高考数学历年考点题型专题讲解09 不等式恒成立问题(解析版)
恒成立能成立3种常见题型(学生版+解析版)
恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,则不等式f x >a 在区间D 上恒成立⇔f x min >a ;不等式f x ≥a 在区间D 上恒成立⇔f x min ≥a ;不等式f x <b 在区间D 上恒成立⇔f x max <b ;不等式f x ≤b 在区间D 上恒成立⇔f x max ≤b ;考点二:存在性问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,即f x ∈m ,n ,则对不等式有解问题有以下结论:不等式a <f x 在区间D 上有解⇔a <f x max ;不等式a ≤f x 在区间D 上有解⇔a ≤f x max ;不等式a >f x 在区间D 上有解⇔a >f x min ;不等式a ≥f x 在区间D 上有解⇔a ≥f x min ;考点三:双变量问题①对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 max ;②对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 min ;③若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 min ;④若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 max ;⑤对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 min ;⑥对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 max ;⑦若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 max⑧若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 min .【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式x -ln x +1>a 恒成立,则a 的取值范围是( )A.a <1B.a <2C.a >1D.a >2【例2】【2022年全国甲卷】已知函数f x =e xx−ln x+x−a.(1)若f x ≥0,求a的取值范围;【例3】已知函数f(x)=12x2-(a+1)ln x-12(a∈R,a≠0).(1)讨论函数的单调性;(2)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.【例4】已知函数f x =ln x-ax(a是正常数).(1)当a=2时,求f x 的单调区间与极值;(2)若∀x>0,f x <0,求a的取值范围;【例5】已知函数f x =xe x(1)求f x 的极值点;(2)若f x ≥ax2对任意x>0恒成立,求a的取值范围.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln x -kx ≤0恒成立,则实数k 的取值范围是( )A.0,eB.-∞,eC.0,1eD.1e ,+∞2.(2022·北京·景山学校模拟预测)已知函数f x =x ln x +ax +2.(1)当a =0时,求f x 的极值;(2)若对任意的x ∈1,e 2 ,f x ≤0恒成立,求实数a 的取值范围.3.(2022·新疆克拉玛依·三模(文))已知函数f x =x ln x ,g x =-x 2+ax -3a ∈R .(1)求函数f (x )的单调递增区间;(2)若对任意x ∈0,+∞ ,不等式f x ≥12g x 恒成立,求a 的取值范围.4.(2022·内蒙古赤峰·三模(文))已知函数f x =x ln x+1.(1)求f x 的最小值;(2)若f x ≥−x2+m+1x−2恒成立,求实数m的取值范围.5.【2020年新高考1卷(山东卷)】已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f x 在点1,f1处的切线与两坐标轴围成的三角形的面积;(2)若不等式f x ≥1恒成立,求a的取值范围.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数f x =x3-3x2+3-a,若存在x0∈-1,1,使得f x0>0,则实数a的取值范围为( )A.-∞,-1B.-∞,1C.-1,3D.-∞,3【例2】已知函数f x =ax3+bx2+6x+c,当x=-1时,f x 的极小值为-5,当x=2时,f x 有极大值.(1)求函数f x ;(2)存在x0∈1,3,使得f x0≤t2-2t成立,求实数t的取值范围.【例3】(2022·辽宁·高二阶段练习)已知a>0,若在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,则a的最小值为______.【题型专练】1.已知函数f x =x2+2a+2ln x.(1)当a=-5时,求f x 的单调区间;(2)若存在x∈2,e,使得f x -x2>2x+2a+4x成立,求实数a的取值范围.2.(2022·河北深州市中学高三阶段练习)已知函数f x =ln x-2ax+1.(1)若x=1是f x 的极值点,确定a的值;(2)若存在x>0,使得f x ≥0,求实数a的取值范围.3.已知函数f x =ln x x,设f x 在点1,0处的切线为m(1)求直线m的方程;(2)求证:除切点1,0之外,函数f x 的图像在直线m的下方;(3)若存在x∈1,+∞成立,求实数a的取值范围 ,使得不等式f x >a x-14.已知函数f x =x ln x-ax+1.(1)若f x 在点A(1,f(1))处的切线斜率为-2.①求实数a的值;②求f x 的单调区间和极值.(2)若存在x0∈(0,+∞),使得f x0<0成立,求a的取值范围.5.已知函数f(x)=ln x+ax(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间;(3)若存在x0,使得f x0>0,求a的取值范围.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数f x =x -1 e x -e ,g x =e x -ax -1,其中a ∈R .若对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,则a 的最大值为( )A.0B.1eC.1D.e【例2】已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.【例3】已知函数f (x )=x sin x +cos x .(1)当x ∈0,π 时,求函数f (x )的单调区间;(2)设函数g (x )=-x 2+2ax .若对任意x 1∈-π,π ,存在x 2∈[0,1],使得12πf x 1 ≤g x 2 成立,求实数a 的取值范围.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数f x =ln x x,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2 ,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,则实数a 的取值范围是( )A.-∞,-ln22 B.-∞,-ln22 C.-∞,-1e D.-∞,e -ln22 【例5】(2023·全国·高三专题练习)已知函数f x =x 3-34x +32,0≤x ≤122x +12,12<x ≤1,g x =e x -ax a ∈R ,若存在x 1,x 2∈0,1 ,使得f x 1 =g x 2 成立,则实数a 的取值范围是( )A.-∞,1B.-∞,e -2C.-∞,e -54D.-∞,e 【题型专练】1.(2022·河南·南阳中学高三阶段练习(理))已知函数f x =x 3-3x +a ,g x =2x +1x -1.若对任意x 1∈-2,2 ,总存在x 2∈2,3 ,使得f x 1 ≤g x 2 成立,则实数a 的最大值为( )A.7B.5C.72D.32.(2022·福建宁德·高二期末)已知f x =1-x e x -1,g x =x +1 2+a ,若存在x 1,x 2∈R ,使得f x 2 ≥g x 1 成立,则实数a 的取值范围为( )A.1e ,+∞B.-∞,1eC.0,eD.-1e ,03.(2022·河南安阳·高二阶段练习(理))已知函数f (x )=ln x x,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2 ,∃x 2∈(0,1]使得f x 1 >g x 2 成立,则实数a 的取值范围是( )A.-∞,-ln22 B.-∞,-ln22 C.-∞,-1e D.-∞,e -ln22 4.已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R )(1)若曲线y =f (x )在x =1和x =3处的切线互相平行,求a 的值与函数f (x )的单调区间;(2)设g (x )=(x 2-2x )e x ,若对任意x 1∈0,2 ,均存在x 2∈0,2 ,使得f (x 1)<g (x 2),求a 的取值范围.5.已知函数f x =-ax +xln xa ∈R ,f x 为f x 的导函数.(1)求f x 的定义域和导函数;(2)当a =2时,求函数f x 的单调区间;(3)若对∀x 1∈e ,e 2 ,都有f x 1 ≥1成立,且存在x 2∈e ,e 3 ,使f x 2 +12a =0成立,求实数a 的取值范围.恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,则不等式f x >a 在区间D 上恒成立⇔f x min >a ;不等式f x ≥a 在区间D 上恒成立⇔f x min ≥a ;不等式f x <b 在区间D 上恒成立⇔f x max <b ;不等式f x ≤b 在区间D 上恒成立⇔f x max ≤b ;考点二:存在性问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,即f x ∈m ,n ,则对不等式有解问题有以下结论:不等式a <f x 在区间D 上有解⇔a <f x max ;不等式a ≤f x 在区间D 上有解⇔a ≤f x max ;不等式a >f x 在区间D 上有解⇔a >f x min ;不等式a ≥f x 在区间D 上有解⇔a ≥f x min ;考点三:双变量问题①对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 max ;②对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 min ;③若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 min ;④若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 max ;⑤对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 min ;⑥对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 max ;⑦若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 max ⑧若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 min .【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式x -ln x +1>a 恒成立,则a 的取值范围是( )A.a <1B.a <2C.a >1D.a >2【答案】B【详解】令f x =x -ln x +1,其中x >0,则a <f x min ,f x =1-1x =x -1x,当0<x <1时,f x <0,此时函数f x 单调递减,当x >1时,f x >0,此时函数f x 单调递增,所以,f x min =f 1 =2,∴a <2.故选:B .【例2】【2022年全国甲卷】已知函数f x =e xx−ln x +x −a .(1)若f x ≥0,求a 的取值范围;【答案】(1)(-∞,e +1]【解析】(1)f (x )的定义域为(0,+∞),f(x )=1x -1x2 e x -1x +1=1x 1-1x e x +1-1x =x -1x e x x +1 令f (x )=0,得x =1当x ∈(0,1),f (x )<0,f (x )单调递减,当x ∈(1,+∞),f (x )>0,f (x )单调递增f (x )≥f (1)=e +1-a ,若f (x )≥0,则e +1-a ≥0,即a ≤e +1,所以a 的取值范围为(-∞,e +1]【例3】已知函数f (x )=12x 2-(a +1)ln x -12(a ∈R ,a ≠0).(1)讨论函数的单调性;(2)若对任意的x ∈[1,+∞),都有f (x )≥0成立,求a 的取值范围.【答案】(1)答案见解析;(2)a ≤0.【解析】(1)求f 'x ,分别讨论a 不同范围下f 'x 的正负,分别求单调性;(2)由(1)所求的单调性,结合f 1 =0,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为0,+∞ ,f '(x )=x -a +1x =x 2-a +1 x 当a +1≤0,即a ≤-1时,f 'x >0恒成立,则f x 在0,+∞ 上单调递增;当a +1>0,即a >-1时,x =-a +1(舍)或x =a +1,所以f x 在0,a +1 上单调递减,在a +1,+∞ 上单调递增.所以a ≤-1时,f x 在0,+∞ 上单调递增;a >-1时,f x 在0,a +1 上单调递减,在a +1,+∞ 上单调递增.(2)由(1)可知,当a ≤-1时,f x 在1,+∞ 上单调递增,若f (x )≥0对任意的x ∈[1,+∞)恒成立,只需f (1)≥0,而f (1)=0恒成立,所以a ≤-1成立;当a >-1时,若a +1≤1,即-1<a ≤0,则f x 在1,+∞ 上单调递增,又f (1)=0,所以-1<a ≤0成立;若a >0,则f x 在1,a +1 上单调递减,在a +1,+∞ 上单调递增,又f (1)=0,所以∃x 0∈1,a +1 ,f (x 0)<f 1 =0,不满足f (x )≥0对任意的x ∈[1,+∞)恒成立.所以综上所述:a ≤0.【例4】已知函数f x =ln x -ax (a 是正常数).(1)当a =2时,求f x 的单调区间与极值;(2)若∀x >0,f x <0,求a 的取值范围;【答案】(1)f x 在0,12上单调递增,在12,+∞ 上单调递减,f x 的极大值是-ln2-1,无极小值;(2)1e,+∞ .【解析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得ln x x max <a ,设g x =ln xx,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当a =2时,f x =ln x -2x ,定义域为0,+∞ ,f x =1x -2=1-2xx,令f x >0,解得0<x <12,令f x <0,解得x >12,所以函数f x 在0,12 上单调递增,在12,+∞ 上单调递减,所以f x 的极大值是f 12=-ln2-1,无极小值.(2)因为∀x >0,f x <0,即ln x -ax <0恒成立,即ln xx max<a .设g x =ln x x ,可得g x =1-ln xx2,当0<x <e 时g x >0,当x >e 时g x <0,所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以g x max =g e =1e ,所以a >1e ,即a ∈1e ,+∞ .【例5】已知函数f x =xe x(1)求f x 的极值点;(2)若f x ≥ax 2对任意x >0恒成立,求a 的取值范围.【答案】(1)x =-1是f x 的极小值点,无极大值点;(2)a ≤e .【解析】(1)利用导数研究函数的极值点.(2)由题设知:a ≤e x x 在x >0上恒成立,构造g (x )=e xx 并应用导数研究单调性求最小值,即可求a的范围.【详解】(1)由题设,f x =e x (x +1),∴x <-1时,f x <0,f x 单调递减;x >-1时,f x >0,f x 单调递增减;∴x =-1是f x 的极小值点,无极大值点.(2)由题设,f x =xe x≥ax 2对∀x >0恒成立,即a ≤e x x在x >0上恒成立,令g (x )=e x x ,则g(x )=e x (x -1)x 2,∴0<x <1时,g (x )<0,g (x )递减;x >1时,g (x )>0,g (x )递增;∴g (x )≥g (1)=e ,故a ≤e .【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln x -kx ≤0恒成立,则实数k 的取值范围是( )A.0,e B.-∞,eC.0,1eD.1e ,+∞【答案】D 【解析】由题可得k ≥ln x x 在区间(0,+∞)上恒成立,然后求函数f x =ln xxx >0 的最大值即得.【详解】由题可得k ≥ln xx 在区间(0,+∞)上恒成立,令f x =ln x x x >0 ,则f x =1-ln xx 2x >0 ,当x ∈0,e 时,f x >0,当x ∈e ,+∞ 时,f x <0,所以f x 的单调增区间为0,e ,单调减区间为e ,+∞ ;所以f x max =f e =1e, 所以k ≥1e.故选:D .2.(2022·北京·景山学校模拟预测)已知函数f x =x ln x +ax +2.(1)当a =0时,求f x 的极值;(2)若对任意的x ∈1,e 2 ,f x ≤0恒成立,求实数a 的取值范围.【答案】(1)极小值是f 1e =-1e+2,无极大值.(2)-2e 2-2,+∞【解析】(1)由题设可得f x =ln x +1,根据f x 的符号研究f x 的单调性,进而确定极值.(2)f x =x ln x +ax +2≤0对任意的x ∈1,e 2 恒成立,转化为:-a ≥2+x ln x x =2x+ln x 对任意的x ∈1,e 2 恒成立,令g x =2x+ln x ,通过求导求g x 的单调性进而求得g x 的最大值,即可求出实数a的取值范围.(1)当a=0时,f x =x ln x+2,f x 的定义域为0,+∞,f x =ln x+1=0,则x=1 e.令f x >0,则x∈1e,+∞,令f x <0,则x∈0,1e,所以f x 在0,1e上单调递减,在1e,+∞上单调递增.当x=1e时,f x 取得极小值且为f1e =1e ln1e+2=-1e+2,无极大值.(2)f x =x ln x+ax+2≤0对任意的x∈1,e2恒成立,则-a≥2+x ln xx=2x+ln x对任意的x∈1,e2恒成立,令g x =2x+ln x,g x =-2x2+1x=-2+xx2=0,所以x=2,则g x 在1,2上单调递减,在2,e2上单调递增,所以g1 =2,g e2 =2e2+2,所以g x max=g e2 =2e2+2,则-a≥2e2+2,则a≤-2e2-2.实数a的取值范围为:-2e2-2,+∞.3.(2022·新疆克拉玛依·三模(文))已知函数f x =x ln x,g x =-x2+ax-3a∈R.(1)求函数f(x)的单调递增区间;(2)若对任意x∈0,+∞,不等式f x ≥12g x 恒成立,求a的取值范围.【答案】(1)1e,+∞,(2)-∞,4【解析】(1)求函数f(x)的单调递增区间,即解不等式f (x)>0;(2)参变分离得a≤2ln x+x+3x,即求h x =2ln x+x+3x x∈0,+∞的最小值.(1)f(x)=x ln x定义域为(0,+∞),f (x)=ln x+1f (x)>0即ln x+1>0解得x>1e,所以f(x)在1e,+∞单调递增(2)对任意x∈0,+∞,不等式f x ≥12g x 恒成立,即x ln x≥12-x2+ax-3恒成立,分离参数得a≤2ln x+x+3x.令h x =2ln x+x+3x x∈0,+∞,则h x =x+3x-1x2.当x∈0,1时,h x <0,h x 在0,1上单调递减;当x∈1,+∞时,h x >0,h x 在1,+∞上单调递增.所以h x min=h1 =4,即a≤4,故a的取值范围是-∞,4.4.(2022·内蒙古赤峰·三模(文))已知函数f x =x ln x+1.(1)求f x 的最小值;(2)若f x ≥−x2+m+1x−2恒成立,求实数m的取值范围.【答案】(1)f(x)min=-1 e2(2)-∞,3【解析】(1)求出函数的导数,利用导数求函数在定义域上的最值即可;(2)由原不等式恒成立分离参数后得m≤ln x+x+2x,构造函数h x =ln x+x+2x,利用导数求最小值即可.(1)由已知得f x =ln x+2,令f x =0,得x=1 e2.当x∈0,1 e2时,f x <0,f x 在0,1e2上单调递减;当x∈1e2,+∞时,f x ≥0,f x 在1e2,+∞上单调递增.故f(x)min=f1e2=-1e2.(2)f x ≥−x2+m+1x−2,即mx≤x ln x+x2+2,因为x>0,所以m≤ln x+x+2x在0,+∞上恒成立.令h x =ln x+x+2x,则m≤h(x)min,h x =1x+1-2x2=x+2x-1x2,令h x =0,得x=1或x=-2(舍去).当x∈0,1时,h x <0,h x 在0,1上单调递减;当x∈1,+∞时,h x >0,h x 在1,+∞上单调递增.故h(x)min=h1 =3,所以m≤3,即实数m的取值范围为-∞,3.5.【2020年新高考1卷(山东卷)】已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f x 在点1,f1处的切线与两坐标轴围成的三角形的面积;(2)若不等式f x ≥1恒成立,求a的取值范围.【答案】(1)2e-1(2)[1,+∞)【解析】(1)利用导数的几何意义求出在点1,f1切线方程,即可得到坐标轴交点坐标,最后根据三角形面积公式得结果;(2)方法一:利用导数研究函数f x 的单调性,当a =1时,由f 1 =0得f x min =f 1 =1,符合题意;当a >1时,可证f 1af (1)<0,从而f x 存在零点x 0>0,使得f (x 0)=ae x 0-1-1x 0=0,得到f (x )min ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得f x ≥1恒成立;当0<a <1时,研究f 1 .即可得到不符合题意.综合可得a 的取值范围.【详解】(1)∵f (x )=e x -ln x +1,∴f (x )=e x -1x,∴k =f (1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e ),∴函数f x 在点(1,f (1)处的切线方程为y -e -1=(e -1)(x -1),即y =e -1 x +2,∴切线与坐标轴交点坐标分别为(0,2),-2e -1,0,∴所求三角形面积为12×2×-2e -1 =2e -1.(2)[方法一]:通性通法∵f (x )=ae x -1-ln x +ln a ,∴f (x )=ae x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=ae x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f (1)=0,∴f x min =f 1 =1,∴f x ≥1成立.当a >1时,1a <1 ,∴e 1a -1<1,∴f 1af (1)=a e 1a -1-1 (a -1)<0,∴存在唯一x 0>0,使得f (x 0)=ae x 0-1-1x 0=0,且当x ∈(0,x 0)时f (x )<0,当x ∈(x 0,+∞)时f (x )>0,∴ae x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=ae x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0⋅x 0=2ln a +1>1,∴f x >1,∴f x ≥1恒成立;当0<a <1时, f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不是恒成立.综上所述,实数a 的取值范围是[1,+∞).[方法二]【最优解】:同构由f (x )≥1得ae x -1-ln x +ln a ≥1,即e ln a +x -1+ln a +x -1≥ln x +x ,而ln x +x =e ln x +ln x ,所以e ln a +x -1+ln a +x -1≥e ln x +ln x .令h (m )=e m +m ,则h (m )=e m +1>0,所以h (m )在R 上单调递增.由e ln a +x -1+ln a +x -1≥e ln x +ln x ,可知h (ln a +x -1)≥h (ln x ),所以ln a +x -1≥ln x ,所以ln a ≥(ln x -x +1)max .令F(x)=ln x-x+1,则F (x)=1x-1=1-xx.所以当x∈(0,1)时,F (x)>0,F(x)单调递增;当x∈(1,+∞)时,F (x)<0,F(x)单调递减.所以[F(x)]max=F(1)=0,则ln a≥0,即a≥1.所以a的取值范围为a≥1.[方法三]:换元同构由题意知a>0,x>0,令ae x-1=t,所以ln a+x-1=ln t,所以ln a=ln t-x+1.于是f(x)=ae x-1-ln x+ln a=t-ln x+ln t-x+1.由于f(x)≥1,t-ln x+ln t-x+1≥1⇔t+ln t≥x+ln x,而y=x+ln x在x∈(0,+∞)时为增函数,故t≥x,即ae x-1≥x,分离参数后有a≥xe x-1.令g(x)=xe x-1,所以g(x)=e x-1-xe x-1e2x-2=e x-1(1-x)e2x-2.当0<x<1时,g (x)>0,g(x)单调递增;当x>1时,g (x)<0,g(x)单调递减.所以当x=1时,g(x)=xe x-1取得最大值为g(1)=1.所以a≥1.[方法四]:因为定义域为(0,+∞),且f(x)≥1,所以f(1)≥1,即a+ln a≥1.令S(a)=a+ln a,则S (a)=1+1a>0,所以S(a)在区间(0,+∞)内单调递增.因为S(1)=1,所以a≥1时,有S(a)≥S(1),即a+ln a≥1.下面证明当a≥1时,f(x)≥1恒成立.令T(a)=ae x-1-ln x+ln a,只需证当a≥1时,T(a)≥1恒成立.因为T (a)=e x-1+1a>0,所以T(a)在区间[1,+∞)内单调递增,则[T(a)]min=T(1)=e x-1-ln x.因此要证明a≥1时,T(a)≥1恒成立,只需证明[T(a)]min=e x-1-ln x≥1即可.由e x≥x+1,ln x≤x-1,得e x-1≥x,-ln x≥1-x.上面两个不等式两边相加可得e x-1-ln x≥1,故a≥1时,f(x)≥1恒成立.当0<a<1时,因为f(1)=a+ln a<1,显然不满足f(x)≥1恒成立.所以a的取值范围为a≥1.【整体点评】(2)方法一:利用导数判断函数f x 的单调性,求出其最小值,由f min≥0即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法二:利用同构思想将原不等式化成e ln a+x-1+ln a+x-1≥e ln x+ln x,再根据函数h(m)=e m+m 的单调性以及分离参数法即可求出,是本题的最优解;方法三:通过先换元,令ae x-1=t,再同构,可将原不等式化成t+ln t≥x+ln x,再根据函数y=x+ln x的单调性以及分离参数法求出;方法四:由特殊到一般,利用f(1)≥1可得a的取值范围,再进行充分性证明即可.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数f x =x3-3x2+3-a,若存在x0∈-1,1,使得f x0>0,则实数a的取值范围为( )A.-∞,-1B.-∞,1C.-1,3D.-∞,3【答案】D【分析】根据题意,将问题转化为求解函数f x 的最大值问题,先通过导数方法求出函数f x 的最大值,进而求出答案.【详解】因为f x =x3-3x2+3-a,所以f x =3x2-6x=3x x-2,x∈-1,1.由题意,只需f (x)max>0.当x∈[-1,0)时,f x >0,当x∈(0,1]时,f x <0,所以f x 在[-1,0)上单调递增,在(0,1]上单调递减,所以f(x)max=f0 =3-a>0,故实数a的取值范围为-∞,3.故选:D.【例2】已知函数f x =ax3+bx2+6x+c,当x=-1时,f x 的极小值为-5,当x=2时,f x 有极大值.(1)求函数f x ;(2)存在x0∈1,3,使得f x0≤t2-2t成立,求实数t的取值范围.【答案】(1)f x =-x3+32x2+6x-32;(2)(-∞,-1]∪[3,+∞).【解析】(1)求导后,根据f -1=f 2 =0和f-1=-5,解得a,b,c即可得解;(2)转化为f x min≤t2-2t,再利用导数求出函数f(x)在1,3上的最小值,然后解不等式t2-2t≥3可得结果.(1)∵f x =3ax2+2bx+6,由f -1=f 2 =0,得3a-2b+6=0且12a+4b+6=0,解得a=-1,b=3 2,又f-1=-5,∴c=-3 2,经检验a=-1,b=32时,f x =-x3+32x2+6x-32满足题意,∴f x =-x3+32x2+6x-32;(2)存在x0∈1,3,使得f x0≤t2-2t,等价于f x min≤t2-2t,∵f x =-3x2+3x+6=-3x-2x+1,当x∈[1,2)时,f (x)>0,当x∈(2,3]时,f (x)<0,∴f x 在(2,3]上递减,在[1,2)上递增,又f1 =5,f3 =3,∴f x 在1,3上的最小值为f3 =3,∴t2-2t≥3,解得t≤-1或3≤t,所以t的取值范围是(-∞,-1]∪[3,+∞).【例3】(2022·辽宁·高二阶段练习)已知a>0,若在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,则a的最小值为______.【答案】e【分析】将原式化为e x-ln e x≤x a-ln x a,构造函数g(t)=t-ln t(t>1),求导得函数g(t)在(1,+∞)上单调递增,即得e x≤x a,两边取对数分离参数a,构造函数h(x)=xln x(x>1),利用导数求解函数h(x)的最小值即可.【详解】解:不等式e x-x≤x a-a ln x成立,即e x-ln e x≤x a-ln x a成立,因为x∈(1,+∞),a>0,所以e x>1,x a>1,令g(t)=t-ln t(t>1),则e x-ln e x≤x a-ln x a⇒g(e x)≤g(x a),因为g (t)=1-1t>0,所以g(t)在(1,+∞)上单调递增,所以e x≤x a,即x≤a ln x(x>1),因为在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,所以a≥xln xmin,令h(x)=xln x(x>1),则h (x)=ln x-1ln2x,故当x=e时,h(x)取得最小值h(e)=eln e=e.所以a≥e,即a的最小值为e.故答案为:e.【题型专练】1.已知函数f x =x2+2a+2ln x.(1)当a=-5时,求f x 的单调区间;(2)若存在x∈2,e,使得f x -x2>2x+2a+4x成立,求实数a的取值范围.【答案】(1)单调递减区间为0,2,单调递增区间为2,+∞;(2)e2-e+2e-1,+∞ .【解析】(1)当a=-5时,f x =x2-8ln x,得出f x 的定义域并对f x 进行求导,利用导数研究函数的单调性,即可得出f x 的单调区间;(2)将题意等价于2x +2a +4x -2a +2 ln x <0在2,e 内有解,设h x =2x +2a +4x-2a +2 ln x ,即在2,e 上,函数h x min <0,对h x 进行求导,令hx =0,得出x =a +2,分类讨论a +2与区间2,e 的关系,并利用导数研究函数h x 的单调和最小值,结合h x min <0,从而得出实数a 的取值范围.(1)解:当a =-5时,f x =x 2-8ln x ,可知f x 的定义域为0,+∞ ,则fx =2x -8x =2x 2-8x,x >0,可知当x ∈0,2 时,f x <0;当x ∈2,+∞ 时,f x >0;所以f x 的单调递减区间为0,2 ,单调递增区间为2,+∞ .(2)解:由题可知,存在x ∈2,e ,使得f x -x 2>2x +2a +4x成立,等价于2x +2a +4x-2a +2 ln x <0在2,e 内有解,可设h x =2x +2a +4x -2a +2 ln x ,即在2,e 上,函数h x min <0,∴hx =2-2a +4x 2-2a +2x=2x 2-2a +2 x -2a +4 x 2=2x +1 x -a +2 x 2,令h x =0,即x +1 x -a +2 =0,解得:x =a +2或x =-1(舍去),当a +2≥e ,即a ≥e -2时,h x <0,h x 在2,e 上单调递减,∴h x min =h e =2e +2a +4e -2a -2<0,得a >e 2-e +2e -1,又∵e 2-e +2e -1>e -2,所以a >e 2-e +2e -1;当a +2≤2时,即a ≤0时,h x >0,h x 在2,e 上单调递增,∴h x min =h 2 =6+a -2a +2 ln2<0,得a >6-ln4ln4-1>0,不合题意;当2<a +2<e ,即0<a <e -2时,则h x 在2,a +2 上单调递减,在a +2,e 上单调递增,∴h x min =h a +2 =2a +6-2a +2 ln a +2 ,∵ln2<ln a +2 <ln e =1,∴2a +2 ln2<2a +2 ln 2a +2 <2a +2,∴h a +2 =2a +6-2a +2 ln a +2 >2a +6-2a -2=4,即h x min >4,不符合题意;综上得,实数a 的取值范围为e 2-e +2e -1,+∞ .【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题:(1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.2.(2022·河北深州市中学高三阶段练习)已知函数f x =ln x-2ax+1.(1)若x=1是f x 的极值点,确定a的值;(2)若存在x>0,使得f x ≥0,求实数a的取值范围.【答案】(1)a=12,(2)-∞,12【分析】(1)由已知可得出f 1 =0,求出a的值,然后利用导数分析函数f x 的单调性,结合极值点的定义检验即可;(2)由参变量分离法可得出2a≤ln x+1x,利用导数求出函数g x =ln x+1x的最大值,即可得出实数a的取值范围.(1)解:因为f x =ln x-2ax+1,该函数的定义域为0,+∞,则f x =1x-2a,由已知可得f 1 =1-2a=0,可得a=12,此时f x =1x-1=1-xx,列表如下:x0,111,+∞f x +0-f x 增极大值减所以,函数f x 在x=1处取得极大值,合乎题意,故a=1 2.(2)解:存在x>0,使得f x =ln x-2ax+1≥0可得2a≤ln x+1x,构造函数g x =ln x+1x,其中x>0,则g x =-ln xx2,当0<x<1时,g x >0,此时函数g x 单调递增,当x>1时,g x <0,此时函数g x 单调递减,则g x max=g1 =1,所以,2a≤1,解得a≤12,因此,实数a的取值范围是-∞,12.3.已知函数f x =ln x x,设f x 在点1,0处的切线为m(1)求直线m的方程;(2)求证:除切点1,0之外,函数f x 的图像在直线m的下方;(3)若存在x∈1,+∞,使得不等式f x >a x-1成立,求实数a的取值范围【答案】(1)y=x-1;(2)见详解;(3)(-∞,1).【解析】(1)求导得f (x)=1-ln xx2,由导数的几何意义k切=f′(1),进而可得答案.(2)设函数h(x)=f(x)-(x-1)=ln x x-x+1,求导得h′(x),分析h(x)的单调性,最值,进而可得f (x)-(x-1)≤0,则除切点(1,0)之外,函数f(x)的图象在直线的下方.(3)若存在x∈(1,+∞),使得不等式a<ln xx(x-1)成立,令g(x)=ln xx(x-1),x>1,只需a<g(x)max.【详解】(1)f (x)=1x⋅x-ln xx2=1-ln xx2,由导数的几何意义k切=f′(1)=1,所以直线m的方程为y=x-1.(2)证明:设函数h(x)=f(x)-(x-1)=ln x x-x+1,h (x)=1-ln xx2-1=1-ln x-x2x2 ,函数定义域为(0,+∞),令p(x)=1-ln x-x2,x>0,p′(x)=-1x-2x<0,所以p(x)在(0,+∞)上单调递减,又p(1)=0,所以在(0,1)上,p(x)>0,h′(x)>0,h(x)单调递增,在(1,+∞)上,p(x)<0,h′(x)<0,h(x)单调递减,所以h(x)max=h(1)=0,所以h(x)≤h(1)=0,所以f(x)-(x-1)≤0,若除切点(1,0)之外,f(x)-(x-1)<0,所以除切点(1,0)之外,函数f(x)的图象在直线的下方.(3)若存在x∈(1,+∞),使得不等式f(x)>a(x-1)成立,则若存在x∈(1,+∞),使得不等式f(x)x-1>a成立,即若存在x∈(1,+∞),使得不等式a<ln xx(x-1)成立,令g(x)=ln xx(x-1),x>1,g′(x)=1x⋅x(x-1)-(2x-1)ln xx2(x-1)2=x-1-(2x-1)ln xx2(x-1)2 ,令s(x)=x-1-(2x-1)ln x,x>1s′(x)=1-2ln x-(2x-1)•1x=x-2x ln x-2x+1x=-x-2x ln x+1x,令q(x)=-x-2x ln x+1,x>1q′(x)=-1-2ln x-2=-3-2ln x<0,所以在(1,+∞)上,q(x)单调递减,又q(1)=0,所以在(1,+∞)上,q(x)<0,s′(x)<0,s(x)单调递减,所以s(x)≤s(1)=0,即g′(x)≤0,g(x)单调递减,又limx→1ln xx(x-1)=limx→11x2x-1=1,所以a<1,所以a的取值范围为(-∞,1).4.已知函数f x =x ln x-ax+1.(1)若f x 在点A(1,f(1))处的切线斜率为-2.①求实数a的值;②求f x 的单调区间和极值.(2)若存在x0∈(0,+∞),使得f x0<0成立,求a的取值范围.【答案】(1)①a=3;②减区间为(0,e2),增区间为(e2,+∞),极小值为1-e2,无极大值;(2)(1,+∞).【解析】(1)求得函数的导数f x =ln x+1-a,①根据题意得到f x =-2,即可求得a的值;②由①知f x =ln x-2,x>0,结合导数的符号,以及极值的概念与计算,即可求解;(2)设g x =ln x+1x,根据存在x0∈(0,+∞),使得f x0<0成立,得到a>g x min成立,结合导数求得函数g x 的单调性与最小值,即可求解.【详解】(1)由题意,函数f x =x ln x-ax+1的定义域为(0,+∞),且f x =ln x+1-a,①因为f x 在点A(1,f(1))处的切线斜率为-2,可得f x =1-a=-2,解得a=3.②由①得f x =ln x-2,x>0,令f x >0,即ln x-2>0,解得x>e2;令f x <0,即ln x-2<0,解得0<x<e2,所以函数f x 在(0,e2)上单调递减,在(e2,+∞)上单调递增,当x=e2时,函数f x 取得极小值,极小值为f e2=1-e2,无极大值,综上可得,函数f x 的减区间为(0,e2),增区间为(e2,+∞),极小值为1-e2,无极大值.(2)因为f x =x ln x-ax+1,由f x0<0,即x0ln x0-ax0+1<0,即a>x0ln x0+1x0=ln x0+1x0,设g x =ln x+1x,x>0根据题意知存在x0∈(0,+∞),使得f x0<0成立,即a>g x min成立,由g x =ln x+1x,x>0,可得g x =1x-1x2=x-1x2,当0<x<1时,g x <0,g x 单调递减;当x>1时,g x >0,g x 单调递增,所以当x=1时,函数g x 取得最小值,最小值为g1 =1,所以a>1,即实数a的取值范围是(1,+∞).5.已知函数f(x)=ln x+ax(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间;(3)若存在x0,使得f x0>0,求a的取值范围.【答案】(1)2x-y-1=0;(2)a≥0时,f x 在0,+∞单增;a<0,f x 在0,-1 a单增,在-1a,+∞单减;(3)a>-1e.【解析】(1)求出函数导数,将切线横坐标代入得到斜率,再求出切点纵坐标,最后写出切线方程;(2)求导后,通分,分a≥0,a<0两种情况讨论得到单调区间;(3)当a≥0时,代特值验证即可,当a<0时,函数最大值大于0,解出即可.【详解】由题意,f(1)=1,f x =1x+1,所以f 1 =2,所以切线方程为:y-1=2x-1⇒2x-y-1=0.(2)x>0,f (x)=1x+a=ax+1x,若a≥0,则f (x)>0,f x 在0,+∞单增;若a<0,则x∈0,-1 a时,f x >0,f x 单增;x∈-1a,+∞时,f x <0,f x 单减.(3)由(2),若a≥0,则f(2)=ln2+2a>0,满足题意;若a<0,f x max=f-1 a=ln-1a-1>0⇒a>-1e,则-1e<a<0,综上:a>-1 e.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数f x =x -1 e x -e ,g x =e x -ax -1,其中a ∈R .若对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,则a 的最大值为( )A.0 B.1eC.1D.e【答案】C【分析】由题意易知f x ≥0恒成立,则可等价为对∀x 2∈0,+∞ ,g x 2 ≥0恒成立,利用参变分离,可变形为a ≤e x -1x ,(x >0)恒成立,易证e x -1x >1,(x >0),则可得a ≤1,即可选出答案.【详解】对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,等价于f x 1 min ≤g x 2 min ,当x <1时,x -1<0,e x -e <0,所以f x >0,当x ≥1时,x -1≥0,e x -e ≥0,所以f x ≥0,所以f x ≥0恒成立,当且仅当x =1时,f (x )min =0,所以对∀x 2∈0,+∞ ,g x 2 ≥0恒成立,即e x -ax -1≥0,当x =0,e x -ax -1=0≥0成立,当x >0时,e x-ax -1≥0⇒a ≤e x -1x恒成立.记h (x )=e x -x -1,x >0,因为h (x )=e x -1>0恒成立,所以h (x )在(0,+∞)上单调递增,且h (0)=0,所以h (x )=e x-x -1>0恒成立,即e x-1>x ⇒e x -1x>1,(x >0)所以a ≤1.所以a 的最大值为1.故选:C .【点睛】本题考查导数在不等式的恒成立与有解问题的应用,属于难题,此类问题可按如下规则转化:一般地,已知函数y =f (x ),x ∈a ,b ,y =g (x ),x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)max <g (x 2)min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)max <g (x 2)max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)min <g (x 2)max ;(4)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)min <g (x 2)min ;(5)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)=g (x 2),则f (x )的值域是g (x )值域的子集.【例2】已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.【答案】(1)最大值为ln2-1,最小值为-12;(2)-1e 6,+∞ .【解析】(1)利用导数研究f (x )的区间单调性,进而确定端点值和极值,比较它们的大小,即可得最值;(2)将问题转化为x 1∈[-1,2]、x 2∈(0,+∞)上g (x 1)max <f (x 2)max ,利用二次函数性质及导数求函数最值,即可得结果.(1)由题设f (x )=ln x -x 2,则f (x )=2-x2x,所以在[1,2)上f (x )>0,f (x )递增,在(2,e ]上f (x )<0,f (x )递减,则f (1)=-12<f (e )=1-e2,极大值f (2)=ln2-1,综上,f (x )最大值为ln2-1,最小值为-12.(2)由g (x )=x 2-2x +2=(x -1)2+1在x ∈[-1,2]上g (x )max =g (-1)=5,根据题意,只需g (x )max <f (x )max 即可,由f (x )=a +1x且x ∈(0,+∞),当a ≥0时,f (x )>0,此时f (x )递增且值域为R ,所以满足题设;当a <0时,0,-1a 上f (x )>0,f (x )递增;-1a ,+∞ 上f (x )<0,f (x )递减;所以f (x )max =f -1a =-1-ln (-a ),此时-1-ln (-a )>5,可得a >-1e 6,综上,a 的取值范围-1e 6,+∞ .【点睛】关键点点睛:第二问,将问题转化为x 1∈[-1,2]、x 2∈(0,+∞)上g (x 1)max <f (x 2)max 求参数范围.【例3】已知函数f (x )=x sin x +cos x .(1)当x ∈0,π 时,求函数f (x )的单调区间;(2)设函数g (x )=-x 2+2ax .若对任意x 1∈-π,π ,存在x 2∈[0,1],使得12πf x 1 ≤g x 2 成立,求实数a 的取值范围.【答案】(1)当x ∈0,π 时,函数f (x )的单调递增区间为0,π2 ,函数f (x )的单调递减区间为π2,π ;(2)12,+∞.【解析】(1)首先对函数求导,根据x 的取值情况判断f x 的正负情况,进而得到f x 的增减情况;(2)对任意x 1∈-π,π ,存在x 2∈[0,1],使得h (x 1)≤g (x 2)成立,等价于h (x )max ≤g (x )max ,然后对a 进行讨论,分别求函数的最值,进而得到结论.(1)因为f (x )=x sin x +cos x ,所以f (x )=sin x +x cos x -sin x =x cos x .当x ∈0,π 时,f (x )与f (x )的变化情况如表所示:x 0,π2 π2π2,π f (x )+-f (x )单调递增π2单调递减所以当x ∈0,π 时,函数f (x )的单调递增区间为0,π2,函数f (x )的单调递减区间为π2,π.(2)当x ∈-π,π 时,f (-x )=f (x ),所以函数f (x )为偶函数.所以当x ∈-π,π 时,函数f (x )的单调递增区间为-π,-π2 ,0,π2,函数f (x )的单调递减区间为-π2,0 ,π2,π ,所以函数f (x )的最大值为f -π2 =f π2 =π2.设h x =12πf x ,则当x ∈-π,π 时,h x max =12π⋅π2=14.对任意x 1∈-π,π ,存在x 2∈[0,1],使得h (x 1)≤g (x 2)成立,等价于h (x )max ≤g (x )max .当a ≤0时,函数g (x )在区间[0,1]上的最大值为g (0)=0,不合题意.当0<a <1时,函数g (x )在区间[0,1]上的最大值为g (a )=a 2,则a 2≥14,解得a ≥12或a ≤-12,所以12≤a <1.当a ≥1时,函数g (x )在区间[0,1]上的最大值为g (1)=2a -1,则2a -1≥14,解得a ≥58,所以a ≥1.综上所述,a 的取值范围是12,+∞.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数f x =ln xx ,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,则实数a 的取值范围是( )A.-∞,-ln22B.-∞,-ln22C.-∞,-1eD.-∞,e -ln22【答案】A【分析】将问题转化为∃x ∈0,1 使得f (x )min >g (x )成立,通过求得导数和单调性,可得最值,再根据不等式成立,结合参数分离可得a 的范围.【详解】∀x 1∈1,e 2 ,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,等价为∃x ∈0,1 使得f (x )min >g (x )成立,由f x =ln x x 得f x =1-ln xx2,当x ∈0,e 时,f x >0,此时f x 单调递增,当x ∈e ,+∞ 时,f x <0,此时f x 单调递减,f 1 =0,f e 2 =2e 2,故f x min =f 1 =0ln (x +1)+2ax 2<0在x ∈0,1 成立,当0<x <1时,-2a >ln (x +1)x 2min ,设h (x )=ln (x +1)x 2,0<x <1 ,则h (x )=1-1x +1-2ln (x +1)x 3,由m x =1-1x +1-2ln (x +1),得m x =1(x +1)2-2x +1=-1-2x(x +1)2<0,所以m x =1-1x +1-2ln (x +1)在0,1 递减,所以1-1x +1-2ln (x +1)<m 0 =0,则h (x )在0,1 递减,所以h (x )>h 1 =ln2,则-2a >ln2,所以a <-ln22.故选:A【例5】(2023·全国·高三专题练习)已知函数f x =x 3-34x +32,0≤x ≤122x +12,12<x ≤1,g x =e x -ax a ∈R ,若存在x 1,x 2∈0,1 ,使得f x 1 =g x 2 成立,则实数a 的取值范围是( )A.-∞,1 B.-∞,e -2C.-∞,e -54D.-∞,e【答案】C【分析】根据题意可得f x 的值域与 g x =e x -ax 的值域有交集即可,先求导分析f x 的值域,再求导分情况讨论g x =e x -ax 的单调性与值域,结合解集区间的端点关系列式求解即可【详解】①当0≤x ≤12时,f x =x 3-34x +32,则f x =3x 2-34=3x 2-14 ≤0在0,12上恒成立,。
恒成立能成立问题总结(详细)
恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。
解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。
(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。
(答案:或)(二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。
对于二次函数)0(0)(2≠>++=a c bx ax x f 有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a(3)当0>a 时,若],[0)(βα在>x f 上恒成立⇔若],[0)(βα在<x f 上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(4)当0<a 时,若],[0)(βα在>x f 上恒成立⎩⎨⎧>>⇔0)(0)(βαf f若],[0)(βα在<x f 上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 例2若关于x 的二次不等式:01)1(2<-+-+a x a ax 的解集为R ,求a 的取值范围.解:由题意知,要使原不等式的解集为R ,即对一切实数x 原不等式都成立。
恒成立问题----不等式恒成立、能成立、恰成立问题分析及应用(例题+练习+答案)
不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处理方法 1、转换求函数的最值:(1)若不等式A x f >)(在区间D 上恒成立,则等价于在区间D 上A x f >min )(,即)(x f 的下界大于A(2)若不等式B x f <)(在区间D 上恒成立,则等价于在区间D 上B x f <max )(,即)(x f 的上界小于B例1.设22)(2+-=ax x x f ,当[)+∞-∈,1x 时,都有a x f ≥)(恒成立,求a 的取值范围.例2.已知xax x x f ++=2)(2对任意[)+∞∈,1x ,0)(≥x f 恒成立,试求实数a 的取值范围.例3.R 上的函数)(x f 既是奇函数,又是减函数,且当)2,0(πθ∈时,有0)22()sin 2(cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中b a 、为常数.(1)试确定b a 、的值;(2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式22-)(c x f ≥恒成立,求c 的取值范围.2、主参换位法例5.若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围.例6.若对于任意1≤a ,不等式024)4(2>-+-+a x a x 恒成立,求实数x 的取值范围.例7.已知函数1)1(233)(23+++-=x a x x a x f ,其中a 为实数.若不等式1)('2+-->a x x x f 对任意),0(+∞∈a 都成立,求实数x 的取值范围.3、分离参数法(1)将参数与变量分离,即化为)()(x f g ≥λ(或)()(x f g ≤λ)恒成立的形式; (2)求)(x f 在D x ∈上的最大(或最小)值;(3)解不等式max )()(x f g ≥λ(或min )()(x f g ≤λ),得λ的取值范围. 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。
恒成立问题题型大全(详解详析)
不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f (1)当>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
高考压轴题之数列不等式恒成立问题解法例析
当 一1时 , 口 —S =b — 1 , 只 需 l l 2 >0 故
需 6 1 > ;
当 ≥ 2时 , 为 6 0 所 以 S =b + 因 > , 2
些差别 , 生 容易 出错 , 至不 知 所 措. 考 甚 这
n 2 >O恒成立 -
.
里通过几个例 子归 纳这类 问题 的几种常 用解 法 和需要注意 的 问题 .
第 2 卷第 3 9 期
21 0 0年 3月
数 学教 学 研 究
2 7
1 \
I
高考压轴题之数列不等式恒成立问题解法例析
余锦银
( 北 省大 冶市 第 一 中学 湖 450) 3 1 0
不 等式的恒 成立 问题是考 生较难 理解 和
即
s -6+ 。
.
掌握的一 个难点 , 以数 列 为 载体 的不 等式 恒 成立问题 的档次更 高 、 合性更 强 , 是一类 综 它 非常常见 的考试 题 型 , 出现在 高 考 压轴 题 常 中, 它与 函数 恒成立 问题 既有类 似之处 , 又有
a n 1 +
问题本质 的理 解 , 只是视角 不同 , 3种方法 这
是将 数列看成 函数 问题 来解 决 , 2分 离 变 法
量 后需解 不等 式 , 1 离 变 量 b后 需 求 法 分 最值. 若对 本题 ( ) 再作 如 下变 式 , 更 易 1式 则
看透恒成立 问题 的方法本 质. 变式 1 将 ( ) 变 为 关 于 b的 二 次不 1式
例 2 已知 <
法 3 令 g ) ( —6 +3 —1 则 一 ( 一n 1 ) 6 ,
次 函数 g 在 ≥4单 调递减. () 要使 g ) ( <0在 ≥ 4时恒 成 立 , 需 只
高一数学不等式恒成立与能成立问题 (解析版)
不等式恒成立与能成立一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x 2、∀∈x D ,()()max ≥⇔≥m f x m f x 3、∃∈x D ,()()max ≤⇔≤m f x m f x 4、∃∈x D ,()()min≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;题型一单变量不等式恒成立问题【例1】已知函数()42+=x xbf x 为奇函数.(1)求实数b 的值;(2)若对任意的[]0,1x ∈,有()23202--+<f xkx k 恒成立,求实数k 的取值范围.【答案】(1)1=-b ;(2)3,2⎛⎫+∞ ⎪⎝⎭【解析】(1)∵函数()42+=x x bf x 的定义域为R ,且为奇函数,∴()010=+=f b ,解得1=-b ,经验证:()411222-==-x xx x f x 为奇函数,符合题意,故1=-b ;(2)∵()122=-xxf x ,∴()f x 在R 上单调递增,且()131222-=-=-f .∵()23202--+<f x kx k ,则()()23212--<-=-f x kx k f ,又函数()f x 在R上单调递增,则221x kx k --<-在[]0,1x ∈上恒成立,∴()32141k x x >++-+在[]0,1x ∈上恒成立,设()()32141g x x x =++-+,令1t x =+,则[1,2]t ∈,函数32y t t=+在上递减,在2]上递增,当1t =时,5y =,当2t =时,112y =,故()max 113422g x =-=,则32k >,∴实数k 的取值范围为3,2⎛⎫+∞ ⎪⎝⎭.【变式1-1】已知定义在R 上的函数()22x xf x k -=-⋅是奇函数.(1)求实数k 的值;(2)若对任意的R x ∈,不等式()()240f x tx f x ++->恒成立,求实数t 的取值范围.【答案】(1)1k =;(2)()3,5-【解析】(1) 函数()22x x f x k -=-⋅是定义域R 上的奇函数,∴(0)0f =,即()000220f k =-⋅=,解得1k =.此时()22x x f x -=-,则()()()2222x x x xf x f x ---=-=--=-,符合题意;(2)因为()22x xf x -=-,且2x y =在定义域R 上单调递增,2x y -=在定义域R 上单调递减,所以()22x x f x -=-在定义域R 上单调递增,则不等式()()240f x tx f x ++->恒成立,即()()24f x tx f x +>-恒成立,即24x tx x +>-恒成立,即()2140x t x +-+>恒成立,所以()21440t ∆=--⨯<,解得35t -<<,即()3,5t ∈-.【变式1-2】已知()21212xxm m ⎛⎫- ⎪⎝⎭≤-对任意(],1x ∈-∞-恒成立,则实数m 的取值范围为_________.【答案】[]2,3-【解析】依题意,()21212xxm m ⎛⎫- ⎪⎝⎭≤-对任意(],1x ∈-∞-恒成立,可等价为221122x x m m ⎛⎫- ⎪⎝+⎭≤对任意(],1x ∈-∞-恒成立,即2in2m 1122x x m m ≤+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令[)12,2x t =∈+∞,()[)2211,2,24f t t t t t ⎛⎫∴=+=+-∈+∞ ⎪⎝⎭,()()2min 1122624f t f ⎛⎫∴==+-= ⎪⎝⎭,26m m ∴-≤,解得23m -≤≤,∴实数m 的取值范围为[]2,3-.【变式1-3】已知()()2log 124x xf x a =-⋅+,其中a 为常数(1)当()()102f f -=时,求a 的值;(2)当[1x ∈+∞,)时,关于x 的不等式()1f x x ≥-恒成立,试求a 的取值范围;【答案】(1)32a =;(2)2a ≤【解析】(1)()()102f f -=得()()222log 124log 11log 4a a -+-+=-⇒()()22log 52log 42a a -=-⇒352842a a a -=-⇒=;(2)()122log 1241log 2x x x a x --⋅+≥-=1111242222x x x x xa a -⇒-⋅+≥⇒≤+-,令2x t =,[)1[2x t ∈+∞∴∈+∞ ,,),设()112h t t t =+-,则()min a h t ≤, ()h t 在[2+∞,)上为增函数⇒2t =时,()112h t t t =+-有最小值为2,2a ∴≤.【变式1-4】已知函数()()4log 65x xf x m =+⋅.(1)当1m =-时,求()f x 的定义域;(2)若()2f x ≤对任意的[]0,1x ∈恒成立,求m 的取值范围.【答案】(1)()0,∞+;(2)(]1,2-【解析】(1)当1m =-时()()4log 65x xf x =-,令650x x ->,即65x x>,即615x⎛⎫> ⎪⎝⎭,解得0x >,所以()f x 的定义域为()0,∞+.(2)由()2f x ≤对任意的[]0,1x ∈恒成立,所以06516x x m <+⋅≤对任意的[]0,1x ∈恒成立,即6166555xxx m ⎛⎫⎛⎫-<≤- ⎪ ⎪⎝⎭⎝⎭对任意的[]0,1x ∈恒成立,因为165x y =是单调递减函数,65xy ⎛⎫=- ⎪⎝⎭是单调递减函数,所以()16655xx g x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()min 12g x g ==,所以()65xh x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()max 01h x h ==-,所以12m -< ,即m 的取值范围为(]1,2-.题型二单变量不等式能成立问题【例2】定义在[]3,3-上的奇函数()f x ,已知当[]3,0x ∈-时()143x xaf x =+(a R ∈).(1)求()f x 在(]0,3上的解析式;(2)若存在[]2,1x ∈--时,使不等式()1123xx m f x -≤-成立,求实数m 的取值范围.【答案】(1)()34x xf x =-;(2)5m ≥【解析】(1)根据题意,()f x 是定义在[]3,3-上的奇函数,则()010f a =+=,得1a =-.经检验满足题意:故1a =-;当[]3,0x ∈-时,()1114343x x x x a f x =+=-,当(]0,3x ∈时,[]3,0x -∈-,()114343---=-=-x x x xf x .又()f x 是奇函数,则()()34x x f x f x =--=-.综上,当(]0,3x ∈时,()34x xf x =-.(2)根据题意,若存在[]2,1x ∈--,使得()1123x x m f x -≤-成立,即11114323x x x x m --≤-在[]2,1x ∈--有解,即12243x x x m ≥+在[]2,1x ∈--有解.又由20x >,则12223xx m ⎛⎫≥+⋅ ⎪⎝⎭在[]2,1x ∈--有解.设()12223xx g x ⎛⎫=+⋅ ⎪⎝⎭,分析可得()g x 在[]2,1x ∈--上单调递减,又由[]2,1x ∈--时,()()11min 1212523g g x --⎛⎫=-=+⋅= ⎪⎝⎭,故5m ≥.即实数m 的取值范围是[)5,+∞.【变式2-1】已知函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦.(1)求()f x 的定义域B ;(2)对于(1)中的集合B ,若x B ∃∈,使得21a x x >-+成立,求实数a 的取值范围.【答案】(1)12,4B ⎡⎤=-⎢⎥⎣⎦;(2)13,16⎛⎫+∞ ⎪⎝⎭【解析】(1)∵()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∴114x ≤≤.∴12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.(2)令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎥⎣⎦上的最小值.∵()21324g x x ⎛⎫=-+ ⎪⎝⎭,∴()g x 在12,4⎡⎤-⎢⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∴实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.【变式2-2】已知函数()1422x x f x a +=-⋅+,其中[]0,3.x ∈(1)若()f x 的最小值为1,求a 的值;(2)若存在[]0,3x ∈,使()33f x ≥成立,求a 的取值范围.【答案】(1)5a =;(2)1a ≥【解析】(1)因为[]0,3x ∈,()()()22242224x x x f x a a =-⋅+=-+-,当22x =时,即当1x =时,函数()f x 取得最小值,即()()min 141f x f a ==-=,解得5a =.(2)令[]21,8xt =∈,则()24f x t t a =-+,由()33f x ≥可得2433a t t ≥-++,令()2433g t t t =-++,函数()g t 在[)1,2上单调递增,在(]2,8上单调递减,因为()136g =,()81g =,所以,()()min 81g t g ==,1a ∴≥.【变式2-3】已知函数()e e x xf x -=+.(1)当[0,)x ∈+∞时,试判断并证明其单调性.(2)若存在[ln 2,ln 3]x ∈-,使得(2)()30f x mf x -+≥成立,求实数m 的取值范围.【答案】(1)单调递增,证明见解析;;(2)109,30⎛⎤-∞⎥⎝⎦.【解析】(1)()e e x xf x -=+在[0,)+∞上单调递增,证明如下:12,[0,)x x ∀∈+∞,且12x x <,则()()()()()112221212211211221e e e e ee eeee e e e 1ex x x x x x x x x x x xx x x x f x f x +--+⎛⎫--=+-+=-+=- ⎝-⎪⎭,由120x x ≤<得:21e e 0x x->,12e 1x x +>,所以()()21f x f x >,即()f x 在[0,)+∞上的单调递增(2)由题设,[ln 2,ln 3]x ∃∈-使()()()()222(2)()3e e e e 3e e e e 10x x x x x x x x f x mf x m m -----+=+-++=+-++≥,又()()e e e e ()x x x x f x f x -----=++==,即()f x 是偶函数,结合(1)知:()f x 在[ln 2,0]-单调递减,在[0,ln 3]上单调递增,又510(ln 2)(ln 3)23f f -=<=,所以(0)()(ln 3)f f x f ≤≤,即102()3f x ≤≤,令e e x x t -=+,则102,3t ⎡⎤∃∈⎢⎥⎣⎦使210t mt -+≥,可得211t m t t t+≤=+,令1()g t t t =+在102,3t ⎡⎤∈⎢⎥⎣⎦单调递增,故max 10109()330g t g ⎛⎫==⎪⎝⎭;所以max ()m g t ≤,即109,30m ⎛⎤∈-∞ ⎥⎝⎦.【变式2-4】已知1≤x ≤27,函数33()log (3)log 227=⋅++xf x a x b (a >0)的最大值为4,最小值为0.(1)求a 、b 的值;(2)若不等式()(3)0t g t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,求实数k 的取值范围.【答案】(1)1,2a b ==;(2)43⎛⎤-∞ ⎥⎝⎦,【解析】(1)()()()()3333log 3log 2log 1log 3227x f x a x b a x x b =⋅++=+-++()23log 142a x a b =+--+,由1≤x ≤27得[]3log 0,3t x =∈,()[]23log 10,4x -∈,又a >0,因此33()log (3)log 227=⋅++xf x a x b 的最大值为24+=b ,最小值为420a b -++=,解得1,2a b ==.(2)()()23log 1f x x =-,()()()2310tg t f kt t kt =-=--≥又1,32t ⎡⎤∈⎢⎥⎣⎦,()2112t k t t t-≤=+-,而1()2h t t t =+-在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上单调递增.由不等式()()30tg t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,得:max 12k t t ⎛⎫≤+- ⎪⎝⎭43=.因此,k 的取值范围是43⎛⎤∞ ⎥⎝⎦-,.题型三任意-任意型不等式成立问题【例3】已知()()()21ln 12xf x xg x m ⎛⎫=+=- ⎪⎝⎭,,若对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则实数m的取值范围是()A .14⎡⎫+∞⎪⎢⎣⎭B .14⎛⎥-∞⎤ ⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭,D .12⎛⎤-∞- ⎥⎝⎦,【答案】C【解析】易知()2(ln 1)f x x =+在[0,3]上单调递增,()()min 00f x f ==,()1()2xg x m =-在[1,2]上单调递减,()()max 112g x g m ==-,对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则()()min max f x g x ≥102m -≤,即12m ≥.故选:C.【变式3-1】已知定义在区间[0,2]上的两个函数()f x 和()g x ,其中2()24(1)f x x ax a =-+≥,2()1x g x x =+.(1)求函数()y f x =的最小值()m a ;(2)若对任意12,[0,2]x x ∈,21()()f x g x >恒成立,求a 的取值范围.【答案】(1)24,12()84,2a a m a a a ⎧-≤<=⎨-≥⎩;(2)13a ≤<【解析】(1)由()()222244f x x ax x a a =-+=-+-,则二次函数的对称轴为x a =,则当12a ≤<时,()f x 在[)0,a 上单调递减,在(],2a 上单调递增,所以()()()2min 4m a f x f a a ===-;当2a ≥时,()f x 在[0,2]上单调递减,()()()min 284m a f x f a ===-,所以()24,1284,2a a m a a a ⎧-≤<=⎨-≥⎩;(2)()()1121g x x x =++-+,当[0,2]x ∈时,[]11,3x +∈,又()g x 在区间[0,2]上单调递增,所以()40,3g x ⎡⎤∈⎢⎥⎣⎦.若对任意12,[0,2]x x ∈,()()21f x g x >恒成立则()()21minmax f x g x >,故212443a a ≤<⎧⎪⎨->⎪⎩或24843a a ≥⎧⎪⎨->⎪⎩解得:13a ≤<.【变式3-2】已知函数()2x f x =,31()log 1xg x x-=+.(1)求()21log 20202f g ⎛⎫+- ⎪⎝⎭的值;(2)试求出函数()g x 的定义域,并判断该函数的单调性与奇偶性;(判断函数的单调性不必给出证明.)(3)若函数()(2)3()F x f x f x =-,且对[]10,1x ∀∈,211,22x ⎡⎤∀∈-⎢⎥⎣⎦,都有()()12F x g x m >+成立,求实数m 的取值范围.【答案】(1)2021;(2)定义域为()1,1-,函数()g x 在()1,1-上为减函数;奇函数;(3)13,4⎛⎫-∞- ⎪⎝⎭.【解析】(1)()2log 2020231log 20202log 320212f g ⎛⎫+-=+= ⎪⎝⎭;(2)由101x x ->+有11x -<<,∴函数()g x 的定义域为()1,1-.∵3312()log log 111x g x x x -⎛⎫==-+ ⎪++⎝⎭,∴函数()g x 在()1,1-上为减函数;31()log ()1xg x g x x+-==--,且定义域关于原点对称,∴函数()g x 为奇函数;(3)∵对[]10,1x ∀∈,211,22x ⎡⎤∀∈-⎢⎥⎣⎦,都有()()12F x g x m >+恒成立,∴min max ()()F x g x m >+,由(2)知()g x 在11,22⎡⎤-⎢⎥⎣⎦上为减函数,∴max 1()12g x g ⎛⎫=-= ⎪⎝⎭,∵2()(2)3()232x x F x f x f x =-=-⋅,令2x t =,则23y t t =-,当[]0,1x ∈时,12t ≤≤,∴当32t =即223log log 312x ==-时,min 9()4F x =-,∴914m ->+,即134m <-,∴m 的取值范围为13,4⎛⎫-∞- ⎪⎝⎭.【变式3-3】已知函数()()2,f x x bx c b c =++∈R ,且()0f x ≤的解集为[]1,2-.(1)求函数()f x 的解析式;(2)设()()312f x xg x +-=,若对于任意的1x 、[]22,1x ∈-都有()()12g x g x M -≤,求M 的最小值.【答案】(1)()22f x x x =--;(2)M 的最小值为1516.【解析】(1)因为()0f x ≤的解集为[]1,2-,所以20x bx c ++=的根为1-、2,由韦达定理可得1212b c -+=-⎧⎨-⨯=⎩,即1b =-,2c =-,所以()22f x x x =--.(2)由(1)可得()()2312322f x x xx g x +-+-==,当[]2,1x ∈-时,()[]2223144,0x x x +-=+-∈-,故当[]2,1x ∈-时,()22112,116xx g x +-⎡⎤∈⎢⎣=⎥⎦,因为对于任意的1x 、[]22,1x ∈-都有()()12g x g x M -≤,即求()()12max g x g x M -≤,转化为()()max min g x g x M -≤,而()max 1g x =,()min 116g x =,所以,()()max min 11511616M g x g x ≥-=-=.所以M 的最小值为1516.题型四任意-存在型不等式成立问题【例4】已知函数()9f x x x=+和函数()g x x a =--,若对任意的[]124x ∈,,总存在[]201x ∈,,使得()()21g x f x <成立,则实数a 的取值范围是__________.【答案】7a >-【解析】对任意的[]124x ∈,,总存在[]201x ∈,,使得()()21g x f x <,即()()min min g x f x <,因对勾函数()9f x x x=+在[]23,上递减,在[]34,上递增,故当[]124x ∈,时,()()min 36f x f ==,函数()g x x a =--在[]01,上递减,所以()()min 11g x g a ==--,由()()min min g x f x <得16a --<,即7a >-.【变式4-1】已知()f x 是定义在[]22-,上的奇函数,当(]0,2x ∈时,()21x f x =-,函数()22.g x x x m =-+如果对于任意的[]12,2x ∈-,总存在[]22,2x ∈-,使得()()21g x f x ≥,则实数m 的取值范围是__________.【答案】[)5,-+∞【解析】若对于[]12,2x ∀∈-,[]22,2x ∃∈-,使得()()21g x f x ≥,则等价为()()max max g f x x ≥()f x 是定义在[]22-,上的奇函数,()00f ∴=,当(]0,2x ∈时,()(]210,3xf x =-∈,则当[]2,2x ∈-时,()[]3,3f x ∈-,()222(1)1g x x x m x m =-+=-+- ,[]2,2x ∈-,()max ()28g x g m ∴=-=+,则满足83m +≥,解得5m ≥-.【变式4-2】已知函数)()log 1xa f x a bx =+-(a >0且1,R ab ≠∈)是偶函数,函数()x g x a =(a >0且1a ≠).(1)求实数b 的值;(2)当a =2时,若1(1,)∀∈+x ∞,2R ∃∈x ,使得()()()112220g x mg x f x +->恒成立,求实数m 的取值范围.【答案】(1)12b =;(2)32m ≥-.【解析】(1)由题设,()()f x f x -=,即()()log 1log 1x x a a a bx a bx -++=+-,所以log (1)(1)log (1)x x a a a b x a bx ++-=+-,则1b b -=-,可得12b =.(2)由(1)及a =2知:2()log (21)2xx f x =+-,()2x g x =,所以12122log ()2144x x x x m +⋅->+在1(1,)∀∈+x ∞,2R ∃∈x 上恒成立,令42x x y m +⋅=且(1,)x ∈+∞,2log (41)x t x =+-且R x ∈,只需min y t >恒成立,而21log (2)2xxt =+,由20xm =>在R x ∈上递增,1n m m =+在(0,1)m ∈上递减,(1,)m ∈+∞上递增,2log t n =在定义域上递增,所以t 在(,0)-∞上递减,(0,)+∞上递增,故min 0|1x t t ===,综上,4210x x m +⋅->在(1,)x ∈+∞上恒成立,令2(2,)x k =∈+∞,则210k mk ->+在(2,)+∞上恒成立,而240m ∆=+>,故2{2230mm -≤+≥,可得32m ≥-.【变式4-3】已知函数2(1)()()x x a f x x ++=为偶函数.(1)求实数a 的值;(2)判断()f x 的单调性,并用定义法证明你的判断:(3)设()52g x kx k =+-,若对任意的1x ∈,总存在2[0,1]x ∈,使得()()12f x g x ≤成立,求实数k 的取值范围.【答案】(1)1-;(2)()f x 在(0,)+∞上单调递增,在(,0)-∞上单调递减,证明见解析;(3)9(,2-∞【解析】(1)()f x 为偶函数,定义域为(,0)(0,)-∞+∞ ,故()()f x f x -=对定义域内x 恒成立,22(1)()(1)()x x a x x a x x ++-+-+=,即2(1)0a x +=对定义域内x 恒成立,故1a =-;(2)22211()1x f x x x-==-,在(0,)+∞上单调递增,在(,0)-∞上单调递减,证明:设120x x <<,21212122221212()()11()()0x x x x f x f x x x x x -+-=-=>,故()f x 在(0,)+∞上单调递增,同理可证()f x 在(,0)-∞上单调递减;(3)由题意得()()12max max f x g x ≤,而()1max 12f x f ==,①0k ≥时,()2max (1)5g x g k ==-,152k -≥,解得902k ≤≤,②0k <时,()2max (0)52g x g k ==-,1522k -≥,故0k <时恒满足题意,综上,k 的取值范围是9(,]2-∞.题型五存在-存在型不等式成立问题【例5】已知函数()212=+f x x x ,()()ln 1=+-g x x a ,若存在1x ,[]20,2∈x ,使得()()12>f x g x ,则实数a 的取值范围是.【答案】a >-4【解析】问题可转化为f (x )max >g (x )min ,易得f (x )max =4,g (x )min =-a ,由f (x )ma x >g (x )min 得:4>-a ,故a >-4即为所求.【变式5-1】已知函数()11f x x =+,()1g x x =-,若1x ∃,[]2,1x a a ∈+,使得()()12f x g x >成立,求正实..数.a 的取值范围.【答案】【解析】存在1x ,2[x a ∈,1]a +,使得()()12f x g x >成立,等价为在[a ,1]a +上,()()max min f x g x >.由()1g x x =-在[a ,1]a +递增,可得()g x 的最小值为()1g a a =-,又0a >,所以()f x 在[a ,1]a +递减,可得()f x 的最大值为1()1f a a =+,由111a a >-+,解得a <<0a <;综上可得,a的范围是.【变式5-2】已知()2f x x x=+,()g x x a =-+,对于[]11,3x ∃∈,[]21,3x ∃∈,()()12f x g x ≥成立.【答案】20,3⎛⎤-∞ ⎥⎝⎦【解析】因为对于[]11,3x ∃∈,[]21,3x ∃∈,()()12f x g x ≥成立故当1x ,[]213x ∈,时,()()12max min f x g x ,因为()2f x x x=+在⎡⎣递减,⎤⎦递增,且()13f =,()2113333f =+=,故()()max 1133f x f ==,而()g x x a =-+在[]13,递减,故()()min 33g x g a ==-所以1133a - ,解得203a ,即a 的取值范围是20,3⎛⎤-∞ ⎥⎝⎦.【变式5-3】已知函数()222x x f x m m -=+⨯+是R 上的偶函数,()2g x a x m =--.(1)求m 的值;(2)若存在1x ,2[1x ∈,4],使得12()()f x g x 成立,求a 的取值范围.【答案】(1)1;(2)92a .【解析】(1)因为()222x x f x m m -=+⨯+是R 上的偶函数,所以()()f x f x -=,即222222x x x x m m m m --+⨯+=+⨯+,即(1)(22)0x x m ---=,解得1m =,故()222x xf x -=++;(2)由(1)可得2,2()2{2,2x a x g x a x x a x -++=--=+-< ,因为2,2(){2,2x a x g x x a x -++=+-< ,所以()g x 在[1,2]上是增函数,在[2,4]上是减函数,所以()max g x g =(2)a =,设2x t =,[1x ∈,4],可得[2t ∈,16],则12y t t=++在[2,16]递增,可得2t =时,f (2)取得最小值92,存在1x ,2[1x ∈,4],使得12()()f x g x 成立,可得()()min max f x g x ,即为92a .题型六任意-存在型等式成立问题【例6】已知函数1()423x x f x +=--,2()42(1)g x x mx m m =--≥,若对于任意1[0,1]x ∈,总存在2[0,1]x ∈,使得()()12f x g x =成立,则实数m 的取值范围为()A .3,22⎡⎫⎪⎢⎣⎭B .3,2⎡⎫+∞⎪⎢⎣⎭C .[1,2)D .31,2⎡⎤⎢⎥⎣⎦【答案】D【解析】定义1()423x x f x +=--,[0,1]x ∈,值域为A ;令2x t =,[1,2]t ∈,则1()423x x f x +=--可化为()222314y t t t =--=--在[1,2]t ∈上单增,所以()2max 2143y =--=-,()2min 1144y =--=-,即集合[]4,3A =--.定义2()42(1)g x x mx m m =--≥,[0,1]x ∈,值域为B ;因为对称轴22x m =≥,所以2()42g x x mx m =--在[0,1]x ∈上单调递减,所以max max ()(0)2,()(1)16g x g m g x g m ==-==-,即集合[]16,2B m m =--因为对于任意1[0,1]x ∈,总存在2[0,1]x ∈,使得()()12f x g x =成立,所以A B ⊆.只需162164231m m m m m -<-⎧⎪-≤-⎪⎨-≥-⎪⎪≥⎩解得:1456321m m m m ⎧>⎪⎪⎪≥⎪⎨⎪≤⎪⎪⎪≥⎩,即312m ≤≤。
高考数学一元二次不等式恒成立与能成立问题5大题型(解析版)
一元二次不等式恒成立与能成立问题5大题型命题趋势不等式是高考数学的重要内容。
其中,“含参不等式恒成立与能成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐。
另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维灵活性、创造性都有这独到的作用。
一元二次不等式应用广泛,考察灵活,高考复习过程要注重知识与方法的灵活运用。
满分技巧一、一元二次不等式在实数集上的恒成立1.不等式ax2+bx+c>0对任意实数x恒成立⇔a=b=0c>0或a>0△<02.不等式ax2+bx+c<0对任意实数x恒成立⇔a=b=0c<0或a<0△<0【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若f x >0在集合A中恒成立,即集合A是不等式f x >0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数f x 的值域为m,n,则f x ≥a恒成立⇒f x min≥a,即m ≥a;f x ≤a恒成立⇒f x min≤a,即n≤a.三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下:1.对任意的x∈m,n,a>f x 恒成立⇒a>f x max;若存在x∈m,n,a>f x 有解⇒a>f x min;公众号:高中数学最新试题若对任意x∈m,n,a>f x 无解⇒a≤f x min.2.对任意的x∈m,n,a<f x 恒成立⇒a<f x min;若存在x∈m,n,a<f x 有解⇒a<f x max;若对任意x∈m,n,a<f x 无解⇒a≥f x max.热点题型解读【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式x2-ax+1>0对∀x∈R恒成立的一个充分不必要条件是()A.0<a<2B.0<a≤2C.a<2D.a>-2【答案】A【解析】由不等式x2-ax+1>0对∀x∈R恒成立,得Δ<0,即-a2-4<0,解得-2<a<2, 从选项可知0<a<2是-2<a<2的充分不必要条件,故选:A.【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“∃x∈R,使4x2+a-1x+ 1≤0”是假命题,则实数a的取值范围是()A.(-∞,-3)B.(-5,3)C.(5,+∞)D.(-3,5)【答案】D【解析】因为命题“∃x∈R,使4x2+a-1x+1≤0”是假命题,所以,命题“∀x∈R,4x2+a-1x+1>0”是真命题,所以,Δ=(a-1)2-16<0,解得-3<a<5,故实数a的取值范围是(-3,5).故选:D.【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【答案】m ≤-1或m >0【解析】若命题是真命题:当m =0时,2mx 2+4mx +m -1<0,可化为-1<0,成立;当m ≠0时,m <0Δ=16m 2-8m m -1 <0 ,解得-1<m <0综合得当-1<m ≤0时,关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立是真命题,若命题“关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立”是假命题则m ≤-1或m >0【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式x +kx-k >0恒成立,则实数k 的取值范围是_____________.【答案】[0,4)【解析】x +kx -k >0,即x -k x +k >0(x >0),令t =x >0,则t 2-kt +k >0(t >0)恒成立.所以k 2≤002-k ×0+k ≥0或k 2>0Δ=-k 2-4k <0,解得0≤k <4,故实数k 的取值范围是[0,4).【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式a 2-16 x 2-(a -4)x -1≥0的解集为∅,则实数a 的取值范围为_________.【答案】a ∣-125<a ≤4 【解析】当a =4时,不等式可化为-1≥0,无解,满足题意;当a =-4时,不等式化为8x -1≥0,解得x ≥18,不符合题意,舍去;当a ≠±4时,要使得不等式a 2-16 x 2-(a -4)x -1≥0的解集为∅,则a 2-16<0,Δ=a -4 2+4a 2-16 <0, 解得-125<a <4.综上,实数a 的取值范围是a ∣-125<a ≤4 .【题型2一元二次不等式在某区间上的恒成立问题】公众号:高中数学最新试题【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式-2x 2+bx +c >0的解集x -1<x <3 ,若对任意-1≤x ≤0,不等式-2x 2+bx +c +t ≤4恒成立.则t 的取值范围是__________.【答案】t ≤-2【解析】由题设,b 2=2且-c 2=-3,可得b =4,c =6,所以-2x 2+4x +2+t ≤0在-1≤x ≤0上恒成立,而f (x )=-2x 2+4x +2+t 在(-∞,1)上递增,故只需f (0)=2+t ≤0即可,所以t ≤-2.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式ax 2+(1-3a )x +2≥0的解集为A ,设B ={-1,1},B ⊆A ,则实数a 的取值范围为()A.-32≤a ≤14B.-14≤a ≤32C.a ≤-14D.a ≥32【答案】B【解析】由题意,a (x 2-3x )+x +2≥0在B ={-1,1}上恒成立,所以4a +1≥03-2a ≥0,可得-14≤a ≤32.故选:B【变式2-2】(2022秋·河南·高三期末)已知a >0,b ∈R ,若x >0时,关于x 的不等式ax -2 x2+bx -5 ≥0恒成立,则b +4a的最小值为()A.2B.25C.43D.32【答案】B【解析】设y =ax -2(x >0),y =x 2+bx -5(x >0),因为a >0,所以当0<x <2a时,y =ax -2<0;当x =2a时,y =ax -2=0;当x >2a时,y =ax -2>0;由不等式(ax -2)x 2+bx -5 ≥0恒成立,得:ax -2≤0x 2+bx -5≤0 或ax -2≥0x 2+bx -5≥0 ,即当0<x ≤2a时,x 2+bx -5≤0恒成立,当x ≥2a时,x 2+bx -5≥0恒成立,所以当x =2a 时,y =x 2+bx -5=0,则4a2+2b a -5=0,即b =5a 2-2a ,则当a>0时,b+4a=5a2-2a+4a=5a2+2a≥25a2×2a=25,当且仅当5a2=2a,即a=255时等号成立,所以b+4a的最小值为2 5.故选:B.【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数f x =ax2+x+a,不等式f x <5的解集为-3 2,1.(1)求a的值;(2)若f x >mx在x∈0,5上恒成立,求m的取值范围.【答案】(1)a=2;(2){m|m<5}.【解析】(1)f x =ax2+x+a<5的解集为-3 2,1,即ax2+x+a-5<0的解集为-3 2,1,∴a>0-32+1=-1a-32×1=a-5a,解得a=2;(2)由(Ⅰ)可得f x =2x2+x+2,∵f x >mx在x∈0,5上恒成立,即2x2+1-mx+2>0恒成立,令h x =2x2+1-mx+2,则h x >0在0,5上恒成立,有m-14≤0h0 =2>0或0<m-14≤5m-12-2×2×4<0或m-14>5h5 =52+51-m>0,解得m≤1或1<m<5或m∈∅,综上可得m的范围为{m|m<5}.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数f x 满足f2 =-1,f-1=-1,且f x 的最大值是8.(1)试确定该二次函数的解析式;(2)f x >2x+k在区间-3,1上恒成立,试求k的取值范围.【答案】(1)f x =-4x2+4x+7;(2)k的取值范围为-∞,-35.【解析】(1)由f(2)=f(-1),得x=2-12=12为二次函数的对称轴,因函数f(x)的最大值为8,所以可设f x =a x-1 22+8 ,公众号:高中数学最新试题又因f (2)=94a +8=-1,所以a =-4,因此f x =-4x 2+4x +7.(2)由(1)不等式f x >2x +k ,可化为-4x 2+4x +7>2x +k ,所以k <-4x 2+2x +7,因为f x >2x +k 在区间-3,1 上恒成立,所以k <-4x 2+2x +7在区间-3,1 上恒成立,故k <-4x 2+2x +7 min ,其中x ∈-3,1 ,又函数y =-4x 2+2x +7=-4x -142+294,又当x =-3时,y =-35,当x =1时,y =5,所以函数y =-4x 2+2x +7在-3,1 上的最小值为-35,所以k <-35,所以k 的取值范围为-∞,-35 .【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式x 2-ax ≥16-3x -4a 对任意a ∈-2,4 成立,则x 的取值范围为()A.-∞,-8 ∪3,+∞B.-∞,0 ∪1,+∞C.-8,6D.0,3【答案】A【解析】由题得不等式(x -4)a -x 2-3x +16≤0对任意a ∈-2,4 成立,所以(x -4)(-2)-x 2-3x +16≤0(x -4)4-x 2-3x +16≤0 ,即-x 2-5x +24≤0-x 2+x ≤0,解之得x ≥3或x ≤-8.故选:A【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“∃a ∈-1,3 ,ax 2-2a -1 x +3-a <0”为假命题,则实数x 的取值范围为()A.-1,4B.0,53C.-1,0 ∪53,4D.-1,0 ∪53,4【答案】C【解析】命题“∃a ∈-1,3 ,ax 2-2a -1 x +3-a <0”为假命题,其否定为真命题,即“∀a ∈-1,3 ,ax 2-2a -1 x +3-a ≥0”为真命题.令g (a )=ax 2-2ax +x +3-a =(x 2-2x -1)a +x +3≥0,则g (-1)≥0g (3)≥0 ,即-x 2+3x +4≥03x 2-5x ≥0 ,解得-1≤x ≤4x ≥53或x ≤0 ,所以实数x 的取值范围为-1,0 ∪53,4.故选:C 【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当-1≤a ≤1时,x 2+a -4 x +4-2a >0恒成立,则实数x 的取值范围是()A.-∞,3B.-∞,1∪ 3,+∞C.-∞,1D.-∞,1 ∪3,+∞【答案】D【解析】x 2+a -4 x +4-2a >0恒成立,即x -2 a +x 2-4x +4>0,对任意得a ∈-1,1 恒成立,令f a =x -2 a +x 2-4x +4,a ∈-1,1 ,当x =2时,f a =0,不符题意,故x ≠2,当x >2时,函数f a 在a ∈-1,1 上递增,则f a min =f -1 =-x +2+x 2-4x +4>0,解得x >3或x <2(舍去),当x <2时,函数f a 在a ∈-1,1 上递减,则f a min =f 1 =x -2+x 2-4x +4>0,解得x <1或x >2(舍去),综上所述,实数x 的取值范围是-∞,1 ∪3,+∞ .故选:D .【变式3-3】(2023·全国·高三专题练习)当a ∈2,3 时,不等式ax 2-x +1-a ≤0恒成立,求x 的取值范围.【答案】-12,1 .【解析】由题意不等式ax 2-x +1-a ≤0对a ∈2,3 恒成立,可设f (a )=(x 2-1)a +(-x +1),a ∈2,3 ,则f (a )是关于a 的一次函数,要使题意成立只需f (2)≤0f (3)≤0,即2x 2-x -1≤03x 2-x -2≤0 ,解2x 2-x -1≤0,即2x +1 x -1 ≤0得-12≤x ≤1,解3x 2-x -2≤0,即3x +2 x -1 ≤0得-23≤x ≤1,所以原不等式的解集为-12,1 ,所以x 的取值范围是-12,1.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数f x =mx 2-mx -1.(1)若对于x ∈-2,2 ,f x <-m +5恒成立,求m 的取值范围;(2)若对于m ∈-2,2 ,f x <-m +5恒成立,求x 的取值范围.【答案】(1)-∞,67;(2)-1,2 【解析】(1)若对于x ∈-2,2 ,f x <-m +5恒成立,即mx 2-mx +m -6<0对于x ∈-2,2 恒成立,即m <6x 2-x +1对于x ∈-2,2 恒成立.公众号:高中数学最新试题令h x =6x 2-x +1=6x -12 2+34,x ∈-2,2 ,则h x min =h (-2)=6254+34=67,故m <67,所以m 的取值范围为-∞,67.(2)对于m ∈-2,2 ,f x <-m +5恒成立,即mx 2-mx -1<-m +5恒成立,故m x 2-x +1 -6<0恒成立,令g m =m x 2-x +1 -6,则g -2 =-2x 2-x +1 -6<0g 2 =2x 2-x +1 -6<0 ,解得-1<x <2,所以x 的取值范围为-1,2 .【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得mx 2-m -2 x +m <0成立,则实数m 的取值范围为()A.-∞,2B.-∞,0 ∪13,32C.-∞,23D.-∞,1 【答案】C【解析】①当m =0时,不等式化为2x <0,解得:x <0,符合题意;②当m >0时,y =mx 2-m -2 x +m 为开口方向向上的二次函数,只需Δ=m -2 2-4m 2=-3m 2-4m +4>0,即0<m <23;③当m <0时,y =mx 2-m -2 x +m 为开口方向向下的二次函数,则必存在实数x ,使得mx 2-m -2 x +m <0成立;综上所述:实数m 的取值范围为-∞,23.故选:C .【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式a 2-4 x 2+a +2 x -1≥0的解集不为空集,则实数a 的取值范围为()A.-2,65B.-2,65C.(-∞,-2)∪65,+∞ D.(-∞,-2]∪65,+∞【答案】C【解析】根据题意,分两种情况讨论:①当a 2-4=0时,即a =±2,若a=2时,原不等式为4x-1≥0,解可得:x≥1 4,则不等式的解集为x x≥1 4,不是空集;若a=-2时,原不等式为-1≥0,无解,不符合题意;②当a2-4≠0时,即a≠±2,若(a2-4)x2+(a+2)x-1≥0的解集是空集,则有a2-4<0Δ=(a+2)2+4(a2-4)<0,解得-2<a<65,则当不等式(a2-4)x2+(a+2)x-1≥0的解集不为空集时,有a<-2或a≥65且a≠2,综合可得:实数a的取值范围为(-∞,-2)∪65,+∞;故选:C.【变式4-2】(2023·全国·高三专题练习)若关于x的不等式ax2-(a+2)x+94<0有解,则实数a的取值范围是____.【答案】(-∞,1)∪(4,+∞)【解答】当a=0时,不等式为-2x+94<0有解,故a=0,满足题意;当a>0时,若不等式ax2-(a+2)x+94<0有解,则满足Δ=(a+2)2-4a⋅94>0,解得a<1或a>4;当a<0时,此时对应的函数的图象开口向下,此时不等式ax2-(a+2)x+94<0总是有解,所以a<0,综上可得,实数a的取值范围是(-∞,1)∪(4,+∞).【变式4-3】(2022·全国·高三专题练习)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是_____.【答案】-∞,1【解析】当a=0时,不等式为2x+1<0有实数解,所以a=0符合题意;当a<0时,不等式对应的二次函数开口向下,所以不等式ax2+2x+1<0有实数解,符合题意;当a>0时,要使不等式ax2+2x+1<0有实数解,则需满足Δ=4-4a>0,可得a<1,所以0<a<1,综上所述:a的取值范围是-∞,1,公众号:高中数学最新试题【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式x 2-6x +2-a >0在区间0,5 内有解,则实数a 的取值范围是().A.2,+∞B.-∞,5C.-∞,-3D.-∞,2【答案】D【解析】不等式x 2-6x +2-a >0在区间0,5 内有解,仅需(x 2-6x +2)max >a 即可,令f (x )=x 2-6x +2,因为f (x )的对称轴为x =--62×1=3,f (0)=2,f (5)=-3,所以由一元二次函数的图像和性质的得(x 2-6x +2)max =2,所以a <2,故选:D【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式mx 2-6x +3m <0在0,2 上有解,则实数m 的取值范围是()A.-∞,3B.-∞,127C.3,+∞D.127,+∞ 【答案】A【解析】由题意得,mx 2-6x +3m <0,x ∈0,2 ,即m <6xx 2+3,故问题转化为m <6xx 2+3在0,2 上有解,设g (x )=6x x 2+3,则g (x )=6x x 2+3=6x +3x ,x ∈0,2 ,对于x +3x≥23,当且仅当x =3∈(0,2]时取等号,则g (x )max =623=3,故m <3,故选:A【变式5-2】(2022·全国·高三专题练习)命题p :∃x ∈{x |1≤x ≤9},x 2-ax +36≤0,若p 是真命题,则实数a 的取值范围为()A.a ≥37 B.a ≥13C.a ≥12D.a ≤13【答案】C【解析】∵命题p :∃x ∈{x |1≤x ≤9},使x 2-ax +36≤0为真命题,即∃x ∈{x |1≤x ≤9},使x 2-ax +36≤0成立,即a ≥x +36x能成立设f (x )=x +36x ,则f (x )=x +36x≥2x ⋅36x =12,当且仅当x =36x,即x =6时,取等号,即f (x )min =12,∴a ≥12,故a的取值范围是a≥12.故选:C.【变式5-3】(2022秋·北京·高三统考阶段练习)若存在x∈[0,1],有x2+(1-a)x+3-a>0成立,则实数a的取值范围是__________.【答案】-∞,3【解析】将原不等式参数分离可得a<x2+x+3x+1,设f x =x2+x+3x+1,已知存在x∈[0,1],有x2+(1-a)x+3-a>0成立,则a<f x max,令t=x+1,则f x =t-12+t-1+3t=t2-t+3t=t+3t-1,t∈1,2,由对勾函数知f x 在1,3上单调递减,在3,2上单调递增,f1 =1+31-1=3,f2 =2+32-1=52,所以f x max=f1 =3,即a<3.【变式5-4】(2023·全国·高三专题练习)已知命题“∃x∈[-1,1],-x02+3x0+a>0”为真命题,则实数a 的取值范围是______.【答案】-2,+∞【解析】因为命题“∃x∈[-1,1],-x02+3x0+a>0”为真命题则∃x∈[-1,1],a>x2-3x有解,设f(x)=x2-3x,则f(x)=x2-3x=x-3 22-94,当x∈[-1,1]时,f(x)单调递减,所以-2≤f(x)≤4,所以a>-2.【变式5-5】(2022·全国·高三专题练习)设f x 为奇函数,g x 为偶函数,对于任意x∈R均有f x + 2g x =mx-4.若f x -x2+2g x ≥0在x∈0,+∞上有解,则实数m的取值范围是_____ _.【答案】m≥4【解析】由题设,f x -x2+2g x =mx-4-x2≥0,即x2-mx+4≤0在x∈0,+∞上有解,对于y=x2-mx+4,开口向上且对称轴为x=m2,Δ=m2-16,y|x=0=4,∴Δ≥0m2>0,可得m≥4.公众号:高中数学最新试题限时检测(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题P:∀x∈R,x2-2x+m>0,则满足命题P为真命题的一个充分条件是()A.m>2B.m<0C.m<1D.m≥1【答案】A【解析】∵命题P为真命题,∴不等式x2-2x+m>0在R上恒成立,∴△=4-4m<0,解得m>1,对于A,m>2⇒m>1,∴m>2 是m>1的充分条件,∴m>2 是命题P为真命题的充分条件,选项A正确;对于B,m<0推不出m>1,∴m<0不是m>1的充分条件,∴m<0不是命题P为真命题的充分条件,选项B不正确;对于C,m<1推不出m>1,∴m<1不是m>1的充分条件,∴m<1不是命题P为真命题的充分条件,选项C不正确对于D,m≥1推不出m>1,∴m≥1不是m>1的充分条件,∴m≥1不是命题P为真命题的充分条件,选项D不正确.故选:A.2.(2022秋·北京大兴·高三统考期中)若命题“∃x∈R,x2+2x+m≤0”是真命题,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥1【答案】B【解析】由题可知,不等式x2+2x+m≤0在实数范围内有解,等价于方程x2+2x+m=0有实数解,即△=4-4m≥0,解得m≤1.故选:B.3.(2022秋·全国·高三校联考阶段练习)设m∈R,则“m>-34”是“不等式x2-x+m+1≥0在R上恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由不等式x2-x+m+1≥0在R上恒成立,得△=-1 2-4m +1 ≤0,解得m ≥-34.所以“m >-34”是“不等式x 2-x +m +1≥0在R 上恒成立”的充分不必要条件.故选:A 4.(2022秋·宁夏银川·高三校考期中)已知命题P :∀x ∈R ,x 2-x +a >0,若-P 是假命题,则实数a 的取值范围是()A.-∞,14B.14,12C.14,+∞D.12,+∞【答案】C【解析】已知命题P :∀x ∈R ,x 2-x +a >0,若-P 是假命题,则不等式x 2-x +a >0在R 上恒成立,∴△=1-4m <0,解得a >14.因此,实数a 的取值范围是14,+∞.故选:C .5.(2022秋·河南·高三校联考阶段练习)设函数f x =2ax 2-ax ,命题“∃x ∈0,1 ,f x ≤-a +3”是假命题,则实数a 的取值范围为()A.-∞,3B.3,+∞C.247,+∞D.32,+∞【答案】C【解析】因为命题“∃x ∈0,1 ,f x ≤-a +3”是假命题,所以∃x ∈0,1 ,f x >-a +3是真命题,又f x >-a +3可化为2ax 2-ax >-a +3,即a 2x 2-x +1 >3,当x ∈0,1 时,2x 2-x +1∈78,2,所以m >32x 2-x +1在x ∈0,1 上恒成立,所以m >32x 2-x +1 max其中,x ∈0,1 ,当x =14时2x 2-x +1有最小值为78,此时32x 2-x +1有最大值为247,所以m >247,故实数m 的取值范围是247,+∞ ,故选:C 6.(2023·全国·高三专题练习)若对任意的x ∈-1,0 ,-2x 2+4x +2+m ≥0恒成立,则m 的取值范围是()A.4,+∞B.2,+∞C.-∞,4D.-∞,2【答案】A【解析】因为对任意的x ∈-1,0 ,-2x 2+4x +2+m ≥0恒成立,所以对任意的x ∈-1,0 ,m ≥2x 2-4x -2恒成立,公众号:高中数学最新试题因为当x ∈-1,0 ,y =2x -1 2-4∈-2,4 ,所以m ≥2x 2-4x -2 max =4,x ∈-1,0 ,即m 的取值范围是4,+∞ ,故选:A7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数f x =mx 2-mx -1,若对于任意的x ∈x |1≤x ≤3 ,f x <-m +4恒成立,则实数m 的取值范围为()A.m <57B.0≤m <57C.m <0或0<m <57D.m ≤0【答案】A【解析】若对于任意的x ∈x |1≤x ≤3 ,f x <-m +4恒成立,即可知:mx 2-mx +m -5<0在x ∈x |1≤x ≤3 上恒成立,令g x =mx 2-mx +m -5,对称轴为x =12.当m =0时,-5<0恒成立,当m <0时,有g x 开口向下且在1,3 上单调递减,在1,3 上g x max =g 1 =m -5<0,得m <5,故有m <0.当m >0时,有g x 开口向上且在1,3 上单调递增在1,3 上g x max =g 3 =7m -5<0,∴0<m <57综上,实数m 的取值范围为m <57,故选:A .8.(2022秋·湖南邵阳·高三统考期中)设函数f x =x 2+2ax +a 2-2a +3,若对于任意的x ∈R ,不等式f f x ≥0恒成立,则实数a 的取值范围是()A.a ≥32B.a ≤2C.32<a ≤2 D.a ≤32【答案】B【解析】∵f x =x 2+2ax +a 2-2a +3=x +a 2-2a +3,即开口向上且f x ∈-2a +3,+∞ ,由f f x ≥0恒成立,即f x ≥0在-2a +3,+∞ 上恒成立,∴当-2a +3≥0时,即a ≤32,由二次函数的性质,f x ≥0显然成立;当a >32时,y =f x 有两个零点,则只需满足-a ≤-2a +3f -2a +3 ≥0,解得a ≤2,故32<a ≤2;综上,a 的取值范围是a ≤2.故选:B9.(2022秋·辽宁鞍山·高三校联考期中)设a ∈R ,,若关于x 的不等式x 2-ax +1≥0在1≤x ≤2上有解,则()A.a ≤2B.a ≥2C.a ≤52D.a ≥52【答案】C【解析】由x 2-ax +1≥0在1≤x ≤2上有解,得x 2+1x≥a 在1≤x ≤2上有解,则a ≤x 2+1x max ,由于x 2+1x =x +1x ,而x +1x 在1≤x ≤2单调递增,故当x =2时,x +1x 取最大值为52,故a ≤52,故选:C 10.(2023·全国·高三专题练习)已知命题“∃x 0∈R ,4x 02+a -2 x 0+14≤0”是真命题,则实数a 的取值范围()A.-∞,0B.0,4C.4,+∞D.-∞,0 ⋃4,+∞【答案】D【解析】由题意,命题∃x 0∈R ,4x 02+a -2 x 0+14≤”是真命题故△=a -2 2-4×4×14=a 2-4a ≥0,解得a ≥4或a ≤0.则实数a 的取值范围是-∞,0 ⋃4,+∞ 故选:D .11.(2022·全国·高三专题练习)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是()A.a |-1≤a ≤4B.a |-1<a <4C.a |a ≥4或a ≤-1D.a |-4≤a ≤1【答案】A【解析】因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点,所以△=-4 2-4×a 2-3a ≥0,即a 2-3a -4≤0,所以a -4 a +1 ≤0,解得:-1≤a ≤4,所以实数a 的取值范围是a |-1≤a ≤4 ,故选:A .12.(2022·全国·高三专题练习)若关于x 的不等式x 2+ax -2>0在区间1,5 上有解,则实数a 的取值范围为()A.-235,+∞ B.-235,1C.1,+∞D.-∞,-235公众号:高中数学最新试题【答案】A【解析】关于x的不等式x2+ax-2>0在区间1,5上有解,ax>2-x2在x∈1,5上有解,即a>2x-x在x∈1,5上成立;设函数f x =2x-x,x∈1,5,∴f x 在x∈1,5上是单调减函数,又f1 =2-1=1,f5 =25-5=-235所以f x 的值域为-23 5,1,要a>2x-x在x∈1,5上有解,则a>-235,即实数a的取值范围为-235,+∞.故选:A.13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x,使得关于x的不等式ax2-4x+a-3<0成立,则实数a的取值范围是______.【答案】a<4【解析】a<3时,若x=0,则不等式为a-3<0,不等式成立,满足题意,a≥3时,在在x使得不等式ax2-4x+a-3<0成立,则△=16-4a a-3>0,∴3≤a<4.综上,a<4.14.(2021·全国·高三专题练习)已知函数x2-x,x≤02x,x>0.若存在x∈R使得关于x的不等式f x ≤ax-1成立,则实数a的取值范围是________.【答案】-∞,-3⋃-1,+∞【解析】由题意,当x=0时,不等式f x ≤ax-1可化为0≤-1显然不成立;当x<0时,不等式f x ≤ax-1可化为x2-x+1≤ax,所以a≤x+1x-1,又当x<0时,x+1x=--x+-1x≤-2,当且仅当-x=-1x,即x=-1时,等号成立;当x>0时,不等式f x ≤ax-1可化为2x+1≤ax,即a≥1x+2x=1x+12-1≥-1;因为存在x∈R使得关于x的不等式f x ≤ax-1成立,所以,只需a≤-2-1=-3或a≥-1.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x使不等式kx-k2-4x-4<0成立”是假命题,则实数k 的取值范围是____________.【答案】1,4【解析】设不等式kx -k 2-4 x -4 <0的解集为A,当k =0时,不等式kx -k 2-4 x -4 <0化为x >4,存在整数x 使不等式成立,所以此时不满足题意,所以k ≠0;当k >0时,原不等式化为x -k +4kx -4 <0,因为k +4k ≥2k ⋅4k =4,当且仅当k =4k即k =2时取等号,所以A =x |4<x <k +4k ,要使命题:“存在整数x 使不等式kx -k 2-4 x -4 <0成立”是假命题,则需4≤k +4k≤5,解得1≤k ≤4;当k <0时,原不等式化为x -k +4kx -4 >0,而k +4k =--k +4-k ≤-2-k ⋅4-k =-4,当且仅当-k =4-k即k =-2时取等号,所以A =-∞,k +4k∪4,+∞ ,所以存在整数x 使不等式kx -k 2-4 x -4 <0成立,所以k <0不合题意.综上可知,实数k 的取值范围是1,4 .16.(2022秋·江苏连云港·高三校考开学考试)ax 2-2x +1≥0,∀x >0恒成立,则实数a 的取值范围是_________ .【答案】1,+∞【解析】由ax 2-2x +1≥0,∀x >0恒成立,可得,a ≥2x -1x2对∀x >0恒成立,令y =2x -1x2,则y =1-1x -1 2,1x >0 当1x=1时,y max =1,所以a ≥y max =1.17.(2021·全国·高三专题练习)若不等式x 2-2>mx 对满足m ≤1的一切实数m 都成立,则x 的取值范围是___________【答案】x <-2或x >2【解析】因为x 2-2>mx ,所以mx -x 2+2<0令f m =mx -x 2+2,即f m <0在m ≤1恒成立,即-1≤m ≤1时f m <0恒成立,公众号:高中数学最新试题所以f1 <0f-1<0,即x-x2+2<0-x-x2+2<0,解x-x2+2<0得x>2或x<-1;解-x-x2+2<0得x>1或x<-2,所以原不等式组的解集为x∈-∞,-2∪2,+∞18.(2023·全国·高三专题练习)若不等式-x2+t2-2at+1≥0对任意x∈-1,1及a∈-1,1恒成立,则实数t的取值范围是__________.【答案】-∞,-2∪0 ∪2,+∞【解析】由题意得t2-2at+1≥x2对任意x∈-1,1及a∈-1,1恒成立,所以t2-2at+1≥1对任意a∈-1,1恒成立,即t2-2at≥0对a∈-1,1恒成立,令g a =t2-2at=-2at+t2,则g a 是关于a的一次函数,所以只需g1 ≥0g-1≥0,即t2-2t≥0t2+2t≥0,解得t≥2或t≤-2或t=0,所以实数t的取值范围是-∞,-2∪0 ∪2,+∞。
不等式恒成立、能成立问题【七大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习
不等式恒成立、能成立问题【七大题型】【题型1 一元二次不等式在实数集上恒成立问题】 (2)【题型2 一元二次不等式在某区间上的恒成立问题】 (3)【题型3 给定参数范围的一元二次不等式恒成立问题】 (5)【题型4 基本不等式求解恒成立问题】 (7)【题型5 一元二次不等式在实数集上有解问题】 (10)【题型6 一元二次不等式在某区间上有解问题】 (11)【题型7 一元二次不等式恒成立、有解问题综合】 (13)1、不等式恒成立、能成立问题一元二次不等式是高考数学的重要内容.从近几年的高考情况来看,“含参不等式恒成立与能成立问题”是常考的热点内容,这类问题把不等式、函数、三角、几何等知识有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐.另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维能力都起到很好的作用.【知识点1 不等式恒成立、能成立问题】1.一元二次不等式恒成立、能成立问题不等式对任意实数x恒成立,就是不等式的解集为R,对于一元二次不等式ax2+bx+c>0,它的解集为R的条件为{a>0,Δ=b2-4ac<0;一元二次不等式ax2+bx+c≥0,它的解集为R的条件为{a>0,Δ=b2-4ac≤0;一元二次不等式ax2+bx+c>0的解集为∅的条件为{a<0,Δ≤0.2.一元二次不等式恒成立问题的求解方法(1)对于二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.(2)解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.①若ax2+bx+c>0恒成立,则有a>0,且△<0;若ax2+bx+c<0恒成立,则有a<0,且△<0.②对第二种情况,要充分结合函数图象利用函数的最值求解(也可采用分离参数的方法).3.给定参数范围的一元二次不等式恒成立问题的解题策略解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数;即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.4.常见不等式恒成立及有解问题的函数处理策略不等式恒成立问题常常转化为函数的最值来处理,具体如下:(1)对任意的x∈[m,n],a>f(x)恒成立a>f(x)max;若存在x∈[m,n],a>f(x)有解a>f(x)min;若对任意x∈[m,n],a>f(x)无解a≤f(x)min.(2)对任意的x∈[m,n],a<f(x)恒成立a<f(x)min;若存在x∈[m,n],a<f(x)有解a<f(x)max;若对任意x∈[m,n],a<f(x)无解a≥f(x)max.【例1】(2023·福建厦门·二模)“b∈(0,4)”是“∀x∈R,bx2―bx+1>0成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】由∀x∈R,bx2―bx+1>0成立求出b的范围,再利用充分条件、必要条件的定义判断作答.【解答过程】由∀x∈R,bx2―bx+1>0成立,则当b=0时,1>0恒成立,即b=0,当b≠0时,b>0b2―4b<0,解得0<b<4,因此∀x∈R,bx2―bx+1>0成立时,0≤b<4,因为(0,4)[0,4),所以“b∈(0,4)”是“∀x∈R,bx2―bx+1>0成立”的充分不必要条件.故选:A.【变式1-1】(2023·江西九江·模拟预测)无论x取何值时,不等式x2―2kx+4>0恒成立,则k的取值范围是()A.(―∞,―2)B.(―∞,―4)C.(―4,4)D.(―2,2)【解题思路】由题知4k2―16<0,再解不等式即可得答案.【解答过程】解:因为无论x取何值时,不等式x2―2kx+4>0恒成立,所以,4k2―16<0,解得―2<k<2,所以,k的取值范围是(―2,2)故选:D.【变式1-2】(2023·福建厦门·二模)不等式ax2―2x+1>0(a∈R)恒成立的一个充分不必要条件是()A.a>2B.a≥1C.a>1D.0<a<12【解题思路】分a=0和a≠0两种情况讨论求出a的范围,再根据充分条件和必要条件的定义即可得解.【解答过程】当a=0时,―2x+1>0,得x<12,与题意矛盾,当a≠0时,则a>0Δ=4―4a<0,解得a>1,综上所述,a>1,所以不等式ax2―2x+1>0(a∈R)恒成立的一个充分不必要条件是A选项.故选:A.【变式1-3】(2023·四川德阳·模拟预测)已知p:0≤a≤2,q:任意x∈R,ax2―ax+1≥0,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】根据一元二次不等式恒成立解得q:0≤a≤4,结合充分、必要条件的概念即可求解.【解答过程】命题q:一元二次不等式ax2―ax+1≥0对一切实数x都成立,当a=0时,1>0,符合题意;当a≠0时,有a>0Δ≤0,即a>0a2―4a≤0,解为a∈(0,4],∴q:0≤a≤4.又p:0≤a≤2,设A=[0,2],B=[0,4],则A是B的真子集,所以p是q成立的充分非必要条件,故选:A.【题型2 一元二次不等式在某区间上的恒成立问题】【例2】(2023·辽宁鞍山·二模)已知当x >0时,不等式:x 2―mx +16>0恒成立,则实数m 的取值范围是( )A .(―8,8)B .(―∞,8]C .(―∞,8)D .(8,+∞)【解题思路】先由x 2―mx +16>0得m <x +16x,由基本不等式得x +16x≥8,故m <8.【解答过程】当x >0时,由x 2―mx +16>0得m <x +16x,因x >0,故x +16x≥=8,当且仅当x =16x即x =4时等号成立,因当x >0时,m <x +16x恒成立,得m <8,故选:C.【变式2-1】(23-24高一上·贵州铜仁·期末)当x ∈(―1,1)时,不等式2kx 2―kx ―38<0恒成立,则k 的取值范围是( )A .(―3,0)B .[―3,0)C .―D .―【解题思路】对二项式系数进行分类,结合二次函数定义的性质,列出关系式求解.【解答过程】当x ∈(―1,1)时,不等式2kx 2―kx ―38<0恒成立,当k =0时,满足不等式恒成立;当k ≠0时,令f (x )=2kx 2―kx ―38,则f (x )<0在(―1,1)上恒成立,函数f (x )的图像抛物线对称轴为x =14,k >0时,f (x )在―,1上单调递增,则有f (―1)=2k +k ―38≤0f (1)=2k ―k ―38≤0,解得0<k ≤18;k <0时,f (x )在―,1上单调递减,则有=2k 16―k 4―38<0,解得―3<k <0.综上可知,k的取值范围是―故选:D.【变式2-2】(23-24高一上·江苏徐州·阶段练习)若对于任意x ∈[m,m +1],都有x 2+mx ―1<0成立,则实数m 的取值范围是( )A .―23,0B .―,0C .―23,0D .,0【解题思路】利用一元二次函数的图象与性质分析运算即可得解.【解答过程】由题意,对于∀x ∈[m,m +1]都有f(x)=x 2+mx ―1<0成立,∴f (m )=m 2+m 2―1<0f (m +1)=(m +1)2+m (m +1)―1<0,解得:―<m <0,即实数m 的取值范围是―,0.故选:B.【变式2-3】(22-23高一上·安徽马鞍山·期末)已知对一切x ∈[2,3],y ∈[3,6],不等式mx 2―xy +y 2≥0恒成立,则实数m 的取值范围是( )A .m ≤6B .―6≤m ≤0C .m ≥0D .0≤m ≤6【解题思路】令t =yx ,分析可得原题意等价于对一切t ∈[1,3],m ≥t ―t 2恒成立,根据恒成立问题结合二次函数的性质分析运算.【解答过程】∵x ∈[2,3],y ∈[3,6],则1x ∈[13,12],∴yx ∈[1,3],又∵mx 2―xy +y 2≥0,且x ∈[2,3],x 2>0,可得m ≥y x―,令t =yx ∈[1,3],则原题意等价于对一切t ∈[1,3],m ≥t ―t 2恒成立,∵y =t ―t 2的开口向下,对称轴t =12,则当t =1时,y =t ―t 2取到最大值y max =1―12=0,故实数m 的取值范围是m ≥0.故选:C.【题型3 给定参数范围的一元二次不等式恒成立问题】【例3】(23-24高一上·山东淄博·阶段练习)若命题“∃―1≤a ≤3,ax 2―(2a ―1)x +3―a <0”为假命题,则实数x 的取值范围为( )A .{x |―1≤x ≤4 }B .x |0≤xC .x |―1≤x ≤0或53≤x ≤4D .x |―1≤x <0或53<x ≤4【解题思路】由题意可得:命题“∀―1≤a ≤3,ax 2―(2a ―1)x +3―a ≥0”为真命题,根据恒成立问题结合一次函数运算求解.【解答过程】由题意可得:命题“∀―1≤a ≤3,ax 2―(2a ―1)x +3―a ≥0”为真命题,即ax 2―(2a ―1)x +3―a =(x 2―2x ―1)a +x +3≥0对a ∈[―1,3]恒成立,则―(x 2―2x ―1)+x +3≥03(x 2―2x ―1)+x +3≥0,解得―1≤x ≤0或53≤x ≤4,即实数x 的取值范围为x |―1≤x ≤0或53≤x ≤4.故选:C.【变式3-1】(23-24高一上·广东深圳·阶段练习)当1≤m ≤2时,mx 2―mx ―1<0恒成立,则实数x 的取值范围是( )A<x <B<x <C <x<D <x <【解题思路】将不等式整理成关于m 的一次函数,利用一次函数性质解不等式即可求得结果.【解答过程】根据题意可将不等式整理成关于m 的一次函数(x 2―x )m ―1<0,由一次函数性质可知(x 2―x )×1―1<0(x 2―x )×2―1<0 ,即x 2―x ―1<02x 2―2x ―1<0;<x <<x <<x <故选:B.【变式3-2】(23-24高一下·河南濮阳·期中)已知当―1≤a ≤1时,x 2+(a ―4)x +4―2a >0恒成立,则实数x 的取值范围是( )A .(―∞,3)B .(―∞,1]∪[3,+∞)C .(―∞,1)D .(―∞,1)∪(3,+∞)【解题思路】将x2+(a―4)x+4―2a>0化为(x―2)a+x2―4x+4>0,将a看成主元,令f(a)=(x―2) a+x2―4x+4,分x=2,x>2和x<2三种情况讨论,从而可得出答案.【解答过程】解:x2+(a―4)x+4―2a>0恒成立,即(x―2)a+x2―4x+4>0,对任意得a∈[―1,1]恒成立,令f(a)=(x―2)a+x2―4x+4,a∈[―1,1],当x=2时,f(a)=0,不符题意,故x≠2,当x>2时,函数f(a)在a∈[―1,1]上递增,则f(a)min=f(―1)=―x+2+x2―4x+4>0,解得x>3或x<2(舍去),当x<2时,函数f(a)在a∈[―1,1]上递减,则f(a)min=f(1)=x―2+x2―4x+4>0,解得x<1或x>2(舍去),综上所述,实数x的取值范围是(―∞,1)∪(3,+∞).故选:D.【变式3-3】(2008·宁夏·高考真题)已知a1>a2>a3>0,则使得(1―a i x)2<1(i=1,2,3)都成立的x取值范围是( )A.B.0,C.D.(a i>0),【解题思路】由(1―a i x)2<1可求得0<x<2a i【解答过程】由(1―a i x)2<1,得:1―2a i x+a2i x2<1,(a i>0),即x(a2i x―2a i)<0,解之得0<x<2a i因为a1>a2>a3>0,使得(1―a i x)2<1(i=1,2,3)都成立,;所以0<x<2a1故选:B.【题型4 基本不等式求解恒成立问题】【例4】(23-24高一下·贵州贵阳·期中)对任意的x∈(0,+∞),x2―2mx+1>0恒成立,则m的取值范围为()A.[1,+∞)B.(―1,1)C.(―∞,1]D.(―∞,1)【解题思路】参变分离可得2m <x +1x 对任意的x ∈(0,+∞)恒成立,利用基本不等式求出x +1x 的最小值,即可求出参数的取值范围.【解答过程】因为对任意的x ∈(0,+∞),x 2―2mx +1>0恒成立,所以对任意的x ∈(0,+∞),2m <x 2+1x=x +1x 恒成立,又x +1x ≥=2,当且仅当x =1x ,即x =1时取等号,所以2m <2,解得m <1,即m 的取值范围为(―∞,1).故选:D.【变式4-1】(22-23高三上·河南·期末)已知a >0,b ∈R ,若x >0时,关于x 的不等式(ax ―2)(x 2+bx ―5)≥0恒成立,则b +4a 的最小值为( )A .2B .C .D .【解题思路】根据题意设y =ax ―2,y =x 2+bx ―5,由一次函数以及不等式(ax ―2)(x 2+bx ―5)≥0分析得x =2a 时,y =x 2+bx ―5=0,变形后代入b +4a ,然后利用基本不等式求解.【解答过程】设y =ax ―2(x >0),y =x 2+bx ―5(x >0),因为a >0,所以当0<x <2a 时,y =ax ―2<0;当x =2a 时,y =ax ―2=0;当x >2a 时,y =ax ―2>0;由不等式(ax ―2)(x 2+bx ―5)≥0恒成立,得:ax ―2≤0x 2+bx ―5≤0 或ax ―2≥0x 2+bx ―5≥0 ,即当0<x ≤2a 时,x 2+bx ―5≤0恒成立,当x ≥2a 时,x 2+bx ―5≥0恒成立,所以当x =2a 时,y =x 2+bx ―5=0,则4a 2+2b a―5=0,即b =5a 2―2a ,则当a >0时,b +4a =5a 2―2a +4a =5a 2+2a ≥=当且仅当5a2=2a ,即a =所以b +4a 的最小值为故选:B.【变式4-2】(23-24高三上·山东威海·期中)关于x 的不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),则实数a 的取值范围为( )A +∞B .―∞C .―D .―∞,∪+∞【解题思路】不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),即对于∀x ∈R ,ax 2―|x|+2a ≥0恒成立,即a ≥|x |x 2+2,分x =0和a ≠0两种情况讨论,结合基本不等式即可得出答案.【解答过程】解:不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),即对于∀x ∈R ,ax 2―|x|+2a ≥0恒成立,即a ≥|x |x 2+2,当x =0时,a ≥0,当a ≠0时,a ≥|x |x 2+2=1|x |+2|x |,因为1|x |+2|x |≤=所以a ≥综上所述a ∈+∞.故选:A.【变式4-3】(23-24高一上·湖北·阶段练习)已知x >0,y >0,且1x+2+1y =27,若x +2+y >m 2+5m 恒成立,则实数m 的取值范围是( )A .(―4,7)B .(―2,7)C .(―4,2)D .(―7,2)【解题思路】利用基本不等式“1”的代换求不等式左侧最小值,结合x +2+y >m 2+5m 恒成立得到不等式,解一元二次不等式求参数范围【解答过程】因为x >0,y >0,且1x+2+1y =27,所以x +2+y =72×(x +2+y =72×1+1+y x+2+≥72×2+=14,当且仅当y =x +2=7时取等号,又因为x +2+y >m 2+5m 恒成立,所以14>m 2+5m ,解得―7<m <2.所以实数m的取值范围是(―7,2).故选:D.【题型5 一元二次不等式在实数集上有解问题】【例5】(2024·陕西宝鸡·模拟预测)若存在实数x,使得mx2―(m―2)x+m<0成立,则实数m的取值范围为()A.(―∞,2)B.(―∞,0]∪C.―∞D.(―∞,1)【解题思路】分别在m=0、m>0和m<0的情况下,结合二次函数的性质讨论得到结果.【解答过程】①当m=0时,不等式化为2x<0,解得:x<0,符合题意;②当m>0时,y=mx2―(m―2)x+m为开口方向向上的二次函数,;只需Δ=(m―2)2―4m2=―3m2―4m+4>0,即0<m<23③当m<0时,y=mx2―(m―2)x+m为开口方向向下的二次函数,则必存在实数x,使得mx2―(m―2)x+m<0成立;综上所述:实数m的取值范围为―∞故选:C.【变式5-1】(22-23高一上··阶段练习)若关于x的不等式x2―4x―2―a≤0有解,则实数a 的取值范围是()A.{a|a≥―2 }B.{a|a≤―2 }C.{a|a≥―6 }D.{a|a≤―6 }【解题思路】直接利用判别式即可研究不等式的解的情况.【解答过程】若关于x的不等式x2―4x―2―a≤0有解,则Δ=16+4(2+a)≥0,解得a≥―6.故选:C.【变式5-2】(23-24高一上·山东临沂·阶段练习)若不等式―x2+ax―1>0有解,则实数a的取值范围为()A.a<―2或a>2B.―2<a<2C.a≠±2D.1<a<3【解题思路】根据一元二次不等式有实数解的充要条件列式求解作答.【解答过程】不等式―x2+ax―1>0有解,即不等式x2―ax+1<0有解,因此Δ=a2―4>0,解得a<―2或a>2,所以实数a的取值范围为a<―2或a>2.故选:A.【变式5-3】(23-24高一上·江苏徐州·期中)已知关于x的不等式―x2+4x≥a2―3a在R上有解,则实数a 的取值范围是()A.{a|―1≤a≤4 }B.{a|―1<a<4 }C.{a|a≥4 或a≤―1}D.{a|―4≤a≤1 }【解题思路】由题意知x2―4x+a2―3a≤0在R上有解,等价于Δ≥0,解不等式即可求实数a的取值范围.【解答过程】因为关于x的不等式―x2+4x≥a2―3a在R上有解,即x2―4x+a2―3a≤0在R上有解,只需y=x2―4x+a2―3a的图象与x轴有公共点,所以Δ=(―4)2―4×(a2―3a)≥0,即a2―3a―4≤0,所以(a―4)(a+1)≤0,解得:―1≤a≤4,所以实数a的取值范围是{a|―1≤a≤4 },故选:A.【题型6 一元二次不等式在某区间上有解问题】【例6】(2023·福建宁德·模拟预测)命题“∃x∈[1,2],x2≤a”为真命题的一个充分不必要条件是()A.a≥1B.a≥4C.a≥―2D.a≤4【解题思路】根据能成立问题求a的取值范围,结合充分不必要条件理解判断.【解答过程】∵∃x∈[1,2],x2≤a,则(x2)min≤a,即a≥1,∴a的取值范围[1,+∞)由题意可得:选项中的取值范围对应的集合应为[1,+∞)的真子集,结合选项可知B对应的集合为[4,+∞)为[1,+∞)的真子集,其它都不符合,∴符合的只有B,故选:B.【变式6-1】(22-23高二上·河南·开学考试)设a为实数,若关于x的不等式x2―ax+7≥0在区间(2,7)上有实数解,则a的取值范围是()A.(―∞,8)B.(―∞,8]C.(―∞D.―∞【解题思路】参变分离,再根据对勾函数的性质,结合能成立问题求最值即可.【解答过程】由题意,因为x ∈(2,7),故a ≤x +7x 在区间(2,7)上有实数解,则a <x +,又g (x )=x +7x在上单调递减,在上单调递增,且g (2)=2+72=112,g (7)=7+77=8>g (2),故x +<8.故a ≤x +7x 在区间(2,7)上有实数解则a <8.故选:A.【变式6-2】(23-24高一上·福建·期中)若至少存在一个x <0,使得关于x 的不等式3―|3x ―a |>x 2+2x 成立,则实数a 的取值范围是( )A .―374,3B .―C .―374D .(―3,3)【解题思路】化简不等式3―|3x ―a |>x 2+2x ,根据二次函数的图象、含有绝对值函数的图象进行分析,从而求得a 的取值范围.【解答过程】依题意,至少存在一个x <0,使得关于x 的不等式3―|3x ―a |>x 2+2x 成立,即至少存在一个x <0,使得关于x 的不等式―x 2―2x +3>|3x ―a |成立,画出y =―x 2―2x +3(x <0)以及y =|3x ―a |的图象如下图所示,其中―x 2―2x +3>0.当y =3x ―a 与y =―x 2―2x +3(x <0)相切时,由y =3x ―ay =―x 2―2x +3消去y 并化简得x 2+5x ―a ―3=0,Δ=25+4a +12=0,a =―374.当y =―3x +a 与y =―x 2―2x +3(x <0)相切时,由y =―3x +ay =―x 2―2x +3消去y 并化简得x 2―x +a ―3=0①,由Δ=1―4a +12=0解得a =134,代入①得x 2―x +14=x=0,解得x =12,不符合题意.当y =―3x +a 过(0,3)时,a =3.结合图象可知a 的取值范围是―374,3.故选:A.【变式6-3】(22-23高一上·江苏宿迁·期末)若命题“∀x 0∈(0,+∞),使得x 20+ax 0+a +3≥0”为假命题,则实数a 的取值范围是( )A .(―∞,―2),(6,+∞)B .(―∞,―2)C .[―2,6]D .[2+【解题思路】根据题意可知“∃x 0∈(0,+∞),使得x 20+ax 0+a +3<0”为真命题,然后参变分离,将问题转化为最值问题,利用基本不等式可解.【解答过程】因为“∀x 0∈(0,+∞),使得x 20+ax 0+a +3≥0”为假命题,所以“∃x 0∈(0,+∞),使得x 20+ax 0+a +3<0”为真命题,即a <―x 20+3x 0+1在(0,+∞)内有解,即a <―.因为―x 20+3x 0+1=―(x 0+1)2―2(x 0+1)+4x 0+1=―x 0+1―2≤―2,当且仅当x 0=1时等号成立,所以=―2,所以实数a 的取值范围为(―∞,―2).故选:B.【题型7 一元二次不等式恒成立、有解问题综合】【例7】(23-24高一上·山东潍坊·阶段练习)已知关于x 的不等式2x ―1>m(x 2―1).(1)是否存在实数m ,使不等式对任意x ∈R 恒成立,并说明理由;(2)若不等式对于m ∈[―2,2]恒成立,求实数x 的取值范围;(3)若不等式对x ∈[2,+∞)有解,求m 的取值范围.【解题思路】将2x ―1>m(x 2―1)转化为mx 2―2x +(1―m)<0,(1)讨论m =0和m ≠0时的情况;(2)f(m)=(x 2―1)m ―(2x ―1),显然该函数单调,所以只需f(2)<0f(―2)<0即可.(3)讨论当m =0时,当m <0时,当m >0时,如何对x ∈[2,+∞)有解,其中m <0,m >0,均为一元二次不等式,结合一元二次函数图象求解即可.【解答过程】(1)原不等式等价于mx2―2x+(1―m)<0,当m=0时,―2x+1<0,即x>12,不恒成立;当m≠0时,若不等式对于任意实数x恒成立,则m<0且Δ=4―4m(1―m)<0,无解;综上,不存在实数m,使不等式恒成立.(2)设f(m)=(x2―1)m―(2x―1),当m∈[―2,2]时,f(m)<0恒成立,当且仅当f(2)<0f(―2)<0,即2x2―2x―1<0―2x2―2x+3<0,解得<x<x<x><x<所以x的取值范围是.(3)若不等式对x∈[2,+∞)有解,等价于x∈[2,+∞)时,mx2―2x―m)<0有解.令g(x)=mx2―2x+(1―m),当m=0时,―2x+1<0即x>12,此时显然在x∈[2,+∞)有解;当m<0时,x∈[2,+∞)时,结合一元二次函数图象,mx2―2x+(1―m)<0显然有解;当m>0时,y=g(x)对称轴为x=1m,Δ=4―4m(1―m)=4m2―4m+4=(2m―1)2+3>0,∵x∈[2,+∞)时,mx2―2x+(1―m)<0有解,∴结合一元二次函数图象,易得:g(2)<0或g(2)≥01m>2,解得m<1或m≥1m<12(无解),又∵m>0,∴0<m<1;综上所述,m的取值范围为(―∞,1).【变式7-1】(23-24高一上·江苏扬州·阶段练习)设函数y=ax2―(2a+3)x+6,a∈R.(1)若y+2>0恒成立,求实数a的取值范围:(2)当a=1时,∀t>―2,关于x的不等式y≤―3x+3+m在[―2,t]有解,求实数m的取值范围.【解题思路】(1)利用一元二次不等式恒成立的条件即可求解;(2)根据已知条件及二次函数的性质即可求解.【解答过程】(1)y+2>0恒成立,即ax2―(2a+3)x+8>0恒成立,当a=0时,―3x+8>0,解得x<83,舍去;当a≠0时,a>04a2―20a+9<0,解得12<a<92所以实数a(2)当a=1时,∀t>―2,关于x的不等式y≤―3x+3+m在[―2,t]有解,则―2是x2―2x+3―m≤0的解,因为抛物线y=x2―2x+3开口向上,对称轴x=1,所以11―m≤0,解得m≥11,所以m的取值范围为[11,+∞).【变式7-2】(23-24高一上·浙江台州·期中)已知函数f(x)=2x2―ax+a2―4,g(x)=x2―x+a2―314,(a∈R)(1)当a=1时,解不等式f(x)>g(x);(2)若任意x>0,都有f(x)>g(x)成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[0,1],使得不等式f(x1)>g(x2)成立,求实数a的取值范围.【解题思路】(1)作差后解一元二次不等式即可.(2)解法一:构造函数,分类讨论求解二次函数最小值,然后列不等式求解即可;解法二:分离参数,构造函数k=x+154x,利用基本不等式求解最值即可求解;(3)把问题转化为f(x)min>g(x)min,利用动轴定区间分类讨论即可求解.【解答过程】(1)当a=1时,f(x)=2x2―x―3,g(x)=x2―x―274所以f(x)―g(x)=x2+154>0,所以f(x)>g(x),所以f(x)>g(x)的解集为R.(2)若对任意x>0,都有f(x)>g(x)成立,即x2+(1―a)x+154>0在x>0恒成立,解法一:设ℎ(x )=x 2+(1―a )x +154,x >0,对称轴x =a―12,由题意,只须ℎ(x )min >0,①当a―12≤0,即a ≤1时,ℎ(x )在0,+∞上单调递增,所以ℎ(x )>ℎ(0)=154,符合题意,所以a ≤1;②当a―12>0,即a >1时,ℎ(x )在+∞单调递增,所以ℎ(x )>=―(a―1)24+154>0,解得1<a <1+a >1,所以1<a <1+综上,a <1+解法二:不等式可化为(a ―1)x <x 2+154,即a ―1<x +154x ,设k =x +154x ,x >0,由题意,只须a ―1<k (x )min ,k =x +154x ≥=当且仅当x =154x 即x =k min =所以a ―1<a <1+(3)若对任意x 1∈[0,1],存在x 2∈[0,1],使得不等式f (x 1)>g (x 2)成立,即只需满足f (x )min >g (x )min ,x ∈[0,1],g (x )=x 2―x +a 2―314,对称轴x =12,g (x )在0,递增,g (x )min ==a 2―8,f (x )=2x 2―ax +a 2―4,x ∈[0,1],对称轴x =a4,①a4≤0即a ≤0时,f (x )在[0,1]递增,f (x )min =f (0)=a 2―4>g (x )min =a 2―8恒成立;②0<a4<1即0<a <4时,f (x )在0,,1递增,f (x )min ==78a 2―4,g (x )min =a 2―8,所以78a 2―4>a 2―8,故0<a <4;③a4≥1即a ≥4时,f (x )在[0,1]递减,f (x )min =f (1)=a 2―a ―2,g (x )min =a 2―8,所以a 2―a ―2>a 2―8,解得4≤a <6,综上:a ∈(―∞,6).【变式7-3】(23-24高一上·山东威海·期中)已知函数f(x)=x 2―(a +3)x +6(a ∈R)(1)解关于x 的不等式f(x)≤6―3a ;(2)若对任意的x ∈[1,4],f(x)+a +5≥0恒成立,求实数a 的取值范围(3)已知g(x)=mx +7―3m ,当a =1时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f (x 1)=g (x 2)成立,求实数m 的取值范围.【解题思路】(1)由不等式f(x)≤6―3a 转化为(x ―3)(x ―a)≤0,分a <3,a =3,a >3讨论求解;(2)将对任意的x ∈[1,4],f(x)+a +5≥0恒成立,转化为对任意的x ∈[1,4],a(x ―1)≤x 2―3x +11恒成立,当x =1,恒成立,当x ∈(1,4]时,a ≤(x ―1)+9x―1―1恒成立,利用基本不等式求解;(3)分析可知函数f (x )在区间[1,4]上的值域是函数g (x )在区间[1,4]上的值域的子集,分m =0、m <0、m >0三种情况讨论,求出两个函数的值域,可得出关于实数m 的不等式组,综合可得出实数m 的取值范围.【解答过程】(1)因为函数f(x)=x 2―(a +3)x +6(a ∈R),所以f(x)≤6―3a ,即为x 2―(a +3)x +3a ≤0,所以(x ―3)(x ―a)≤0,当a <3时,解得a ≤x ≤3,当a =3时,解得x =3,当a >3时,解得3≤x ≤a , 综上,当a <3时,不等式的解集为{x |a ≤x ≤3},当a ≥3时,不等式的解集为{x |3≤x ≤a }(2)因为对任意的x ∈[1,4],f(x)+a +5≥0恒成立,所以对任意的x ∈[1,4],a(x ―1)≤x 2―3x +11恒成立,当x =1时,0≤9恒成立,所以对任意的x ∈(1,4]时,a ≤(x ―1)+9x―1―1恒成立, 令(x ―1)+9x―1―1≥1=5,当且仅当x ―1=9x―1,即x =4时取等号,所以a ≤5,所以实数a 的取值范围是(―∞,5](3)当a =1时,f(x)=x 2―4x +6,因为x ∈[1,4],所以函数f(x)的值域是[2,6],因为对任意的x 1∈[1,4],总存在x 2[1,4],使f (x 1)=g (x 2)成立,所以f(x)的值域是g(x)的值域的子集,当m >0时,g(x)∈[7―2m,m +7],则m >07―2m ≤2m +7≥6,解得m ≥52当m <0时,g(x)∈[m +7,7―2m],则m <07―2m ≥6m +7≤2,解得m ≤―5,当m =0时,g(x)∈{7},不成立;综上,实数m 的取值范围(―∞,―5]∪+∞.一、单选题1.(2023·河南·模拟预测)已知命题“∃x 0∈[―1,1],―x 20+3x0+a >0”为真命题,则实数a 的取值范围是( )A .(―∞,―2)B .(―∞,4)C .(―2,+∞)D .(4,+∞)【解题思路】由题知x 0∈[―1,1]时,a >x 20―3x 0min ,再根据二次函数求最值即可得答案.【解答过程】解:因为命题“∃x 0∈[―1,1],―x 20+3x 0+a >0”为真命题,所以,命题“∃x 0∈[―1,1],a >x 20―3x 0”为真命题,所以,x 0∈[―1,1]时,a >x 20―3x 0min ,因为,y =x 2―3x =x―94,所以,当x ∈[―1,1]时,y min =―2,当且仅当x =1时取得等号.所以,x 0∈[―1,1]时,a >x 20―3x 0min=―2,即实数a 的取值范围是(―2,+∞)故选:C.2.(2024·浙江·模拟预测)若不等式kx 2+(k ―6)x +2>0的解为全体实数,则实数k 的取值范围是( )A .2≤k ≤18B .―18<k <―2C .2<k <18D .0<k <2【解题思路】分类讨论k =0与k ≠0两种情况,结合二次不等式恒成立问题的解决方法即可得解.【解答过程】当k =0时,不等式kx 2+(k ―6)x +2>0可化为―6x +2>0,显然不合题意;当k ≠0时,因为kx 2+(k ―6)x +2>0的解为全体实数,所以k >0Δ=(k ―6)2―4k ×2<0,解得2<k <18;综上:2<k <18.故选:C.3.(2023·辽宁鞍山·二模)若对任意的x ∈(0,+∞),x 2―mx +1>0恒成立,则m 的取值范围是( )A .(―2,2)B .(2,+∞)C .(―∞,2)D .(―∞,2]【解题思路】变形给定不等式,分离参数,利用均值不等式求出最小值作答.【解答过程】∀x ∈(0,+∞),x 2―mx +1>0⇔m <x +1x ,而当x >0时,x +1x ≥=2,当且仅当x =1x ,即x =1时取等号,则m <2,所以m 的取值范围是(―∞,2).故选:C.4.(2023·宁夏中卫·二模)已知点A(1,4)在直线x +y=1(a >0,b >0)上,若关于t 的不等式a +b ≥t 2+5t +3恒成立,则实数t 的取值范围为( )A .[―6,1]B .[―1,6]C .(―∞,―1]∪[6,+∞)D .(―∞,―6]∪[1,+∞)【解题思路】将点代入直线方程,再利用基本不等式求得a +b 的最小值,从而将问题转化9≥t 2+5t +3,解之即可.【解答过程】因为点A(1,4)在直线xa +yb =1(a >0,b >0)上,所以1a +4b =1,故a +b =(a +b +=ba +4a b+5≥=9,当且仅当ba =4a b且1a +4b =1,即a =3,b =6时等号成立,因为关于t 的不等式a +b ≥t 2+5t +3恒成立,所以9≥t 2+5t +3,解得―6≤t ≤1,所以t ∈[―6,1].故选:A.5.(23-24高二上·山东潍坊·阶段练习)若两个正实数x ,y 满足1x +4y =2,且不等式x +y4<m 2―m 有解,则实数m 的取值范围是( )A .(―1,2)B .(―∞,―2)∪(1,+∞)C .(―2,1)D .(―∞,―1)∪(2,+∞)【解题思路】利用均值不等式求出最小值,根据题意列不等式求解即可.【解答过程】x +y4=+=+1+y 4x≥12(1+1+2)=2,要使得不等式x +y4<m 2―m 有解,只需m 2―m >2有解即可,解得m >2或者m <―1,故选:D.6.(23-24高一上·全国·单元测试)不等式2x 2―axy +y 2≥0,对于任意1≤x ≤2及1≤y ≤3恒成立,则实数a 的取值范围是( )A .a|a ≤B .a|a ≥C .a|a ≤D .a|a【解题思路】由于在不等式2x 2―axy +y 2≥0中出现两个变量,对其进行变形令t =xy 则转化为含参数t 的不等式2t 2―at +1≥0,在t ∈,2上恒成立的问题,然后进行分离参数求最值即可.【解答过程】由y ∈[1,3],则不等式2x 2―axy +y 2≥0两边同时乘以1y 2不等式可化为:+1≥0,令t =xy ,则不等式转化为:2t 2―at +1≥0,在t ∈,2上恒成立,由2t 2―at +1≥0可得a ≤2t 2+1t即a ≤2t +,又2t +1t ≥=t =t =2t +1t 取得最小值故可得a ≤故选:A .7.(2023·江西九江·二模)已知命题p :∃x ∈R ,x 2+2x +2―a <0,若p 为假命题,则实数a 的取值范围为( )A .(1,+∞)B .[1,+∞)C .(―∞,1)D .(―∞,1]【解题思路】首先由p 为假命题,得出¬p 为真命题,即∀x ∈R ,x 2+2x +2―a ≥0恒成立,由Δ≤0,即可求出实数a 的取值范围.【解答过程】因为命题p :∃x ∈R ,x 2+2x +2―a <0,所以¬p :∀x ∈R ,x 2+2x +2―a ≥0,又因为p 为假命题,所以¬p 即∀x ∈R ,x 2+2x +2―a ≥0恒成立,所以Δ≤0,即22―4(2―a)≤0,解得a ≤1,故选:D .8.(2024·上海黄浦·模拟预测)已知不等式ρ:ax 2+bx +c <0(a ≠0)有实数解.结论(1):设x 1,x 2是ρ的两个解,则对于任意的x 1,x 2,不等式x 1+x 2<―ba 和x 1⋅x 2<ca 恒成立;结论(2):设x 0是ρ的一个解,若总存在x 0,使得ax 02―bx 0+c <0,则c <0,下列说法正确的是( )A .结论①、②都成立B .结论①、②都不成立C .结论①成立,结论②不成立D .结论①不成立,结论②成立【解题思路】根据一元二次不等式与二次方程以及二次函数之间的关系,以及考虑特殊情况通过排除法确定选项.【解答过程】当a<0且Δ=b2―4ac<0时,ρ:ax2+bx+c<0(a≠0)的解为全体实数,故对任意的x1,x2,x1+x2与―ba的关系不确定,例如:ρ:―x2+2x―2<0,取x1=1,x2=4,而―ba =2,所以x1⋅x2=4>ca=2,故结论①不成立.当a<0且Δ=b2―4ac>0时,ρ:ax2+bx+c<0的解为x|x<p或x>q,其中p,q是ax2+bx+c=0的两个根.当x0<p,―x0>q此时ax02―bx0+c<0,但c值不确定,比如:ρ:―x2+x+2<0,取x0 =―3,则―x02―x0+2<0,但c>0,故结论②不成立.故选:B.二、多选题9.(2023·江苏连云港·模拟预测)若对于任意实数x,不等式(a―1)x2―2(a―1)x―4<0恒成立,则实数a可能是()A.―2B.0C.―4D.1【解题思路】首先当a=1,不等式为―4<0恒成立,故满足题意;其次a≠1,问题变为了一元二次不等式恒成立问题,则当且仅当a―1<0Δ<0,解不等式组即可.【解答过程】当a=1时,不等式为―4<0恒成立,故满足题意;当a≠1时,要满足a―1<0Δ<0,而Δ=4(a―1)2+16(a―1)=4(―1)(a+3),所以解得―3<a<1;综上,实数a的取值范围是(―3,1];所以对比选项得,实数a可能是―2,0,1.故选:ABD.10.(2024·广东深圳·模拟预测)下列说法正确的是()A.不等式4x2―5x+1>0的解集是x|x>14或x<1B.不等式2x2―x―6≤0的解集是x|x≤―32或x≥2C.若不等式ax2+8ax+21<0恒成立,则a的取值范围是∅D.若关于x的不等式2x2+px―3<0的解集是(q,1),则p+q的值为―12【解题思路】对于AB ,直接解一元二次不等式即可判断;对于C ,对a 分类讨论即可判断;对于D ,由一元二次不等式的解集与一元二次方程的根的关系,先求得p,q ,然后即可判断.【解答过程】对于A ,4x 2―5x +1>0⇔(x ―1)(4x ―1)>0⇔x <14或x >1,故A 错误;对于B ,2x 2―x ―6≤0⇔(x ―2)(2x +3)≤0⇔―32≤x ≤2,故B 错误;若不等式ax 2+8ax +21<0恒成立,当a =0时,21<0是不可能成立的,所以只能a <0Δ=64a 2―84a <0 ,而该不等式组无解,综上,故C 正确;对于D ,由题意得q,1是一元二次方程2x 2+px ―3=0的两根,从而q ×1=―322+p ―3=0,解得p =1,q =―32,而当p =1,q =―32时,一元二次不等式2x 2+x ―3<0⇔(x ―1)(2x +3)<0⇔―32<x <1满足题意,所以p +q 的值为―12,故D 正确.故选:CD.11.(22-23高三上·河北唐山·阶段练习)若(ax -4)(x 2+b )≥0对任意x∈(-∞,0]恒成立,其中a ,b 是整数,则a +b 的可能取值为( )A .-7B .-5C .-6D .-17【解题思路】对b 分类讨论,当b≥0由(ax -4)(x 2+b )≥0可得ax -4≥0,由一次函数的图象知不存在;当b <0时,由(ax -4)(x 2+b )≥0,利用数形结合的思想可得出a ,b 的整数解.【解答过程】当b≥0时,由(ax -4)(x 2+b )≥0可得ax -4≥0对任意x∈(-∞,0]恒成立,即a≤4x 对任意x∈(-∞,0]恒成立,此时a 不存在;当b <0时,由(ax -4)(x 2+b )≥0对任意x∈(-∞,0]恒成立,可设f (x )=ax -4,g (x )=x 2+b ,作出f (x ),g (x )的图象如下,aa,b是整数可得a=-1b=-16或a=-4b=-1或a=-2b=-4所以a+b的可能取值为-17或-5或-6故选:BCD.三、填空题12.(2024·陕西渭南·模拟预测)若∀x∈R,a<x2+1,则实数a的取值范围是(―∞,1).(用区间表示)【解题思路】利用二次函数的性质计算即可.【解答过程】由题得a<(x2+1)min=1,即实数a的取值范围为(―∞,1).故答案为:(―∞,1).13.(2024·辽宁·三模)若“∃x∈(0,+∞),使x2―ax+4<0”是假命题,则实数a的取值范围为(―∞,4].【解题思路】将问题转化为“a≤x+4x在(0,+∞)上恒成立”,再利用对勾函数的单调性求得最值,从而得解.【解答过程】因为“∃x∈(0,+∞),使x2―ax+4<0”是假命题,所以“∀x∈(0,+∞),x2―ax+4≥0”为真命题,其等价于a≤x+4x在(0,+∞)上恒成立,又因为对勾函数f(x)=x+4x在(0,2]上单调递减,在[2,+∞)上单调递增,所以f(x)min=f(2)=4,所以a≤4,即实数a∞,4].故答案为:(―∞,4].14.(2023·河北·模拟预测)若∃x∈R,ax2+ax+a―3<0,则a的一个可取的正整数值为1(或2,3).【解题思路】由判别式大于0求解.【解答过程】由题意Δ=a2―4a(a―3)>0,解得0<a<4,a的正整数值为1或2或3,故答案为:1(也可取2,3).四、解答题15.(2024·全国·模拟预测)已知函数f(x)=|2x―a|,且f(x)≤b的解集为[―1,3].(1)求a和b的值;(2)若f(x)≤|x―t|在[―1,0]上恒成立,求实数t的取值范围.【解题思路】(1)根据绝对值不等式的性质即可求解,(2)将问题转化为3x2+(2t―8)x+4―t2≤0在[―1,0]上恒成立,即可利用二次函数零点分布求解.【解答过程】(1)由f(x)≤b得|2x―a|≤b,易知b≥0,则―b≤2x―a≤b,解得a―b2≤x≤b+a2,由于f(x)≤b的解集为[―1,3],则b+a2=3,a―b2=―1,解得a=2,b=4.(2)由(1)知f(x)=|2x―2|,由f(x)≤|x―t|得|2x―2|≤|x―t|,得3x2+(2t―8)x+4―t2≤0在[―1,0]上恒成立,Δ=(2t―8)2―4×3×(4―t2)=16(t―1)2>0,故t≠1.令g(x)=3x2+(2t―8)x+4―t2,若g(x)≤0在[―1,0]上恒成立,则g(―1)≤0g(0)≤0,即―t2―2t+15≤04―t2≤0,解得t≤―5或t≥3,故实数t的取值范围为(―∞,―5]∪[3,+∞).16.(2024·新疆乌鲁木齐·一模)已知函数f(x)=|x―1|+|x+2|.(1)求不等式f(x)≤5的解集;(2)若不等式f(x)≥x2―ax+1的解集包含[―1,1],求实数a的取值范围.【解题思路】(1)分类讨论,求解不等式即可;(2)将问题转化为二次函数在区间上恒成立的问题,列出不等式组即可求得.【解答过程】(1)当x≤―2时,f(x)≤5等价于―2x―1≤5,解得x∈[―3,―2];当―2<x<1时,f(x)≤5≤5,恒成立,解得x∈(―2,1);当x≥1时,f(x)≤5等价于2x+1≤5,解得x∈[1,2];综上所述,不等式的解集为[―3,2].(2)不等式f(x)≥x2―ax+1的解集包含[―1,1],等价于f(x)≥x2―ax+1在区间[―1,1]上恒成立,也等价于x2―ax―2≤0在区间[―1,1]恒成立.则只需g(x)=x2―ax―2满足:g(―1)≤0且g(1)≤0即可.即1+a―2≤0,1―a―2≤0,解得a∈[―1,1].。
第3讲 不等式的恒成立与存在性问题(解析版)-高考数学复习《导数与解析几何》必掌握问题
第3讲 不等式的恒成立与存在性问题典型例题构造中间值函数证明不等式【例1】已知函数()e x f x =,求证:曲线e (0)x y x =>总在曲线2ln y x =+的上方. 【分析】要证函数()f x 的图像恒在另一个函数()g x 图像的上方,即证()()f x g x >,可用作差法,构造新函数()()()h x f x g x =-,利用导数证明()0h x >.也可以考虑中间值法,找到一个函数()x ϕ使()()()f x x g x ϕ>>. 【解析】证法一 构造中间值函数:1y x =+. 令()()e 1x F x x =-+,则()e 1x F x '=-.因为0x >,所以e 1x >,则e 10x ->,所以()0F x '>,故()F x 在()0,∞+上单调递增. 因为()00F =,所以()0F x >,即e 1x x >+. 令()()()12ln 1ln G x x x x x =+-+=--,则 ()111(0).x G x x x x'-=-=> 令()0G x '=,得1x =.当x 变化时,()(),G x G x '在()0,∞+上的变化情况见表3.1.表3.1所以当1x =时,()G x 有最小值()10G =.所以()0G x ,则12ln x x ++,即e 2ln x x >+,所以曲线e (0)x y x =>总在曲线2ln y x =+的上方.证法二 构造中间值函数:e y x =.令()e e (0)x H x x x =->,则()e e x H x '=-.令()0H x '=,得1x =. 当x 变化时,()(),H x H x '在()0,∞+上的变化情况见表3.2.表3.2所以当1x =时,()H x 有最小值()10H =.所以()0H x ,即e e x x ,当且仅当1x =时,“=”成立. 令()()e 2ln x x x ϕ=-+,则()1e 1e .x x x xϕ-=-=' 令()0x ϕ'=,得1ex =.当x 变化时,()(),x x ϕϕ'在()0,∞+上的变化情况见表3.3表3.3则当1e x =时,()x ϕ有最小值1112ln 0e e ϕ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.所以()0x ϕ,即e 2ln x x +,当且仅当1e x =时,"=”成立.所以e 2ln x x >+(=“”不能同时成立). 所以曲线e (0)x y x =>总在曲线2ln y x =+的上方. 证法三 构造差函数.设()()()2ln e ln 2(0)x g x f x x x x =-+=-->,则()1e x g x x =-'.令()1e x h x x=-,则()21e 0x h x x=+>'.所以()h x 在()0,∞+上单调递增,即()g x '在()0,∞+上单调递增. 因为()121e 20,1e 102g g ''⎛⎫=-=- ⎪⎝⎭,所以()g x '在()0,∞+上存在唯一的0x ,使得()0001e 0x g x x =-=',即001e x x =,则00ln x x =-,且0112x <<.当x 变化时,()g x '与()g x 在()0,∞+上的变化情况见表3.4表3.4则当0x x =时,()g x 取得最小值()000001e ln 22x g x x x x =--=+-. 因为01,12x ⎛⎫∈ ⎪⎝⎭,所以()0001220.g x x x =+->= 因此()0g x >,即()2ln (0)f x x x >+>,所以曲线e (0)x y x =>总在曲线2ln y x =+的上方.【点睛】因为不等式与函数关系密切,所以经常将证明不等式恒成立的问题转化为求对应函数或构造新函数问题,而研究什么函数、如何构造函数是解题的关键.本题给出了几种证明不等式的方法,前两种方法都用到中间值法,寻找某函数在某点处的切线方程,进而利用差函数判断这条切线是否位于两个函数之间.在证法一中,1y x =+是函数e x y =在()0,1处的切线方程,也恰好是函数2ln y x =+在()1,2处的切线方程;在证法二中,y ex =是函数e x y =在()1,e 处的切线方程.这两种方法只要找到不等号两边的中间值函数,往往就可以使问题变得容易处理.证法三是直接构造差函数,利用导数的性质,以及灵活运用极值点处导数为0的方程,将函数的最值转化成均值不等式求解.构造差函数是常用的方法,但是对于导函数性质的研究需要深入,并且需要综合不等式的相关知识,难度稍大些. 参变分离求参数取值范围【例2】已知函数()ln f x x x =,若对任意1x 都有()1f x ax -,求实数a 的取值范围. 【分析】对于不等式恒成立问题,可以考虑构造差函数,对参数进行分类讨论,利用导数研究差函数的取值范围;也可以考虑将参数分离出来,研究参数分离之后的新函数的图像和性质;还可以考虑将定义域内的特殊值代入不等式,首先限定参数的取值范围,再对参数进行分类讨论.【解析】解法一 直接构造差函数,分类讨论.()()()1ln 1,g x f x ax x x ax =--=-+令则()()1ln .g x f x a a x =-=-+''(1)若1a ,当1x >时,()1ln 10g x a x a '=-+>-,故()g x 在()1,∞+上为增函数. 所以当1x 时,()()110g x g a =-,即()1f x ax -.(2)若1a >,方程()0g x '=的根为10e a x -=.此时,若()01,x x ∈,则()0g x '<,故()g x 在该区间为减函数.所以当()01,x x ∈时,()()110g x g a <=-<,即()1f x ax <-,与题设()1f x ax -相矛盾.综上所述,满足条件的a 的取值范围是(],1∞-. 解法二 参变分离.依题意,得()1f x ax -在[)1,∞+上恒成立,即不等式1ln a x x+对于[)1,x ∞∈+恒成立.令()1ln g x x x=+,则 ()211111.g x x x x x '⎛⎫=-=- ⎪⎝⎭当1x >时,因为()1110g x x x '⎛⎫=-> ⎪⎝⎭,故()g x 是()1,∞+上的增函数,所以()g x 的最小值为()11g =,因此a 的取值范围是(],1∞-. 解法三 取特殊值.令()()()1ln 1g x f x ax x x ax =--=-+,由题意知对任意1x 都有()0g x ,所以()110g a =-,则1a ,因此()()1ln 0g x a x =-+',故()g x 在()1,∞+上为增函数. 所以当1x 时,()()min ()10g x g x g =,即()1f x ax -恒成立. 所以a 的取值范围是(],1∞-.【点睛】对于不等式恒成立问题,构造差函数、对参数进行分类讨论研究差函数的符号,是解决这类问题的常用方法.但是有时分类讨论过于烦琐,而参变分离构造的新函数由于脱离了参数的千扰,易于研究其图像和性质.适当使用特殊值,将参数的范围界定在更小的范围内,有时会得到意想不到的效果.构造差函数求解恒成立问题【例3】已知函数()ln f x x x =,若对于任意1,e e x ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax -,求实数a 的取值范围.【分析】对于不等式恒成立问题,通常转化为函数的问题来求解,构造差函数是最常用的一种解决办法.本题可直接构造差函数()()()1h x f x ax =--,问题即可转化为()0h x 在1,e e ⎡⎤⎢⎥⎣⎦上恒成立时求a 的取值范围,可通过求()h x 的最大值来求解.【解析】解法一 参变分离构造新函数. 当1e e x 时,不等式()ln 1f x x x ax =-,等价于1ln a x x+. 令()11ln ,e e g x x x x ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭,则()221111,e .e x g x x x x x ⎛⎫-⎡⎤=-=∈' ⎪⎢⎥⎣⎦⎝⎭当1,1e x ⎡⎤∈⎢⎥⎣⎦时,()0g x '<,所以()g x 在区间1,1e ⎡⎤⎢⎥⎣⎦上单调递减;当(]1,e x ∈时,()0g x '>,所以()g x 在区间()1,e 上单调递增.因为()1111ln e e 1 1.5,e lne 1 1.5.e e e e g g ⎛⎫=+=->=+=+< ⎪⎝⎭所以()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为1e 1e g ⎛⎫=- ⎪⎝⎭.所以当e 1a -时,对于任意1,e e x ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax -.所以实数a 的取值范围是e 1a -. 解法二 直接构造差函数.设()()()1ln 1h x f x ax x x ax =--=-+,则()0h x 对任意1,e e x ⎡⎤∈⎢⎥⎣⎦恒成立.对()h x 求导,得()1ln .h x x a =+-'令()0h x '=,得ln 1x a =-,所以1e a x -=.当x 变化时,()(),h x h x '在()0,∞+上的变化情况见表3.5. 表3.5当11e e a -,即0a 时,()h x 在1,e e ⎡⎤⎢⎥⎣⎦上单调递增,所以()max ()e e e 10h x h a ==-+,则11ea +,不满足0a ,舍去.当11e e e a -<<,即02a <<时,()h x 在11,e e a -⎡⎤⎢⎥⎣⎦上单调递减,在(1e ,e a -⎤⎦上单调递增, 于是(e)0,10,e h h ⎧⎪⎨⎛⎫ ⎪⎪⎝⎭⎩所以11,e e 1.a a ⎧+⎪⎨⎪-⎩又因为02a <<,所以e 12a -<.当1e e a -,即2a 时,()h x 在1,e e ⎡⎤⎢⎥⎣⎦上单调递减,所以max 1()0e h x h ⎛⎫= ⎪⎝⎭,则e 1a -,满足2a .综上所述,实数a 的取值范围是e 1a -. 解法三 先等价变形,再构造差函数.因为0x >,所以不等式()ln 1f x x x ax =-等价于1ln x a x-.设()11ln ln x x a x a x x ϕ⎛⎫=--=+- ⎪⎝⎭,即()0x ϕ对任意1,e ex ⎡⎤∈⎢⎥⎣⎦恒成立.对()x ϕ求导,得()22111.x x x x xϕ-=-='由解法一知,()x ϕ在区间1,1e ⎡⎤⎢⎥⎣⎦上单调递减,在区间()1,e 上单调递增.所以()10,e e 0,ϕϕ⎧⎛⎫⎪ ⎪⎝⎭⎨⎪⎩即e 1,11,e a a -⎧⎪⎨+⎪⎩故e 1a -. 【点睛】对于含有参数的不等式恒成立问题,构造差函数后,分析导数的符号情况时,通常要对参数进行分类讨论.有时,对不等式进行等价变形后再构造差函数,会使问题更加容易解决利用二次函数性质判断参数取值范围【例4】已知函数()()321232af x x x x a =-+-∈R .若对于任意()1,x ∞∈+都有()2f x a '<-成立,求实数a 的取值范围.【分析】若原函数是三次函数,则其导数为二次函数.有关导数的不等式恒成立问题可以由二次函数的图像和性质直接求解,也可以利用参变分离结合构造的新函数的图像和性质求解.【解析】解法一 参变分离构造新函数. 对函数()f x 求导,得()2 2.f x x ax '=-+-因为对于任意()1,x ∞∈+都有()2f x a '<-成立,即222x ax a -+-<-成立.因为10x ->,所以对于任意()1,x ∞∈+都有21x a x <-成立.令()()()21,1x g x x x ∞=∈+-,则 ()()()222222122.(1)(1)(1)x x x x x x x g x x x x ----===---' 令()0g x '=,得2x =.当x 变化时,()(),g x g x '在()1,∞+上的变化情况见表3.6.表3.6所以()min ()24g x g ==,故实数a 的取值范围是4a <. 解法二 直接研究二次函数.对函数()f x 求导,得 ()2 2.f x x ax '=-+-若对任意()1,x ∞∈+都有()2f x a '<-成立,即222x ax a -+-<-成立,亦即20x ax a -+>成立.设()2h x x ax a =-+,则二次函数()h x 的图像是开口向上的抛物线,对称轴为2a x =.由题意,对于任意()1,x ∞∈+都有()0h x >,则()1,1,2210Δ0,a a h ⎧⎧>⎪⎪⎨⎨⎪⎪><⎩⎩或即2,2,04,a a a a ⎧>⎧⎨⎨∈<<⎩⎩R 或 所以2a 或24a <<.所以实数a 的取值范围是4a <.解法三 参变分离结合均值不等式.由解法一知,对于任意()1,x ∞∈+都有21x a x <-成立,则()()22(1)21111 2.111x x x x x x x -+-+==-++--- 因为10x ->,所以()()1122124,1x x x -++-=- 当且仅当11,11,x x x ⎧-=⎪-⎨⎪>⎩即2x =时,“=”成立.所以实数a 的取值范围是4a <.【点睛】二次函数是基本初等函数之一,在研究函数的导数符号时会经常遇到.二次函数与二次方程、二次不等式在有关函数问题的求解中起到重要作用,对二次函数的图像和性质要予以足够的重视. 等价转化求解恒成立或存在性问题【例5】已知函数()e x f x x =-,当[]0,2x ∈时,不等式()f x ax >恒成立,求实数a 的取值范围.【分析】我们在解决不等式恒成立问题时,可以将不等式等价变形,通过移项、去分母或者乘以(除以)某一正项,再分离参数、构造新函数,将不等式问题等价转化为函数问题,就可以利用导数来研究函数的图像和性质了. 【解析】解法一 参变分离构造新函数. 由()f x ax >,得()1e x a x +<.当0x =时,上述不等式显然成立,则a ∈R .当02x <时,将()1e xa x +<等价变形得e 1x a x <-,令()e 1xg x x=-,则()()21e x x g x x-='. 令()0g x '>,解得1x >;令()0g x '<,解得1x <.所以()g x 在()0,1上单调递减,在()1,2上单调递增.所以当1x =时,()g x 取得最小值e 1-,因此所求实数a 的取值范围是(),1e ∞--.解法二 等价变形后构造新函数.由题意,不等式()e x f x x ax =->,当0x =时,()010f =>恒成立,a ∈R .当02x <时,将()1e xa x +<等价变形得e 10xa x-->.设()e 1(02)xh x a x x=--<,则()()21e xx h x x -=',由解法一知,()min ()1e 10h x h a ==-->,所以e 1a <-,故所求实数a 的取值范围是(),e 1∞--.解法三 直接构造差函数,分类讨论.设()()e x x f x ax x ax ϕ=-=--,则()e 1x x a ϕ=--'.由题意知,对于任意[]()0,2,0x x ϕ∈>恒成立,等价于min?()0x ϕ>.①当1a -时,10a --,因为e 0x >,所以()0x ϕ'>,则()x ϕ在[]0,2上单调递增,所以()min ()010x ϕϕ==>,故1a -满足题意.(2)当1a >-时,则()e 10x x a ϕ=--=',得e 1x a =+,所以()ln 1x a =+. 当x 变化时,()(),x x ϕϕ'在(),∞∞-+上的变化情况见表3.7.表3.7当()ln 10a +,即011,10a a <+-<时,()x ϕ在[]0,2上单调递增,则()min?()010x ϕϕ==>,所以10a -<,满足题意.当()0ln 12a <+<,即2211e ,0e 1a a <+<<<-时,()x ϕ在()()0,ln 1a +上单调递减,在()()ln 1,2a +上单调递增,则()()()()min ()ln 11ln 1ln 1x a a a a a ϕϕ=+=+-+-+()()11ln 10,a a ⎡⎤=+-+>⎣⎦ 因为()10,1ln 10a a +>-+>,所以01e a <+<,因此0e 1a <<-. 当()ln 12a +,即221e ,e 1a a +-时,()x ϕ在[]0,2上单调递减,则()min()2e 220x a ϕϕ==-->,所以2e 12a <-,不满足2e 1a -.综上所述,实数a 的取值范围是(),e 1∞--.【点睛】不等式恒成立或存在性问题常常转化为对应函数的最值问题,可以通过不等式的等价变形,找到易于研究的函数求解. 分类讨论研究函数的图像和性质【例6】设函数()e 1(0)x f x ax a =-+>,当1x <时,函数()f x 的图像恒在x 轴上方,求a 的最大值.【分析】函数()f x 的图像恒在x 轴上方(或下方)之类的问题,转化为代数语言即()0f x >(或()0)f x <恒成立的问题,本质上还是不等式问题.此时,求解参数的取值范围,一种思路是通过研究导数的零点而研究原函数的图像和性质,找到()f x 的最小值或取值范围,即可找到参数的取值范围;另一种思路是将参数直接分离出来,研究分离后的新函数的图像和性质.这两种思路通常都需要用到分类讨论的思想方法.【解析】解法一 因导数零点的不确定性而分类讨论.对()f x 求导,得()e x f x a '=-.令()0f x '=,即e x a =,则ln x a =.①当ln 1a <,即0e a <<时,对于任意(),ln x a ∞∈-,有()0f x '<,故()f x 在(),ln a ∞-上单调递减;对于任意()ln ,1x a ∈,有()0f x '>,故()f x 在()ln ,1a 上单调递增.因此当ln x a =时,()f x 有最小值()()ln ln 11ln 10.f a a a a a a =-+=-+> 故0e a <<成立.②当ln 1a ,即e a 时,对于任意(),1x ∞∈-,有()0f x '<,故()f x 在(),1∞-上单调递减.因为()0f x >恒成立,所以()10f ,即e 10a -+,所以e 1a +,则e e 1a +. 综上所述,a 的最大值为e 1+. 解法二 因分离参数而分类讨论.由题设知,当1x <时,()e 10x f x ax =-+>.① 当01x <<时,e 1x a x +<.设()e 1x g x x+=,则()()221e 1e e 10.xx x x x g x x x '----==<故()g x 在()0,1上单调递减,因此,()()1e 1g x g >=+,所以e 1a +. ② 当0x =时,()20f x =>成立.③ 当0x <时,e 1x a x +>,因为e 10x x +<,所以当e 1a =+时,e 1x a x +>成立. 综上所述,a 的最大值为e 1+.【点睛】何时需要分类讨论?是不是有参数就一定要分类讨论?其实,这是没有一定之规的,关键是按照研究的需要而定.本题的两种解法提供了两种分类讨论的角度,解法一讨论的是参数,解法二讨论的是自变量.因为解法一中导数的零点ln x a =含参数,所以无法确定其与定义域()(),1x ∞∈-的关系,于是就要按照ln a 与1的大小关系来分类讨论;而解法二是为了分离参数,由()0f x >得e 1x ax +,不等式两边同时除以x ,因确知x 的符号而进行分类讨论.解题时不要墨守成规,要根据实际情况灵活选用恰当的方法.关注特殊值,优化分类讨论【例7】已知函数()e ax f x x =-,当1a ≠时,求证:存在实数0x 使()01f x <. 【分析】为证明“存在实数0x 使()01f x <”,只需找到一个满足条件的实数0x 即可.因函数()f x 中含有参数a ,故考虑对参数a 进行分类讨论.当实数0x 容易寻找时,可直接得出结论;当实数0x 不能直接发现时,可以将不等式()01f x <等价转化为函数()f x 的最小值小于1.【解析】证法一 当0a 时,显然有()1e 101a f =-<,即存在实数0x 使()01f x <. 当0,1a a >≠时,对函数()f x 求导,得()e 1.ax f x a =-' 由()0f x '=可得11ln x a a =.所以当11,ln x a a ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<,则函数()f x 在11,ln a a ∞⎛⎫- ⎪⎝⎭上单调递减;当11ln ,x a a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,则函数()f x 在11ln ,a a ∞⎛⎫+ ⎪⎝⎭上单调递增,所以()111ln 1ln f a a a a⎛⎫=+ ⎪⎝⎭是()f x 的最小值.由函数()e ax f x x =-可得()01f =,由1a ≠可得11ln 0a a ≠,所以()11ln 01f f a a ⎛⎫<= ⎪⎝⎭. 综上所述,当1a ≠时,存在实数0x 使()01f x <.证法二 当0a 时,显然有()1e 101a f <-<,即存在实数0x 使()01f x <. 当0,1a a >≠时,由()0f x '=可得11ln x a a =.所以当11,ln x a a ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<,则函数()f x 在11,ln a a ∞⎛⎫- ⎪⎝⎭上单调递减;当11ln ,x a a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,则函数()f x 在11ln ,a a ∞⎛⎫+ ⎪⎝⎭上单调递增.所以111ln ln af a a a +⎛⎫= ⎪⎝⎭是()f x 的极小值.设()1ln x g x x +=,则()2ln (0)xg x x x-=>'.令()0g x '=,得1x =. 当x 变化时,()(),g x g x '在()0,∞+上的变化情况见表3.8.表3.8所以当1x ≠时,()()11g x g <=,所以11ln 1f a a ⎛⎫< ⎪⎝⎭.综上所述,当1a ≠时,存在实数0x 使()01f x <.【点睛】证明存在性(或不存在性)问题,只需找到满足条件的变量即可,这时要注意观察函数结构,可以结合不等式性质、定义域等寻找特殊值.常取的自变量的值一般首先考虑0,1,1-,112,e,,2e,等等,还要注意端点的函数值以及极值、最值等,具体要根据实际情况而定.有时特殊值选取恰当,可以起到事半功倍的效果.另外,还要注意等价转化的恰当使用,如转化为求函数的最值问题等,可以使目标更加明确. 先找必要条件再证充分性【例8】 设函数()2ln f x ax a x =--,其中a ∈R .确定a 的所有可能取值,使得()11e xf x x->-在区间()1,∞+内恒成立. 【分析】当()1,x ∞∈+时,211ln e xax a x x--->-恒成立,求参数a 的取值范围.常规的解法有两种.第一种:将所有项移到左边构造函数,令()211ln e x g x ax a x x -=---+,对该函数求导,求出在()1,∞+内的最小值(含参数a ),再令最小值大于0,求得a 的取值范围.第二种:分离参数得121ln e 1x x x a x -+->-,右边不含参数,利用导数求其最大值,则可得a 的取值范围.这两种方法容易想到,但操作过程异常复杂,利用高中知识很难解决,所以可以尝试变形改变结构,将该不等式的结构变为易于处理的形式,把对数、指数都移到一边:()212111ln e 1ln e .x x ax a x a x x x x---->-⇔->+- 这样至少左边的函数是我们比较熟悉的.猜想存在一个函数()h x 满足()()2111ln e x a x h x x x -->>+-,我们的想法是先证明()11ln e x h x x x->+-,然后再由()()21a x h x ->求得a 的取值范围.这种方法的本质是利用不等式的传递性,用切线作中间量,此外还有如下思路:设命题()211:ln e 0x p g x ax a x x -=---+>在区间()1,∞+内恒成立,易见()10g =,于是根据导数的定义,有()()()()1111lim lim 11x x g x g g x g x x ++→→'-==--(符号1x +→表示从1的右侧趋近于1),可知若命题p 成立,则有命题():10q g '成立.即命题q 是命题p 的必要条件,于是命题p 对应的范围是命题q 所对应的范围的子集.利用此方法我们可以得到一个大致的范围.【解析】解法一 利用不等式的传递性,用切线作中间量. 由题意,有()212111ln e 1ln e .x x ax a x a x x x x---->-⇔->+- 设()11ln e x G x x x -=+-,则()1211e 0(1),x G x x x x-'=-+>> 所以函数()G x 在()1,∞+上单调递增.以点()1,0A 为切点,对应的切线为:1G l y x =-. 下面证明()G x 的图像位于直线G l 的下方,即11ln e 1xx x x-+-<-. ()()1111ln e 1ln e 1,x x H x x x x x x x --=+---=+--+则()1211e 1.x H x x x-'=-+- 因为ln 1x x <-, 则1111ln.x x e x x--<⇔< 所以()2122211111(1)e 110.xx H x x x x x x x --=-+-<'-+-=-<因此()H x 在()1,∞+上单调递减.因为()10H =,所以()0H x <,即结论成立. 于是()21111ln e xa x x x x-->->+-,则问题转化为()211(1)a x x x ->->,求参数a 的范围.化简上式可得()11a x +>,易得12a ,所以1,2a ∞⎡⎫∈+⎪⎢⎣⎭. 解法二 必要性先行.设()211ln e x g x ax a x x -=---+,则()10g =,对()g x 求导,得()12112e x g x ax x x -=-+-'由()10g ',得()1210g a =-',即12a. 下面再证明充分性,即当1,2a ∞⎡⎫∈+⎪⎢⎣⎭时,()211ln e 0x g x ax a x x -=---+>.因为12a,所以()()221112a x x --在()1,∞+上恒成立.于是不等式转化为()()21111ln e 2x g x x x x ----+,则只需证明()21111ln e 02x x x x----+>即可. 有以下两种证法: 证法一 令()()21111ln e ,2x H x x x x -⎛⎫=--+- ⎪⎝⎭对()H x 求导,得()()()212221111111e 0,xx x x H x x x x x x x x x --+-=-+->-+-=>'其中指数函数的放缩技巧参考解法一.所以()H x 在()1,∞+上单调递增,故()()10H x H >=,即()21111ln e 2x x x x-->+- 证法二令()()21111ln e 2x H x x x x -⎛⎫=--+- ⎪⎝⎭,则()1211e ,x H x x x x -=-'+- ()3112331221e e .xx x x H x x x x--'+-=+-+='+ 因为()1,x ∞∈+,所以320x x +->,则()0H x ''>,所以()H x '在()1,∞+上单调递增,而()10H '=,于是()0H x '>,则()H x 在()1,∞+上单调递增,所以()()10H x H >=.综上可知,a 的取值范围为1,2a ∞⎡⎫∈+⎪⎢⎣⎭.【点睛】解法一的核心思路是利用不等式的传递性,把切线作为中间量,既转化了问题,又降低了难度.也就是,先证明()11ln e x h x x x->+-,然后再由()()21a x h x ->求得a 的取值范围.最简单的函数就是一次函数了,这样我们就自然想到了切线,设()11ln e x G x x x-=+-,设想存在一条()G x 的切线y kx b =+满足()kx b G x +>,这样的话说明切线应该位千函数()G x 的图像上方,那究竟是不是这样呢? 我们先利用导数来判断()G x 的单调性,()1211e 0(1)x G x x x x-'=-+>>,说明该函数在()1,∞+上单调递增,那么它的形态到底是图3.1还是图3.2呢?图3.1图3.2事实上这里就涉及函数的“凹凸性”问题,但鉴于高中阶段的教学内容中没有“凹凸性”的定义,所以我们只能用代数方式来证明()G x 的图像是图3.2的形式,也就是说,()G x 图像上任意一点处的切线都在()G x 图像的“上方”,那么在这个问题里,我们选哪个点为切点呢?因为现在给定的区间是()1,∞+,所以我们选择了端点. 我们的目标是要证明()0H x '<,因为()10H '=,并且()1211e 1x H x x x-=-+-'中前面两个函数都是分式函数,于是考虑将指数1e x -放缩为分式函数.该解法最难的部分是“凹凸性”的代数证明,函数()G x 的“凹凸性”确保了该解法的正确性.如果函数()G x 是“向下凸”也即图3.1,则“切线法”就失效了,因此“切线法”有其局限性.解法二的精髄在于,先求得一个大致的范围,即寻找一个必要条件,再结合题千信息证明其充分性.对于比较难的题目,我们可通过弱化题目要求,先解决问题的一部分,自行降低难度,先获得一些简单的结论,再将其扩充至一般情形,这是一种“以退为进”的策略.。
2022年高考数学基础题型重难题型突破类型二 恒成立问题与有解问题(解析版)
2022年高考数学基础题型重难题型突破类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【典例8】已知函数f(x)=ln x-ax,g(x)=x2,a∈R.(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a的取值范围.【典例9】已知x=1e为函数f(x)=x a ln x的极值点.(1)求a的值;(2)设函数g(x)=kxe x∀x1∈(0,+∞),∃x2∈R,使得f(x1)-g(x2)≥0,求k的取值范围.【典例10】设函数f(x)=ax2-a-ln x,g(x)=1x-ee x,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).类型二恒成立问题与有解问题一.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.二.恒成立问题的一般解答方法如下:(1)参数分离法:将原不等式化为()a g x >或()a g x <恒成立的问题,然后分析函数()g x 在所给区间的单调性及最值,只需满足最值成立即可;(2)分类讨论:讨论函数()f x 在所给区间单调性及最值,需满足()max 0f x <或()min 0f x >【典例1】已知函数f (x )=(1-x )e x-1.(1)求f (x )的极值;(2)设g (x )=(x -t )2x ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.【解析】解(1)f ′(x )=-x e x,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2x ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x=m t,等价于方程ln x =mx有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x h ′(x )<0,h (x )单调递减,当x h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e.【典例2】设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解析】解f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0),易知当x ∈(0,+∞)时,ln x ≤x -1,则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1).当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意;当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减,f (x )≤f (1)=0,显然不符合题意,a ≤0舍去;当0<a <12时,由ln x ≤x -1,得ln1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x ax -1),∵0<a <12,∴12a>1.当x ∈1,12a 时,f ′(x )≤0恒成立,∴f (x )在1,12a 上单调递减,∴当x ∈1,12a 时,f (x )≤f (1)=0,显然不符合题意,0<a <12舍去.综上可得,a ∈12,+∞【典例3】已知f (x )=x 2-4x -6ln x .(1)求f (x )在(1,f (1))处的切线方程以及f (x )的单调性;(2)对任意x ∈(1,+∞),有xf ′(x )-f (x )>x 2+6k 恒成立,求k 的最大整数解;(3)令g (x )=f (x )+4x -(a -6)ln x ,若g (x )有两个零点分别为x 1,x 2(x 1<x 2)且x 0为g (x )的唯一的极值点,求证:x 1+3x 2>4x 0.【解析】(1)因为f (x )=x 2-4x -6ln x ,所以定义域为(0,+∞),所以f ′(x )=2x -4-6x ,且f ′(1)=-8,f (1)=-3,所以切线方程为y =-8x +5.又f ′(x )=2x (x +1)(x -3),令f ′(x )>0解得x >3,令f ′(x )<0解得0<x <3,所以f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)xf ′(x )-f (x )>x 2+6等价于k <x +x ln x x -1,记h (x )=x +x ln x x -1,则k <h (x )min ,且h ′(x )=x -2-ln x (x -1)2,记m (x )=x -2-ln x ,则m ′(x )=1-1x>0,所以m (x )为(1,+∞)上的单调递增函数,且m (3)=1-ln 3<0,m (4)=2-ln 4>0,所以存在x 0∈(3,4),使得m (x 0)=0,即x 0-2-ln x 0=0,所以h (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,且h (x )min =h (x 0)=x 0+x 0ln x 0x 0-1=x 0∈(3,4),所以k 的最大整数解为3.(3)证明:g (x )=x 2-a ln x ,则g ′(x )=2x -a x =(2x +a )(2x -a )x,令g ′(x )=0,得x 0=a2,当x g ′(x )<0,当x g ′(x )>0,所以g (x上单调递增,而要使g (x )有两个零点,要满足g (x 0)<0,即-a lna 2<0⇒a >2e.因为0<x 1<a2,x 2>a 2,令x 2x 1=t (t >1),由g (x 1)=g (x 2),可得x 21-a ln x 1=x 22-a ln x 2,即x 21-a ln x 1=t 2x 21-a ln tx 1,所以x 21=a ln tt 2-1,而要证x 1+3x 2>4x 0,只需证(3t +1)x 1>22a ,即证(3t +1)2x 21>8a ,即(3t +1)2a ln t t 2-1>8a ,又a >0,t >1,所以只需证(3t+1)2ln t -8t 2+8>0,令h (t )=(3t +1)2ln t -8t 2+8,则h ′(t )=(18t +6)ln t -7t +6+1t ,令n (t )=(18t +6)ln t -7t +6+1t,则n ′(t )=18ln t +11+6t -1t 2>0(t >1),故n (t )在(1,+∞)上单调递增,n (t )>n (1)=0,故h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,所以x 1+3x 2>4x 0.【典例4】已知函数f (x )=x 2+πcos x .(1)求函数f (x )的最小值;(2)若函数g (x )=f (x )-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π.【解析】(1)易知函数f (x )为偶函数,故只需求x ∈[0,+∞)时f (x )的最小值.f ′(x )=2x -πsin x ,当x h (x )=2x -πsin x ,h ′(x )=2-πcos x ,显然h ′(x )单调递增,而h ′(0)<0,h x 0得h ′(x 0)=0.当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减,当x 0h ′(x )>0,h (x )单调递增,而h (0)=0,x h (x )<0,即x f ′(x )<0,f (x )单调递减,又当x x >π>πsin x ,f ′(x )>0,f (x )单调递增,所以f (x )min ==π24.(2)证明:依题意得x 1x 2F (x )=f (x )-f (π-x ),x F ′(x )=f ′(x )+f ′(π-x )=2π-2πsin x >0,即函数F (x )单调递增,所以F (x )<x f (x )<f (π-x ),而x 1,所以f (x 1)<f (π-x 1),又f (x 1)=f (x 2),即f (x 2)<f (π-x 1),此时x 2,π-x 1由(1)可知,f (x x 2<π-x 1,即x 1+x 2<π.【典例5】已知函数f (x )=a e x -1-ln x +ln a .若f (x )≥1,求a 的取值范围.【解析】解f (x )的定义域为(0,+∞),f ′(x )=a e x -1-1x.当0<a <1时,f (1)=a +ln a <1.当a =1时,f (x )=ex -1-ln x ,f ′(x )=ex -1-1x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以当x =1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1.当a >1时,f (x )=a ex -1-ln x +ln a ≥ex -1-ln x ≥1.综上,a 的取值范围是[1,+∞).【典例6】设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2思路分析❶存在x 0≥1,使得f (x 0)<aa -1↓❷fxmin<a a -1↓❸求f xmin【解析】解(1)f ′(x )=ax+(1-a )x -b .由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞),由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x x -1).①若a ≤12,则a1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1,解得-2-1<a <2-1.②若12<a <1,则a 1-a >1,故当x f ′(x )<0,当x f ′(x )>0,f (x 增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f<aa -1.而fa lna 1-a +a 221-a +a a -1>a a -1,所以不符合题意.③若a >1,则f (1)=1-a 2-1=-a -12<aa -1.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).【典例7】已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围.【解析】解设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x +1-c ,其定义域为(0,+∞),h ′(x )=2x -2.当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.所以h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=-1-c .故当-1-c ≤0,即c ≥-1时,f (x )≤2x +c .所以c 的取值范围为[-1,+∞).【典例8】已知函数f (x )=ln x -ax ,g (x )=x 2,a ∈R .(1)求函数f (x )的极值点;(2)若f (x )≤g (x )恒成立,求a 的取值范围.【解析】解(1)f (x )=ln x -ax 的定义域为(0,+∞),f ′(x )=1x-a .当a ≤0时,f ′(x )=1x-a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,由f ′(x )=1x -a >0,得0<x <1a ,由f ′(x )=1x -a <0,得x >1a ,所以f (x f (x )有极大值点1a,无极小值点.(2)由条件可得ln x -x 2-ax ≤0(x >0)恒成立,则当x >0时,a ≥ln xx-x 恒成立,令h (x )=ln x x -x ,x >0,则h ′(x )=1-x 2-ln xx 2,令k (x )=1-x 2-ln x ,x >0,则当x >0时,k ′(x )=-2x -1x <0,所以k (x )在(0,+∞)上单调递减,又k (1)=0,所以在(0,1)上,h ′(x )>0,在(1,+∞)上,h ′(x )<0,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以h (x )max =h (1)=-1,所以a ≥-1.即a 的取值范围为a ≥-1.【典例9】已知x =1e为函数f (x )=x aln x 的极值点.(1)求a 的值;(2)设函数g (x )=kxe x∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,求k 的取值范围.【解析】解(1)f ′(x )=axa -1ln x +x a ·1x=x a -1(a ln x +1),f ln1e+1a =2,当a =2时,f ′(x )=x (2ln x +1),函数f (x 递增,所以x =1e为函数f (x )=x aln x 的极小值点,因此a =2.(2)由(1)知f (x )min =f =-12e,函数g (x )的导函数g ′(x )=k (1-x )e -x.①当k >0时,当x <1时,g ′(x )>0,g (x )在(-∞,1)上单调递增;当x >1时,g ′(x )<0,g (x )在(1,+∞)上单调递减,对∀x 1∈(0,+∞),∃x 2=-1k ,使得g (x 2)=1e k <-1<-12e ≤f (x 1),符合题意.②当k =0时,g (x )=0,取x 1=1e,对∀x 2∈R 有f (x 1)-g (x 2)<0,不符合题意.③当k <0时,当x <1时,g ′(x )<0,g (x )在(-∞,1)上单调递减;当x >1时,g ′(x )>0,g (x )在(1,+∞)上单调递增,g (x )min =g (1)=ke,若对∀x 1∈(0,+∞),∃x 2∈R ,使得f (x 1)-g (x 2)≥0,只需g (x )min ≤f (x )min ,即k e ≤-12e,解得k ≤-12.综上所述,k -∞,-12∪(0,+∞).规律方法(1)由不等式恒成立求参数的取值范围问题的策略①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.【典例10】设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.【解析】.(1)解f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a.当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.(2)证明令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)解由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1,由(1)有f (1)=0,而所以f (x )>g (x )在区间(1,+∞)内不恒成立;当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈12,+【典例11】已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).【解析】.解(1)f ′(x )=1x -x +1=-x 2+x +1x ,x ∈(0,+∞).由f ′(x )>0>0,x 2+x +1>0.解得0<x <1+52.故f (x )(2)令F (x )=f (x )-(x -1),x ∈(0,+∞).则有F ′(x )=1-x 2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x .由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增.从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).。
高考专题--不等式恒成立问题的求解策略
不等式恒成立问题的求解策略一、考情分析函数与导数一直是高考中的热点与难点,利用导数研究不等式恒成立问题一直是高考命题的热点,此类问题一般会把函数、导数及不等式交汇考查,对能力要求比较高,难度也比较大,常见的题型是由不等式恒成立由不等式恒成立确定参数范围问题,常见处理方法有: ①首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.②也可分离变量,构造函数,直接把问题转化为函数的最值问题. 二、解题秘籍(一) 与不等式恒成立问题有关的结论 ① ∀x ∈D ,均有f (x )>A 恒成立,则f (x )min >A ; ② ∀x ∈D ,均有f (x )﹤A 恒成立,则 f (x )ma x <A ;③ ∀x ∈D ,均有f (x ) >g (x )恒成立,则F (x )= f (x )- g (x ) >0,∴ F (x )min >0; ④ ∀x ∈D ,均有f (x )﹤g (x )恒成立,则F (x )= f (x )- g (x ) <0,∴ F (x ) ma x <0; ⑤ ∀x 1∈D , ∀x 2∈E ,均有f (x 1) >g (x 2)恒成立,则f (x )min > g (x )ma x ; ⑥ ∀x 1∈D , ∀x 2∈E ,均有f (x 1) <g (x 2)恒成立,则f (x ) ma x < g (x ) min . 例1 已知函数1()ln ,()2xf x x xg x m ⎛⎫=+=- ⎪⎝⎭.(1)先证明单调性,再求函数()f x 在[]1,2上的最小值;(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,求实数m 的取值范围.分析:(1)由11()10xf x x x+'=+=>证明()f x 在()0,∞+上单调递增,()f x 在[]1,2上的最小值为min ()(1)1f x f ==.(2)对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,则1min 2min ()()f x g x ≥,根据(1),min ()1f x =,1()2xg x m ⎛⎫=- ⎪⎝⎭在[]0,2上单调递减,所2min 1()(2)4g x g m ==-, 所以114m ≥-,即34m ≥-. (二)通过构造函数求最值解决不等式恒成立问题①该方法一般是根据不等式的结构构造一个新函数,利用导数研究该函数的单调性,由函数的单调性确定其最值,或把其最值用含有参数的式子来表示,再根据所给不等式列出关于参数的不等式;②注意如果所构造的函数,其导数结构比较复杂,不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号;③有时所构造的函数的最值不易求出,可以引入导数的隐零点,把函数最值用导数的隐零点表示;④在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内.例2 已知函数()31ln 2f x x x x a =-+,()13212x a g x xe x x --=+-(a R ∈,e 为自然对数的底数).(1)若函数()f x 在1,1e ⎛⎫⎪⎝⎭上有零点,求a 的取值范围; (2)当1≥x 时,不等式()()f x g x ≤恒成立,求实数a 的取值范围. 分析:(1)()23ln 12f x x x '=+-,设()()x f x φ'=,()21133x x x x xφ-'=-=.30,3x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0x φ'>,()x φ递增;3,3x ⎛⎫∈+∞ ⎪⎝⎭时,()0x φ'<,()x φ递减.()x φ的最大值即()x φ的极大值为331ln 30332f φ⎛⎫⎛⎫-'==< ⎪ ⎪⎪ ⎪⎝⎭⎝⎭, 所以()f x 在1,1e ⎛⎫⎪⎝⎭上递减,函数()f x 在1,1e ⎛⎫⎪⎝⎭上有零点,则()110e f f ⎛⎫⋅< ⎪⎝⎭,则311122a e e +<<.(2)把()()f x g x ≤恒成立转化为()()12ln 101x aF x e x ax x x -=-+--≥≥恒成立,()10F =,()1212x aF x e ax x x-'=--++,()132F a '=-,根据32a -的符号进行讨论:(ⅰ)320a -≥,即23a ≥时,令()()h x F x '=,()12311210xh x e a x x -⎛⎫'=++-> ⎪⎝⎭, ()F x '在区间[)1,+∞上单调递增,()()1320F x F a ''≥=->, ()F x 在区间[)1,+∞上单调递增,()()10F x F ≥=恒成立;(ⅰ)320a -<,即23<a 时,当0a ≤时,()121120xF x a x x x e-⎛⎫⎛⎫'=-+++< ⎪ ⎪⎝⎭⎝⎭恒成立, 所以()F x 在区间[)1,+∞上单调递减,所以()()10F x F <=恒成立,即()()f x g x ≤不成立;当023a <<时,()1320F a '=-<,()1111331211a a F a a e a a e a --⎛⎫⎛⎫'=-+-=+-+- ⎪ ⎪⎝⎭⎝⎭,131110221aeeee---<=<=,所以10F a ⎛⎫'> ⎪⎝⎭,又()12311210x h x e a x x -⎛⎫'=++-> ⎪⎝⎭, 所以()F x '在区间[)1,+∞上单调递增,所以()F x '在区间11,a ⎛⎫⎪⎝⎭上存在唯一的零点,设为0x , 当()01,x x ∈时()0F x '<,所以()F x 在区间()01,x 上单调递减, 所以()()10F x F <=,即()()f x g x ≤在区间()01,x 上不成立.综上所述,实数a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭. (三) 通过分类参数把不等式恒成立问题转化为求不含参数的函数的最值①分类参数法就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围,转化为求函数的最值问题. ②一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.③要注意分类参数法不是万能的,已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.此外参数分离后,要注意变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用分离法解决问题. 例3 已知函数2()ln f x x x ax =+-,a R ∈. (1)讨论函数()f x 的单调性; (2)若对任意的(1,2)a ∈,0[1x ∈,2].不等式0()ln f x m a >恒成立,求实数m 的取值范围.分析:(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间:22a 时,()f x 在(0,)+∞单调递增,22a >时,()f x 在28(0,)4a a --和28(4a a +-,)+∞递增,在28(4a a --,28)4a a +-递减.(2)由()0f x '>在[1,2]上恒成立,得()f x 递增,()(1)1f x f a ≥=-,问题转化为对于任意的(1,2)a ∈,不等式1ln a m a ->恒成立,分离参数为1ln am a-<,引入新函数1()ln ag a a-=(12)a <<,用导数求得其最小值后可得m 的范围: 记1()ln a g a a -=(12)a <<,则2ln 1()ln a a ag a a a--+'=,令()ln 1M a a a a =--+,则()M a 'ln 0a =-<,所以()M a 在(1,2)上递减,所以()(1)0M a M <=, 故()0g a '<, 所以()g a 在(1,2)a ∈上单调递减,所以1(2)ln 2m g ≤=-, 即实数m 的取值范围为1(,]ln 2-∞-.(四)对于形如12x x >时不等式()()()()1221f x g x f x g x +>+恒成立问题,可构造增函数()()f x g x -来求解. 基本结论:(1)“若任意210x x >>,()()1212f x f x kx kx ->-,或对任意12x x ≠,()()1212f x f x k x x ->-,则()y f x kx =-是增函数;(2) 对任意12x x ≠,()()1212121f x f x x x x x ->-,则()1y f x x=+是增函数;例4 已知函数()()22ln f x ax a x x =-++,其中a ∈R .(1)当0a >时,若()f x 在区间[]1,e 上的最小值为2-,求a 的取值范围; (2)若对于任意210x x >>,()()122122f x f x x x -<-恒成立,求a 的取值范围. 分析:(1)对()f x 求导,并令导函数为0,得到12x =或1x a =,分类讨论1a 与区间[]1,e 的关系,得到a 的取值范围是[)1,+∞; (2)令()()2g x f x x =+,则()g x 在()0,∞+上单调递增;对()g x 求导,分类讨论当0a =时与当0a ≠时的情况,得a 的取值范围:()21212ax ax g x ax a x x-+'=-+=. 当0a =时,()10g x x'=>,此时()g x 在()0,∞+上单调递增; 当0a ≠时,只需()0g x '≥在()0,∞+上恒成立,只需2210ax ax -+≥在()0,∞+上恒成立,所以0a >,且280a a ∆=-≤,解得08a <≤;故a 的取值范围是[]0,8. 三、典例展示例1 已知函数()ln f x x ax =-.(1)若函数()f x 在定义域上的最大值为1,求实数a 的值;(2)设函数()()()2xh x x e f x =-+,当1a =时,()h x b ≤对任意的1,12x ⎛⎫∈ ⎪⎝⎭恒成立,求满足条件的实数b 的最小整数值. 解:(1)由题意,函数()y f x =的定义域为(0,)+∞,1()f x a x'=-, 当0a ≤时,1()0f x a x '=->,函数()y f x =在区间(0,)+∞上单调递增,此时,函数()y f x =在定义域上无最大值;当0a >时,令1()0f x a x ,得1x a=,由()0f x '>,得10,x a ⎛⎫∈⎪⎝⎭,由()0f x '<,得1,x a ⎛⎫∈+∞ ⎪⎝⎭, 此时,函数()y f x =的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调减区间为1,a ⎛⎫+∞ ⎪⎝⎭.所以当1x a=时,函数()f x 有最大值, 即max 2111()ln 11e f x f a a a ⎛⎫==-=⇒= ⎪⎝⎭,即2e -=a 为所求; (3)只需(2)e ln x b x x x ≥-+-对任意的1(,1)2x ∈恒成立即可.构造函数()(2)e ln xg x x x x =-+-, 11()(1)e 1(1)e x x g x x x x x ⎛⎫'=-+-=-- ⎪⎝⎭, ∵1(,1)2x ∈,∴10x -<,且1()xt x e x =-单调递增, ∵121()20,(1)102t e t e =-<=->,∴一定存在唯一的01(,1)2x ∈,使得0()0t x =,即00001,ln x e x x x ==-, 且当012x x <<时,()0t x <,即()0g x '>;当01x x <<时,()0t x >,即()0g x '<. 所以,函数()y g x =在区间01(,)2x 上单调递增,在区间0(),1x 上单调递减, ∴()()0max 0000001()2eln 12x g x g x x x x x x ⎛⎫==-+-=-+ ⎪⎝⎭,1(,1)2x ∈,则00112()y x x =-+在1(,1)2上单调递增,所以00112()(4,3)x x -+∈--, 因此b 的最小整数值为3-. 例2 已知函数()sin xf x aex =-,其中a R ∈,e 为自然对数的底数.(1)当1a =时,对[)0,x ∀∈+∞. ①证明:()1f x ≥;②若()2cos 2f x x bx '+-≥恒成立,求实数b 的范围;(2)若函数()f x 在0,2π⎛⎫⎪⎝⎭上存在极值,求实数a 的取值范围. 解:(1)①证明:当1a =时,()sin xf x ex =-,则()cos x f x e x '=-,由于当0x ≥时,1x e ≥,1cos 1x -≤≤,故()cos 0xf x e x '=-≥,所以,函数()f x 在[)0,+∞上为增函数,则当[)0,x ∈+∞时,()()01f x f =≥; ②依题意,cos 2x e x bx +-≥在[)0,+∞上恒成立, 设()cos 2xg x ex bx =+--,其中0x ≥,则()sin 1x g x e x b b '=--≥-.(i )当1b ≤时,()0g x '≥,此时()g x 在[)0,+∞上单调递增, 故()()00g x g ≥=,符合题意;(ii )当1b >时,由①知,()sin xg x e x b '=--在[)0,+∞上为增函数,则必存在()00x ∈+∞,,使得()00g x '=,且当[]00,x x ∈时,()0g x '<,此时函数()g x 单调递减, 当()0,x x ∈+∞时,()0g x '>,此时函数()g x 单调递增, 所以,()()()0min 00g x g x g =<=,不符合题意. 综上,实数b 的取值范围为(],1-∞; (2)()sin x f x ae x =-,可得()cos x f x ae x '=-,由()0f x '=可得cos e xx a,所以直线y a =与曲线cos x x y e =在0,2π⎛⎫⎪⎝⎭上的图象有交点(非切点),令()cos x x h x e =,其中0,2x π⎛⎫∈ ⎪⎝⎭,则()sin cos 0xx x h x e +'=-<在0,2π⎛⎫ ⎪⎝⎭上恒成立, 所以,函数()h x 在0,2π⎛⎫⎪⎝⎭上单调递减,且()01h =,02h π⎛⎫= ⎪⎝⎭, 作出函数y a =与函数()h x 在0,2π⎛⎫⎪⎝⎭上的图象如下图所示:由图可知,当01a <<时,直线y a =与曲线cos x x y e =在0,2π⎛⎫⎪⎝⎭上的图象有交点(非切点).因此,实数a 的取值范围是()0,1.例3 已知函数()()ln ,af x x xg x x x =-=+,且函数()f x 与()g x 有相同的极值点. (1)求实数a 的值;(2)若对121,,3e x x ⎡⎤∀∈⎢⎥⎣⎦,不等式12()()11f x f x k -+恒成立,求实数k 的取值范围; (3)求证:()()e cos x xf xg x x++<.解:(1)()f x 的定义域为(0,)+∞,1()1f x x '=-,由()0f x '=得1x =, 易知函数()f x 在(0,1)单调递增,在(1,)+∞单调递减, 故函数()f x 的极大值点为1x =,2()1ag x x =-',依题意有(1)10g a =-=',解得1a =,经验证符合题意,故1a =.(2)由(1)知,函数()f x 在1,1e ⎛⎫⎪⎝⎭单调递增,在(1,3)单调递减, 又()()111,11,3ln 33e e f f f ⎛⎫=--=-=- ⎪⎝⎭,且1ln 3311e -<--<-, ∴当1,3e x ⎡⎤∈⎢⎥⎣⎦时,max ()(1)1f x f ==-,min ()(3)ln33f x f ==-. ① 当10k +>,即1k >-时,对121,,3e x x ⎡⎤∀∈⎢⎥⎣⎦,不等式12()()11f x f x k -+恒成立,即为121()()k f x f x +-恒成立,则max min 1()()1(ln 33)2ln 3k f x f x +-=---=-, 1ln3k ∴-,又1ln31->-,∴此时k 的取值范围为1ln3k -;② 当10+<k ,即1k <-时,对121,,3e x x ⎡⎤∀∈⎢⎥⎣⎦,不等式12()()11f x f x k -+恒成立,即为121()()k f x f x +-恒成立,则min max 1()()(ln 33)(1)ln 32k f x f x +-=---=-, 所以ln33k -,又ln331-<-,∴此时k 的取值范围为ln33k -.综上,实数k 的取值范围为(][),ln331ln3,-∞--+∞. (3)证明:所证不等式即为ln e cos 1x x x x -<-, 下证:ln e 1x x x x -<--,即证ln e 10x x x x -++<, 设()ln e1(0)xh x x x x x =-++>,则()'ln 1e 1ln e 2x x h x x x =+-+=-+,令()()ln e2xr x h x x ==-+',则()1e x r x x='-, 易知函数()r x '在(0,)+∞上单调递减,且()12e 0,11e 02r r ⎛⎫=->=-< ⎪⎝⎭'',故存在唯一的01(,1)2x ∈,使得0()0r x '=,即001e xx =,00ln x x =-,且当0(0,)x x ∈时,()0r x '>,()r x 即()h x '单调递增; 当()0,x x ∈+∞时,()0r x '<,()r x 即()h x '单调递减,∴()()()020000max0011ln e 220x x h x h x x x x x -==-+=--+'=-<',()h x ∴在(0,)+∞单调递减,又0x →时,()0h x →,故()0h x <,即ln e 1x x x x -<--;再证:1cos 1(0)x x x --<->,即证cos 0x x +>在(0,)+∞上恒成立, 设()cos m x x x =+,()sin 10m x x =+'-, ()m x ∴在(0,)+∞单调递增, 则()(0)10m x m >=>,即cos 0x x +>,故1cos 1x x --<-, 综上,ln e cos 1x x x x -<-.四、跟踪检测 1.已知函数()ln 1f x a x x=++(其中0a ≠, 2.71828e =⋅⋅⋅⋅⋅⋅)(1)当34a =-时,求函数()f x 的单调区间;(2)对任意的21,x e ⎡⎫∈+∞⎪⎢⎣⎭均满足()2f x ax≤,试确定a 的取值范围.2.定义在()0,∞+上的关于x 的函数2()(1)2x axf x x e =--.(1)若a e =,讨论()f x 的单调性;(2)()3f x ≤在(]0,2上恒成立,求a 的取值范围.3.已知函数()ln xf x x=-. (1)设()()1x g x f x f x ⎛⎫=+ ⎪-⎝⎭,求函数()g x 的最小值; (2)设()1h x f x ⎛⎫=⎪⎝⎭,对任意1x 、()20,x ∈+∞,()()()()121212h x h x h x x k x x +≥++⋅+恒成立,求k 的最大值.4.已知函数l ()n f x ax x =,a R ∈. (1)当1a =时, ①求()f x 的极值; ②若对任意的x e ≥都有()mx m f x e x≥,0m >,求m 的最大值;(2)若函数2()()g x f x x =+有且只有两个不同的零点1x ,2x ,求证:212x x e >.5.已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围.6.已知函数(),()ln ,x f x e g x x a x a R ==+∈ (1)讨论g (x )的单调性; (2)若()()2a f x x g x x ++,对任意(1,)x ∈+∞恒成立,求a 的最大值.7.已知函数()()22,3x f x e kx g x x k =-=+-. (1)讨论函数()y f x =的单调区间;(2)若()()2f x g x ≥对任意0x ≥恒成立,求实数k 的取值范围.8.已知函数()11x f x e x -=-+,()()2ln 12g x x ax ax =+--,其中a ∈R . (1)证明:当0x >时,()0f x <;(2)若()()g x f x <在区间()0,∞+上恒成立,求实数a 的取值范围.跟踪检测参考答案1. 解:(1)当34a =-时,3()ln 14f x x x =-++,0x >,31(12)(211)')42141x x f x x x x x+-++=-+=++, ∴函数()f x 的单调递减区间为()0,3,单调递增区间为()3,+∞. (2)由()112f a ≤,得204a <≤, 当204a <≤时,()4f x ax ≤,2ln 0x ≥, 令1t a =,则22t ≥, 设2()212ln g t t x t x x =-+-,22t ≥,则211()12ln xg t x t x x x ⎛⎫+=-+-- ⎪ ⎪⎝⎭, (i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭时,1122x+≤, 则()(22)84212ln g x g x x x ≥=-+-,记()4221ln p x x x x =-+-,17x ≥, 则2212121'()11x x x x p x x x x x x +--+=--=++(1)1(221)1(1)(12)x x x x x x x x ⎡⎤-++-⎣⎦=++++, 列表讨论:∴()(1)0p x p ≥=, ∴()(22)2()2()0g t g p x p x ≥==≥.(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x ⎛⎫--+≥+= ⎪ ⎪⎝⎭,令()2ln (1)q x x x x =++,211,7x e ⎡⎤∈⎢⎥⎣⎦,则ln 2()10x q'x x +=+>, 故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增, ∴1()7q x q ⎛⎫≤ ⎪⎝⎭,由(i )得127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭, ∴()0q x <,∴1()()102q x g t g x x ⎛⎫≥+=-> ⎪ ⎪⎝⎭, 由(i )(ii )知对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,)22,t ⎡∈+∞⎣,()0g t ≥,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x ax≤,综上所述,所求的a 的取值范围是20,4⎛⎤ ⎥ ⎝⎦. 2. 解:(1)()'()x xf x xe ax x e a =-=-,a e =时,()'()x f x x e e=-,在()0,1x ∈上,'()0f x <,()f x 单调递减﹔在()1,x ∈+∞上,'()0f x >,()f x 单调递增.(2)由(1)()'()xf x x e a =-,若1a ≤,在(]0,2上,'()0f x >,()f x 单调递增,()2223f ea =->,不合题意;若21a e <<,在()0,ln a 上,'()0f x <,()()01f x f <=-, 在(]ln ,2a 上,'()0f x >,()2()22f x f ea <=-,由题意,2223232e e a a e --≤⇒≤<;若2a e ≥,在()0,2上,'()0f x <,()f x 单调递减, 则在(]0,2上,()()013f x f <=-<符合题意.综上所述,232e a -≥.3. 解:(1)()ln 11ln x f x x x x -==,令1t x=,则111111x t x t t==---,设()()()()ln 1ln 1F t g x t t t t ==+--,其中()0,1t ∈, 则()()ln 1ln 11ln 1tF t t t t '=+---=-,当10,2t ⎛⎫∈ ⎪⎝⎭时,()0,11tt ∈-,则()0F t '<,()F t 单调递减,当1,12t ⎛⎫∈ ⎪⎝⎭时,()1,1tt ∈+∞-,()0F t '>,()F t 单调递增, 所以,()()min min 11ln ln 222g x F t F ⎛⎫====- ⎪⎝⎭; (2)()1ln h x f x x x ⎛⎫== ⎪⎝⎭,则()()()()()121211221212ln ln ln h x h x h x x x x x x x x x x +-+=+-++()1211221212121212121212lnln ln ln x x x x x x x x x x x x x x x x x x x x x x ⎛⎫=+=++ ⎪++++++⎝⎭()12121212x x x x h h x x x x ⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦, 由(1)知121121212ln 2x x x h h F x x x x x x ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≥, 因为()()()()121212h x h x h x x k x x +≥++⋅+,则121212x x k h h x x x x ⎛⎫⎛⎫≤+ ⎪ ⎪++⎝⎭⎝⎭,故ln 2k -≤. 故k 的最大值是ln 2-.4. 解:(1)①1a =时,()ln f x x x =,则()ln 1(0)f x x x '=+>, 令()0f x '>,解得:1x e>,令()0f x '<,解得:10x e <<,∴()f x 在1(0,)e 递减,在1(e ,)+∞递增, 故()f x 的极小值是11()f e e =-,没有极大值; ②对任意x e ≥都有n (l )mm m x xx m f x e e e x≥=,即()()m x f x f e ≥恒成立,由0m >,有0mx>,故1m x e >, 由①知,()f x 在1(e ,)+∞单调递增,故mx x e ≥,可得ln mx x ≥,即ln x x m ≥, 当x e ≥时,()f x 的最小值是()f e e =,故m 的最大值是e ;(2)证明:要证212x x e >,只需证明12ln()2x x >即可,由题意,1x 、2x 是方程2ln 0ax x x +=的两个不相等的实数根,又1x >,∴1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,消去a ,整理得:121121221ln()ln 1x x x x x x x x +=⋅-,不妨设12x x >,令12x t x =,则1t >,故只需证明当1t >时,1ln 21t t t +⋅>-,即证明2(1)ln 1t t t ->+, 设2(1)()ln 1t h t t t -=-+,则22211(1)(1)()20(1)(1)t t t h t t t t t +---'=-⋅=>++,∴()h t 在(1,)+∞单调递增,从而()(1)0h t h >=, 故2(1)ln 1t t t ->+,即212x x e >得证.5. 解:(1)()af x b x '=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.f '∴(1)2=-,f(1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =. ()ln 3f x x x ∴=-.13()13()3x f x x x--=-=',1[,)3x ∈+∞,()0f x '∴. ∴当13x =时,函数()f x 取得最大值,1()ln313f =--. 对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞. ln31m ∴--. ∴实数m的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++, ∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =; 当12x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,则3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.6. 解:(1)()1(0)ax ag x x x x+'=+=>, 当0a 时,()0g x '>,()g x 在(0,)+∞上单调递增;当0a <时,令()0g x '>,解得x a >-,令()0g x '<,解得0x a <<-,()g x ∴在(0,)a -上单调递减,在(,)a -+∞上单调递增;综上,当0a 时,()g x 在(0,)+∞上单调递增;当0a <时,()g x 在(0,)a -上单调递减,在(,)a -+∞上单调递增; (2)()2()a f x xg x x ++即为ln x a e x a x x ++,即ln ln x x a a e e x x ++,设()ln (0)h x x x x =+>,则11()1x h x x x+'=+=, 易知函数()h x 在(0,)+∞上单调递增,而()()xa h e h x ,所以x a e x ,即ln x a x ,当1x >时,即为ln xax, 设()(1)ln xx x x ϕ=>,则2ln 1()ln x x xϕ-'=, 易知函数()ϕx 在(0,)e 上单调递减,在(,)e +∞上单调递增,()x ϕϕ∴(e )e =, a e ∴,即a 的最大值为e .7. 解:(1)()xf x e k '=-,①当0k ≤时,()0f x >′恒成立,则()y f x =在R 上单调递增; ②当0k >时,ln x k >时,()0f x >′,()y f x =的单调递增区为()ln ,k +∞; ln x k <时,()0f x >′,()y f x =的单调递减区间为(),ln k +∞.(2)22223x e kx x k -≥+-对任意的0x ≥恒成立,即22232xx kx k e ++-≤对任意的0x ≥恒成立. 令()()()()221323,x xx k x k x kx k h x h x e e +++-++-'=- ①当3k ≥时,()0h x '≤在()0,x ∈+∞恒成立,()h x 在()0,∞+上单调递减.所以只需2032h k =-≤(),即5,5k ⎡⎤∈-⎣⎦,矛盾.②当13k -≤<时,()h x 在()0,3k -+上单调递增,在()3,k -++∞上单调递减. 所以只需()3632k h k e -+-+=≤,即3ln3k ≤-.∴13ln3k -≤≤-;③当1k <-时,()h x 在()0,1k --上单调递减,在()1,3k k ---+上单调递增,在()3,k -++∞上单调递减.则()()253ln 332h x k hk ⎧≤⎪⇒-≤≥-⎨-+≤⎪⎩,∴51k -≤≥-,综上,实数k 的取值范围为5,3ln 3⎡⎤--⎣⎦8. 解:(1)证明:当0x >时,()11011x x f x e x e x <⇐<⇐>++, 令()1xh x ex =--,则()10x h x e '=->, ∴()h x 在()0,∞+上单调递增,∴()()00h x h >=, ∴1x e x >+.(2)由题()()0g x f x -<,即()21ln 1201x x ax ax e x -+---+<+, 令()()21ln 121x F x x ax ax e x -=+---++,易知()00F =, 且()()2112211x F x ax a e x x -'=--+-++,要满足题意,必有()00F '≤,则120a -≤,∴12a ≥,当12a ≥时,()()()()22111ln 12ln 12112x x F x x ax ax e x e x x x x --=+---+<+-+-+++, 记()()()211ln 1212x x x e x x x ϕ-=+-+-++,0x >,()()()()()22111111111111x x e x x x x x x x ϕ-'=+--+<+--++++++()()()()2222211011x x x x x +-+-==<++,∴()x ϕ在()0,∞+上单调递减,则()()00x ϕϕ<=, 即当12a ≥时,()()0F x x ϕ<<,满足题意, 综上:12a ≥.。
专题二 不等式恒成立、能成立问题(解析版)
强化专题2 不等式恒成立、能成立问题在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理,数学运算等素养.【技巧目录】一、“Δ”法解决恒成立问题二、数形结合法解决恒成立问题三、分离参数法解决恒成立问题四、主参换位法解决恒成立问题五、利用图象解决能成立问题六、转化为函数的最值解决能成立问题【例题详解】一、“Δ”法解决恒成立问题例1 若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( )A .[]2,0-B .(]2,0-C .()2,0-D .()(),20,-∞-⋃+∞ 【答案】B【分析】讨论0a =和0a <两种情况,即可求解.【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立,等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-.故选:B .【小结】(1)如图①一元二次不等式ax 2+bx +c >0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c >0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴上方⇔y min >0⇔⎩⎪⎨⎪⎧a >0,Δ<0.(2)如图②一元二次不等式ax 2+bx +c <0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c <0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴下方⇔y max <0⇔⎩⎪⎨⎪⎧a <0,Δ<0.二、数形结合法解决恒成立问题例2 当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求m 的取值范围.【详解】令y =x 2+mx +4.∵y <0在[1,2]上恒成立.∴x 2+mx +4=0的根一个小于1上,另一个大于2.如图,得⎩⎪⎨⎪⎧ 1+m +4<0,4+2m +4<0, ∴⎩⎪⎨⎪⎧m +5<0,2m +8<0. ∴m 的取值范围是{m |m <-5}.【小结】结合函数的图象将问题转化为函数图象的对称轴,区间端点的函数值或函数图象的位置(相对于x 轴)关系求解.可结合相应一元二次方程根的分布解决问题.三、分离参数法解决恒成立问题例3 若不等式x 2+ax +1≥0在x ∈[-2,0)时恒成立,则实数a 的最大值为( )A .0B .2C .52D .3 【答案】B【分析】用分离参数法分离参数,然后用基本不等式求最值后可得结论.【详解】不等式x 2+ax +1≥0在[2,0)x ∈-时恒成立,即不等式x x x x a 112--=+-≤在[2,0)x ∈-时恒成立.()()()2121-=-⋅-≥-+x x x x ,当且仅当1x x -=-,即x =-1时,等号成立,所以a ≤2,所以实数a 的最大值为2. 故选:B .【小结】通过分离参数将不等式恒成立问题转化为求函数最值问题.四、主参换位法解决恒成立问题例4 已知[]1,1a ∈-,不等式()24420x a x a +-+->恒成立,则x 的取值范围为___________. 【答案】(,1)(3,)-∞+∞【分析】设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >,则满足()()1010f f ⎧->⎪⎨>⎪⎩解不等式组可得x 的取值范围.【详解】[]1,1a ∈-,不等式()24420x a x a +-+->恒成立即[]1,1a ∈-,不等式()22440x a x x -+-+>恒成立设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >所以()()1010f f ⎧->⎪⎨>⎪⎩,即22320560x x x x ⎧-+>⎨-+>⎩,解得3x >或1x < 故答案为:(,1)(3,)-∞+∞【小结】转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.五、利用图象解决能成立问题例5 当1<x <2时,关于x 的不等式x 2+mx +4>0有解,则实数m 的取值范围为________.【答案】{m |m >-5}【详解】记y =x 2+mx +4,则由二次函数的图象知,不等式x 2+mx +4>0(1<x <2)一定有解,即m +5>0或2m +8>0,解得m >-5.【小结】结合二次函数的图象,将问题转化为端点值的问题解决.六、转化为函数的最值解决能成立问题例6 若存在x ∈R ,使得4x +m x 2-2x +3≥2成立,求实数m 的取值范围. 【详解】∵x 2-2x +3=(x -1)2+2>0,∴4x +m ≥2(x 2-2x +3)能成立,∴m ≥2x 2-8x +6能成立,令y =2x 2-8x +6=2(x -2)2-2≥-2,∴m ≥-2,∴m 的取值范围为{m |m ≥-2}.【小结】能成立问题可以转化为m >y min 或m <y max 的形式,从而求y 的最大值与最小值,从而求得参数的取值范围.【过关训练】1.若关于x 的不等式220mx x m ++>的解集是R ,则m 的取值范围是( )A .(1,+∞)B .(0,1)C .(-1,1)D .[1,+∞) 【答案】A【分析】分0m =和0m ≠两种情况求解【详解】当0m =时,20x >,得0x >,不合题意,当0m ≠时,因为关于x 的不等式220mx x m ++>的解集是R , 所以20Δ440m m >⎧⎨=-<⎩,解得1m , 综上,m 的取值范围是(1,+∞),故选:A2.若集合2{|10}A x ax ax =-+≤=∅,则实数a 的取值集合为( )A .{|04}a a <<B .{|04}a a ≤<C .{|04}a a <≤D .{|04}a a ≤≤【答案】B【分析】分00a a =≠,,两种情况求解即可【详解】当0a =时,不等式等价于10<,此时不等式无解; 当0a ≠时,要使原不等式无解,应满足20Δ40a a a >⎧⎨=-<⎩,解得04a <<; 综上,a 的取值范围是[)0,4.故选:B .3.若R x ∈,210ax ax ,则实数a 的取值范围是( )A .()4,0-B .(]4,0-C .[)4,0-D .[]4,0-【答案】B【分析】分两种情况讨论:0a =和0Δ0a <⎧⎨<⎩,解出实数a 的取值范围,即得. 【详解】对R x ∈,210ax ax ,当0a =时,则有10-<恒成立;当0a <时,则20Δ40a a a <⎧⎨=+<⎩,解得40a . 综上所述,实数a 的取值范围是(]4,0-.故选:B.4.“x ∀∈R ,2230x ax a -+>”的充要条件是( )A .12a -<<B .0<<3aC .13a <<D .35a << 【答案】B【分析】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-<,解不等式求得答案.【详解】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-< ,即0<<3a ,故“x ∀∈R ,2230x ax a -+>”的充要条件是0<<3a ,故选:B5.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( )A .[]0,1B .(]0,1C .()(),01,-∞⋃+∞D .(][),01,-∞+∞ 【答案】A【分析】当0k =时,该不等式成立,当0k ≠时,根据二次函数开口方向及判别式列不等式解决二次不等式恒成立问题.【详解】当0k =时,该不等式为80≥,成立;当0k ≠时,要满足关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,只需()2036480k k k k >⎧⎨-+≤⎩,解得01k <≤,综上所述,k 的取值范围是[]0,1,故选:A.6.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( )A .4m ≤-B .3m ≥-C .30m -≤<D .40m -≤< 【答案】A【分析】由题意可得2min (4)m x x ≤-,由二次函数的性质求出24y x x =-在(]0,3上的最小值即可 【详解】因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立, 所以2min (4)m x x ≤-,令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-,所以4m ≤-故选:A7.若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞ 【答案】A【分析】由题知对任意的2[1,0],242x m x x ≥-∈--恒成立,进而求[1,0]x ∈-,()2214y x =--最值即可得答案.【详解】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-, 即m 的取值范围是[4,)+∞故选:A8.若两个正实数,x y 满足12+1=x y ,且不等式2+32+<y x m m 有解,则实数m 的取值范围是( ) A .(4,1)- B .(1,4)-C .()(),41,-∞-+∞ D .()(),14,-∞-⋃+∞ )()1,+∞.9.已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A【分析】依据题意可将题目转换为非p 命题为真的补集,即“15x ∀≤≤,250x ax --≤恒成立”对应a 取值集合的补集,进一步只需限制端点小于等于0即可求解【详解】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足, 25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .10.若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( )A .(,2)-∞B .(,2)-∞-C .(6,)-+∞D .(,6)-∞-【答案】B【分析】构造函数2()42f x x x a =---,若不等式2420x x a --->在区间(1,4)内有解,可得函数2()42f x x x a =---在区间(1,4)内的最大值大于0即可,根据二次函数的图象和性质可得答案.【详解】令2()42f x x x a =---,则函数的图象为开口朝上且以直线2x =为对称轴的抛物线,故在区间(1,4)上,()f x f <(4)2a =--,若不等式2420x x a --->在区间(1,4)内有解,则20a -->,解得2a <-,即实数a 的取值范围是(,2)-∞-.故选:B .11.已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞12.设函数2()2f x ax ax =--,若对任意的[1,3]x ∈,()22f x x a >--恒成立,则实数a 的取值范围为_____________.13.已知关于x 的不等式244x mx x m +>+-.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围;(2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【详解】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<,即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4).(2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤, 所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.14.设2(1)2y ax a x a =+-+-, 若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;19.设函数()21f x mx mx =--.(1)若对于2,2x ,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围. 2,2x,f 2,2x 恒成立,对于2,2x 恒成立.261324x ⎫-+⎪⎭2,2x ,则1,2.20.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围.【详解】y <0⇔mx 2-mx -6+m <0⇔(x 2-x +1)m -6<0.∵1≤m ≤3,∴x 2-x +1<6m恒成立, ∴x 2-x +1<63⇔x 2-x -1<0⇔1-52<x <1+52. ∴x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.。
不等式专题:一元二次不等式恒成立和有解问题-【题型分类归纳】(解析版)
一元二次不等式恒成立和有解问题一、一元二次不等式在实数集上的恒成立1、不等式20ax bx c >++对任意实数x 恒成立⇔00==⎧⎨>⎩a b c 或0Δ<0>⎧⎨⎩a2、不等式20ax bx c <++对任意实数x 恒成立⇔00==⎧⎨<⎩a b c 或0Δ<0<⎧⎨⎩a【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方; 恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若()0>f x 在集合A 中恒成立,即集合A 是不等式()0>f x 的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数()f x 的值域为[,]m n ,则()≥f x a 恒成立⇒min ()≥f x a ,即≥m a ;()≤f x a 恒成立⇒max ()≤f x a ,即≤n a .三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. 即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下: 1、对任意的[,]∈x m n ,()>a f x 恒成立⇒max ()>a f x ; 若存在[,]∈x m n ,()>a f x 有解⇒min ()>a f x ;若对任意[,]∈x m n ,()>a f x 无解⇒min ()≤a f x .2、对任意的[,]∈x m n ,()<a f x 恒成立⇒min ()<a f x ; 若存在[,]∈x m n ,()<a f x 有解⇒max ()<a f x ; 若对任意[,]∈x m n ,()<a f x 无解⇒max ()≥a f x .题型一 一元二次不等式在实数集上的恒成立问题【例1】若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( ) A .[]2,0- B .(]2,0- C .()2,0- D .()(),20,-∞-⋃+∞ 【答案】B【解析】当0=a 时,不等式成立;当0≠a 时,不等式2220--<ax ax 恒成立,等价于()()20,2420,<⎧⎪⎨∆=--⨯-<⎪⎩a a a 20∴-<<a . 综上,实数a 的取值范围为(]2,0-.故选:B .【变式1-1】“不等式20-+>x x m 在R 上恒成立”的充要条件是( ) A .14>m B .14<m C .1<mD .1>m 【答案】A【解析】∵不等式20-+>x x m 在R 上恒成立,∴2(1)40∆--<=m ,解得14>m , 又∵14>m ,∴140∆=-<m ,则不等式20-+>x x m 在R 上恒成立, ∴“14>m ”是“不等式20-+>x x m 在R 上恒成立”的充要条件,故选:A.【变式1-2】已知关于x 的不等式2680-++>kx kx k 对任意∈x R 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k ≤< C .0k <或1k > D .0k ≤或1k > 【答案】B【解析】当0=k 时,80>恒成立,符合题意;当0≠k 时,由题意有()()2Δ6480>⎧⎪⎨=--+<⎪⎩k k k k ,解得01<<k , 综上,01≤<k .故选:B.【变式1-3】已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围( )A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2⎛⎫-∞ ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110ax a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B【变式1-4】关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是( )A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞ 【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x ≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤; 综上所述:实数a 的取值范围为(],3-∞.故选:B.题型二 一元二次不等式在某区间上的恒成立问题【例2】若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.【答案】(,4]-∞.【解析】对于任意的14x <≤,不等式()22241(1)25x a x a x a x x -++≥--⇔-≤-+,即2254(1)11x x a x x x -+≤=-+--, 因此,对于任意的14x <≤,2254(1)11x x a x x x -+≤=-+--恒成立, 当14x <≤时,013x <-≤,44(1)(1)411x x x x -+≥-⋅=--, 当且仅当411x x -=-,即3x =时取“=”,即当3x =时,4(1)1x x -+-取得最小值4,则4a ≤, 所以实数a 的取值范围是(,4]-∞.【变式2-1】已知2(2)420+-+-x a x a对[)2,∀∈+∞x 恒成立,则实数a 的取值范围________. 【答案】(],3-∞【解析】因为2(2)420x a x a +-+-对[)2,x ∀∈+∞恒成立,即4222x a x ++-≥+在[)2,x ∀∈+∞时恒成立,令2,4x t t +=≥, 则4222x x ++-+代换为42t t +-,令4()2g t t t=+-, 由对勾函数可知,()g t 在[)4,t ∈+∞上单增,所以min ()(4)3g t g ==, 所以(],3a ∈-∞.故答案为:(],3-∞【变式2-2】已知二次函数222y x ax =++.若15x ≤≤时,不等式3y ax >恒成立,求实数a 的取值范围. 【答案】22<a .【解析】不等式()3f x ax >即为:220x ax -+>,当[]1,5x ∈时,可变形为:222x a x x x+<=+,即min 2()a x x <+. 又2222x x x x+≥+= 当且仅当2x x=,即[]21,5x =时,等号成立,min 2()22x x∴+=22a <故实数a 的取值范围是:22a <【变式2-3】若不等式2(1)10x a x +-+≥对一切(1,2]x ∈都成立,则a 的最小值为( )A .0B .2-C .222-D .5- 【答案】D【解析】记22()(1)11f x x a x x ax a =+-+=++-,要使不等式()2110x a x +-+≥对一切(1,2]x ∈都成立,则:12(1)20a f ⎧-≤⎪⎨⎪=≥⎩或2122()1024a a a f a ⎧<-<⎪⎪⎨⎪-=--+≥⎪⎩或22(2)50a f a ⎧-≥⎪⎨⎪=+≥⎩ 解得2a ≥-或42a -<<-或54a -≤≤-,即5a ≥-.故选:D【变式2-4】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x ,或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或7x >172≤<x 7x =综上,实数x 的取值范围是4x ≤-,或12x ≥,故选:A.题型三 给定参数范围的一元二次不等式恒成立问题【例3】当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求的取值范围.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设2()(1)(1)f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需(2)0(3)0f f ≤⎧⎨≤⎩,即22210320x x x x ⎧--≤⎨--≤⎩,解2210x x --≤,即()()2110x x +-≤得112x -≤≤,解2320x x --≤,即()()3210x x +-≤得213x -≤≤,所以原不等式的解集为1,12⎡⎤-⎢⎥⎣⎦,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【变式3-1】若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为( )A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C【变式3-2】已知[]1,1∈-a ,不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .()()3,,2∞-∞+ B .()()2,,1∞-∞+ C .()()3,,1∞-∞+D .()1,3 【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.∴x 的取值范围为()(),13,-∞⋃+∞.故选:C .【变式3-3】已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是( )A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞ 【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立, 令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠, 当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.【变式3-3】不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( )A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x ,解得4x ≤-或7x >172≤<x 7x = 综上,实数x 的取值范围是4x ≤-,或12x ≥.故选:A.题型四 一元二次不等式在实数集上的有解问题【例4】已知不等式20kx x k -+<有解,则实数k 的取值范围为__________. 【答案】1,2⎛⎫-∞ ⎪⎝⎭【解析】当0k =时,0x -<,符合题意当0k >时,令2y kx x k =-+,由不等式20kx x k -+<有解,即2140k ∆=->,得102k <<当0k <时, 2y kx x k =-+开口向下,满足20kx x k -+<有解,符合题意综上,实数k 的取值范围为1,2k ⎛⎫∈-∞ ⎪⎝⎭【变式4-1】若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下, 所以不等式2210ax x ++<有实数解,符合题意; 当0a >时,要使不等式2210ax x ++<有实数解, 则需满足440∆=->a ,可得1a <,所以01a <<, 综上所述:a 的取值范围是(),1-∞.【变式4-2】x R ∃∈,使得不等式231x x m -+<成立,则m 的取值范围是___________.【答案】11,12⎛⎫+∞ ⎪⎝⎭【解析】令()22111313612f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,则()min 1112f x =,因为x R ∃∈,使得不等式231x x m -+<成立, 所以1112m >, 则m 的取值范围是11,12⎛⎫+∞ ⎪⎝⎭,【变式4-3】若关于x 的不等式29(2)04ax a x -++<有解,则实数a 的取值范围是____________. 【答案】(,1)(4,)-∞+∞【解析】当0a =时,不等式为9204x -+<有解,故0a =,满足题意;当0a >时,若不等式29(2)04ax a x -++<有解, 则满足29(2)404a a ∆=+-⋅>,解得1a <或4a >;当0a <时,此时对应的函数的图象开口向下,此时不等式29(2)04ax a x -++<总是有解,所以0a <,综上可得,实数a 的取值范围是(,1)(4,)-∞+∞.题型五 一元二次不等式在某区间上的恒成立问题【例5】已知关于x 的不等式2630mx x m -+<在(]02,上有解,则实数m 的取值范围是( )A .(3-∞,B .127⎛⎫-∞ ⎪⎝⎭, C .()3+∞, D .127⎛⎫+∞ ⎪⎝⎭, 【答案】A【解析】由题意得,2630mx x m -+<,(]02x ∈,,即263xm x <+ , 故问题转化为263xm x <+在(]02,上有解, 设26()3x g x x =+,则266()33x g x x x x==++,(]02x ∈,, 对于323x x+≥,当且仅当3(0,2]x =时取等号, 则max ()323g x ==3m <,故选:A【变式5-1】已知命题p :“15∃≤≤x ,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A 【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集 若15x ∀≤≤,250x ax --≤恒成立为真命题, 需满足25550a --≤且150a --≤,解得4a ≥. 因此p 命题成立时a 的范围时4a <,故选:A .【变式5-2】若关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,则m 的取值范围为( )A .(,1][0,)-∞-+∞B .(,1)(0,)-∞-+∞ C .[0,1] D .(0,1) 【答案】B【解析】令22()(1)f x x m x m =-+-,其对称轴为202m x =≥, 关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解, 当(1,1)x ∈-时,有()(1)f x f <-,(1)0f ∴->,即20m m +>,可得0m >或1m <-.故选:B .【变式5-3】已知当12x ≤≤时,存在x 使不等式()()14m x m x -++<成立,则实数m 的取值范围为( )A .{}22m m -<<B .{}12m m -<<C .{}32m m -<<D .{}12m m <<【答案】C【解析】由()()14m x m x -++<可得224m m x x +<-+,由题意可得()22max 4m m x x +<-+,且12x ≤≤,令()24f x x x =-+对称轴为12x =,开口向上,所以()24f x x x =-+在[]1,2上单调递增, 所以2x =时,()()2max 22246f x f ==-+=,所以26m m +<,解得:32m -<<, 所以实数m 的取值范围为{}32m m -<<,故选:C.【变式5-4】关于x 的不等式2244x x a a -+≥在[]1,6内有解,则a 的取值范围为________.【答案】[]2,6-【解析】2244x x a a -+≥在[]1,6内有解,()22max 44a a x x ∴-≤-,其中[]1,6x ∈;设()2416y x x x =-≤≤, 则当6x =时,max 362412y =-=, 2412a a ∴-≤,解得:26a -≤≤,a ∴的取值范围为[]2,6-.。
解析不等式恒成立问题
解析不等式恒成立问题纵观近年来各地高考数学试题,有关不等式恒成立问题屡见不鲜,这类问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、知识交汇点多等特点.考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的值或取值范围.解决这类问题的关键是转化,通过等价转化能使问题起到“柳暗花明”的功效.而等价转化过程往往渗透着换元、化归、数形结合、分类讨论、函数与方程等数学思想方法,其常用方法主要有:更换主元法、分离参数法、数形结合法、最值法等,笔者试图通过本文能对学生突破这一难点有所启迪.一、更换主元法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数.例1.设不等式221(1)x m x ->-对满足[]2,2m ∈-的一切实数m 恒成立,求x 的取值范围. 解:设2()(1)(21),f m x m x =---则不等式221(1)x m x ->-对满足[]2,2m ∈-的一切实数m 恒成立⇔()0f m <对[]2,2m ∈-恒成立.当22m -≤≤时,()0f m <22(2)2(1)(21)0,(2)2(1)(21)0f x x f x x ⎧=---<⇔⎨-=----<⎩即222210,2230x x x x ⎧--<⎨+->⎩ 解得131322,171722x x x ⎧-+<<⎪⎪⎨-+--⎪><⎪⎩或故x 的取值范围是7131(,)22-+. 注:此类问题常因思维定势,学生易把它看成关于x 的不等式讨论,此种解法因计算繁琐易出错;若变换一个角度,以m 为变量,使2()(1)(21),f m x m x =---则问题转化为求一次函数(或常数函数)()f m 的值在[]2,2-内恒为负时,参数x 应满足的条件——“换位”思考优势明显.二、分离参数法当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来,且分离后不等式另一边的函数(或代数式)的最值可求时,常用分离参数法.例 2.已知函数()ln()xf x e a =+(a 为常数)是实数集R 上的奇函数,函数()cosg x x x λ=-在区间2,33ππ⎡⎤⎢⎥⎣⎦上是减函数. (Ⅰ)求a 的值与λ的范围;(Ⅱ)若对(Ⅰ)中的任意实数λ都有()1g x t λ≤-在2,33ππ⎡⎤⎢⎥⎣⎦上恒成立,求实数t 的取值范围. (Ⅲ)若0m >,试讨论关于x 的方程2ln 2()x x ex m f x =-+的根的个数. 解:(Ⅰ)、(Ⅲ)略 (Ⅱ)由题意知,函数()cos g x x x λ=-在区间2,33ππ⎡⎤⎢⎥⎣⎦上是减函数. max 1()(),332g x g ππλ∴==-()1g x t λ≤-在2,33ππ⎡⎤⎢⎥⎣⎦上恒成立11,32t πλλ⇔-≥- 132t πλ∴≤+(1)λ≤-1,.32t π∴≤- 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于x 取值范围内的任一个数都有()()f x g a ≥恒成立,则min ()()g a f x ≤;若对于x 取值范围内的任一个数都有()()f x g a ≤恒成立,则max ()()g a f x ≥.三、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例 3.已知函数36,2(),63,2x x y f x x x +≥-⎧==⎨--<-⎩若不等式()2f x x m ≥-恒成立,则实数m 的取值范围是 .解:在同一个平面直角坐标系中分别作出函数2y x m =-及()y f x =的图象,由于不等式()2f x x m ≥-恒成立,所以函数2y x m =-的图象应总在函数()y f x =的图象下方,因此,当2x =-时,40,y m =--≤所以4,m ≥-故m 的取值范围是[)4,.-+∞注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式2log 0a x x -<,在1(0,)2x ∈时恒成立,求a 的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设2(),()log ,a f x x g x x ==然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.四、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4.已知函数3()(ln ),().3a f x x x m g x x x =+=+ (Ⅰ)当2m =-时,求()f x 的单调区间; (Ⅱ)若32m =时,不等式()()g x f x ≥恒成立,求实数a 的取值范围. 解:(Ⅰ)略 (Ⅱ)当32m =时,不等式()()g x f x ≥即33(ln )32a x x x x +≥+恒成立.由于0x >,∴231ln 32a x x +≥+,亦即21ln 32a x x ≥+,所以213(ln )2x a x+≥.令()h x =213(ln )2x x +,则36ln ()x h x x -'=,由()0h x '=得1x =.且当01x <<时,()0h x '>;当1x >时,()0h x '<,即()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()h x 在1x =处取得极大值3(1)2h =,也就是函数()h x 在定义域上的最大值.因此要使213(ln )2x a x +≥恒成立,需要32a ≥,所以a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭. 注:恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.O xy()y f x = 2y x m =-2-不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.。
高中带参数的不等式恒成立题型分析
带参数的不等式恒成立题型分析带参数的不等式中求参数的取值范围的问题基本上有四种,即求参数的取值范围,使含参数的不等式恒成立,能成立,恰成立或是某指定集合的子集.1. 不等式的恒成立,能成立,恰成立或是某指定集合的子集等问题的操作程序(1)恒成立问题若不等式()Axf在区间D上的最小值大于A,f>在区间D上恒成立,则等价于函数()x若不等式()Bf在区间D上的最大值小于B.f<在区间D上恒成立,则等价于函数()xx(2)能成立问题若在区间D上存在实数x使不等式()Af>在区间D上能成立, ,则xxf>成立,即()A等价于函数()xf在区间D上的最大值大于A,若在区间D上存在实数x使不等式()Bxf<在区间D上能成立, ,则f<成立,即()Bx等价于函数()xf在区间D上的最小值小于B.(3)恰成立问题若不等式()Af>的解集为D,xxf>在区间D上恰成立, 则等价于不等式()A若不等式()Bxf<的解集为D,f<在区间D上恰成立, 则等价于不等式()Bx(4)某指定集合的子集问题若不等式()Af>的解集包含于区间D=[t1,t2], 则等价于不等式xf(t1)<=A,f(t2)<=A,若不等式()Bxf<在的解集包含于区间D=[t1,t2], 则等价于不等式f(t1)>=B,f(t2)>=B,如下讨论恒成立问题,其基本类型:类型1:对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立类型2:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(0 e−1) ,
(e−1,
−
e
1 2
)
.
因为 ,且 在区间 上单调递增, 1
∈
(e
−1,
−
eห้องสมุดไป่ตู้
1 2
)
f (x)
2
−1
(e 2 , +∞)
所以
f
(
x)
在
x
=
−1
e2
处取极小值
2m e
,即最小值为
2m e
.
1 / 10
若 ≥ , ,则 ,即 ∀x 1 2
f (x) ≥ 2en−1
2m ≥ 2en−1 e
m ≥ en .
当n
≤
0
时,
n m
≤
0 ,当 n
>
0
时,则
n m
≤
n en
.
设 ,则 g(n)
=
n en
(n
>
0)
g′(n)
=
1− n en
.
当 0 < n <1时, g′(n) > 0 ;当 n > 1时, g′(n) < 0 ,
所以 g(n) 在(0,1) 上单调递增;在(1,+∞) 上单调递减,
g(mx) > g(ln x) , mx > ln x , m > ln x .
x
设 则 h(x) = ln x (x > 0) , x
h′
(
x)
=
1
− ln x2
x
(x
>
0)
.
令 h′(x) = 0 ,解得 x =e,易得 h(x) 在 (0,e) 上单调递增,在(e, +∞) 上单调递减,
.A (−∞,e − 2]
.B (−∞, e −1]
.C (−∞, 2e − 3]
.D (−∞, 2e −1]
3 / 10
【答案】D 【解析】由题意易知 f ( x) − ex + x 为定值,不妨设 f (x) − ex + x = t ,则 f (x) = ex − x + t ,又 f (t) = e , 故 et − t + t = e ,解得:t =1, 即函数的解析式为 f ( x) = ex − x +1, f '( x) = ex −1,
由题意可知:(ex − x +1) + (ex −1) ≥ ax 对 x∈(0,+∞) 恒成立,
即 a ≤ 2ex −1对 x ∈(0,+∞) 恒成立, x
令 ,则 , g (x) = 2ex −1 x
g
'(
x)
=
2ex
(x
x2
−1)
据此可知函数 g (x) 在区间(0,1) 上单调递减,在区间(1,+∞)上单调递增,
1 x
=
0
,根据图像知,方程有唯一解设为
x0
,
则函数在(0, x0 ) 上单调递减,在(x0,+∞) 上单调递增,
故 ,且 , f
(x) min
=
f
( x0 ) =
2ae2 x0
− ln x0
+ ln a
≥0
4ae2x0 − 1 = 0 x0
代换得到: , 1 2 x0
−
2 ln
x0
−
2 x0
−
2 ln
高考数学历年考点题型专题讲解
模板九: 不等式恒成立问题
分离参数法是求解不等式恒成立问题的常用方法,其解题要点如下: 模板 构建
典型 (2020·江苏省西亭高级中学高三三模)若关于 x的不等式 mx2 ≥ 2en−1 在[1 ,+∞) 上恒成立,则 n
1+ ln x
2
m
例题 的最大值为__________.
.D (−∞,e)
4 / 10
因为 所以 x > 1, mxemx > eln x ln x .
设 由 显然 在 上单调递增 g(x) = xex (x > 0) , g ′( x ) = e x (1 + x) , g(x) (0, +∞)
,
因为 所以 等价于 即 则 mx > 0, ln x > 0 , mxemx > eln x ln x
【解析】设 ,则 f ( x) = 2ae2x − ln x + ln a
f '( x) = 4ae2x − 1 .
x
当 a ≤ 0 时, f '(x) < 0 ,故 f (x) 单调递减,当 x → +∞ 时, f (x) → −∞,不成立;
2 / 10
当
a
>
0
时,取
f
'(
x)
=
4ae 2 x
−
.A
1 e
,
+∞
.B
1 e
,
e
.C [1, +∞)
【答案】A 【解析】由题意,若 m ≤ 0 ,显然 f (x) 不是恒大于零,故 m > 0 .
则 在 上恒成立 m > 0 , memx − ln x > 0 (0,1]
;
当 时 等价于 x >1 , f (x) > 0
memx > ln x ,
函数 g (x) 的最小值为 g (1) = 2e −1,
结合恒成立的结论可知:a 的取值范围是(−∞,2e −1].本题选择 D 选项.
3.(2020·江西省高三二模)已知函数 f (x) = memx − ln x ,当 x > 0 时, f (x) > 0 恒成立,则 m 的取值范 围为( )
所以 g(n) ≤ g(1) ,即 n en
≤ 1 ,所以 n 的最大值为 1 .故答案为:
e
m
e
1 e
不等式恒成立问题的求解思路:已知不等式 f (x,l ) ³ 0 (λ 为实参数)对任意的 x∈ D 恒成立,求参 题后 数λ 的取值范围.利用导数解决此类问题可以运用分离参数法; 如果无法分离参数,可以考虑对参 反思 数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的
方法( a > 0 , ∆ < 0 或 a < 0 , ∆ > 0 )求解.
针对训练*举一反三
1.(2020·浙江省高三二模)对任意的实数 x > 0 ,不等式2ae2x − ln x + ln a ≥ 0 恒成立,则实数 a 的最小值 为( )
A. 2 e
B. 1
C. 2
2e
e
D. 1 2e
【答案】D
2
≥
0
易知函数
g
(
x)
=
1 2x
−
2
ln
x
−
2x
−
2
ln
2
在
(0,
+∞
)
上单调递减,且
g
1 2
=
0
,故
x0
≤
1 2
.
a
=
1 4x0 ⋅ e2x0
≥
1 2e
,故当 x0
=
1 2
时,有最小值为 1 2e
.故选: D .
2.(2020·江西省南昌十中高三三模)设函数 f (x) 在定义域(0,+∞ )上是单调函数,且 ∀x ∈(0, +∞), f f ( x) − ex + x = e ,若不等式 f ( x) + f '( x) ≥ ax 对 x ∈ (0, +∞) 恒成立,则 a 的取值范 围是( )
令 f (x) = mx2 ;当 m < 0 时, f (1) = m < 0 < 2en−1 ,不合题意; 1+ ln x
当 时, , m > 0
f
′(
x)
=
mx (2 (1 +
ln ln
x +1) x)2
试题 令 ,得 或 , f ′(x) < 0
0 < x < e−1
e−1
<
x
<
−1
e2
解析
所以 在区间 和 上单调递减 f (x)