功 功率 动能定理
描述动能定理和功率的计算公式
描述动能定理和功率的计算公式知识点:动能定理和功率的计算公式动能定理:动能定理是描述物体由于运动而具有的能量的定理。
它说明了物体动能的变化等于物体所受外力做功的总和。
动能定理的数学表达式为:[ W = KE ]其中,( W ) 表示外力做的总功,( KE ) 表示物体动能的变化量。
当物体受到外力作用,且外力的方向与物体运动方向相同时,外力对物体做正功,物体的动能增加;当外力的方向与物体运动方向相反时,外力对物体做负功,物体的动能减少。
功率的计算公式:功率是指单位时间内做功的多少,是描述做功快慢的物理量。
功率的计算公式为:[ P = ]其中,( P ) 表示功率,( W ) 表示做的功,( t ) 表示时间。
功率的单位是瓦特(W),1瓦特等于1焦耳/秒。
当物体受到的外力与物体的速度方向相同时,物体的功率等于外力与物体速度的乘积;当物体受到的外力与物体的速度方向相反时,物体的功率等于外力与物体速度的乘积的负值。
以上是动能定理和功率的计算公式的基本内容,希望对您有所帮助。
习题及方法:1.习题:一个物体质量为2kg,以10m/s的速度运动,求物体的动能。
解题方法:根据动能定理,物体的动能 ( KE = mv^2 )。
将质量 ( m = 2kg ) 和速度 ( v = 10m/s ) 代入公式,得到物体的动能 ( KE = 2 10^2 = 100J )。
2.习题:一个物体质量为3kg,以8m/s的速度运动,若物体受到一个恒力12N的作用,恒力的方向与物体运动方向相同,求物体在2秒内所做的功。
解题方法:根据动能定理,物体所做的功 ( W = KE )。
物体初始动能 ( KE_1 = mv_1^2 = 3 8^2 = 96J ),2秒后物体的速度 ( v_2 = v_1 + at = 8 + 12 2 = 20m/s ),2秒末的动能 ( KE_2 = mv_2^2 = 3 20^2 = 600J )。
物体在2秒内所做的功 ( W =KE_2 - KE_1 = 600J - 96J = 504J )。
动力学中的动能定理与功率
动力学中的动能定理与功率动能定理是力学中的一个基本定理,描述了物体的动能与其受到的外力之间的关系。
功率则是表示物体在单位时间内所做的功的大小。
在动力学中,动能定理和功率密切相关,可以通过它们来深入理解物体的运动和相互作用。
一、动能定理的概念与原理动能定理是由兰姆提出的一个基本原理,它指出:对于质量为m的物体,当物体克服阻力等外力做匀变速直线运动时,物体所获得的动能等于外力所做的功。
数学表达式为 K = W,其中K表示物体的动能,W表示外力所做的功。
根据动能定理,我们可以得出以下结论:1. 物体的动能大小与物体的质量和速度平方成正比。
2. 力对物体所做的功等于物体动能的增量。
二、功率的概念与计算方法功率是描述物体工作效率的物理量,表示单位时间内做功的大小。
功率的数值等于单位时间内做功的大小,可以用来衡量物体对外界做工的快慢。
数学表达式为 P = W / t,其中P表示功率,W表示物体所做的功,t 表示所用的时间。
通过功率的定义,我们可以得出以下结论:1. 在相同的时间内,功率越大则物体所做的功越大,代表工作效率越高。
2. 功率与做功的方式和时间密切相关,可以通过改变工作方式和时间来改变功率的大小。
三、动能定理与功率的关系动能定理与功率之间存在着密切的联系。
根据动能定理的定义,物体所获得的动能等于外力所做的功。
而功率表示单位时间内做功的大小,可以看作是外力对物体所做功的速率。
根据功率的定义,可以将动能定理改写为动力学方程:P = ΔK / t,其中ΔK表示动能的增量,t表示所用的时间。
由此可见,功率就是动能的变化率,可以通过功率来判断物体的能量转化情况和工作效率。
四、应用和实例动能定理和功率在物理学的研究和实践中有广泛应用。
以下是一些常见的应用和实例:1. 机械工程:通过动能定理和功率的计算,可以评估机械设备的性能,并优化工作方式,提高工作效率。
2. 运动学研究:通过动能定理和功率的分析,可以深入探究物体在运动过程中的能量转化和改变,了解物体的运动规律。
第05讲 功 功率 动能定理(解析版)
2020年高考物理二轮精准备考复习讲义第二部分功能与动量第5讲功功率动能定理目录一、理清单,记住干 (2)二、研高考,探考情 (2)三、考情揭秘 (4)四、定考点,定题型 (5)超重点突破1功和功率的分析与计算 (5)命题角度1功的分析与计算 (5)命题角度2功率的分析及应用 (6)命题角度3 变力做功 (7)超重点突破2机车启动中的功率问题 (8)超重点突破3动能定理的基本应用 (10)命题角度1动能定理在直线运动中的应用 (10)命题角度2动能定理在曲线运动中的应用 (12)命题角度3 动能定理在图象问题中的应用 (13)五、固成果,提能力 (14)一、理清单,记住干1.功(1)恒力做功:W =Fl cos α(α为F 与l 之间的夹角).(2)变力做功:①用动能定理求解;②用F -x 图线与x 轴所围“面积”求解. 2.功率(1)平均功率:P =Wt =F v cos α(α为F 与v 的夹角).(2)瞬时功率:P =Fv cos α(α为F 与v 的夹角).(3)机车启动两类模型中的关键方程:P =F ·v ,F -F 阻=ma ,v m =PF 阻,Pt -F 阻x =ΔE k . 3.动能定理:W 合=12mv 2-12mv 20.4.应用动能定理的两点注意(1)应用动能定理的关键是写出各力做功的代数和,不要漏掉某个力做的功,同时要注意各力做功的正、负. (2)动能定理是标量式,不能在某一方向上应用.二、研高考,探考情【2019·高考全国卷Ⅲ,T17】从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3 m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示.重力加速度取10 m/s 2.该物体的质量为( )A .2 kgB .1.5 kgC .1 kgD .0.5 kg 【答案】:C【解析】:画出运动示意图,设阻力为f ,据动能定理知A →B (上升过程):E k B -E k A =-(mg +f )hC →D (下落过程):E k D -E k C =(mg -f )h整理以上两式得mgh =30 J ,解得物体的质量m =1 kg ,选项C 正确.【2019·高考江苏卷】如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m ,从A 点向左沿水平地面运动,压缩弹簧后被弹回,运动到A 点恰好静止.物块向左运动的最大距离为s ,与地面间的动摩擦因数为μ,重力加速度为g ,弹簧未超出弹性限度.在上述过程中( )A .弹簧的最大弹力为μmgB .物块克服摩擦力做的功为2μmgsC .弹簧的最大弹性势能为μmgsD .物块在A 点的初速度为2μgs 【答案】:BC【解析】:小物块处于最左端时,弹簧的压缩量最大,然后小物块先向右做加速运动再做减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg ,选项A 错误;物块从开始运动至最后回到A 点过程,由功的定义可得物块克服摩擦力做功为2μmgs ,选项B 正确;自物块从最左侧运动至A 点过程由能量守恒定律可知E p =μmgs ,选项C 正确;设物块在A 点的初速度为v 0,整个过程应用动能定理有-2μmgs =0-12mv 20,解得v 0=2μgs ,选项D 错误.【2018·高考全国卷Ⅲ,T19】地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程( )A .矿车上升所用的时间之比为4∶5B .电机的最大牵引力之比为2∶1C .电机输出的最大功率之比为2∶1D .电机所做的功之比为4∶5 【答案】:AC【解析】:由图线①知,矿车上升总高度h =v 02·2t 0=v 0t 0由图线②知,加速阶段和减速阶段上升高度和 h 1=v 022·(t 02+t 02)=14v 0t 0匀速阶段:h -h 1=12v 0·t ′,解得t ′=32t 0故第②次提升过程所用时间为t 02+32t 0+t 02=52t 0,两次上升所用时间之比为2t 0∶52t 0=4∶5,A 对;对矿车受力分析,当矿车向上做加速直线运动时,电机的牵引力最大,由于加速阶段加速度相同,故加速时牵引力相同,B 错;在加速上升阶段,由牛顿第二定律知, F -mg =ma ,F =m (g +a ) 第①次在t 0时刻,功率P 1=F ·v 0, 第②次在t 02时刻,功率P 2=F ·v 02,第②次在匀速阶段P 2′=F ′·v 02=mg ·v 02<P 2,可知,电机输出的最大功率之比P 1∶P 2=2∶1,C 对;由动能定理知,两个过程动能变化量相同,克服重力做功相同,故两次电机做功也相同,D 错.三、考情揭秘近几年高考命题点主要集中在正、负功的判断,功率的分析与计算,机车启动模型,题目具有一定的综合性,难度适中.高考单独命题以选择题为主,综合命题以计算题为主,常将动能定理与机械能守恒定律、能量守恒定律相结合.应考策略:备考中要理解功和功率的定义,掌握正、负功的判断方法,机车启动两类模型的分析,动能定理及动能定理在变力做功中的灵活应用.动能定理仍是2020年高考的考查重点,要重点关注本讲知识与实际问题、图象问题相结合的情景题目.四、定考点,定题型超重点突破 1 功和功率的分析与计算1.功和功率的计算 (1)功的计算①恒力做功一般用功的公式或动能定理求解。
功、功率与动能定理(解析版)
构建知识网络:考情分析:功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考查常与生产生活实际联系紧密,题目的综合性较强。
复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用重点知识梳理: 一、功1.做功的两个要素(1)作用在物体上的力. (2)物体在力的方向上发生的位移. 2.功的物理意义 功是能量转化的量度. 3.公式 W =Fl cos_α(1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. 4.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.通晓两类力做功特点(1)重力、弹簧弹力和电场力都属于“保守力”,做功均与路径无关,仅由作用对象的初、末位置(即位移)决定。
(2)摩擦力属于“耗散力”,做功与路径有关。
二、功率1.物理意义:描述力对物体做功的快慢.2.公式:(1)P =Wt ,P 为时间t 内的物体做功的快慢.(2)P =Fv①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率. 3.对公式P =Fv 的几点认识:(1)公式P =Fv 适用于力F 的方向与速度v 的方向在一条直线上的情况. (2)功率是标量,只有大小,没有方向;只有正值,没有负值.(3)当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解. 4.额定功率:机械正常工作时的最大功率.5.实际功率:机械实际工作时的功率,要求不能大于额定功率. 三、动能1.定义:物体由于运动而具有的能.2.公式:E k =12mv 2.3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关.4.单位:焦耳,1J =1N·m =1kg·m 2/s 2.5.动能的相对性:由于速度具有相对性,所以动能也具有相对性.6.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 12.四、动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:(1)W =ΔE k . (2)W =E k2-E k1. (3)W =12mv 22-12mv 12.3.物理意义:合外力做的功是物体动能变化的量度.4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【名师提醒】一对平衡力做功绝对值肯定相等;一对相互作用力做功的绝对值不一定相等,可以同为正或同为负,也可以一个做功一个不做功,可以一正一负绝对值不一定相等---因为相互作用力作用在不同的物体上,不同的物体位移不一定相等。
动能定理和功率的计算公式是什么
动能定理和功率的计算公式是什么动能定理是物理学中的一个重要定理,描述了物体动能的变化与外力对其所做的功之间的关系。
功率则是描述能量转化速率的物理量。
本文将介绍动能定理和功率的计算公式,并探讨其在实际应用中的意义。
一、动能定理的计算公式动能定理是描述物体动能变化的定理。
它的数学表达式如下:动能变化量 = 外力所做的功ΔK = W其中,ΔK表示动能的变化量,W表示外力所做的功。
动能(K)定义为物体的质量(m)和速度(v)的平方的乘积的一半:动能 K = 1/2 mv²其中,m表示物体的质量,v表示物体的速度。
在应用动能定理时,我们需要计算物体在作用力下的动能变化量。
比如,当一个物体受到一个外力的作用,使其速度发生变化时,我们可以通过动能定理来计算动能的变化量。
二、功率的计算公式功率是描述能量转化速率的物理量,表示单位时间内能量转化的大小。
功率的数学表达式如下:功率 P = W/t其中,P表示功率,W表示所做的功,t表示时间。
功(W)的计算可以通过力(F)和位移(d)之间的关系来计算,即:功 W = F·d其中,F表示作用在物体上的力,d表示物体的位移。
三、动能定理和功率的意义动能定理和功率的计算公式在实际应用中具有重要的意义。
它们能够帮助我们分析和解决各种与动力学相关的问题。
基于动能定理,我们可以分析物体在受到外力作用下的运动情况。
通过计算物体的动能变化量,我们可以了解外力对物体所做的功以及与之相对应的动能变化。
功率的计算公式可以帮助我们了解能量转化的速率。
在实际应用中,我们常常需要评估某个系统或设备的功率大小,以便确定其运行效率或性能。
功率的计算公式使得我们能够准确地量化能量的转化速率。
在工程领域,动能定理和功率的计算公式被广泛应用于机械、电气等方面。
它们不仅在设计和开发过程中起着重要作用,也在问题解决和性能评估中发挥着关键作用。
总结:动能定理和功率的计算公式为我们分析和解决与动力学相关的问题提供了便利。
功、功率、动能定理
功、功率、动能定理1、机车以恒定功率起动2、机车以恒定加速度a 起动1、飞机在飞行时受到的空气阻力与速率的平方成正比。
若飞机以速率V 匀速飞行时,A.2、 J ,第3s 。
3、,为 W4、驶了A例:12①汽车保持额定功率从静止起动后能达到的最大速度是多少?②汽车从静止开始,保持以a=0.5m/s2的加速度作匀加速直线运动,这一过程维持多长时间?3、一辆汽车的质量是5×103 kg ,发动机的额定功率为60 kW ,汽车所受阻力恒为5000 N ,如果汽车从静止开始以0.5 m/s 2的加速度做匀加速直线运动,功率达到最大后又以额定功率运动了一段距离,最终汽车达到了最大速度.在刚达到最大速度时,汽车运动了125 m ,问在这个过程中,汽车发动机的牵引力做了多少功?汽车加速过程持续的时间。
当a =0时,F =f ,速度达到最大值v m . 保持v m 匀速运动1.某人用手将一质量为1 kg的物体由静止向上提升1 m,这时物体的速度为2 m/s.则下列说法中正确的是(g取10 m/s2) ( ) A.手对物体做功12 J B.合外力对物体做功12 JC.合外力对物体做功2 J D.物体克服重力做功10 J2.静止在粗糙水平面上的物块A受方向始终水平向右、大小先后为F1、F2、F3的拉力作用做直线运动,t=4 s时停下,其v-t图象如图7所示,已知物块A与水平面间的动摩擦因数处处相同,下列判断正确的是 ( )A.全过程中拉力做的功等于物块克服摩擦力做的功B.全过程拉力做的功等于零图 7C.一定有F1+F3=2F2 D.可能有F1+F3>2F23.如图所示,物体在离斜面底端4 m处由静止滑下,若动摩擦因数均为0.5,斜面倾角为37°,斜面与平面间由一小段圆弧连接,物体在经过圆弧处无能量损失,求物体能在水平面上滑行的距离.4.用拉力F使一个质量为m的木箱由静止开始在水平冰道上移动了l,拉力F跟木箱前进方向的夹角为α,木箱与冰道间的动摩擦因数为μ,求撤去力F时木箱获得的速度.木箱还能滑行的距离。
功 功率和动能定理
功 功率和动能定理一、基础知识要记牢1、恒力..做功的公式:W =Fl cos α 若力的方向时刻变化,但力的方向始终与运动方向相同或相反,则可用W =Fl 求此变力的功,其中l 为物体运动的路程。
2、功率(1)平均功率:P =W t=F v cos α (2)瞬时功率:P =F v cos α3、输出功率:P =F v ,其中F 为机车牵引力。
4、的两种启动方式:(1)恒定功率启动(包含两个过程:变加速→匀速)。
(2)匀加速启动(包含三个过程:匀加速→变加速→匀速)5、定理表达式:W 合=E k 2-E k 1说明:(1)W 合为物体在运动过程中外力的总功。
(2)动能增量E k 2-E k 1一定是物体在末初..两状态动能之差。
二、方法技巧要用好1、功率启动(1)机车先做加速度逐渐减小的加速运动,后做匀速直线运动,速度图像如图2-1-5所示,当F =F 阻时,v m =P F =P F 阻。
(2)功能关系:Pt -F 阻x =12m v 2-0。
图2-1-5 2、加速度启动(1)速度图像如图2-1-6所示。
机车先做匀加速直线运动,当功率达到额定功率后获得匀加速的最大速度v 1。
若再加速,应保持功率不变做变加速运动,直至达到最大速度v m 后做匀速运动。
(2)经常用到的公式: 图2-1-6 ⎩⎪⎨⎪⎧ F -F 阻=ma P =F v P 额=F 阻v m v 1=at 其中t 为匀加速运动的时间3、动能定理解题的基本步骤巩固练习[以选择题的形式考查,常涉及功的正负判断、功的计算、平均功率与瞬时功率的分析与计算等]1、一滑块在水平地面上沿直线滑行,t=0时速率为1 m/s。
从此刻开始在与速度平行的方向上施加一水平作用力F,力F和滑块的速度v随时间的变化规律分别如图2-1-1甲和乙所示,两图中F、v取同一正方向。
则()图2-1-1A.滑块的加速度为1 m/s2B.滑块与水平地面间的滑动摩擦力为2 NC.第1 s内摩擦力对滑块做功为-0.5 JD.第2 s内力F的平均功率为3 W2(2012·江苏高考)如图2-1-2所示,细线的一端固定于O点,另一端系一小球。
知识点8功功率动能定理
• 功和功率 • 动能定理 • 实例分析 • 动能定理的拓展
01 功和功率
功的定义
总结词
功是力对位移的累积效应,表示 能量转化的量度。
详细描述
在物理学中,功被定义为力与物体 在力的方向上移动的位移的乘积。 公式表示为:W = F × s,其中W 表示功,F表示力,s表示位移。
动能定理的推导
总结词
动能定理的推导基于牛顿第二定律和运动学公式,通过数学运算得出。
详细描述
动能定理的推导过程首先根据牛顿第二定律F=ma,结合运动学公式 s=v0t+1/2at^2,通过数学运算和推导,可以得到合外力对物体所做的功的公式 W=ΔE_k=1/2mv^2-1/2mv0^2。由此可以得出动能定理的表述。
动能定理与能量守恒定律的关系
动能定理是能量守恒定律的一种表现形式。根据能量守恒定律,一个孤立系统的 总能量保持不变。当系统中的动能和势能发生改变时,总能量仍然保持不变。动 能定理描述了系统动能改变与做功之间的关系,是能量守恒定律的具体表现之一 。
动能定理和能量守恒定律共同构成了经典力学的基本原理,是描述物质运动和相 互作用的物理规律的基础。
撞和非弹性碰撞等问题。
03 实例分析
简单机械的功和功率
总结词
简单机械的功和功率是物理学中的基本概念,通过实例分析可以深入理解功、功率的计算方法和物理意义。
详细描述
简单机械的功是指力在力的方向上移动物体所做的功,可以用公式W=Fs计算,其中F是力的大小,s是物体在力 的方向上移动的距离。功率是指单位时间内完成的功,可以用公式P=W/t计算,其中W是功的大小,t是时间。 通过实例分析,可以了解不同简单机械的功和功率的计算方法,例如滑轮组、杠杆等。
功、功率、动能定理、机械能守恒
【板块04】功、功率一、功1功的定义:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积.2.恒力做功的计算公式:W= FICOS a,其中F为恒力,I是物体相对地面的位移,而不是相对于和它接触的物体的位移.【特别提醒】①只适用于恒力做功的计算.②I是物体相对地面的位移,而不是相对于和它接触的物体的位移.3. ____________________________________________ 力做功的两个必要因素:力和物体在发生的位移.4. ____________ 功是,没有方向,但有正、负之分.卫考:正功” 负功”的物理意义是什么?正功” 负功”中的牛”、•”号表示功的大小吗?【答案】2.FICOS a;3•力的方向上;4 .标量。
思考:正功表示物体所受力使物体获得能量,是动力;负功表示物体所受力使物体失去能量,是阻力.牛”、•”正负号只表示物理意义,不表示大小.5•判断正负功的方法(1)根据力的方向和位移的方向的夹角a判断功的正负.(2)从能量角度入手,根据功是能量转化的量度进行判断.若有能量转化,则必有力对物体做功.此法既适用于恒力做功,也适用于变力做功.(3)看力F与物体运动速度方向之间的夹角a的大小.若a= 90°贝U力F不做功;若a<90° ,则力F做正功;若a>90° ,则力F做负功(或者说物体克服力 F做功).此法常用于判断曲线运动中力做功的情况.6.变力做功的计算(1)用动能定理W= A E k计算(2)当变力做功的功率一定时,用功率和时间计算:W= Pt.(3)将变力做功转化为恒力做功(线性变化的力) 【方法提炼】求变力功的几种方法①微元法:当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化时,可用微元法将曲线分成无限个小段,每一个小段可认为是恒力做功,总功即为各个小段做功的代数和.②平均力法:如果参与做功的变力,其方向不变,而大小随位移线性变化,则可求出平均力等效代入公式 W= T ICOS a求解.③图象法:如果参与做功的变力方向与位移方向始终一致而大小随位移变化,我们可作出该力随位移变化的图象.那么图线与坐标轴所围成的面积,即为变力做的功.④功率法:用W= Pt求恒定功率下的变力(如汽车、轮船的牵引力)做功.7.总功的计算:(1)先求物体所受的合外力,再求合外力的功;(2)先求每个力做的功,再求各力做功的代数和.【重点突破】1 .图1表示物体在力 F的作用下在水平面上发生了一段位移I,分别计算这三种情形下力对物体做的功.设这三种情形下力和位移的大小都相同:F= 10N , I = 2m .角B的大小如图所示.甲乙6=30°丙白=了“【答案】10 3J; -10 3J; 10 3J【解析】甲图: W= Ficos (180 — 150°) = 10X2X J J = 10 3J 乙图:W= Ficos (180 ° 30° = 10X2X( — 丙图:W= Ficos 30 = 10X2%^ J= 10./3J 1. 如图所示,力 F 大小相等,ABCD 物体运动的位移s 也相同,哪种情况 F 做功最小【答案】D5•如图所示,质量为m 的物体放在倾角为 B 的固定斜面上,物体与斜面间的动摩擦因数为 仏 在小物体由静止开始沿斜面下滑高度为 h 的过程中,求物体所受的各个力所做的功。
功 功率 动能定理
机械能功 功率 动能定理一、功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移. 3.物理意义:功是能量转化的量度. 4.计算公式(1)恒力F 的方向与位移l 的方向一致时:W =Fl .(2)恒力F 的方向与位移l 的方向成某一夹角α时:W =Fl cos α. 5.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.6.一对作用力与反作用力的功7.一对平衡力的功一对平衡力作用在同一个物体上,若物体静止,则两个力都不做功;若物体运动,则这一对力所做的功一定是数值相等,一正一负或均为零.二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式:(1)P =Wt ,P 为时间t 内物体做功的快慢.(2)P =F v①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解. [深度思考] 由公式P =F v 得到F 与v 成反比正确吗? 答案 不正确,在P 一定时,F 与v 成反比. 三、动能 动能定理 1.动能(1)定义:物体由于运动而具有的能叫动能. (2)公式:E k =12m v 2.(3)矢标性:动能是标量,只有正值.(4)状态量:动能是状态量,因为v 是瞬时速度. 2.动能定理(1)内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化量. (2)表达式:W =12m v 22-12m v 12=E k2-E k1.(3)适用条件:①既适用于直线运动,也适用于曲线运动. ②既适用于恒力做功,也适用于变力做功.③力可以是各种性质的力,既可以同时作用,也可以分阶段作用.(4)应用技巧:若整个过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.[深度思考] 物体的速度改变,动能一定改变吗? 答案 不一定.如匀速圆周运动.[基础题组自测]1.(粤教版必修2P67第5题)用起重机将质量为m 的物体匀速吊起一段距离,那么作用在物体上的各力做功情况应是下列说法中的哪一种?( ) A .重力做正功,拉力做负功,合力做功为零 B .重力做负功,拉力做正功,合力做正功 C .重力做负功,拉力做正功,合力做功为零 D .重力不做功,拉力做正功,合力做正功2.(粤教版必修2P77第2题)(多选)一个物体在水平方向的两个恒力作用下沿水平方向做匀速直线运动,若撤去其中的一个力,则( ) A .物体的动能可能减少 B .物体的动能可能不变 C .物体的动能可能增加 D .余下的力一定对物体做功3.(多选)关于功率公式P =Wt 和P =F v 的说法正确的是( )A .由P =Wt 知,只要知道W 和t 就可求出任意时刻的功率B .由P =F v 既能求某一时刻的瞬时功率,也可以求平均功率C .由P =F v 知,随着汽车速度的增大,它的功率也可以无限增大D .由P =F v 知,当汽车发动机功率一定时,牵引力与速度成反比4.(人教版必修2P59第1题改编)如图1所示,两个物体与水平地面间的动摩擦因数相等,它们的质量也相等.在甲图中用力F 1拉物体,在乙图中用力F 2推物体,夹角均为α,两个物体都做匀速直线运动,通过相同的位移.设F 1和F 2对物体所做的功分别为W 1和W 2,物体克服摩擦力做的功分别为W 3和W 4,下列判断正确的是( )图1A .F 1=F 2B .W 1=W 2C .W 3=W 4D .W 1-W 3=W 2-W 45.有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图所示.若由于摩擦使木块的运动速率保持不变,则以下叙述正确的是()A.木块所受的合外力为零B.因木块所受的力都不对其做功,所以合外力做的功为零C.重力和摩擦力的合力做的功为零D.重力和摩擦力的合力为零命题点一功的分析与计算1.常用办法:对于恒力做功利用W=Fl cosα;对于变力做功可利用动能定理(W=ΔE k);对于机车启动问题中的定功率启动问题,牵引力的功可以利用W=Pt.2.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点:①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能,内能Q=F f x相对.例1(2014·新课标Ⅱ·16)一物体静止在粗糙水平地面上.现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1物体从静止开始经过同样的时间.判断力是否做功及做正、负功的方法1. 看力F 的方向与位移l 的方向间的夹角α——常用于恒力做功的情形. 2. 看力F 的方向与速度v 的方向间的夹角α——常用于曲线运动的情形.3. 根据动能的变化:动能定理描述了合外力做功与动能变化的关系,即W 合=ΔE k ,当动能增加时合外力做正功;当动能减少时合外力做负功.1.如图所示,质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止.则关于斜面对m 的支持力和摩擦力的下列说法中错误的是( )A .支持力一定做正功B .摩擦力一定做正功C .摩擦力可能不做功D .摩擦力可能做负功2.以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h ,空气阻力的大小恒为F ,则从抛出到落回到抛出点的过程中,空气阻力对小球做的功为( ) A .0 B .-Fh C .Fh D .-2Fh命题点二 功率的理解和计算 1.平均功率与瞬时功率 (1)平均功率的计算方法 ①利用P =Wt.②利用P =F v cos α,其中v 为物体运动的平均速度. (2)瞬时功率的计算方法①利用公式P =F v cos α,其中v 为t 时刻的瞬时速度. ②P =F v F ,其中v F 为物体的速度v 在力F 方向上的分速度. ③P =F v v ,其中F v 为物体受到的外力F 在速度v 方向上的分力.2.机车的两种启动模型3.机车启动问题常用的三个公式 (1)牛顿第二定律:F -F f =ma . (2)功率公式:P =F ·v . (3)速度公式:v =at .说明:F 为牵引力,F f 为机车所受恒定阻力.例2 在检测某种汽车性能的实验中,质量为3×103kg 的汽车由静止开始沿平直公路行驶,达到的最大速度为40m/s ,利用传感器测得此过程中不同时刻该汽车的牵引力F 与对应速度v ,并描绘出如图4所示的F -1v 图象(图线ABC 为汽车由静止到达到最大速度的全过程,AB 、BO 均为直线).假设该汽车行驶中所受的阻力恒定,根据图线ABC :图4(1)求该汽车的额定功率;(2)该汽车由静止开始运动,经过35s 达到最大速度40m/s ,求其在BC 段的位移.①最大速度在图象中对应的力;②AB 、BO 均为直线.1.求解功率时应注意的“三个”问题(1) 首先要明确所求功率是平均功率还是瞬时功率;(2) 平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功的平均功率;(3) 瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率. 2.机车启动中的功率问题(1) 无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2) 机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,但速度不是最大,v =P F <v m =PF 阻.3.一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图5所示.假定汽车所受阻力的大小F f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图线中,可能正确的是( )图54.一起重机的钢绳由静止开始匀加速提起质量为m 的重物,当重物的速度为v 1时,起重机的功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度v 2匀速上升,重物上升的高度为h ,则整个过程中,下列说法正确的是( ) A .钢绳的最大拉力为Pv 2B .钢绳的最大拉力为mgC .重物匀加速的末速度为PmgD .重物匀加速运动的加速度为Pm v 1-g命题点三 动能定理及其应用 1.动能定理 (1)三种表述①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=12m v 2-12m v 02或W 合=E k -E k0;③图象表述:如图6所示,E k -l 图象中的斜率表示合外力.图6(2)适用范围①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功;③力可以是各种性质的力,既可同时作用,也可分阶段作用.2.解题的基本思路(1) 选取研究对象,明确它的运动过程; (2) 分析受力情况和各力的做功情况;(3) 明确研究对象在过程的初末状态的动能E k1和E k2;(4) 列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解.例3(2016·天津理综·10)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图7所示,质量m=60kg的运动员从长直助滑道AB的A处由静止开始以加速度a =3.6m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48m,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5m,运动员在B、C间运动时阻力做功W=-1530J,取g=10m/s2.图7(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大.5.(多选)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105N;弹射器有效作用长度为100m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则()A.弹射器的推力大小为1.1×106NB.弹射器对舰载机所做的功为1.1×108JC.弹射器对舰载机做功的平均功率为8.8×107WD.舰载机在弹射过程中的加速度大小为32m/s26.(多选)如图8所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos37°=0.8).则( )图8A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g7.如图9所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为F f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d ,缆绳质量忽略不计.求:图9(1)小船从A 点运动到B 点的全过程克服阻力做的功W f ; (2)小船经过B 点时的速度大小v 1; (3)小船经过B 点时的加速度大小a .求解变力做功的五种方法一、用动能定理求变力做功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功,因为使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选.典例1如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置.现用水平拉力F 将小球缓慢拉到细线与竖直方向成θ角的位置.在此过程中,拉力F做的功为()A.FL cosθB.FL sinθC.FL(1-cosθ)D.mgL(1-cosθ)二、利用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移上的恒力所做功的代数和,此法在中学阶段常应用于求解大小不变、方向改变的变力做功问题.典例2如图所示,在一半径为R=6m的圆弧形桥面的底端A,某人把一质量为m=8kg的物块(可看成质点).用大小始终为F=75N的拉力从底端缓慢拉到桥面顶端B(圆弧AB在一竖直平面内),拉力的方向始终与物块在该点的切线成37°角,整个圆弧桥面所对的圆心角为120°,g取10m/s2,sin37°=0.6,cos37°=0.8.求这一过程中:(1)拉力F做的功;(2)桥面对物块的摩擦力做的功.三、化变力为恒力求变力做功变力做功直接求解时,通常都比较复杂,但若通过转换研究对象,有时可化为恒力做功,可以用W =Fl cos α求解,此法常常应用于轻绳通过定滑轮拉物体的问题中.四、用平均力求变力做功在求解变力做功时,若物体受到的力的方向不变,而大小随位移是成线性变化的,即为均匀变化,则可以认为物体受到一大小为F =F 1+F 22的恒力作用,F 1、F 2分别为物体初、末状态所受到的力,然后用公式W =F l cos α求此力所做的功.五、用F -x 图象求变力做功在F -x 图象中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图).典例3 轻质弹簧右端固定在墙上,左端与一质量m =0.5kg 的物块相连,如图12甲所示,弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2.以物块所在处为原点,水平向右为正方向建立x 轴,现对物块施加水平向右的外力F ,F 随x 轴坐标变化的情况如图乙所示,物块运动至x =0.4m 处时速度为零,则此时弹簧的弹性势能为(g =10m/s 2)( )图12A .3.1JB .3.5JC .1.8JD .2.0J[课后作业]题组1 功和功率的分析与计算1.一个成年人以正常的速度骑自行车,受到的阻力为总重力的0.02倍,则成年人骑自行车行驶时的功率最接近于( ) A .1WB .10WC .100WD .1000W2. (多选)一质量为1kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图1所示.下列判断正确的是( )图1A .0~2s 内外力的平均功率是4WB .第2s 内外力所做的功是4JC .第2s 末外力的瞬时功率最大D .第1s 末与第2s 末外力的瞬时功率之比为9∶43.如图所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时F 所做的总功为( )A .0 B.12F m x 0 C.π4F m x 0 D.π4x 02 题组2 动能定理及其简单应用4.如图所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面.设小球在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则小球从A 到C 的过程中弹簧弹力做功是( )A .mgh -12m v 2B.12m v 2-mgh C .-mghD .-(mgh +12m v 2)5.(多选)质量为1kg 的物体静止在水平粗糙的地面上,在一水平外力F 的作用下运动,如图4甲所示,外力F 和物体克服摩擦力F f 做的功W 与物体位移x 的关系如图乙所示,重力加速度g 取10m/s 2.下列分析正确的是( )图4A .物体与地面之间的动摩擦因数为0.2B .物体运动的位移为13mC .物体在前3m 运动过程中的加速度为3m/s 2D .x =9m 时,物体的速度为32m/s6.(多选)如图5所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离为l ,子弹进入木块的深度为d ,若木块对子弹的阻力F f 视为恒定,则下列关系式中正确的是( )图5A .F f l =12M v 2B .F f d =12M v 2C .F f d =12m v 02-12(M +m )v 2D .F f (l +d )=12m v 02-12m v 2题组3 动能定理在多过程问题中的应用7.(2014·福建·21)如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )8.如图甲所示,轻弹簧左端固定在竖直墙上,右端点在O 位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0处的P 点向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功.(2)O 点和O ′点间的距离x 1.(3)如图乙所示,若将另一个与A 完全相同的物块B (可视为质点)与弹簧右端拴接,将A 放在B 右边,向左推A 、B ,使弹簧右端压缩到O ′点位置,然后从静止释放,A 、B 共同滑行一段距离后分离.分离后物块A 向右滑行的最大距离x 2是多少?9.如图8所示,半径R=0.5m的光滑圆弧面CDM分别与光滑斜面体ABC和斜面MN相切于C、M点,斜面倾角分别如图所示.O为圆弧圆心,D为圆弧最低点,C、M在同一水平高度.斜面体ABC固定在地面上,顶端B安装一定滑轮,一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P、Q(两边细绳分别与对应斜面平行),并保持P、Q两物块静止.若PC间距为L1=0.25m,斜面MN足够长,物块P的质量m1=3kg,与MN间的动摩擦因数μ=13,重力加速度g=10m/s2,求:(sin37°=0.6,cos37°=0.8)图8(1)小物块Q的质量m2;(2)烧断细绳后,物块P第一次到达D点时对轨道的压力大小;(3)物块P在MN斜面上滑行的总路程.1 答案 C2 答案 ACD3 答案 BD4 答案 D5 答案 C 例1答案 C解析 根据x =v +v 02t 得,两过程的位移关系x 1=12x 2,根据加速度的定义a =v -v 0t ,得两过程的加速度关系为a 1=a 22.由于在相同的粗糙水平地面上运动,故两过程的摩擦力大小相等,即F f1=F f2=F f ,根据牛顿第二定律得,F 1-F f1=ma 1,F 2-F f2=ma 2,所以F 1=12F 2+12F f ,即F 1>F 22.根据功的计算公式W =Fl ,可知W f1=12W f2,W F 1>14W F 2,故选项C 正确,选项A 、B 、D 错误. 1 答案 B解析 支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a =g tan θ,当a >g tan θ时,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a <g tan θ时,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,B 选项是错误的.2 答案 D解析 阻力与小球速度方向始终相反,故阻力一直做负功,W =-Fh +(-Fh )=-2Fh ,D 选项正确.例2答案 (1)8×104W (2)75m解析 (1)由图线分析可知:图线AB 表示牵引力F 不变即F =8000N ,阻力F f 不变,汽车由静止开始做匀加速直线运动;图线BC 的斜率表示汽车的功率P 不变,达到额定功率后,汽车所受牵引力逐渐减小,汽车做加速度减小的变加速直线运动,直至达到最大速度40m/s ,此后汽车做匀速直线运动.由图可知:当最大速度v max =40m/s 时,牵引力为F min =2000N由平衡条件F f =F min 可得F f =2000N 由公式P =F min v max 得额定功率P =8×104W.(2)匀加速运动的末速度v B =PF ,代入数据解得v B =10m/s汽车由A 到B 做匀加速运动的加速度为 a =F -F f m=2m/s 2设汽车由A 到B 所用时间为t 1,由B 到C 所用时间为t 2,位移为x ,则t 1=v Ba =5s ,t 2=35s-5s =30sB 点之后,对汽车由动能定理可得Pt 2-F f x =12m v C 2-12m v B 2,代入数据可得x =75m.3 答案 A解析 当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-F f =ma 1,F f 不变,所以汽车做加速度减小的加速运动,当F 1=F f 时速度最大,且v m =P 1F 1=P 1F f .当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-F f =ma 2,所以加速度逐渐减小,直到F 2=F f 时,速度最大v m ′=P 2F f ,此后汽车做匀速直线运动.综合以上分析可知选项A 正确. 4 答案 D解析 加速过程重物处于超重状态,钢绳拉力较大,匀速运动阶段钢绳的拉力为Pv 2,故A 错误;加速过程重物处于超重状态,钢绳拉力大于重力,故B 错误;重物匀加速运动的末速度不是运动的最大速度,此时钢绳对重物的拉力大于其重力,故其速度小于Pmg ,故C 错误;重物匀加速运动的末速度为v 1,此时的拉力为F =Pv 1,由牛顿第二定律得:a =F -mg m =P m v 1-g ,故D 正确.例3答案 (1)144N (2)12.5m解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax ① 由牛顿第二定律有mg Hx-F f =ma② 联立①②式,代入数据解得F f =144N③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得 mgh +W =12m v C 2-12m v B 2④设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg =m v 2CR⑤ 由题意和牛顿第三定律知F N =6mg⑥联立④⑤⑥式,代入数据解得R =12.5m. 5 答案 ABD解析 设总推力为F ,位移x =100m ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x =12m v 2,解得F =1.2×106N ,弹射器推力F 弹=F -F 发=1.2×106N -1.0×105N =1.1×106N ,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100J =1.1×108J ,B 正确;弹射器对舰载机做功的平均功率P =F 弹·0+v 2=4.4×107W ,C 错误;根据运动学公式v 2=2ax ,得a =v 22x=32m/s 2,D 正确.6 答案 AB解析 对滑草车从坡顶由静止滑下,到底端静止的全过程,得mg ·2h -μmg cos45°·hsin45°-μmg cos37°·h sin37°=0,解得μ=67,选项A 正确;对经过上段滑道过程,根据动能定理得,mgh -μmg cos45°·h sin45°=12m v 2,解得v =2gh7,选项B 正确;载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度大小为a =μmg cos37°-mg sin37°m =335g ,选项D 错误. 7 答案 (1)F f d (2) v 20+2m(Pt 1-F f d ) (3)P m 2v 20+2m (Pt 1-F f d )-F f m解析 (1)小船从A 点运动到B 点克服阻力做功 W f =F f d①(2)小船从A 点运动到B 点,电动机牵引缆绳对小船做功 W =Pt 1②由动能定理有W -W f =12m v 12-12m v 02③由①②③式解得v 1=v 20+2m(Pt 1-F f d ) ④(3)设小船经过B 点时缆绳的拉力大小为F ,缆绳与水平方向的夹角为θ,电动机牵引缆绳的速度大小为v ,则 P =F v ⑤ v =v 1cos θ⑥由牛顿第二定律有 F cos θ-F f =ma⑦由④⑤⑥⑦式解得a =P m 2v 20+2m (Pt 1-F fd )-F fm . 典例1答案 D解析 在小球缓慢上升过程中,拉力F 为变力,此变力F 的功可用动能定理求解.由W F -mgL (1-cos θ)=0得W F =mgL (1-cos θ),故D 正确. 典例2答案 (1)376.8J (2)-136.8J解析 (1)将圆弧AB 分成很多小段l 1、l 2、…、l n ,拉力在每一小段上做的功为W 1、W 2、…、W n .因拉力F 大小不变,方向始终与物块在该点的切线成37°角,所以W 1=Fl 1cos37°、W 2=Fl 2cos37°、…、W n =Fl n cos37°所以W F =W 1+W 2+…+W n =F cos37°(l 1+l 2+…+l n )=F cos37°·16·2πR =376.8J.(2)因为重力G 做的功W G =-mgR (1-cos60°)=-240J ,而因物块在拉力F 作用下缓慢移动,动能不变,由动能定理知W F +W G +W f =0 所以W f =-W F -W G =-376.8J +240J =-136.8J. 典例3答案 A解析 物块与水平面间的摩擦力为F f =μmg =1 N .现对物块施加水平向右的外力F ,由F -x 图象面积表示功可知F 做功W =3.5 J ,克服摩擦力做功W f =F f x =0.4 J .由功能关系可知,W -W f =E p ,此时弹簧的弹性势能为E p =3.1 J ,选项A 正确. 1 答案 C解析 设人和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等F =0.02mg =20N ,则人骑自行车行驶时的功率为P =F v =100W ,故C 正确. 2 答案 AD解析 第1s 末质点的速度 v 1=F 1m t 1=31×1m/s =3 m/s.第2s 末质点的速度v 2=v 1+F 2m t 2=(3+11×1) m/s =4 m/s.则第2s 内外力做功W 2=12m v 22-12m v 12=3.5J0~2s 内外力的平均功率 P =12m v22t =0.5×1×422W =4W.选项A 正确,选项B 错误;第1s 末外力的瞬时功率P 1=F 1v 1=3×3W =9W , 第2s 末外力的瞬时功率P 2=F 2v 2=1×4W =4W ,故 P 1∶P 2=9∶4.选项C 错误,选项D 正确. 3 答案 C解析 F 为变力,但F -x 图象包围的面积在数值上表示拉力做的总功.由于图线为半圆,又因在数值上F m =12x 0,故W =12π·F m 2=12π·F m ·12x 0=π4F m x 0.4 答案 A解析 小球从A 点运动到C 点的过程中,重力和弹簧的弹力对小球做负功,由于支持力与位移始终垂直,则支持力对小球不做功,由动能定理,可得W G +W F =0-12m v 2,重力做功为W G =-mgh ,则弹簧的弹力对小球做功为W F =mgh -12m v 2,所以正确选项为A.5 答案 ACD解析 由W f =F f x 对应图乙可知,物体与地面之间的滑动摩擦力F f =2N ,由F f =μmg 可得μ=0.2,A 正确;由W F =Fx 对应图乙可知,前3m 内,拉力F 1=5N ,3~9m 内拉力F 2=2N ,物体在前3m 内的加速度a 1=F 1-F f m =3m/s 2,C 正确;由动能定理得:W F -F f x =12m v 2可得:x =9m 时,物体的速度为v =32m/s ,D 正确;物体的最大位移x m =W FF f=13.5m ,B 错误. 6 答案 ACD解析 画出如图所示的运动过程示意图,从图中不难看出,当木块前进距离l ,子弹进入木块的深度为d 时,子弹相对于地发生的位移为l +d ,由牛顿第三定律,子弹对木块的作用力。
功、功率和动能定理
v0
θ
例、弹簧弹力做功问题
返回
例:如图所示,在一块水平放置的光滑板中心开 一个小孔,穿过一根细绳,细绳的一端用力F向 下拉,另一端系一小球,使小球在板面上以半径r 做匀速圆周运动,现开始缓慢地增大拉力,使小 球的运动半径变为r/2时,拉力变为4F,计算此过 程中拉力对小球做的功.
返回
例.如图所示,某力F=10N作用于半径R=1m 的转盘的边缘上,力F的大小保持不变,但 方向始终保持于作用点的切线方向一致,则 转动一周这个力F做到总功应为( ) • A、0 B、20πJ C、10J D、20J
例1. 如图,质量为m的物块始终固定在倾角 为θ的斜面上 • 问题:若斜面向右匀速移动距离s,则摩擦 力、弹力、重力分别对物块做了多少功
• 变式1:若斜面向上匀速移动距离h,则摩 擦力、弹力、重力分别对物块做了多少功
例2、如图所示,一小球质量m=5kg自平台上以 3m/s初速度水平抛出,恰好落在临近平台的一倾 角为α =53°的光滑斜面顶端,并刚好沿光滑斜面 下滑,在斜面上运行的时间t=5s,已知斜面顶端与 平台的高度差h=0.8m,g=10m/s2,sin53°=0.8, cos53°=0.6,则 (1)小球恰好落在斜面顶端时重力的瞬时功率
3.W合=Ek2-Ek1
二
功率的计算问题
W - - - 1.平均功率: P = , P =F v cos α (- v 是平均速度). t
2.瞬时功率:P=Fvcosα
三
机车启动问题
1.要明确机车的功率是牵引力的功率,不是机车受到的 合力的功率 2.机车两种启动方式的运动对比 启动方式 以恒定功率启动 匀加速启动
返回
变式 如图,竖直固定放置的粗糙斜面 AB的下端与光滑的圆弧
动能定理与功率
动能定理与功率动能定理和功率是物理学中重要的概念和定律,它们描述了物体的运动和能量转化的规律。
本文将从理论和实际应用的角度,详细讨论动能定理和功率的概念、公式和应用。
一、动能定理的概念与公式动能定理是描述质点运动的定律,它表明质点的动能变化等于外力对其所做的功。
其数学表达式为:$$\Delta{E_k} = W$$其中,$\Delta{E_k}$表示动能的增量,$W$表示外力对质点所做的功。
根据牛顿第二定律和功的定义,动能定理可以推导得到。
它揭示了能量的守恒原理在运动学中的具体应用。
二、功率的概念与公式功率是描述对物体进行工作或做功的快慢程度的物理量,它等于单位时间内所作的功。
功率的数学定义为:$$P = \frac{W}{\Delta{t}}$$其中,$P$表示功率,$W$表示所作的功,$\Delta{t}$表示时间的增量。
功率与时间成反比,反映了在单位时间内能量转化的速率。
三、动能定理和功率的关系动能定理和功率之间存在密切的关系。
根据功率的定义,我们可以将动能定理改写为功率的表达式:$$P = \frac{\Delta{E_k}}{\Delta{t}}$$从这个表达式可以看出,功率等于动能的变化率。
换句话说,功率是描述能量变化速率的物理量。
通过对动能定理和功率的研究,我们可以更好地理解和分析物体的运动过程和能量转化情况。
四、动能定理和功率的实际应用动能定理和功率的概念和公式在实际应用中具有广泛的意义。
以机械能转化过程为例,根据动能定理和功率的关系,可以计算机械设备的效率和能量损失情况。
在工程设计和优化中,对功率的合理分配和调整可以提高设备的工作效率和能源利用率,降低能源消耗和资源浪费。
此外,动能定理和功率的概念也可以应用于交通运输、体育竞技、能源管理等实际问题的分析和解决。
比如,在汽车行驶过程中,根据动能定理和功率的原理,可以通过调节驾驶方式和使用动力系统,达到节能降耗的目的。
在运动员训练和比赛中,通过功率的计算和分析,可以评估运动员的体能水平和调整训练计划。
动能定理与功的概念
动能定理与功的概念动能定理和功是物理学中非常重要的概念,它们描述了物体运动和相互作用的关系。
本文将介绍动能定理和功的定义、公式及应用。
一、动能定理的概念及公式动能定理是描述物体动能变化与做功之间的关系的定理。
它表明,当一个物体受到外力的作用时,它的动能将会发生变化,而这个变化等于所受的功。
动能表示物体由于运动而具有的能量,通常用K表示。
当物体的质量为m,速度为v时,它的动能可以用以下公式计算:K = (1/2)mv^2其中,K表示动能,m表示质量,v表示速度。
假设物体在某个时间段内受到了合外力F的作用,根据牛顿第二定律F = ma,我们可以推导出动能定理的公式:W = F•d = m•a•d = m•(dv/dt)•d = m•v•(dv/dt)•dt = m•v•dv其中,W表示物体所受的外力作功,F表示力,d表示位移,a表示加速度,v表示速度,t表示时间。
根据动能定理,W即为物体动能的变化量,因此我们可以得到:W = K2 - K1 = (1/2)m(v2^2 - v1^2)其中,K1和K2分别代表物体在某一时刻和另一时刻的动能。
二、功的概念及公式功是力在物体上所做的功或能量转移的度量。
它描述了力对物体进行的能量转化。
假设物体在某段位移d内受到了力F的作用,那么此时所做的功可以表示为:W = F•d•cosθ其中,W表示所做的功,F表示力,d表示位移,θ表示力和位移的夹角。
如果力和位移方向相同,夹角为0度,此时所做的功为最大值;如果力和位移方向相互垂直,夹角为90度,此时所做的功为0;如果力和位移方向相反,夹角为180度,此时所做的功为最小值。
如果物体受到多个力的作用,总功等于每个力所做的功之和。
三、动能定理与功的应用动能定理和功的概念和公式在物理学中有广泛的应用。
1. 动能定理的应用动能定理可以用于解释物体的运动状态。
通过计算物体所受的外力作功,可以确定物体的动能变化。
当物体受到正向的外力作用时,其动能将增加;当物体受到负向的外力作用时,其动能将减小。
动能定理与功的计算与应用
动能定理与功的计算与应用动能定理是物理学中的重要定律之一,它描述了物体的动能和物体所受到的外力之间的关系。
在本文中,我们将探讨动能定理的概念以及它在计算功与应用中的使用。
一、动能定理的概念动能定理指出,物体的动能变化等于物体所受外力所做的功。
动能是物体由于其运动速度而具有的能量,通常用K表示。
外力对物体所做的功是指该力在物体运动方向上的分量与物体位移的乘积。
二、功的计算公式根据动能定理,我们可以计算物体所受的功。
如果物体的质量为m,初速度为v1,末速度为v2,则动能的变化为:ΔK = (1/2)mv2^2 - (1/2)mv1^2三、功的应用功的计算与应用在物理学和工程学中具有重要意义。
下面,我们将介绍一些关于功的计算和实际应用的例子。
1. 功率计算功率是指单位时间内所做的功,通常用P表示。
功率的计算公式为:P = W/t其中,W为物体所做的功,t为所用的时间。
功率的单位为瓦特(W)。
2. 汽车制动距离的计算当汽车制动时,制动力会减小车辆的速度。
根据动能定理和功的计算公式,我们可以计算汽车制动距离。
假设汽车质量为m,初始速度为v1,末速度为v2,制动力的大小为F,则制动距离的计算公式为:s = (v1^2 - v2^2) / (2F)3. 弹簧势能的计算弹簧势能是弹性势能的一种形式,它是由于弹簧的形变而产生的能量。
根据动能定理,我们可以计算弹簧势能。
若弹簧的劲度系数为k,形变量为x,则弹簧势能的计算公式为:PE = (1/2)kx^2四、总结动能定理在物理学和工程学中具有广泛的应用。
通过理解动能定理的概念,我们可以计算物体所受的功,进一步应用于相关问题的解决。
同时,掌握功的计算公式和应用方法,能够帮助我们更好地理解物体运动以及与之相关的能量转化和能量守恒的原理。
总之,动能定理与功的计算与应用是物理学中重要的概念和工具,它们可以帮助我们理解和分析物体的运动以及与之相关的能量转化过程。
通过合理地运用动能定理和功的计算公式,我们能够更好地解决实际问题,提高我们对物理学的理解。
功和功率,动能定理
第一部分功和功率知识要点梳理知识点一——功和功的计算▲知识梳理1.功的定义一个物体受到力的作用,如果在力的方向上发生一段位移,就说这个力对物体做了功。
2.做功的两个必要因素力和物体在力的方向上发生的位移,缺一不可。
如图甲所示,举重运动员举着杠铃不动时,杠铃没有发生位移,举杠铃的力对杠铃没有做功。
如图乙所示,足球在水平地面上滚动时,重力对球做的功为零。
3.功的物理意义:功是能量变化的量度能量的转化跟做功密切相关,做功的过程就是能量转化的过程,做了多少功就有多少能量发生了转化,功是能量转化的量度。
4.公式(1)当恒力F的方向与位移l的方向一致时,力对物体所做的功为W = Fl。
(2)当恒力F的方向与位移l 的方向成某一角度时,力F 物体所做的功为.即力对物体所做的功,等于力的大小、位移的大小、力与位移的夹角的余弦这三者的乘积。
5.功是标量,但有正负功的单位由力的单位和位移的单位决定。
在国际单位制中,功的单位是焦耳,简称焦,符号是J。
一个力对物体做负功,往往说成物体克服这个力做功(取绝对值)。
这两种说法在意义上是相同的。
例如竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。
由,可以看出:①当=0时,,即,力对物体做正功;②当时,,力对物体做正功。
①②两种情况都是外界对物体做功。
③当时,力与位移垂直,,即力对物体不做功,即外界和物体间无能量交换;④当时,,力对物体做负功;⑤当时,,此时,即力的方向与物体运动位移的方向完全相反,是物体运动的阻力。
④⑤两种情况都是物体对外界做功。
6.合力的功当物体在几个力的共同作用下发生一段位移时,这几个力的合力对物体所做的功,等于各个力分别对物体所做功的代数和。
求合力的功可以先求各个力所做的功,再求这些力所做功的代数和;也可先求合外力,再求合外力的功;也可用动能定理求解。
▲疑难导析一、功的正负的理解和判断1.功的正负的理解功是一个标量,只有大小没有方向。
物理学中的动能定理与功率
物理学中的动能定理与功率物理学是研究自然界物质运动和相互作用的一门科学。
其中,动能定理和功率是研究物体在运动中所表现出的特性和能量转化的重要概念。
本文将就动能定理和功率这两个概念进行阐述和讨论。
一、动能定理动能定理是描述物体动能与所受力之间关系的基本原理。
简单来说,动能定理指出物体的运动状态与所受力之间存在一种相互关系。
具体而言,它表明当物体受到外力作用时,物体的动能会发生变化。
动能定义为物体所具有的运动能力,它与物体的质量和速度相关。
动能定理可以用公式表示为:动能的变化等于所受力对物体所做的功。
即∆KE = W,其中∆KE表示动能的变化量,W表示力对物体所做的功。
动能定理可以从牛顿第二定律推导出来。
根据牛顿第二定律,物体的加速度与物体所受力成正比,反比于物体的质量。
而物体的加速度又与速度的变化量有关。
根据这个推理,可以得出物体速度的变化量与所受力成正比。
根据定义,物体动能等于1/2×质量×速度的平方。
而速度的变化量等于加速度乘以时间,速度的平方变化量等于速度的变化量乘以2乘以初始速度加上速度的平方。
综合以上推导,可以得出动能定理的表达式:∆KE = (1/2mv^2)^2 - (1/2mu^2)^2 = ∆(1/2×m×v^2) = F×s。
其中v表示物体的末速度,u表示物体的初速度,m表示物体的质量,F表示物体所受的合力,s表示物体的位移。
动能定理的实际应用十分广泛。
在工程中,通过利用动能定理可以计算物体在不同速度下的动能变化量,从而评估其质量和速度对于动能的影响。
在机械工程中,通过动能定理可以推导出机械传动中的能量转化关系,并对机械系统的性能进行分析。
二、功率功率是描述物体或者系统能量转化速率的物理量。
简单来说,功率表示单位时间内所做的功。
功率的单位是瓦特,记作W,常用符号是P。
功率可以用公式表示为功除以时间。
即P = W/t。
其中W表示所做的功,t表示所花费的时间。
(高中段)第7讲功功率动能定理
解析:F-x 图像中,图像与坐标轴围成的面积表示力 F 所做的功,由图像可 知,甲、乙的面积相等,丙的面积最大,丁的面积最小,故甲、乙图合外力 做功相等,丙图合外力做功最多,丁图合外力做功最少,选项 A、D 正确。 答案:AD
[解题指导]
解析:(1)小滑块从 C 点飞出后做平抛运动,设水平速度为 v0 竖直方向上:R=12gt2 水平方向上: 2R=v0t 解得:v0= gR。 (2)设小滑块在最低点时速度为 v,小滑块从最低点到 C 点的过程由动能定理得: -mg·2R=12mv02-12mv2 解得:v= 5gR 在最低点由牛顿第二定律得: FN-mg=mvR2
小球从 C 至 M 做平抛运动,其水平位移
xCM=vC″t1=130vC″
故第一次着落点 M 至 B 之间的水平距离
LMB=L1′+xCM=-16vC″2+130vC″+265
由数学知识可得当 vC″=0.9 m/s 时,LMB 有最大值,解得此时 L1′=4.03 m。
答案:(1)
10 10
s
(2)12 N
命题导向——在真题集训中把脉规律
1.(2020·江苏高考)质量为 1.5×103 kg 的汽车在水平路面上匀速行驶,速度
为 20 m/s,受到的阻力大小为 1.8×103 N。此时,汽车发动机输出的实际
功率是
()
A.90 W
B.30 kW
C.36 kW
D.300 kW
解析:根据汽车做匀速直线运动可得此时汽车的牵引力等于阻力,即 F
考点三 应用动能定理解决力学综合问题 4.如图是某游戏轨道的构造示意图,PQ 是倾角为 45°的光
功和能动能动能定理知识总结
功和能、动能、动能定理知识总结归纳1. 能的概念:粗浅地说,如果一个物体能够对外界做功,我们就说物体具有能量。
能量有各种不同的形式。
2. 功和能关系:各种不同形式的能可通过做功来转化,能转化的多少通过功来量度,即功是能转化的量度。
3.动能定义:物体由于运动而具有的能叫做动能。
表达式:122:物体由于运动而具有的能叫做动能。
表达式:E mvk =注意:动能是状态量,只与运动物体的质量以及速率有关,而与其运动方向无关,能是标量,只有大小,没有方向,单位是焦耳(J )。
4. 动能定理的推导:设物体质量为m ,初速度为v 1,在与运动方向同向的恒定合外力F 作用下,发生一段位移s ,速度增加到v 2。
由F=ma 和联立解得:由和联立解得:F ma v v as Fs mv mv =-==-22122212212125.动能定理公式:末初W E E k k k ==-∆E注意:W 为合外力做的功或外力做功的代数和,ΔE k 是物体动能的增量;ΔE k 为正值时,说明物体动能增加,ΔE k 为负值时,说明物体动能减少。
6. 应用动能定理进行解题的一般步骤: (1)确定研究对象,明确它的运动过程;(2)分析物体在运动过程中的受力情况,明确各个力是否做功,是正功还是负功;(3)明确起始状态和终了状态的动能。
()用列方程求解总421W E E k k k ==-∆E【典型例题】例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为α,木箱与冰道间的动磨擦因数为μ,求木箱获得的速度(如图所示)分析和解答:此题知物体受力,知运动位移s ,知初态速度,求末态速度。
可用动能定理求解。
拉力F 对物体做正功,摩擦力f 做负功,G 和N 不做功。
初动能动能,末动能E E mv k k 122012==,末动能初动能,末动能E E mv k k 122012== 由动能定理得:由动能定理得:Fs fs mv cos α-=122而:f mg F =-μα(sin )解得:v F mg F s m =--2[cos (sin )]/αμα注意:此题亦可用牛顿第二定律和运动学公式求解,但麻烦些,一般可用动能定理求解的,尽可能用此定理求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4 (1)求该汽车的额定功率; (2)该汽车由静止开始运动,经过 35 s 达到最大速度 40 m/s,求其在 BC 段的位移.
①最大速度在图象中对应的力;②AB、BO 均为直线.
1.求解功率时应注意的“三个”问题 (1) 首先要明确所求功率是平均功率还是瞬时功率; (2) 平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功
命题点三 动能定理及其应用 1.动能定理 (1)三种表述
①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=21mv2-12mv02 或 W 合=Ek-Ek0; ③图象表述:如图 6 所示,Ek-l 图象中的斜率表示合外力.
图6 (2)适用范围
①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功; ③力可以是各种性质的力,既可同时作用,也可分阶段作用.
增加时合外力做正功;当动能减少时合外力做负功.
1.如图所示,质量为 m 的物体置于倾角为 θ 的斜面上,物体与斜面间的动摩擦因数为 μ,在 外力作用下,斜面以加速度 a 沿水平方向向左做匀加速运动,运动中物体 m 与斜面体相对静 止.则关于斜面对 m 的支持力和摩擦力的下列说法中错误的是( ) A.支持力一定做正功 B.摩擦力一定做正功 C.摩擦力可能不做功 D.摩擦力可能做负功
一为零
一为正 一为负
与 l 间的方向夹角 (3)一对相互作用力做的总功可 正、可负,也可为零
7.一对平衡力的功
一对平衡力作用在同一个物体上,若物体静止,则两个力都不做功;若物体运动,则这一对
力所做的功一定是数值相等,一正一负或均为零.
二、功率 1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式: (1)P=Wt ,P 为时间 t 内物体做功的快慢. (2)P=Fv ①v 为平均速度,则 P 为平均功率. ②v 为瞬时速度,则 P 为瞬时功率. ③当力 F 和速度 v 不在同一直线上时,可以将力 F 分解或者将速度 v 分解. [深度思考] 由公式 P=Fv 得到 F 与 v 成反比正确吗? 答案 不正确,在 P 一定时,F 与 v 成反比. 三、动能 动能定理 1.动能 (1)定义:物体由于运动而具有的能叫动能. (2)公式:Ek=21mv2. (3)矢标性:动能是标量,只有正值. (4)状态量:动能是状态量,因为 v 是瞬时速度. 2.动能定理 (1)内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化量. (2)表达式:W=12mv22-12mv12=Ek2-Ek1. (3)适用条件: ①既适用于直线运动,也适用于曲线运动. ②既适用于恒力做功,也适用于变力做功. ③力可以是各种性质的力,既可以同时作用,也可以分阶段作用. (4)应用技巧:若整个过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个 过程考虑. [深度思考] 物体的速度改变,动能一定改变吗? 答案 不一定.如匀速圆周运动.
命题点一 功的分析与计算 1.常用办法:对于恒力做功利用 W=Flcos α;对于变力做功可利用动能定理(W=ΔEk);对于 机车启动问题中的定功率启动问题,牵引力的功可以利用 W=Pt. 2.几种力做功比较 (1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关. (2)滑动摩擦力、空气阻力、安培力做功与路径有关. (3)摩擦力做功有以下特点:
物体从静止开始经过同样的时间.
判断力是否做功及做正、负功的方法 1. 看力 F 的方向与位移 l 的方向间的夹角 α——常用于恒力做功的情形. 2. 看力 F 的方向与速度 v 的方向间的夹角 α——常用于曲线运动的情形. 3. 根据动能的变化:动能定理描述了合外力做功与动能变化的关系,即 W 合=ΔEk,当动能
B.由 P=Fv 既能求某一时刻的瞬时功率,也可以求平均功率
C.由 P=Fv 知,随着汽车速度的增大,它的功率也可以无限增大
D.由 P=Fv 知,当汽车发动机功率一定时,牵引力与速度成反比
4.(人教版必修 2P59 第 1 题改编)如图 1 所示,两个物体与水平地面间的动摩擦因数相等,
它们的质量也相等.在甲图中用力 F1 拉物体,在乙图中用力 F2 推物体,夹角均为
机械能
功 功率 动能定理
一、功
1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做
了功.
2.必要因素:力和物体在力的方向上发生的位移.
3.物理意义:功是能量转化的量度.
4.计算公式
(1)恒力 F 的方向与位移 l 的方向一致时:W=Fl.
(2)恒力 F 的方向与位移 l 的方向成某一夹角 α 时:W=Flcos α.
的平均功率; (3) 瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率. 2.机车启动中的功率问题 (1) 无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即 vm=FPmin=FP阻(式中
Fmin 为最小牵引力,其值等于阻力 F 阻). (2) 机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,但速度不是最大,
①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功. ②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代 数和不为零,且总为负值. ③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能, 内能 Q=Ffx 相对.
例 1 (2014·新课标Ⅱ·16)一物体静止在粗糙水平地面上.现用一大小为 F1 的水平拉力拉动 物体,经过一段时间后其速度变为 v.若将水平拉力的大小改为 F2,物体从静止开始经过同样 的时间后速度变为 2v.对于上述两个过程,用 WF1、WF2 分别表示拉力 F1、F2 所做的功,Wf1、 Wf2 分别表示前后两次克服摩擦力所做的功,则( ) A.WF2>4WF1,Wf2>2Wf1 B.WF2>4WF1,Wf2=2Wf1 C.WF2<4WF1,Wf2=2Wf1 D.WF2<4WF1,Wf2<2Wf1
图7 (1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大.
5.(多选)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为 3.0×104 kg, 设起飞过程中发动机的推力恒为 1.0×105 N;弹射器有效作用长度为 100 m,推力恒定.要求 舰载机在水平弹射结束时速度大小达到 80 m/s.弹射过程中舰载机所受总推力为弹射器和发 动机推力之和,假设所受阻力为总推力的 20%,则( ) A.弹射器的推力大小为 1.1×106 N B.弹射器对舰载机所做的功为 1.1×108 J C.弹射器对舰载机做功的平均功率为 8.8×107 W D.舰载机在弹射过程中的加速度大小为 32 m/s2
α,两个物体都做匀速直线运动,通过相同的位移.设 F1 和 F2 对物体所做的功分别为 W1 和 W2,物体克服摩擦力做的功分别为 W3 和 W4,下列判断正确的是( )
A.F1=F2 C.W3=W4
图1 B.W1=W2 D.W1-W3=W2-W4
5.有一质量为 m 的木块,从半径为 r 的圆弧曲面上的 a 点滑向 b 点,如图所示.若由于摩擦 使木块的运动速率保持不变,则以下叙述正确的是( ) A.木块所受的合外力为零 B.因木块所受的力都不对其做功,所以合外力做的功为零 C.重力和摩擦力的合力做的功为零 D.重力和摩擦力的合力为零
2.(粤教版必修 2P77 第 2 题)(多选)一个物体在水平方向的两个恒力作用下沿水平方向做匀速
直线运动,若撤去其中的一个力,则( )
A.物体的动能可能减少
B.物体的动能可能不变
C.物体的动能可能增加
D.余下的力一定对物体做功
3.(多选)关于功率公式 P=Wt 和 P=Fv 的说法正确的是(
)
A.由 P=Wt 知,只要知道 W 和 t 就可求出任意时刻的功率
(2)瞬时功率的计算方法 ①利用公式 P=Fvcos α,其中 v 为 t 时刻的瞬时速度. ②P=FvF,其中 vF 为物体的速度 v 在力 F 方向上的分速度. ③P=Fvv,其中 Fv 为物体受到的外力 F 在速度 v 方向上的分力.
2.机车的两种启动模型 启动方式
恒定功率启动
恒定加速度启动
2.解题的基本思路 (1) 选取研究对象,明确它的运动过程; (2) 分析受力情况和各力的做功情况; (3) 明确研究对象在过程的初末状态的动能 Ek1 和 Ek2; (4) 列动能定理的方程 W 合=Ek2-Ek1 及其他必要的解题方程,进行求解.
例 3 (2016·天津理综·10)我国将于 2022 年举办冬奥会,跳台滑雪是其中最具观赏性的项目 之一.如图 7 所示,质量 m=60 kg 的运动员从长直助滑道 AB 的 A 处由静止开始以加速度 a =3.6 m/s2 匀加速滑下,到达助滑道末端 B 时速度 vB=24 m/s,A 与 B 的竖直高度差 H=48 m,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点 C 处附近是一段以 O 为圆心的圆弧.助滑道末端 B 与滑道最低点 C 的高度差 h=5 m,运动 员在 B、C 间运动时阻力做功 W=-1 530 J,取 g=10 m/s2.
5.功的正负 (1)当 0≤α<π2时,W>0,力对物体做正功. (2)当π2<α≤π 时,W<0,力对物体做负功,或者说物体克服这个力做了功. (3)当 α=π2时,W=0,力对物体不做功. 6.一对作用力与反作用力的功
做功情形
图例
备注
都做正功 都做负功 一正一负
(1)一对相互作用力做的总功与 参考系无关 (2)一对相互作用力做的总功 W =Flcos α.l 是相对位移,α 是 F