简单的整式加减式子表示数量关系 .2.难点:列较简单的整式加减式子表示数量关系 .三、教学过程(一)创设情境,导入新课师:前面我们学习了如何进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)尝试指导,讲授新课例1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 .解:比 x 的 7 倍大 3 的数为 7x+3,比x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生尝试)(三)试探练习,回授调节1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)尝试指导,讲授新课例2一种笔记本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔记本3个,买圆珠笔 2 支;扎西买这种笔记本 4 个,买圆珠笔 3 支 . 买这些笔记本和圆珠笔,卓玛和扎西一共花费多少钱?(教学建议:按教材P69解法一解比较自然,要让学生充分熟悉题意,充分尝试的基础上再讲解,熟悉题意的工夫要下足,这是需要耐心的,可以通过读题、说题、画题、列表、实物展示等方式让学生熟悉题意)(五)试探练习,回授调节3. 某村土豆种植面积是 a 亩,白菜种植面积比土豆种植面积少8 亩,青稞种植面积是白菜种植面积的10 倍,问该村土豆、白菜、青稞一共种植多少亩.(六)尝试指导,讲授新课例3 两船从同一港口同时出发反向而行,甲船顺水,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)试探练习,回授调节4.填空:已知某轮船顺水航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺水航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺水航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,布置作业师:本节课我们学习了几个例题,例 2 例 3 都是和实际问题有关的 . 做这类应用题,关键是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!如果你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例 1例2例3。

七年级数学上册 第二章 整式的加减 2.1 整式(第1课时)课件

七年级数学上册 第二章 整式的加减 2.1 整式(第1课时)课件
第二章 整数 的加减 (zhěngshù)
2.1 整式(zhěnɡ shì)(第一课时)
第一页,共二十四页。
1.用字母表示(biǎoshì)数的意义是用字母表示(biǎoshì)数能简明 表达数量关系.
第二页,共二十四页。
2.用字母表示数的书写规则: (1)字母与字母相乘时,“×”通常省略不写或写成“·”;
第二十四页,共二十四页。
则第n个图案中的“ ”的个数是 3n+1
.(用含
有n的代数式表示).
第十二页,共二十四页。
9.按图2-1-6所示的方式(fāngshì)用火柴摆图形.
(1)填写下表:
3 5 7 9 11 (2)要摆出n(n>1且n为整数)个三角形,需要多少(duōshǎo)
根火柴?
解:(2)需要(xūyào)(2n+1)根火柴;
解:(1)采用计时制应付(yìng fù)的费用为
0.05x×60+0.02x×60=4.2x(元),
采用包月制应付的费用为
69+0.02x×60=(69+1.2x)(元).
第十五页,共二十四页。
(2)若小明估计自家(zìjiā)一个月内上网的时间为20小时,你认 为采用哪种方式较为合算?
(2)若一个月内上网的时间为20小时,
6.有一种石棉瓦(如图2-1-2),每块宽60厘米,
用于铺盖屋顶时,每相邻两块重叠部分(bù fen)的宽都 为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为
(50n+10)厘米.
第九页,共二十四页。
7.如图2-1-3是一长方形休闲广场,四角都设计一块半径相同 的四分之一圆的花坛,若圆形的半径为
(n-3m) 元;

人教版七年级数学上册教案(RJ) 第二章 整式的加减

人教版七年级数学上册教案(RJ) 第二章 整式的加减

第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。

七年级数学 第二章 整式的加减 2.1 整式 第1课时 用字母表示数复习

七年级数学 第二章 整式的加减 2.1 整式 第1课时 用字母表示数复习
【点悟】解决此类图形规律型问题的方法是从特殊到一般,从简单到复杂, 探求出一般规律.
当堂测评
1.下列代数式中符合书写要求的是( D )
A.112a
B.n2
C.abc·2
D.-32a
2.下列说法中错误的是( B ) A.x,y 两数的平方差是 x2-y2 B.x 加上 y 再除以 x 的商是 x+xy C.x 减去 y 的 2 倍所得的差是 x-2y D.x 与 y 的和的平方的 2 倍是 2(x+y)2
A.2
B.3
C.4
D.5
4.[2017·咸宁]由于受 H7N9 禽流感的影响,我市某城区今年 2 月份鸡的价格 比 1 月份下降 a%,3 月份比 2 月份下降 b%,已知 1 月份鸡的价格为 24 元/千克.设 3 月份鸡的价格为 m 元/千克,则( D )
A.m=24(1-a%-b%) B.m=24(1-a%)b% C.m=24-a%-b% D.m=24(1-a%)(1-b%)
3.[2017·六盘水]下列式子正确的是( C )
A.7m+8n=8m+7n
B.7m+8n=15mn
C.7m+8n=8n+7m
D.7m+8n=56mn
4.[2017·海南]已知 a=-2,则式子 a+1 的值为( C )
A.-3
B.-2
C.-1
D.1
5.“x 的 2 倍与 5 的和”用代数式表示为 2x+5 .
射进的阳光的面积为 ab-2×π×b82=ab-
πb2 32 .
∵π8b2>π3b22,∴ab-π8b2<ab-π3b22,
∴方方的窗户射进的阳光的面积小于要在进价的基础上加上一定利润,旅客购
买质量 x(kg)与售价 c(元)之间的关系如表 1,且海关对旅客携带物品质量 m(kg)与

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

探究新知
知识点 1 同类项的概念
猴子要搬新家啦!有八只小猴子,每只身上都标有一个
单项式,你能根据这些单项式的特征将这些小猴子分到
不同的房间里吗?(用几个房间都可以)
8n
-7a2b
3ab2
2a2b
8n 6xy
5n
-3xy
-ab2
探究新知
8n 5nn
3ab2 -ab2
6xy -3xy
-7a2b 2a2b
法则
(1)系数相加;
合并同类项 (一加两不变) (2)字母连同它的指数不变.
步骤 一容
教材作业 从课后习题中选取
自主安排 配套练习册练习
3
3
巩固练习
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
解: x4-5x2+2x3-x4+5x2-2x3+2x-1 = (x4-x4)+(-5x2+5x2)+(2x3-2x3)+2x-1 = 2x-1 当x=2019时,原式=2×2019-1=4037.
探究新知
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5 ×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a √
注:(2)(4)(5)中的单项式不是同类项,不能合并. (3)是同类项,但合并结果不对.
的同类探项究.新知
素养考点 1 合并同类项
4a2 3b2 2ab 3a2 b2.
解: 4a2 3b2 2ab 3a2 b2 找
探究新知
归纳总结
同类项的判别方法: (1)同类项只与字母及其指数有关,与系数无关,与

2.1整式第一课时单项式-说课稿

2.1整式第一课时单项式-说课稿

《2.1整式——单项式》说课稿我说课的内容是人教版七年级数学上册第二章《整式的加减》中的2.1整式(第一课时)单项式。

下面,我将从教材分析、学情分析、教法分析、教学过程、板书设计及教学设计说明几个方面进行说课。

一、教材分析1、教材的地位和作用本章是在学生已有的字母表示数以及有理数运算的基础上展开的。

单项式既是对前面所学知识的深化和发展,也是学习本章其他内容的直接基础,也是以后学习整式乘除、分式和根式运算、方程以及函数等知识的基础,同时也是学习物理化学等学科及其他科学技术不可或缺的数学工具。

“整式”一节是“整式的加减”一章的起始课,整式是代数式中最基本的式子,而单项式又是整式中最基础的知识,具有承上启下的作用。

2、教学目标:知识与能力目标:会用含有字母的式子表示数量关系,理解字母表示数的意义。

理解并掌握单项式的有关概念。

过程与方法目标:经历用字母表示数量关系的过程,通过观察、类比、归纳得出单项式概念的数学活动经验。

情感与态度目标:通过用含有字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要的数学工具,发展学生的符号感。

3、教学重难点:重点:单项式及其相关的概念难点:对单项式的系数、次数概念的理解与应用二、学情分析本节课是研究整式的开始,知识由数向式转化,由具体到抽象,从特殊到一般,与学生的认知基础和思维能力有一定差距,学习中会有一定困难。

为了突出重点,突破难点,教学中要把握以下两点:(1)加强直观性:从学生最近的发展区域为切入点,用足够的感知材料,丰富学生的感性认识,帮助学生认识概念。

(2)注重分析:在剖析单项式结构时,借助变式和反例练习,抓住概念易混处和判断易错处,强化认识。

三、教法分析数学课堂”应以学生发展为本,遵循学生的认知规律”,由于已有了小学所学习的一些数量关系的铺垫,其难度不大,学生能够完成,而这些式子有什么特点进而得出单项式的概念,是这节课的重点,所以我采用适当的引导,学生讨论的方式,让学生自己发现规律,发现共同点,来突出重点,采用变式训练和反例的练习突破难点。

新人教版七年级上册数学第二章《整式的加减》全章教案

新人教版七年级上册数学第二章《整式的加减》全章教案

第1课时:整式(1)教学内容:教科书第54—56页,2.1整式:1.单项式。

教学目标和要求:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1、 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方形棱长,则正方形的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。

让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

)2、 请学生说出所列代数式的意义。

3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充,单独一个数或一个字母也是单项式,如a ,5。

2.练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

(名师整理)数学七年级上册第2章第1节《整式》优秀教案

(名师整理)数学七年级上册第2章第1节《整式》优秀教案

第2章《整式的加减》教案一、课标要求1、知识与技能(1)理解并掌握单项式、多项式和整式的概念,弄清它们之间的区别于联系;(2)理解同类项的概念,掌握合并同类项的方法,掌握去括号时的符号变化的规律,能正确掌握多项式的概念,进而理解整式的概念。

(3)掌握多项式的项数,次数的概念,并能熟练地说出多项式的项数和次数。

(4)会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值。

(5)会利用合并同类项将整式化简求值。

会运用整式的加减解决简单的实际问题(6)应用整式和整式的加减运算表示实际问题中的数量关系。

2、过程与方法(1)掌握从特殊到一般,从个体到整体地观察、分析问题的方法。

尝试从不同角度探究问题,培养应用意识和创新意识。

(2)经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。

3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。

二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的从数到式表示的实例,•从扩充运算的角度引入单项式与多项式的概念,然后再指出可以用单项式与多项式表示现实生活中具有意义的关系,使学生感受到整式的引入是来自实际生活的需要,体会数学知识与现实世界的联系。

引入整式概念之后,接着给出单项式与多项式的概念。

2.通过怎样用单项式与多项式关系引入整式。

整式的运算是非常重要的数学工具,在揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)单项式与多项式之间的内在关系;(2)单项式与多项式的有关概念;(3)单项式与多项式的运算;(4)在实际问题中,单项式与多项式的表现形式;3.应用整式和整式的加减运算表示实际问题中的数量关系。

掌握从特殊到一般,从个体到整体地观察、分析问题的方法。

尝试从不同角度探究问题,培养应用意识和创新意识。

2.本单元在教材中的地位与作用:1、梳理整式的相关概念,归纳概念之间的区别与联系。

人教版初一七年级数学 第二章 整式的加减--整式的加减

人教版初一七年级数学 第二章 整式的加减--整式的加减

一、教学目标:(一)知识目标1.会用字母表示数量关系;2.会进行整式加减运算,并能说明其中的算理;3.熟练掌握整式加减运算;(二)能力目标1.在进行整式加减运算的过程中,发展有条理的思考及语言表达能力;(三)情感目标1.在解决问题的过程中了解数学的价值,发展“用数学”的信心;2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.二、教学重难点:(一)教学重点3.经历“由特例归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程.(二)教学难点1.灵活地列出算式和去括号.2.利用整式的加减运算,解决简单的实际问题.三、教学方法:活动——讨论法;探究——交流法.四、教具准备:投影片五、教学安排:2课时.六、教学过程:第一课时:在开始课堂之前,让学生先来看一个数学小幽默:参看课件——整式的加减_数学小幽默.Ⅰ.提出问题,引入新课[师]下面我们先来做一个游戏:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)求这个两位数的和.[生]我取了一个两位数12;交换这个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.观察可以发现这些和都是11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.[师]这个规律是不是对任意的两位数都成立呢?为什么?(鼓励同伴之间互相讨论,相互启发)[生]对于任意一个两位数,我们可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b 根据运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.[师]很棒!(10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a都是什么样的代数式?[生]10a+b与10b+a是多项式,也就是整式,因此(10a+b)+(10b+a)是整式的加法.[师]如果要是求这两个数的差,又如何列出计算的式子呢?[生](10a+b)-(10b+a).[师]这就是整式的减法.你能发现它们的差有何规律吗?[生](10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b由此可知,这两个数的差是9的倍数.[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发现了其中的规律.在说明(10a+b)+(10b+a)是11的倍数时,每一步的依据的法则是什么呢?(10a+b)-(10b+a)是9的倍数呢?[生]第一步的依据是去括号法则;第二步是合并同类项法则.[师]从上面的例子中可以发现整式的加减法可以帮我们解决实际情景中的问题.因此,我们这节课就来学习整式的加减.Ⅱ.合作讨论新课,学会运算整式的加减1.做一做图1-6两个数相减后,结果有什么规律?这个规律对任意一个三位数都成立吗?为什么?[师]同学们先来按照上面所示的框图的步骤来讨论一下两个数相减后,结果有什么规律?[生]任取一个三位数,经过上述程序后结果一定是99的倍数.[师]是不是任意的三位数都有这样的规律呢?首先我们先要设出一个任意的三位数.如何设呢?[生]可以设百位、十位、个位上的数字分别为a,b,c,则这个三位数为100a+10b+c.[师]任意的一个三位数为100a+10b+c,接下来我们按照框图所示的步骤可得:交换百位和个位上的数字就得到一个新数,是什么呢?[生]100c+10b+a.[师]两个数相减,可得到一个算式为什么呢?[生](100a+10b+c)-(100c+10b+a).[师]为什么在上面的算式中要加上括号呢?[生]“两个数相减”,而这两个三位数,我们都是用多项式表示出来的,每一个多项式,它都是一个整体,因此需加括号.[师]这一点很重要,如何说明这个差就是99的倍数呢?[生]化简可得,即(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =(100a -a )+(10b -10b )+(c -100c )=99a -99c也就是说任意一个三位数,经过上述程序后结果一定是99的倍数. 2.议一议[师]在上面的问题中,涉及到整式的什么运算?说一说你计算的每一步依据?[生]在上面的问题中,我们涉及到整式的加减法.在进行整式的加减时,我们先去括号,再合并同类项.[师]在去括号和合并同类项时应注意什么呢?[生]我们上学期已学习过去括号和合并同类项.去括号时,特别要注意括号前面是“-”号的情况,去掉“-”号和括号时,里面的各项都需要变号;合并同类项时,先判断哪些项是同类项,利用加法结合律和合并同类项的法则即可完成.3.例题讲解 [例1]计算(1)2x 2-3x +1与-3x 2+5x -7的和(2)(-x 2+3xy -y 2)-(-x 2+4xy -y 2)(这样的题目,我们已经训练过,因此可让学生自己完成,叫两个同学板演,同时教师深入到学生之中进行观察,对于发现的问题,可以通过让学生表达算理即去括号法则和合并同类项法则,自纠自改)解:(1)(2x 2-3x +1)+(-3x 2+5x -7) =2x 2-3x +1-3x 2+5x -7 =2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6212123(2)(-x2+3xy -y2)-(-x 2+4xy -y 2)=-x2+3xy -y2+x 2-4xy +y 2=-x 2+x 2+3xy -4xy -y 2+y 2=-x 2-xy +y 2注:1.列算式时,每一个多项式表示的是一个整体,因此必须加括号. 2.在第(2)小题中,去括号要注意符号问题.[例2](1)已知A=a 2+b 2-c 2,B=-4a 2+2b 2+3c 2,且A +B +C =0,求C . (2)已知xy =-2,x +y =3,求代数式 (3xy +10y )+[5x -(2xy +2y -3x )]的值. 分析:(1)可用逆运算来代入求解;(2)求代数式的值,一般是先化简,再求值,这个地方应注意整体代入. 解:(1)根据A +B +C =0,可得C =-A -B 即C =-(a 2+b 2-c 2)-(-4a 2+2b 2+3c 2) =-a 2-b 2+c 2+4a 2-2b 2-3c 2 =-a 2+4a 2-b 2-2b 2+c 2-3c 2 =3a 2-3b 2-2c 2(2)原式=3xy +10y +[5x -2xy -2y +3x ] =3xy +10y +5x +3x -2xy -2y =3xy -2xy +10y -2y +5x +3x =xy +8x +8y =xy +8(x +y )21212321212321212321当xy =-2,x +y =3时 原式=xy +8(x +y )=-2+8×3 =-2+24=22. Ⅲ.随堂练习1.计算:(1)(4k 2+7k )+(-k 2+3k -1) (2)(5y +3x -15z 2)-(12y -7x +z 2)2.解下列各题(1)-5ax 2与-4x 2a 的差是 ; (2) 与4x 2+2x +1的差为4x 2; (3)-5xy 2+y 2-3与 的和是xy -y 2; (4)已知A =x 2-x +1,B =x -2,则2A -3B = ;(5)比5a 2-3a +2多a 2-4的数是 . 1.解:(1)原式=4k 2+7k -k 2+3k -1 =4k 2-k 2+7k +3k -1 =3k 2+10k -1(2)原式=5y +3x -15z 2-12y +7x -z 2 =5y -12y +3x +7x -15z 2-z 2 =-7y +10x -16z 22.解:(1)-5ax 2-(-4x 2a ) =-5ax 2+4ax 2 =-ax 2;(2)设所求整式为A ,则32A -(4x 2+2x +1)=4x 2 A =4x 2+4x 2+2x +1=8x 2+2x +1;也可根据:被减式=差+减式,列式求解. (3)(xy -y 2)-(-5xy 2+y 2-3) =xy -y 2+5xy 2-y 2+3 =xy +5xy 2-2y 2+3(4)2A -3B =2(x 2-x +1)-3(x -2) =2x 2-2x +2-3x +6 =2x 2-5x +8(5)设这个数为A ,则A -(5a 2-3a +2)=a 2-4A =(a 2-4)+(5a 2-3a +2)=a 2-3a -2注:在上述求解的过程中,可利用逆运算来求解. Ⅳ.课时小结[师]这节课我们学习了整式的加减,你有何收获和体会呢?[生]在实际情景中,利用整式的加减发现了一般规律,使我们认识到学习整式加减的重要性.[生]整式加减运算的步骤是遇到括号先去括号,再合并同类项. [生]在去括号时,特别注意括号前是“-”号的情况. …… Ⅴ.课后作业1.课本P 8、习题1.2,第1、2、3题;32323172.自己设计一个数字游戏,并用整式加减运算说明其中的规律. Ⅵ.活动与探究已知(a +12)2+|b +4|=0,求代数式(a -b )+(a +b )+-的值.[过程]由已知条件可得,两个非负数的和为零的两个非负数都为零,列出方程求出a 、b 的值;在化简代数式时,观察可发现在这个题中遇到括号若先去括号会较繁,如果将(a +b )、(a -b )当成一个整体,计算起来反而简便.[结果]由(a +12)2+|b +4|=0,得a +12=0,b +4=0,即a =-12,b =-4; 当a +b =-16,a -b =-8时(a -b )+(a +b )+-=(-)(a -b )+(+)(a +b )=(a -b )+(a +b )=×(-8)+×(-16)=-12. 七、板书设计§1.2.1 整式的加减(一)一、做一做,议一议21413b a +6b a -21413b a +6b a -216141313112731127第二课时:Ⅰ.创设问题情景,引入新课出示投影片:1.为什么总是1089?用不同的三位数再做几次,结果都是1089吗?你能发现其中的原因吗?图1-8[师]我们来做上面的数字游戏,取满足条件的一个三位数,按图示所给定的程序运算,结果是1089吗?然后用不同的满足条件的三位数再做几次,结果一样吗?请同学们独立完成然后回答.[生]我试了几个数,结果都是1089.[师]你能解释其中的原因吗?[生]根据题意,可设个位上的数字是a,十位上的数字是b,百位上的数字则为(a+2),所以这个三位数为100(a+2)+10b+a.交换百位上的数字与个位上的数字,可得到一个较小的三位数即100a+10b+(a+2).按图示所给定程序,得[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-(a+2)=100a-100a+10b-10b+200+a-a-2=200-2=198即按照给定的程序的前三步,运算结果都为198,这样,继续程序的后两步可得到1089.也就是任何一个满足条件的三位数,按照题目给定的顺序,结果总是1089.[师]真棒!我们已学会了用整式的加减运算解释这一实际情景,用整式的加减运算还能解释哪些现象呢?这一节课,我们继续来学习整式的加减运算及它的应用.Ⅱ.探索规律,体会整式运算的必要性下面是用棋子摆成的“小屋子”.摆第1个“小屋子”需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子.图1-9按照这样的方式继续摆下去.(1)摆第10个这样的“小屋子”需要多少枚棋子?(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?与同伴进行交流.(教师教学中要鼓励学生独立思考的基础上探索出规律.鼓励学生算法多样化,并可实际操作探索规律)[生]实际操作可以发现摆后面一个“小屋子”,总比它前面一个多用6枚棋子.摆第2个“小屋子”需要(5+6)枚即11枚棋子,摆第3个需要(5+6×2)枚即17枚棋子,……摆第10个这样的“小屋子”需要(5+6×9)枚即59枚棋子.进而可以概括出摆第n个“小屋子”需用5+6(n-1)=6n-1枚棋子.[师]很好.这位同学能抓住图形变化的规律.有没有别的方法呢?[生]通过观察还可以发现,摆前几个“小屋子”分别用的棋子数5,11,17,23,从而也概括出规律来,即摆第n个这样的“小屋子”需要(6n-1)枚棋子.[生]老师,我也有一种方法,将图1-9的“小屋子”拆成上下两部分,上面部分是一个“三角形”(第一个为一个点),下面部分可以看成一个“正方形”,摆第n个“小屋子”分别需要2n-1和4n枚棋子(如图1-10).图1-10这样摆第n个“小屋子”共用的棋子数为(2n-1)+4n=6n-1.[师]很好!有的同学对数敏感,通过数棋子数发现了规律;有的同学对图形的组成比较敏感,将图分成两部分(上面部分是“三角形”,下面部分是“正方形”)发现了规律.最后都推出第n个这样的“小屋子”需(6n-1)枚棋子.我相信同学们一定还有其他的办法.下面同学们可相互交流各自的想法,或许你会有新的发现.(教师鼓励学生充分交流,并引导学生认真倾听他人的想法)Ⅲ.例题讲解 [例1]计算:(1)(3a 2b +ab 2)-(ab 2+a 2b )(2)7(p 3+p 2-p -1)-2(p 3+p )(3)-(+m 2n +m 3)-(-m 2n -m 3)[师]该例题是整式加减的运算,我们该如何进行整式的加减呢? [生]如果遇到有括号,应先去括号,然后再合并同类项.[师]下面我们就请三位同学到黑板上解答.其余同学来对他们的解答作出评价.[生]解:(1)(3a2b +ab 2)-(ab 2+a 2b )=3a2b +ab 2-ab 2-a 2b =2a2b -ab 2;(2)7(p 3+p 2-p -1)-2(p 3+p ) =7p 3+7p 2-7p -7-2p 3-2p =5p 3+7p 2-9p -7;(3)-(+m 2n +m 3)-(-m 2n -m 3)=--m 2n -m 3-+m 2n +m 3=-1[生]这三个同学做得都很好.特别是括号前是“-”号,容易出现变号问题.但这三个同学步骤清楚,符号处理准确无误.41433132414341432131323132[师]祝贺他们!大家知道我们学习数的加法运算,除可列算式外,还可以列竖式.整式的加减法可不可以列竖式.Ⅳ.试一试(课本P 11)求多项式2a +3b -5c 与-4a -11b +8c 的和时,可以利用竖式的方法:利用这种方法计算下列各题.计算过程中需要注意什么? (1)(5x 2+2x -7)-(6x 2-5x -23) (2)(a 3-b 3)+(2a 3-b 2+b 3)[师]同学们先阅读用竖式求两个整式的和的方法,然后试着回答在计算过程中需要注意什么?[生]列竖式时要注意每个整式中的同类项要对齐. [师]下面我们就用竖式的方法求出上面两个小题. [生]解:(1)列成竖式为: (2)列成竖式为:Ⅴ.练一练(P10、随堂练习)1.火车站和飞机场都为旅客提供“打包”服务.如果长、宽、高分别为x 、y 、z 米的箱子按如图1-11所示的方式“打包”,至少需要多少米的“打包”带?(其中灰色线为“打包”带)图1-11c b a c b a cb a 382532 8114)+---+--++2.某花店一枝黄色康乃馨的价格是x元,一枝红色玫瑰的价格是y元,一枝白色百合的价格是z元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?图1-12解:1.由图可知:至少需要(2x+4y+6z)米的打包带.2.第(1)束鲜花的价格为(3x+2y+z)元;第(2)束鲜花的价格为(2x+2y+3z)元;第(3)束鲜花的价格为(4x+3y+2z)元.这三束花的总价钱为:(3x+2y+z)+(2x+2y+3z)+(4x+3y+2z)=3x+2y+z+2x+2y+3z+4x+3y+2z=9x+7y+6 z(元)Ⅵ.课时小结[师生共同总结]这节课我们主要学习了如下内容:(1)在探索规律的问题中进一步体会符号表示的意义,发展符号感;(2)经历了“由特例进行归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程,发展了推理能力;(3)体会整式加减运算的必要性,并运用整式加减比较不同的算法.Ⅶ.课后作业课本习题1.3,第1、2题Ⅷ.活动与探究用砖砌成如图1-13所示的墙,已知每块砖长一定,宽为b cm,则图中留出方孔(图中阴影部分)的面积之和是多少?图1-13[过程]求图中阴影部分的面积有两种方法:一种直接求,只要求出三个阴影部分小正方形的边长就可,其边长恰为每块砖的长与宽的差;另一种是间接求,三个阴影部分的面积等于墙的面积减去22块砖的面积,但也需求出砖的长才可求出.[结果]方法一(直接法):设砖的长为x cm,根据题意,列方程得 5x =3x +3b 2x =3bx =b所以阴影部分每个小正方形的边长为b -b =b (cm ),阴影部分的面积为3×(b )2=b 2(cm 2).方法二(间接法):同方法一求出砖的长为b cm,整个墙的面积为S墙=(5×b )×(3b +b )=33b 2(cm 2)22块砖的面积为S砖=22×b ×b =33b 2(cm 2)所以图中留出方孔的面积S 阴=33b 2-33b 2=b 2(cm 2)六、板书设计232321214323232343234343§1.2.2 整式的加减(二)一、数字游戏解:设百位数字为a+2,十位数字为b,个位数字为a,根据图示程序,得:[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-a-2=200-2=198最后两步程序,得198+891=1089因此满足条件的三位数按图示程序最后总能得到1089.二、探索规律方法一:第1个共5个棋子;第2个共(5+6)个棋子;第3个共(5+2×6)个棋子;……第n个共5+6(n-1)个棋子,即(6n-1)个棋子.方法二:由5、11、17……可归纳出第n个共有(6n-1)个棋子.方法三:将“小屋子”分成两部分,也可推出第n个“小屋子”共有(2n-1)+4n=(6n-1)个棋子.三、例题(学生板演)四、练一练五、课时小结。

1第二章《整式的加减》整式的概念及整式的加减1

1第二章《整式的加减》整式的概念及整式的加减1
〔3〕单项式 的系数是,次数是.
〔4〕单项式 的系数是,次数是.
〔5〕单项式 的系数是,次数是.
〔6〕单项式 的系数是,次数是.
〔7〕多项式 的次数是.
〔8〕多项式 的次数是,项数是,常数项为.
〔9〕当a=______时,整式x2+a-1是单项式.
〔10〕多项式 是六次四项式,单项式 与该多项式的次数一样,那么m=__,n=__.
〔11〕多项式 的次数为5,那么x=______
〔12〕多项式 是关于x的二次二项式,那么m=__,n=__.
知识点三:整式的代值计算
例3:当x=-2时,代数式 的值是0,那么当x=2时,代数式 的值是-8.
解:把x=-2代入代数式有-〔-2〕²+a×〔-2〕-〔-2〕=0,解得a=-1
求得代数式为 ,代入求值得﹣8
按 降幂排列为____________;按 升幂排列为____________.
知识点五:整式的加减——合并同类项
例5:
解:原式= =
评析:原式中 和 含有一样的字母,且字母的指数一样的项称为同类项,整式加减的过程就是合并同类项
课堂练习:
〔1〕如果 与 是同类项,那么 =________;
〔2〕如果 与 是同类项,那么 =________;
单独的一个字母或数也叫做单项式,例: 、 .
单项式的次数:是指单项式中所有字母的指数和.例如:单项式 ,它的指数为 ,是四次单项式.单独的一个数(零除外),它们的次数规定为零,叫做零次单项式.
单项式的系数:单项式中的数字因数叫做单项数的系数.例如:我们把 叫做单项式 的系数.
同类项:所含字母一样,并且一样字母的指数也分别一样的项叫做同类项.
例4:假设 ,那么 的值为1.

七年级数学上册第二章整式2.1整式 第1课时(图文详解)

七年级数学上册第二章整式2.1整式 第1课时(图文详解)
饰物所占的面积是_1_6__b_2_.
人教版七年级数学上册第二章整式
5.(肇庆中考)观察下列单项式:a,-2a2,4a3, -8a4,16a5,….按此规律,第n个单项式是_____(n是正整 数). 【解析】单项式的系数的绝对值规律:2n-1,系数的符 号规律:奇正偶负,可表示为(-1)n+1.所以第n个 单项式是(-1)n+12n-1an.
人教版七年级数学上册第二章整式
单项式的注意点 1.单独一个数或一个字母也叫单项式. 比如 -3,0,m等都是单项式. 2.单独一个非零数的次数是0. 比如-3的次数是0. 3.单项式的系数包含符号,当系数为1或-1时, 这个“1”应省略不写.
人教版七年级数学上册第二章整式
1.用字母表示数; 2. 单项式的定义(注意单个数或字母也是单项式); 3. 单项式的系数(要包括其前面的负号); 4. 单项式的次数(各个字母的指数和).
⑶一圆形花坛半径为r,则其面积为____r_2_ .
⑷规定向东为正方向,小明向东走了x米,花花向西走的 路程是小明的y倍,则花花走了__-_x_y__米. ⑸体重由b千克减了5千克之后是__(_b_-_5_)_千克.
人教版七年级数学上册第二章整式
2.⑴ a4 的系数是___-_1____,次数是____4____;
是c, 这个三位数是_1_0_0_c__1__0_b___a.
2. 用代数式表示“a,b两数的平方和”,结果


【解析】平方和要与和的平方区分开.
答案:a2+b2
人教版七年级数学上册第二章整式
1.用代数式填空
S
⑴长方形的面积为S,宽为a,则其长为___a__ ⑵我国去年一户农民平均收入为m万元,今年比去年增长 了20﹪,今年收

【人教版】七年级数学上册:第二章《整式的加减》全章教学设计

【人教版】七年级数学上册:第二章《整式的加减》全章教学设计

: 2.1 整式(第 1 )一、教课目1. 列式表示数目关系的程,展符号感.2. 知道式及其系数、次数的意,会正确确立一个式的系数和次数.二、教课要点和点1. 要点:列式表示数目关系,式及其系数、次数的意.2.点:列式表示数目关系 . 三、教课程(一)基本,稳固旧知1. 填空:x3的指数是,底数是;a2的指数是,底数是; n 的指数是,底数是.(二)情境,入新:前方我学了第一章有理数,从今日开始,我要学第二章整式的加减. (板:第二章整式的加减)同学自然会:什么是整式?我将在本和下学什么是整式 . (板: 2.1 整式)我第一学整式的一种,叫式 . (板:(式))(三)指,授新:什么的式子是式呢?大家看一个例子. (出示下边的板)一种笔本售价是每本 2 元,那么 2 本所需是元,5本所需是元, 10 本所需是元,100本所需是元,x 本所需是元.:(指板)一种笔本售价是每本 2 元,那么 2 本所需是多少元?生: 4 元 . (板: 4):(指板)那么 5 本所需是多少元?生: 10 元. (板: 10):(指板)那么10 本所需是多少元?100 本所需是多少元?生: 20 元,200 元 . (板: 20,200 ):(指板)一种笔本售价是每本 2 元,那么 x 本所需是多少元?生:⋯⋯(多几位同学表见解):(指板)一种笔本售价是每本2 元,那么 x 本所需是 2×x 元 . (板:2×x)了写方便,(指乘号)往常将乘号写成“·”,(将“2×x”改“ 2·x”)或许将乘号省略不写 .(用彩笔将“ 2·x ”改“ 2x”) 2x 就表示 2×x.:(板: 2x 并指 2x)2x 就是一个式 . 式自然不仅2x 么一个,在生活中,存在大批的其余的式,同学通把下边的列成式子,就能找到大批的式 .(四)探,回授2.填空:(1)一支笔的售价是 x 元,一支珠笔的售价是笔的 2.5 倍,一支珠笔的售价是元;(2) a 的正方形面;(3) a 正方体的体;(4)一汽的速度是每小v 千米,它 t 小行的行程千米;( 5)数 n 的相反数是.(生做,巡指,达成后,生答案,假如必需,酌情解,并将2.5x ,a2,a3, vt ,- n 板出来)(五)指,授新:(指准板) 2x 是式, 2.5x , a2,a3,vt ,-n 些式子也是式 . 在:什么的式子叫做式?生:⋯⋯(多几名学生表见解,要必定学生回答中合理的部分):些式子有一个共同的特色,什么特色呢?它都是数字与字母的. (指准式子) 2x 是数2 与字母 x 的, 2.5x 是数 2.5 与字母 x 的 . a 2是数 1 与字母 a2的, a3是数 1 与字母 a3的, vt 是数 1 与字母 v、t 的,- n 是数- 1 与字母 n 的 .:通上边的剖析,哪位同学知道:什么叫做式?生:⋯⋯:数字与字母的,的式子叫做式. (板:数字与字母的,的式子叫做式):需要指出的是,唯一个数或一个字母也是式. (板:唯一个数或一5,-1,2008 等都是式;又比如,个字母也是式)比如,唯一个数2独的一个字母x 也是式 .(六)探,回授3.判断以下式子是否是式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)指,授新:(板:- 4x2y)我都知道,- 4x2y 是式,(指准式子)它是数字- 4 与字母 x2、y 的,一种法,- 4 是数字因数, x2、y 是字母因数,我把数字因数- 4 叫做个式的系数 . (板:的系数是- 4):(指已板的式2x)哪位同学知道2x 个式的系数?生: 2.(以下生回答已板的其余式的系数):明确了式系数的观点,下边我再来看式的次数的观点. (板:次数):(指准- 4x2y)个式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,全部字母的指数和是 3,我把式- 4x2y 全部字母指数的和 3 叫做个式的次数 . (板:是 3):一个式的次数是几次,我就把个式叫做几次式. (指- 4x2y)个式的次数是3,就叫做三次式 . (板:是三次式):(指已板的式2x)个式的次数是几次?生:⋯⋯:(指 2x)个式只含有一个字母,x 的指数是 1,所以全部字母指数的和也是 1,所以个式的次数是 1,个式是一次式 .(以下生回答已板的其余式的次数)(八)探,回授4.填空:( 1)式 2a2的系数是,次数是,是次式;( 2)式- 1.2h 的系数是,次数是,是次式;( 3)式 x2y 的系数是,次数是,是次式;( 4)式- t 2的系数是,次数是,是次式;( 5)式 5a4b 的系数是,次数是,是次式;( 6)式 x 的系数是,次数是,是次式;( 7)式3xyz 的系数是,次数是,是次式;5( 8)式2vt,次数是,是次式 .的系数是35.用式填空:( 1)每包有 12 册, n 包有册;( 2)一个方形的是0.9 ,是 a,个方形的面是;(3)全校学生数是x,此中女生占数48%,女生人数是,男生人数是;(4)量由 m千克增 10%,就达到千克.(九)小,部署作:本我学了什么?学了本你有什么收?生:⋯⋯(多几位同学归纳)(作: P59 1. )四、板第二章整式的加减2.1 整式(式)232.5x , a,a , vt ,- n一种笔本售价是每本 2 元⋯⋯叫做式那么⋯⋯唯一个数或一个字母也是式- 4x2y 的系数是- 4,次数是 3,是三次式: 2.1 整式(第 2 )一、教课目1. 知道多式及其、常数、次数的意,会指出多式的各与多式次数.2.知道整式的意.二、教课要点和点1.要点:多式及其、常数、次数的观点 .2.点:指出多式的各 . 三、教课程(一)基本,稳固旧知1.判断正:的画“√” ,的画“×” .(1)5y 是式;()(2)5y+1 是式;()(3)1是式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的行程是千米,3小时行驶的行程是千米, t 小时行驶的行程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后抵达相距 s 千米的尼木县城,这辆长途汽车的均匀速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)销售,这台电视机此刻的售价为元 .(二)创建情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)试试指导,解说新课(师出示下边的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特色?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 能够转变为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 能够当作是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 能够转变为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 能够当作是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特色都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生:7. (板书:常数项是7)(四)尝试练习,回授调理4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)试试指导,解说新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)尝试练习,回授调理5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,部署作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 此中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教课目的1.稳固单项式、多项式的相关观点 .2.会列较简单的多项式表示数目关系,发展符号感 .二、教课要点和难点1.要点:列多项式表示数目关系 .2.难点:列多项式表示数目关系 .三、教课过程(一)基本训练,稳固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和还是多项式;()(4)单项式和多项式统称整式 .()(二)创建情境,导入新课师:上节课,我们学习了多项式的观点,本节课我们要学惯用多项式表示数目关系. 请看例 1.(三)试试指导,解说新课例 1 用多项式填空:(1)温度由 t 度降落 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和能够表示为;32( 3)如图,圆环的面积为.r(四)尝试练习,回授调理4. 用多项式填空:R( 1)温度由- 3 度降落 t度后是度;(2)温度由- 3 度上涨 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增添 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如,是一所住所的建筑平面,所住x米6米所的建筑面是x 米平方米 .4米6. 思虑:如,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教课建:许多学生而言,些可能有必定度. 要学生充足思虑,要学生安下心来做,快者快做,慢者慢做,不要催学生,不要求全部学生达成全部,差生能真实独立思虑达成二三小就不了,中下生能达成 4 就很好了 . 老要加巡指,各学生以适合鼓舞)(五)小,部署作:今日我学了什么?通本学,你有什么收?生:⋯⋯(多几位同学回答)(作: P60 2. )四、板例 1: 2.2 整式的加减(第 1 )一、教课目1. 同观点的形成程,知道什么是同.2. 归并同法的形成程,会集并同.二、教课要点和点1.要点:同的观点,归并同 .2.点:同观点的形成 . 三、教课程(一)情境,入新:前方我学了整式的观点,从本开始,我学整式的加减. (板:2.2 整式的加减)整式的加减上就是归并同,本我先来学归并同 . (板:(归并同))(二)指,授新:要归并同,我第一要弄清什么是同 . 我一同来看下边的例子 . : 5 个 x 加上 2个 x 等于什么?(板: 5x+2x=)生: 7 个 x. (板: 7x)2222:- 5ab 加上 3ab 等于什么?(板:-5ab +3ab =):依据分派律,- 5ab2+3ab2= ( - 5+ 3)ab 2(板: ( - 5+ 3)ab 2)等于-2ab2 .(板:=- 2ab2):(指准 5x+ 2x=7x)个式子的左是5x 与 2x 两,右只有 7x 一,就是,左的两能够归并成右的一.:(指准- 5ab2+ 3ab2=- 2ab2)个式子的左也有两-5ab2,3ab2,右只有一- 2ab2,就是,左的两也能够归并成一.:(指式子)察、剖析两个式子,大家分么一个:怎么的两能够归并成一?(出示板:怎么的两能够归并成一?)(生疏,巡指):哪位同学知道怎么的两能够归并成一?生:⋯⋯(多几位同学表见解):(在- 5ab2,3ab2下边划,并指准)两所含字母相同,-5ab2一所含字母是 a,b,3ab2一所含字母也是 a, b. (板:所含字母相同) 2 2一字母 a 的指数也是 1;一字母 b 的指数是 2,一字母 b 的指数也是 2. (板:并且相同的字母的指数也相同):(指- 5ab2,3ab2)像所含字母相同,相同字母的指数也相同的,叫做同 . (板:的,叫做同):在,我再回到本来的:怎么的两能够归并成一?生:⋯⋯:同能够归并成一,并且只有同才能够归并成一,不是同不能归并成一 .(三)探,回授1.判断以下各的两是否是同:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(因为- 25 与 12 能够归并成一- 13,所以,常数与常数也是同)2.找出多式 4x2-8x+ 5-3x2+6x-2 中的同:( 1) 4x2与是同;( 2)- 8x 与是同;(3)5 与是同.(四)指,授新:我已知道,同是能够归并在一同的归并成一,叫做归并同.. (指板的)把几个同:(指板的两个式子)从两个式子,哪位同学知道怎么归并同?生:⋯⋯(多几位同学表见解):系数相加,字母部分不. (板:系数相加,字母部分不)例 1归并以下各式的同:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先生,再板演解,解要扣法)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 归并以下各式的同:( 1)- 8x2-7x2=(2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正:的画 " √" ,的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思虑:如,大的半径是 R,小的面是大面的4,暗影部分的面9.R(五)小,部署作. (指准- 5ab2+3ab2:本,我学了什么是同及怎么归并同个式子)所含字母相同,并且相同字母的指数也相同的叫做同. 归并同的方法是系数相加,字母部分不. 归并同的个方法是依据什么获得的?生:⋯⋯(依据分派律)(作: P661.2. )四、板2.2 整式的加减(归并同)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎的两能够归并成一?⋯⋯叫做同 .系数相加,字母部分不.: 2.2 整式的加减(第 2 )一、教课目1.会集并多式中的同 .2.会先归并同,再求多式的 .二、教课要点和难点1.要点:归并多项式中的同类项 .2.难点:把多项式中的同类项写在一同 .三、教课过程(一)基本训练,稳固旧知1.判断以下各组中的两项是否是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.归并以下各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(重申:互换多项式的项,要连同符号一同互换)(二)创建情境,导入新课师:上节课我们学习了什么是同类项及怎么归并同类项,本节课我们将学习怎样归并多项式中的同类项 . 请看例 1.(三)试试指导,解说新课例 1 归并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一同;=- 4x2+5x+5第三步:归并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)尝试练习,回授调理4.归并以下各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)试试指导,解说新课例 2求多式 3a+abc-1c2-3a+1c2的,此中,a=-1, b= 2,c =- 3. 336(先归并多式的同,再代入数,最后获得果,解格式要与教材相同)(六)探,回授5.求多式 2x2- 5x+x2+ 4x-3x2-2 的,此中 x=1 .2(五)小,部署作:本我学了归并多式的同,归并多式的同有三步,是哪三步?生:⋯⋯(作: P71 1.P 76复 2. )四、板例1例2: 2.2 整式的加减(第 3 )一、教课目1.去括号法的形成程,知道去括号法 .2.会去括号 .二、教课要点和点1.要点:去括号 .2.点:去括号法的形成程 . 三、教课程(一)基本,稳固旧知1.归并以下多式的同:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的,此中 x=- 4.3. 填空:分派律是a(b +c) =,利用分派律可得:6(x - 3) =,- 6(x - 3) =.(二)情境,入新:(板: 8a+ 2b-(5a -b) )个式子归并同的果是什么?生: 3a+b.:个果是的!什么呢?因个式子中含有括号,(用彩笔括号)要归并含有括号的式子的同,先要去括号 . 怎样去括号呢?就是我要学的内容 . (板: 2.2 整式的加减(去括号))(三)指,授新:怎样去括号呢?先看两个去括号的例子.:(板: 6(x -3) =)利用分派律, 6(x -3) 等于什么?生: 6x-18. (板: 6x-18):(板:- 6(x - 3) =)利用分派律,- 6(x -3) 等于什么?生:- 6x+18. (板:- 6x+ 18):从两个例子,我能够看到,(指准-6(x-3)=-6x+18)去括号上就是运用分派律,把括号外的因数分乘括号内的各 .(板:+ (x -3) =-(x-3)=):运用分派律,我又怎么去掉(指式子)两个式子中的括号呢?大家自己笔先一 . (生,巡):(指+ (x -3) )个式子不好用分派律,我能够把+(x -3) 写成 1× (x -3) ,(板:1×(x -3) )就能够用分派律了,运用分派律获得的果是什么?生: x-3. (板:= x-3):(指- (x - 3) )个式子也不好用分派律,我能够把-(x - 3) 写成 ( -1) ×(x - 3) ,(板: ( -1) × (x -3) )就能够用分派律了,运用分派律获得的果是什么?生:- x+ 3. (板:=- x+3):从上边的四个例子明,去括号的程上就是运用分派律的程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分派律去括号,尔后两个式子(指+ (x - 3) ,- (x -3) )用分派律去括号比麻,就有必需找去括号的律 .:去掉中程,(擦掉中程,板成+(x - 3) =x -3,- (x -3) =- x +3)获得+ (x -3) = x-3,- (x -3) =- x+3. 从两个式子,同学去括号有什么律?(生疏,巡指):哪位同学了去括号的律?生:⋯⋯(多几位同学表见解):从两个式子,我能够,(指准+ (x -3) =x-3)假如括号前是“+”号,去括号后括号里的各都不符号;(板上边句)(指准- (x - 3) =-x+3)假如括号前是“-”号,去括号后括号里各都改符号 . (板上边的句)大家把两句一遍 . (生)例 1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)探,回授4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)指,授新例 2 先去括号,再归并同:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先,再板演解;(2)除教材中的解法,也能够用分派律直接去掉括号)(六)探,回授5.化:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,部署作业师:本节课我们学习了怎样去括号. (指准+(x -3) =x-3)假如括号前是“+”号,去括号后括号里各项都不变符号;(指准-(x -3) =-x+3)假如括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)假如括号前是其余因数,那么用分派律能够直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3假如括号前是“+”号⋯⋯-(x -3) =- x+ 3假如括号前是“-”号⋯⋯课题: 2.2 整式的加减(第 4 课时)一、教课目的1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教课要点和难点1.要点:进行整式加减运算 .2.难点:求值 .三、教课过程(一)基本训练,稳固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)情境,入新:前方我学了归并同、去括号,本我学整式的加减. (板: 2.2 整式的加减)行整式的加减运算,上就是做两件事,第一件事是去括号,第二件事是归并同 . 看例 1.(三)指,授新例1 算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、归并同两步先生)例 2 算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)探,回授3.算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和,差.(五)指,授新例 3 求1x- 2(x -1y2) +( -3x+1y2) ,此中 x=- 2,y=2. 23233(按教材格式板演)(六)探,回授5.先化,再求:5(3a 2b-ab2) - (ab 2+3a2b) ,此中 a=1,b=1.23(七)小,部署作:本我学了整式的加减,行整式的加减运算有两步,是哪两步?生:⋯⋯(作: P3.4. )71四、板2.2整式的加减例 1例 2例 3: 2.2 整式的加减(第 5 )一、教课目1.会列式算整式加减的文字 .2.会列的整式加减式子表示中的数目关系,展符号感.二、教课要点和点1.要点:列的整式加减式子表示数目关系 .2.点:列的整式加减式子表示数目关系 . 三、教课程(一)创建情境,导入新课师:前方我们学习了怎样进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)试试指导,解说新课例 1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 . 解:比 x 的 7 倍大 3 的数为 7x+3,比 x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生试试)(三)尝试练习,回授调理1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)试试指导,解说新课例2一种笔录本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔录本3个,买圆珠笔 2 支;扎西买这种笔录本 4 个,买圆珠笔 3 支 . 买这些笔录本和圆珠笔,卓玛和扎西一共花销多少钱?(教课建议:按教材P69解法一解比较自然,要让学生充足熟习题意,充足试试的基础上再解说,熟习题意的时间要下足,这是需要耐心的,能够经过读题、说题、画题、列表、实物展现等方式让学生熟习题意)(五)尝试练习,回授调理3. 某村土豆栽种面积是 a 亩,白菜栽种面积比土豆栽种面积少8 亩,青稞栽种面积是白菜栽种面积的10 倍,问该村土豆、白菜、青稞一共栽种多少亩.(六)试试指导,解说新课例 3 两船从同一港口同时出发反向而行,甲船顺流,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)尝试练习,回授调理4.填空:已知某轮船顺流航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺流航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺流航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,部署作业师:本节课我们学习了几个例题,例 2 例 3 都是和实质问题相关的 . 做这种应用题,要点是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!假如你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例1例2例3:第二章整式的加减复(第1、 2 )一、教课目1.知道第二章整式的加减知构 .2.通基本,稳固第二章所学的基本内容 .3.通典型例和合运用,加深理解第二章所学的基本内容,展能力 . 二、教课要点和点1.要点:知构和基本 .2.点:典型例和合运用 . 三、教课程(一),完美知单项式归并同类项用字母列含字母整式a(b + c) = ab+ ac整式的加减表示数的式子多项式去括号(上边的知构,要合下边的解逐渐板出来):我已学完了第二章整式的加减,今日我就来复第二章. (板:第二章整式的加减复):第二章的内容不像第一章那么多,哪位同学能用几个字来归纳第二章的内容?生:⋯⋯(多几位学生):!整式的加减 . 因要学整式的加减,我学了归并同和去括号;因要学整式的加减,我学了什么是整式,以及式和多式 . 整式的加减是本章学的点,其余内容都是了学整式的加减做准的 . 那么,本章的内容是从什么地方开始,又是怎样一步一步走向“整式的加减”的呢?(出示下边的目)一本笔本售价 2 元, n 本需元.:本章的内容是从“用字母表示数”开始的. (板:用字母表示数)用字母表示数是什么意思?大家看个例子,(指板的目)一本笔本售价 2 元, n 本需多少元?里 n 本中的 n 就是用字母表示数, n 详细表示是什么数?可能是 0,可能是 1,2 , 3,4 等等 .就是用字母表示数的意思 .:有了表示数的字母,我就能够列出含字母的式子. (板:列含字母的式子)比如,在才的个例子中,(指板的目)一本笔本售价 2 元, n 本需2n 元. (板: 2n)里 2n 就是列出的含字母的式子.:在中,可能列出含各样各字母的式子,此中比的一种叫式 . (板:式)数字与字母的,的式子叫做式. (指板)2n 是一个式 . 学式需掌握式的系数、次数的观点.:在学式的基上,我又学了多式的观点. (板:多式)什么是多式呢?几个式的和叫做多式. 学多式需掌握多式的、常数、次数的观点 .:式是整式,多式也是整式,式和多式称整式. (板:整式):接着,我又学了归并同(板:归并同)和去括号.(板:去括号)归并同、去括号从表面上看,它干的是两件不相同的事,但出人不测的是,它都是依照分派律a(b +c) = ab+ac. (板: a(b + c) =ab+ac)分派律这个式子,从左到右看是去括号,(加箭头)从右到左看是归并同类项 .(加箭头)师:学习了归并同类项和去括号,实质上也就学了整式的加减. (板书:整式的加减)为何这样说呢?因为做整式的加减只有两个步骤,第一步是去括号,第二步是归并同类项 .师:(指板书出的知识构造图)这就是本章知识的线索,从字母表示数出发,终点是整式的加减 .(二)基本训练,掌握双基1.填空:(以下空你最好直接填,实在想不起来,你能够在教材中找,这些内容是需要你仔细理解的;先用铅笔填,校正时用其余笔填)(1)数字与字母的积,像这样的式子叫;单项式中的数字因数叫做单项式的;一个单项式中,全部字母的指数和叫做这个单项式的.(2)几个单项式的和叫做;此中,每个单项式叫做多项式的,不含字母的项叫做;多项式里次数最高项的次数,叫做这个多项式的.(3)与统称整式.(4)所含字母相同,并且相同字母的指数也相同的项叫做;归并同类项的方法是:系数,字母部分.(5)去括号的方法是:假如括号前方是“+”号,去括号后括号里各项都符号;假如括号前是“-”号,去括号后括号里各项都符号 .(6)几个整式相加减,假如有括号就先去括号,而后再2. 填空:( 1)单项式- 15ab 的系数是,次数是;22( 2)单项式 4a b 的系数是,次数是;.( 3)单项式3x2y的系数是,次数是. 53. 填空:2(2)多项式 a3-2a2b2+b3的项是,次数是4. 填空:( 1)全班学生总数是x,此中男生占总数的52%,则女生人数是;( 2)底边长为 6,高为 h 的三角形面积是;( 3)一台 a 元的电视机,降价30%后售价是元;( 4)一台 a 元的电视机,打七折销售,售价是元;( 5)温度由 t 度降落 8 度后是度;( 6)今年扎西 m岁,昨年扎西岁,5年后扎西岁;;.(7)某商铺上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(8)西藏某景点的门票价钱是:成人10 元,学生 5 元 . 一个旅行团有成人学生 y 人,那么该旅行团对付元门票费;x 人,5.归并同类项:。

七年级上册数学第二章整式全章课件

七年级上册数学第二章整式全章课件

(3)回顾以前所学的知识,你还能举出用字母表示
数或数量关系的例子吗?
【问题2】
怎样分析数量关系并用含有字母的式子表示数
量关系呢?
例1 (1)苹果原价是每千克p元,按8折优惠出售,用 式子表示现价; (2)某产品前年的产量是n件,去年的产量是前 年产量的m倍,用式子表示去年的产量; (3)一个长方体包装盒的长和宽都是a cm,高是 h cm,用式子表示它的体积; (4)用式子表示数n的相反数.
(2)
1 ,它的系数是 ah 2
,次数是2;
1 2
(3)
3 ,它的系数是 1,次数是3;
a
(4)0.9 ,它的系数是0.9,次数是1; (5)0.9 ,它的系数是0.9,次数是1.
a a
【问题5】
你能赋予0.9a一个含义吗?
用字母表示数后,同一个式子可以 表示不同的含义.
活动:“人人来当老师”
以小组为单位,每个小组学生说出一个 单项式,然后请另一个小组的学生回答出所 说单项式的系数和次数,看哪一组题目出得 正确,看哪一组回答得快而准.
答案:(1) a mn;(3) 0.8 p ;(2)
2
n h ;(4)
.
例2
(1)一条河的水流速度是2.5 km/h,船在静水中 的速度是 v km/h,用式子表示船在这条河中顺水行 驶和逆水行驶时的速度;
(2)买一个篮球需要x元,买一个排球需要y元, 买一个足球需要 z 元,用式子表示买 3个篮球、5个 排球、2个足球共需要的钱数;
拓展提高

(m 2) x y
2 x, n y 的一个 是关于
四次单项式,求m,n应满足的条件?
答案:
m 2, n 2

【初中数学精品辅导资料】-第二章第1节整式

【初中数学精品辅导资料】-第二章第1节整式


初一 巩建兵 黄楠


数学

ቤተ መጻሕፍቲ ባይዱ

人教新课标版
课程标题 编稿老师 一校
第二章 第 1 节 整式 二校 李秀卿 审核 王百玲
一、学习目标:
1、掌握单项式、多项式、整式的有关概念,能指出单项式和多项式的系数和次数. 2、了解整式读、写的约定俗成的一般方法,能根据给出字母的值求多项式的值. 3、体会用字母表示数的意义,进一步强化符号感.
第 1 页 版权所有
不得复制
(2)多项式的项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做 常数项,单项式的次数是几,就叫几次项.如多项式 3x3-2x2+x+8 中,一共有四项,分别 是:3x3、-2x2、x、8;其中 8 是常数项,而 3x3 是三次项,-2x2 是二次项,x 是一次项.一 个多项式中有几项,它就叫几项式,如上述的多项式有四项,故称四项式. (3)多项式的次数:多项式里次数最高项的次数,叫做多项式的次数.如上述的多项 式里,次数最高为“3” ,所以这个多项式的次数就是 3,称作三次四项式. 4、整式 单项式和多项式统称为整式.
知识点一:实际问题中的数量关系 例 1:填空题: (1)x 的 20%与 7 的差表示为__________. (2)某公司去年生产电脑 2000 台,今年生产电脑的台数比去年增长了 a 倍,今年生产 电脑__________台. (3)某公园的门票价格为:成人票 20 元,学生票 10 元.一个旅游团有成人 a 人,学 生 b 人,该旅游团应付__________元门票费. ( 4)三个连续奇数,中间的一个奇数是 2n+ 1,其他两个奇数分别是 __________ 和 __________. 思路分析: 1)题意分析:本题要求列式表示问题中的数量关系. 2)解题思路: (1)根据题意,x 的 20%表示为 20%x,再与 7 的差为 20%x-7. (2)先 求出今年比去年增长的台数 2000a,它与去年生产的电脑 2000 台之和,即为今年生产的总 台数. (3)根据题意,分别求出成人门票费 20a 元与学生门票费 10b 元,其和为旅游团应付 的门票费. (4)我们知道:连续奇数相差 2,中间的奇数是 2n+1,较小的即它前面的奇数 是 2n+1-2=2n-1,较大的,即它后面的奇数是 2n+1+2=2n+3. 解答过程: (1)20%x-7; (2)2000+2000a; (3)20a+10b; (4)2n-1,2n+3. 解题后的思考: 本题 (2) 和 (3) 中都有字母 a, 一个表示增长的倍数, 一个表示人数. 可 见,同一个字母或同一个式子在不同的情境中所表示的意义是不相同的. 例 2:某地区冬季高山上的温度从山脚处开始每升高 100 米降低 0.5℃. (1)如果山脚温度是-10℃,则山上 x 米处的温度是多少? (2)如果山脚处的温度保持不变,那么山上 200 米、1000 米、3000 米处的温度各是多 少? 思路分析: 1)题意分析:本题要求先求出山上 x 米处的温度,这个温度是一个含有 x 的式子.再 把 200 米、1000 米、3000 米分别代入,求对应高度的温度. 0.5 2)解题思路: (1)依题意得,高山上的温度从山脚处开始每升高 1 米降低 ℃,那么 100 0.5 每升高 x 米,温度降低 x℃. (2)把 x=200、1000、3000 这三个特定值代入(1)中所求 100 出的式子即可求出不同高度时的温度.

第二章整式

第二章整式

第二章整式教学目标知识与技能1、理解单项式、多项式和整式及相关概念,弄清它们之间的区别和联系。

2、理解同类项的概念,能熟练的合并同类项。

3、掌握去括号法则,能准确地去括号。

4、熟练地实行整式的加减运算。

1、通过丰富的实例,经历观察、分析、交流、概括出单项式、多项和整式等相关概念。

2、经历类比有理数的运算律,探索整式的加减运算法则。

3、发展有条理的思考及语言表达水平和用数学知识解决实际问题的水平。

情感、态度与价值观1、培养学生主动探究,合作交流的意识。

2、通过将数的运算推广到整式的运算,在整式的运算中又持续地使用数的运算,使学生感受到理解事物是一个由特殊到一般,由一般到特殊的辩证过程,培养学生初步的辩证唯物观点。

重点难点理解整式的概念,会实行整式的加减运算;准确区分单项式的次数与多项式的次数;掌握去括号法则。

课时安排:6课时2.1 整式(1)教学目标1、能用代数式表示实际问题中的数量关系;能够对一些整式实行分析.能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.2、通过丰富有趣的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心.重难点从具体问题中抽象出数量关系,并用代数式表示实际问题中的数量关系。

教学过程一、情境导入[投影]青藏铁路线(西宁至拉萨)上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100 千米/时,在非冻土地段的行驶速度能够达到120 千米/时,请根据这些数据回答下列问题:(1)列车在冻土地段行驶时,2 小时能行驶多少千米?3 小时呢?t 小时呢?(2)在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的2.1 倍,如果通过冻土地段所需要t 小时,能用含t 的式子表示这段铁路的全长吗?(3)在格里木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5 小时,如果通过冻土地段需要u 小时,则这段铁路的全长能够怎样表示?冻土地段与非冻土地段相差多少千米?我们在小学学过用字母表示数,请你用这种方法回答上面的问题。

第二章 整式的加减2.1_第1课时_用字母表示数

第二章 整式的加减2.1_第1课时_用字母表示数
②理清语句层次明确运算顺序; ③牢记一些概念和公式.
列式注意事项
① 数与字母、字母与字母相乘时省略乘号,数与字母相
乘时数字在前;
100×t
100t
②带单位时,适当加括号.
③ 相同字母相乘时应写成幂n的m形式; n(m)
nn
n2
④ 1或-1与字母相乘时,1通常省略不写;
1n
n
⑤ 式子中出现除法运算时,一般按分数形式来写,带分
逆水行驶时,船的速度=船在静水中的速度-水流速度.
解:(1)船在这条河中顺水行驶的速度是 (v 2.5) km/h,
逆水行驶的速度是 (v 2.5) km/h.
(2)买一个篮球需要x元,买一个排球需要y元, 买一个足球需要 z 元,用式子表示买 3个篮球、5个排 球、2个足球共需要的钱数;
用式子表示它的体积; (4)用式子表示数n的相反数.
注意带单位!
答案:(1)0.8 p 元;(2)mn 件;(3)a2h (cm3);(4)n .
归纳:
列式就是把实际问题中与数量有关的语句, 用含有数、字母和运算符号的式子表示出来,也 就是把文字语言转化为符号语言.
①要抓住关键词语,明确它们的意义以及它们 之间的关系,如和、差、积、商及大、小、 多、少、倍、分、倒数、相反数等;
第二章 整式的加减
2.1 整 式
第1课时 用字母表示数
Hale Waihona Puke 导入新课讲授新课当堂练习
课堂小结
学习目标
1.理解字母表示数的意义 2.会用含有字母的式子表示实际问题中的数量关系
1.路程s、速度v和时间t的关系为 2.长方形的面积s、长a和宽b的关系为:
列车在冻土地段的行驶速度是100 km/h.根据速度、 时间和路程之间的关系,请思考下列问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档