8.2消元──解二元一次方程组(1)

合集下载

人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)

人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)
人教版数学七年级下册8.2-消元——二元一 次方程组的解法(第1课时)
复习回顾:
判断下列各方程是否为二元一次方程:
① 2x32y√
② 1 1×
x y
③ 6ab 3ab× ④ x y y 2×
x
⑤ 2R2r6√
复习回顾:
判断下列各方程组是否为二元一次方程组:
√ ①
2x y
3
y
4
z
3 7
×
x
3y
7
0.
解方程组即可得出x,y的值.
【答案】 -3 —130
巩固提高:
4、若方程 5x2m n4y3m 2n9是关于 x, y的二
元一次方程,求m , n的值.
解:根据题意得
2m n 1, 3m 2n 1.
解得 m 3 , n 1 . 77
巩固提高:
5、下列是用代入法解方程组

m
m
n
8
1
③3ab 4 Nhomakorabeaa
5
8
1
9
×
√ ⑤
5 p
p q
q 1
8 2

m m 2
1 2n
4n
9 5
×
复习回顾:
用含x的式子表示 y :
(1)x2y30 (2)2x5y21
y x3 2
y 2x 21 5
(3)0.5xy7
y0.5x7
知识新授:
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几头
x y 3 ①
【例2】解方程组
3
x
8
y
14

分析:方程①中x的系数是1,用含y的式子表示x,比较简便.

加减消元法—解二元一次方程组(1)

加减消元法—解二元一次方程组(1)

追问3
如何用加减法消去x?
应用新知
二 元 一 次 方 程 组 3x 3 x+4y y= =16 16
①×5
使未知数x 系数相等
15x+20y=80
5x-6y=33
代 入
②×3
15x-18y=99
解得x
x=6
1 y= 2
解得y
两 式 相 减
消 x
38y=-19
初步尝试:

解下列方程组: 1. 3x 2 y 6, 2.
y 4.
探究新知
x y 10 ,① 问题1 我们知道,对于方程组 2 x y 16 ②
可以用代入消元法求解,除此之外,还有没有 其他方法呢? 追问5 ①-②也能消去未知数y,求出x吗?
(x y )( 2x y ) 10 16.
探究新知
问题2 联系上面的解法,想一想应怎样解方程组
3x 10 y 2.8, ① ② 15 x 10 y 8 .
追问1 此题中存在某个未知数系数相等吗?你发 现未知数的系数有什么新的关系? 未知数y的系数互为相反数,由①+②,可消去 未知数y,从而求出未知数x的值. 追问2 两式相加的依据是什么? “等式性质”
探究新知
问题3 这种解二元一次方程组的方法叫什么?有 哪些主要步骤? 当二元一次方程组中的两个二元一次方程中同一 未知数的系数相反或相等时,把这两个方程的两边分 别相加或相减,就能消去这个未知数,得到一个一元 一次方程,这种方法叫做加减消元法,简称加减法.
自测
x = 1 mx + n = 5 1、已知方程组 的解是 y = 2 my - n = 1
2 m=____________,n=________________ 3

第八章 二元一次方程组8.2消元——解二元一次方程组教案(3课时)

第八章 二元一次方程组8.2消元——解二元一次方程组教案(3课时)
课题
§ 8.2消元——解二元一次方程组(一)
课时
第1课时
课型
新授




知识

技能
1.知道消元思想和代入法的概念;
2.会用代入消元法解二元一次方程组。
过程

方法
1.通过探究,了解解二元一次方程的“消元”思想,初步体会数学的化归思想.
2.培养探索、自主、合作的意识,提高解题能力.
情感、态度
与价值观
1.在消元的过程中体会化未知为已知、化复杂为简单的化归思想,从而享受数学的化归美,提高学习数学的兴趣.
学生回答,教师点评,强调。
二、提出问题:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
在上述问题中,我们可以设出两个未知数,列出二元一次方程组.
这个问题能用一元一次方程解决吗?
三、讲授新课:
1、怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?
②代入(把变形好的方程代入到另一个方程,即可消元)
③求解(解一元一次方程,得一个未知数的值);
④回代(把求得的未知数代入变形的方程,求另一个未知数的值);
⑤写解(用x=a
y=b的形式写出方程组的解)。
⑥验算(把方程的解代回原方程组验算)
简记:变形→代入→求解→回代→写解→验算
四、例题分析:
例1、课本P91
课本P97习题8.2第2题
板书设计
消元——解二元一次方程组
1、基本思路:“消元”——把“二元”变为“一元”
2、主要步骤:变形→代入→求解→回代→写解→验算
教学反思

8.2消元-解二元一次方程组(1)-人教版七年级数学下册教案

8.2消元-解二元一次方程组(1)-人教版七年级数学下册教案
-在讲解实际问题转化为方程组的过程中,强调关键信息的提取和变量设定,例如速度与时间的关系问题中,如何设定速度和时间的变量,并构建相应的方程组。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《消元-解二元一次方程组(1)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决两个未知数的问题?”(如购物时计算总价和数量)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
4.培养学生的合作交流意识,通过小组讨论和问题解决,提高团队协作能力和表达沟通技巧。
三、教学难点与重点
1.教学重点
-理解二元一次方程组的定义及构成,能够正确列出方程组。
-掌握代入法解二元一次方程组的具体步骤,并能熟练运用。
-学会使用加减法(消元法)解二元一次方程组,并能应用于实际问题。
-通过解二元一次方程组,培养学生的数学建模和逻辑推理能力。
五、教学反思
在今天的教学中,我尝试了通过实际问题引入二元一次方程组的概念,让学生们感受到数学与生活的紧密联系。我发现,这种方法能够激发学生的兴趣,使他们更愿意投入到学习中。但在教学过程中,我也注意到几个需要改进的地方。
首先,关于代入法和消元法的讲解,虽然我尽力通过举例和逐步引导让学生理解,但从学生的反馈来看,部分同学仍然对这两个方法的具体操作步骤感到困惑。在今后的教学中,我需要更加细化讲解,可以设计更多有针对性的练习题,让学生在实践中掌握这两个方法。
其次,在学生小组讨论环节,我发现有些同学在讨论中不够积极,可能是因为他们对讨论主题不够了解,或者是对二元一次方程组的应用场景感到陌生。为了提高学生的参与度,我可以在下次课前,提前给出一些与生活相关的案例,让学生有更多的时间去思考和准备。

8.2 消元──二元一次方程组的解法(第二课时)

8.2 消元──二元一次方程组的解法(第二课时)

⑵如果设胜的场数是 x ,负的场数是 y , x y 22, 可得二元一次方程组 2 x y 40.
那么怎样解这个二元一次方程组呢?
规范解法,总结步骤
【问题2】把下列方程改写成用含有一个未知数的
代数式表示另一个未知数的形式:
⑴ x 4 y 8;
x 8 4y 或 y
巩固练习,熟悉技能
1.用代入法解下列方程组:
y 2 x 3, 3x 2 y 8.
变式练习
用代入法解下列方程组:
2 x y 5, 3x 4 y 2.
巩固练习,熟悉技能
【问题6】在解下列方程组时,你认为选择
哪个方程进行怎样的变形比较简便?
① 4 x 3 y 22, ⑴ 8 x y 36. ②
第八章 二元一次方程组
8.2 消元——二元一次 方程组的解法(1)
问题重现,探究解法
【问题1】篮球联赛中,每场比赛都要分出胜负,每
队胜1场得2分,负1场得1分.某队为了争取较好名次, 想在全部22场比赛中得到40分,那么这个队胜负场数应 分别是多少? ⑴如果设胜的场数是 x ,则负的场数是 22 x , 可得一元一次方程 2 x 22 x 40 ;
记录 记录一 记录二 天平左边 5枚一元硬币,一个10克的砝码 15枚一元硬币 天平右边 10枚五角硬币 20枚五角硬币,一个10 克砝码 状 态 平 衡 平 衡
请你用所学的数学知识计算出一枚一元硬币 多少克,一枚五角硬币多少克?
总结归纳,布置作业
你在本节课的学习中体会到代入法的基本思想 是什么?主要步骤有哪些?与你的同伴进行交流. 二元一次方程组
总结归纳,布置作业
作业:

人教版数学七年级下册 8.2 消元--解二元一次方程组 课件1(共21张PPT)

人教版数学七年级下册 8.2 消元--解二元一次方程组 课件1(共21张PPT)
3×0.6+10y=2.8
解得:y=0.1
x=0.6
所以这个方程组的解是
y=0.1

列方程解应用题的总思路:
实际
问题
分析
方程
抽象
(组)
求解
检验
1. 审(题)
3. 设(未知数)
2. 找(等量关系) 4. 列(方程组)
问题
解决
5. 解(方程组)
6. 验(检验)
7. 答
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
消元--解二元一次方程组
新知导入
我校七年级准备举行篮球比赛,13个班打单循环比赛,每场
比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果6班为了
争取较好名次,想在全部12场比赛中得20分,那么这个队胜负场数
用学过的一元一
应分别是多少?
次方程能解决此
问题吗?
这可是两个
未知数呀?
新知学习
例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g),
审题:等量关系: (1)大瓶数
2×小瓶数=5×大瓶数
1.审题
(2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
2.找等量关系
试一试:
1.用含x的代数式表示y:
x+y=2
y=2-x
2.用含x的代数式表示y:
x-y=2
y x2
解方程组
x +y = 12

2x + y =20
解: 由①,得
未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二
元一次方程组的解.这种方法叫做代入消元法,简称代入法.

8.2消元法解二元一次方程组——第一课时(代入法)

8.2消元法解二元一次方程组——第一课时(代入法)

把x=20000代入 ③ 得:y=50000 y 50000
答:这些消毒液应该分装20000大瓶和50000小瓶。
5x 2 y ② 100 5x 250y 22500000

整体代入法 解:把①代入②, 得 100×2y+250y=22500000 解得 y=50000 把y=50000代入① ,得 x=20000
1、什么叫二元一次方程?二元一次方程组?二元一次方程组的解? 2、检验二元一次方程组的解的方法是怎样的? 3、下列方程中是二元一次方程的有( B ) A.xy-7=1 B.2x-1=3y+1 C.4x-5y=3x-5y
D.2x+3x+4y=6 9 5 4、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______ 5、已知二元一次方程2X+3Y+5=0 ⑴用X表示Y ⑵用Y表示X
2X 5 Y 3
3Y 5 X 2
回顾与思考
篮球联赛中每场比赛都要分出胜负,每队胜一 场得2分,负一场得1分.如果某队为了争取较好 名次,想在全部22场比赛中得40分,那么这个队 胜、负场数应分别是多少? 解:设胜x场,负y场; 解:设胜x场,则有: x y 22 ① 2 x (22 x) 40 ③ 2 x y 40 ②
注意:检验方程组的解
x = 2, 用大括号括起来 注意:方程组解 的书写形式 y =-1.
专题研究:
x-y=3 3x-8y=14
① ②
说明 : 用y表示x x-y=3 x = y+3
(2)对于方程②你能用含 y的式子表示x吗?试试看:
问题1:(1)对于方程①你 能用含x的式子表示y吗? 试试看:

人教版数学七年级下8.2 解二元一次方程组(一)

人教版数学七年级下8.2   解二元一次方程组(一)

课后作业:
A组 P97、 1 B组 P97、 1 2 4 2、
x y 10 ① (2)教材中所给的方程组 2 x y 16
与上题中
所列的一元一次方程有什么关系?由此,你会解 x y 10 方程组 2 x y 16 吗?说出你的思路。


(先独立思考,3分钟后小组交流,5分钟后小 组代表黑板上展示)
x y 10
变形 y 10 x
代入求解回代ຫໍສະໝຸດ x 6求解y4
x ( 10 x ) 16 2 xy 16 2
1.把未知数的个数 由多化少 、逐一解决
的思想,叫做消元思想,它是解二元一次
方程组的基本思路。
2.此处用到的方法是 代入 消元法,简称
代入法。
阅读课本91-92页例1,解决下列问题. 1.“例1”中选用哪个方程变形较简单?为什么? 2.把代入可以吗?试试看。 3.把x=-1代入或可以吗?试试看。 4.你认为代入法解二元一次方程组的一般步骤 有哪些? (先独立思考,3分钟后小组交流,4分钟后小 组代表展示)
x 2 m x y 3 是 方 程 组 3.(2014年,兰州)已知 y 1 x n y 6
的解,则m=______,n=____.
归纳总结:两人小组互相复述。
1.解方程组的基本思路是什么?
2.如何用代入消元法解二元一次方
程组?
...... ......
x 5 y 4 2x 5 y 8 (3) (4) 3x 6 y 5 x 3 y 7
x 2 y 9 1.方程 4 ,用含x的代数式表示y,则 y=_____;
2.(2014年)已知二元一次方程, 3 xy 6 0

人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】

人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】

P
1 0 7
解:设有x支篮球队和y支排球队参赛.
{ 由题意,得 X+y=48

10x+12y=520 ②
由①, 得 y =48- x ③
把③代入②,得 10x+12(48-x)=520
解这个方程,得 x= 28.
把x= 28代入③ ,得 y=20.
{ X=28
所以这个方程组的解是 y=20
解:设骑车用x小时,步行用y小时.
求原方程组正确的解
x 5
y
4
x 3
y
1
ax by 1,
2①已知方程组 bx ay 3的解为
x y
1, 1, 2
求a,b
②求满足5x+3y=x+2y=7的x,y的值.
1.用代入法解方程组:
2s 3t, (1)3s 2t 5
s=3 t=2

2x y 7 3x 4y 5
提高巩固
1.解下列二元一次方程组
x+1=2(y-1) ⑴
3x+2y=13 ⑵
3(x+1)=5(y-1)+4 3x-2y=5
你认为怎样代入更简便? 请用你最简便的方法解出它的解。 你的思路能解另一题吗?
1.解下列二元一次方程组(分组练习)
⑴ x+1=2(y-1)

3(x+1)=5(y-1)+4 ②
8.2 代入消元法解方程
用代入法
解二元一次 方程组
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变形, 用含有一个未知数的一次式表 示另一个未知数(变形)
2、用这个一次式代替另一个方程 中的相应未知数,得到一个一元一 次方程,求得一个未知数的值(代 入)

2022-2023学年七年级数学下册课件之消元——解二元一次方程组 第一课时(人教版)

2022-2023学年七年级数学下册课件之消元——解二元一次方程组 第一课时(人教版)

1.消元思想:二元一次方程组中有两个未知数,如果 消去其中一个未知数,那么就把二元一次方程组转 化为一元一次方程,先求出一个未知数,然后再求 另一个未知数,这种将未知数的个数由多化少,逐 一解决的思想,叫消元思想.
2.代入消元: (1)定义:将二元一次方程组中一个方程中的某个未 知数用含有另一个未知数的代数式表示出来,并 代入另一个方程中,从而消去一个未知数,化二 元一次方程组为一元一次方程,这种解方程组的 方法称为代入消元法,简称代入法.
2 5.
22
利用代入消元法解二元一次方程组的关键是找准代 入式,在方程组中选择一个系数最简单(尤其是未知数前 的系数为±1)的方程,进行变形后代入另一个方程,从 而消元求出方程组的解.
同学们, 下节课见!
两个面上的数或式子的值相等,求x+y+a 的值.
y=2 x-5, 解:由题意得 5-x=y+1,
x=3, 解得 y=1.
易得a=3,所以x+y+a=3+1+3=7.
ax+by=2,
x=1,
6 小明在解方程组 cx-3 y=-2 时,得到的解是 y=-1,
小英同样解这个方程组,由于把c 抄错而得到的解
x+y=1.5,①
根据题意,得
15
x+5
y=20.②
由①,得x=1.5-y.③
把③代入②,得15(1.5-y )+5y=20,
解得y=0.25. 把y=0.25代入③,得x=1.25.
x=1.25,
所以方程组的解是
y=0.25.
答:张翔骑车与步行分别用1.25 h,0.25 h.
3 若 a+b+5+ 2a b 1 0, 则 (b-a)2 015=( A )
y
1 2

人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案

人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“代入消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
a)理解代入消元法的步骤:选择一个方程解出一个变量,然后将其代入另一个方程中,从而得到一个一元一次方程,最后求解得到两个变量的值。
-举例:解方程组2x + 3y = 5和x - y = 1,先从第二个方程解出x = y + 1,然后代入第一个方程得到2(y + 1) + 3y = 5。
b)学会判断何时使用代入消元法:当一个方程已经解出了某个变量的值,或者方程中某个变量的系数为1或-1时,适合使用代入消元法。
-举例:如果问题涉及到两个人共同完成一项工作,需要根据两人的工作效率和时间来构建方程组。
d)难点4:理解代入消元法与其他消元方法的区别
-学生需要理解代入消元法与加减消元法的区别,以及何时使用哪种方法更有效。
-举例:对于方程组x + y = 3和2x - y = 1,使用加减消元法更为简便。
四、教学流程
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
一、教学内容
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案:
1.理解代入消元法的概念及原理;
2.学会运用代入消元法解二元一次方程组;
3.能够根据具体问题,选择合适的消元方法求解;
4.掌握代入消元法在不同类型二元一次方程组中的应用。

8.2消元——解二元一次方程组(一) 同步练习习题 2020-2021学年七年级数学人教版下册

8.2消元——解二元一次方程组(一) 同步练习习题 2020-2021学年七年级数学人教版下册

第八章 二元一次方程组8.2 消元——解二元一次方程组(一)【笔记】1.将未知数的个数由多化少,逐一解决的思想,叫做 思想.2.我们把 , 再代入另一个方程,实现消元,进而求出方程组的解的方法,叫做 ,简称代入法.【训练】1.用代入法解方程组{x =2y,①y −x =3,②下列说法正确的是()A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x 2.用代入法解方程组{3x +4y =2,①2x −y =5,②最好的变形是 ()A.由①得x =2−4y3 B.由①得y =2−3x4C.由②得x =y+52D.由②得y =2x -53.方程y =1-x 与3x +2y =5的公共解是 ( )A.{x =3,y =2B.{x =−3,y =4C.{x =3,y =−2D.{x =−3,y =−24.(临沂中考)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =785.如图所示,点O 在直线AB 上,OC 为射线,∠1比∠2少60°,则∠1,∠2分别为 ( )A.70°,110°B.60°,120°第5题图C.50°,130°D.40°,140°6.如果x ∶y =5∶2,且满足x -3y =-7,那么x ,y 中较小的值是 ( )A.35B.-14C.-35D.147.已知方程2x -3y =4,用含x 的式子表示y = ,用含y 的式子表示x = . 8.若-2x m -n y 2与3x 4y2m +n是同类项,则m -3n 的立方根为 .9.在一本书上写着方程组{x +py =2,x +y =1的解是{x =0.5,y =□,其中,y 的值被墨渍盖住了,不过,我们可得出p = .10.关于x ,y 的方程y =kx +b 中,当x =2时,y =0,当x =-1时,y =5,则当x =0时,y = . 11.加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?若设x 名工人完成第一道工序,y 名工人完成第二道工序,则可列方程组:.12.解下列方程组: (1){y =4x,①2x +y =5;②(2){x −2y =−3,①3x +y =2.②13.如果{x =3,y =−2是方程组{ax +by =1,ax −by =5的解,求a 2021+2b 2021的值.14.(乐山中考)方程组x 3=y2=x +y -4的解是 ( )A.{x =−3,y =−2 B.{x =6,y =4 C.{x =2,y =3D.{x =3,y =215.关于x ,y 的方程组{x +y =a,x +2y =a +5,那么y 是 ()A.5B.2a +5C.a -5D.2a16.已知y =x 2+px +q ,当x =1时,y 的值为2;当x =-2时,y 的值为2.求当x =-3时,y 的值.17.已知方程组{ax +by =1,2x −y =1和{ax −by =5,x +2y =3的解相同,求a 和b 的值.18.(海南中考)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元,则这两种百香果每千克的价格各是多少元?19.先阅读,然后解方程组{x −y −1=0,①4(x −y)−y =5.②解方程组时,可由①得x -y =1③,然后再将③代入②得4×1-y =5,求得y =-1,从而进一步求得{x =0,y =−1.这种方法被称为“整体代入法”. 请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.参考答案8.2 消元——解二元一次方程组(一)【笔记】 1.消元2.二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来 代入消元法 【训练】1.B2.D3.C4.D5.B6.D7.2x−433y+42 8.2 9.3 10.10311.{x +y =7,900x =1200y12.(1)把①代入②得2x +4x =5,解得x =56,把x =56代入①得,y =103.∴原方程组的解为{x =56,y =103. (2)由①得x =2y -3,把x =2y -3代入②得:3(2y -3)+y =2,解得y =117,把y =117代入x =2y -3得x =17, ∴原方程组的解是{x =17,y =117.13.把{x =3,y =−2代入方程组得{3a −2b =1,3a +2b =5,解得{a =1,b =1.∴a 2021+2b 2021=1+2=3.14.D 15.A 16.6 17.由{2x −y =1,x +2y =3,得{x =1,y =1.将{x =1,y =1代入{ax +by =1,ax −by =5, 得{a +b =1,a −b =5,解得{a =3,b =−2.18.设每千克“红土”百香果的价格是x 元,每千克“黄金”百香果的价格是y 元. 根据题意,得{2x +y =80,x +3y =115,解得{x =25,y =30.答:每千克“红土”百香果的价格是25元,每千克“黄金”百香果的价格是30元. 19.{2x −y −2=0,①6x−3y+45+2y =12.②由①得2x -y =2③,将③代入②得3×2+45+2y =12,解得y =5,把y =5代入③得x =72.则方程组的解为{x =72,y =5.。

专题8.2 消元——解二元一次方程组--七年级数学人教版(下册)

专题8.2 消元——解二元一次方程组--七年级数学人教版(下册)

第八章二元一次方程组8.2 消元——解二元一次方程组1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K知识参考答案:1.消元2.加减法K—重点代入法或加减法解二元一次方程组K—难点用适当的方法解二元一次方程组K—易错解二元一次方程组时看错系数一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y=ax+b(或x=ay+b),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y xx y=-⎧⎨-=⎩时,代入正确的是A.x-2-x=4 B.x-2-2x=4 C.x-2+2x=4 D.x-2+x=4 【答案】C【解析】124y xx y=-⎧⎨-=⎩①②,把①代入②得:x-2(1-x)=4,整理得:x-2+2x=4.故选C.二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:693 6416 x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.1.方程组1325y xx y+=⎧⎨+=⎩的解是A.32xy=⎧⎨=-⎩B.34xy=-⎧⎨=⎩C .32x y =⎧⎨=⎩D .32x y =-⎧⎨=-⎩2.用加减消元法解方程组231354y x x y +=⎧⎨-=-⎩①②,①-②得A .2y =1B .5y =4C .7y =5D .-3y =-33.用加减消元法解方程组358752x y x y -=⎧⎨+=⎩将两个方程相加,得A .3x =8B .7x =2C .10x =8D .10x =104.解关于x y ,的方程组239x y mx y m+=⎧⎨-=⎩,得2x y +的值为A .12mB .0C .2m -D .7m5.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩,比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 6.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩7.由方程组63x m y m +=⎧⎨-=⎩①②可得出x 与y 的关系式是A .9x y +=B .3x y +=C .3x y +=-D .9x y +=-8.小亮解方程组2212x y x y +=∆⎧⎨-=⎩的解为5x y =⎧⎨=∑⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数∆和∑,则两个数∆和∑的值为A .82∆=⎧⎨∑=⎩B .82∆=⎧⎨∑=-⎩C .82∆=-⎧⎨∑=⎩D .82∆=-⎧⎨∑=-⎩9.若二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x ay b =⎧⎨=⎩,则a +b 值为A .19B .212C .7D .1310.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 11.不解方程组,下列与237328x y x y +=+=⎧⎨⎩的解相同的方程组是A .2836921y x x y =-+=⎧⎨⎩B .283237y xx y =+=+⎧⎨⎩C .372283y x y y ⎧⎪⎪⎨+=+=⎪⎪⎩D .372382y x x y ⎧⎪⎪⎨-+=+=⎪⎪⎩12.方程组221x yx y+=-=⎧⎨⎩的解是__________.13.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.14.若方程组35ax byax by-=-⎧⎨+=⎩与23144516x yx y+=⎧⎨-=-⎩的解相同,则a=__________,b=__________.15.解方程组:学科=网(1)23328y xx y=-⎧⎨+=⎩(代入法);(2)223210x yx y+=⎧⎨-=⎩(加减法);(3)357 425 x yx y-=⎧⎨+=⎩;(4)2()1343()2(2)8x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩.16.数学课上老师要求学生解方程组:213 3113a bb a=-+⎧⎨=-⎩.同学甲的做法是:213 3113a bb a=-+⎧⎨=-⎩①②,由①,得a=-12+32b.③把③代入②,得3b=11-3(-12+32b),解得b=53,把b=53代入③,解得a=2,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.老师看了同学甲的做法说:“做法正确,但是方法复杂,要是能根据题目特点,采用更加灵活简便的方法解此题就更好了.”请你根据老师提供的思路解此方程组.17.3()2()5 4(2)3x y x yx y x y-++=⎧⎨-+-=-⎩.18.已知23x yx y-=⎧⎨+=⎩,则xy的值是A.2 B.1 C.-1 D.219.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩①②正确的方法是A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-220.用加减法解方程组326231x yx y+=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是(1)966462x yx y+=⎧⎨+=⎩(2)9618462x yx y+=⎧⎨-=⎩(3)9618462x yx y+=⎧⎨+=⎩(4)6412693x yx y+=⎧⎨+=⎩A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)21.已知方程组323()11x yy x y-=⎧⎨+-=⎩,那么代数式3x-4y的值为A.1 B.8 C.-1 D.-822.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④23.若方程组(31)2y kx b y k x =+=-+⎧⎨⎩有无穷多组解,则2k +b 2的值为A .4B .5C .8D .1024.已知甲、乙两人的收入比为32∶,支出之比为74∶,一年后,两人各余400元,若设甲的收入为x元,支出为y 元,可列出的方程组为A .4002740034x y x y -=⎧⎪⎨+=⎪⎩B .4003440027x y y ++⎧⎪⎨-=⎪⎩C .4002440037x y x y -=⎧⎪⎨-=⎪⎩D .4002740034x y x y -=⎧⎪⎨-=⎪⎩ 25.若关于x 、y 的二元一次方程组59x y kx y k +=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.26.若方程组7353x y x y +=⎧⎨-=-⎩,则3()(35)x y x y +--的值是__________.27.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.28.已知方程组82x y x y +∆=⎧⎨∆-=⎩中,y x 、的系数部已经模糊不清,但知道其中表示同一个数,∆也表示同一个数,⎩⎨⎧-==11y x 是这个方程组的解,你能求出原方程组吗?29.解方程组:6323()2()28x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩.30.请你根据萌萌所给的如图所示的内容,完成下列各小题.(1)若m ※n =1,m ※2n =-2,分别求m 和n 的值;(2)若m 满足m ※2≤0,且3m ※(-8)>0,求m 的取值范围.31.(2018·怀化)二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩32.(2018·天津)方程组10216x y x y +=⎧⎨+=⎩的解是A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩C .36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩33.(2018·台湾)若二元一次联立方程式73838x y x y -=⎧⎨-=⎩的解为x =a ,y =b ,则a +b 之值为何?A .24B .0C .-4D .-834.(2018·桂林)若|321|20x y x y --++-=,则x ,y 的值为A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩35.(2018·常德)阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是 A .21732D ==--B .14x D =-C .27yD =D .方程组的解为23x y =⎧⎨=-⎩36.(2018·无锡)方程组225x y x y -=⎧⎨+=⎩的解是__________.37.(2018·福建)解方程组:1410x y x y +=⎧⎨+=⎩.38.(2018·湘西州)解方程组:335x y x y +=⎧⎨-=⎩.39.(2018·武汉)解方程组:10216x y x y +=⎧⎨+=⎩.40.(2018·宿迁)解方程组:20 346 x yx y+=⎧⎨+=⎩.41.(2018·舟山)用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.1.【答案】A【解析】1325y xx y+=⎧⎨+=⎩22233+252x y xx y y⎧+==⎧⇒⇒⎨==⎨-⎩⎩,故选A.2.【答案】C【解析】两式相减得,7y=5.故选C.3.【答案】D【解析】将两个方程相加,得:10x=10,故选D.4.【答案】A【解析】将方程组中的两个方程相加得(x+2y)+(x-y)=3m+9m,合并同类项得2x+y=12m.故选A.6.【答案】D【解析】由同类项的定义可得24325y x x y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.7.【答案】A【解析】由①得:m=6-x,∴6-x=y-3,∴x+y=9.故选A.8.【答案】B【解析】把5x y =⎧⎨=∑⎩代入方程组可得,101012+∑=∆⎧⎨-∑=⎩,解得82∆=⎧⎨∑=-⎩,故选B .10.【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 11.【答案】A【解析】∵在A 选项中,方程283y x =-可化为:238x y +=; 方程6921x y +=可化为:237x y +=,∴A 选项中的方程组和原方程组的解相同,故选A .12.【答案】11x y ==⎧⎨⎩ 【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3, 解得:x =1.把x =1代入①得,y =1,故方程组的解为:11x y ==⎧⎨⎩.故答案为:11x y ==⎧⎨⎩.13.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=, 13333()322x y x y +=+=⨯=,故答案为:32. 14.【答案】1;1【解析】解方程组23144516x y x y +=⎧⎨-=-⎩,得14x y =⎧⎨=⎩.把它代入方程组35ax by ax by -=-⎧⎨+=⎩,得4345a b a b -=-⎧⎨+=⎩,解之,得a =1,b =1.故答案为1;1.15.【解析】(1)23328y x x y =-⎧⎨+=⎩①②,将①代入②得:3x +4x -6=8,解得x =2, 将x =2代入①得:y =1,则方程组的解为21x y =⎧⎨=⎩.(2)223210x y x y +=⎧⎨-=⎩①②,①×2+②得:7x =14,解得x =2, 将x =2代入①得:y =-2,则方程组的解为22x y =⎧⎨=-⎩.(3)357425x y x y -=⎧⎨+=⎩①②,①×2+②×5得:26x =39,即x =32, 将x =32代入②得:y =-12, 则方程组的解为3212x y ⎧=⎪⎪⎨⎪=-⎪⎩.(4)方程组化简,得51112058x yx y-+=⎧⎨=-⎩①②,把②代入①,得14y-28=0,解得y=2,把y=2代入②,得x=2,方程组的解为22 xy=⎧⎨=⎩.16.【解析】213 3113a bb a=-+⎧⎨=-⎩①②,把②代入①,得2a=-1+(11-3a),解得a=2,把a=2代入①,解得b=53,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.17.【解析】原方程整理为55593x yx y-=⎧⎨-=-⎩①②,①-②,得8y=8,解得,y=1.把y=1代入①得,5x-1=5,解得,x=65,所以,方程组的解为651xy⎧=⎪⎨⎪=⎩.18.【答案】B【解析】23x yx y-=⎧⎨+=⎩①②,②-①得,y=1③,将③代入①,得x=1,则xy=1,故选B.19.【答案】D【解析】先将②变为x-3y=7③,再①-③得x=-2,故选D.20.【答案】C【解析】①3⨯和②2⨯转化为(3);或者①2⨯和②3⨯转化为(4).故选C . 21.【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1, 将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B .23.【答案】B【解析】根据方程组有无穷多组解,可知方程组中的两个方程相同, 所以b =2,3k -1=k , 解得:k =12,b =2, ∴2k +b 2=1+4=5.故选B .24.【答案】C【解析】根据甲的收入-甲的支出400=元,得方程400=-y x , 根据乙的收入-乙的支出400=元,得方程4007432=-y x , 则可列方程组为4002440037x y x y -=⎧⎪⎨-=⎪⎩,故选C . 25.【答案】34【解析】59x y k x y k +=⎧⎨-=⎩①②,①+②得:2x =14k ,即x =7k ,将x =7k 代入①得:7k +y =5k ,即y =-2k , 将x =7k ,y =-2k 代入2x +3y =6得:14k -6k =6, 解得:k =34,故答案为:34. 26.【答案】24【解析】将方程组中的两个方程看作整体代入得:3(x +y )-(3x -5y )=3×7-(-3)=24. 故答案为:24.27.【解析】(1)将①代入②得,32(402)22x x +-=,解得x =58,将x =58代入①,得:y =-76,故原方程组的解为:5876x y =⎧⎨=-⎩.(2)①×2得,4x +6y =10③,③-②得:8y =9,y =98, 将y =98代入①,得:1316x =, 故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③,①+③得:21x =0,解得:x =0, 将x =0代入②得:y =3,故原方程组的解为:03x y =⎧⎨=⎩.28.【解析】由题意得82x y x y +∆=⎧⎨∆-=⎩,解得53=⎧⎨∆=-⎩,则原方程组为538352x y x y -=⎧⎨--=⎩.29.【解析】原方程组整理得536528x y x y -=⎧⎨+=⎩①②,由②得y x 528-=③,把③代入①得36)528(5=--y y ,解得4=y , 把4=y ③代入③得,8=x ,∴方程组的解为84x y =⎧⎨=⎩.30.【解析】(1)∵m ※n =1,m ※2n =-2,∴431462m n m n -=⎧⎨-=-⎩,解得11n m =⎧⎨=⎩.(2)∵m ※2≤0,3m ※(-8)>0,∴46012240m m -≤⎧⎨+>⎩,解得-2<m ≤32. 31.【答案】B【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得:2x =0, 解得:x =0,把x =0代入①得:y =2,则方程组的解为02x y =⎧⎨=⎩,故选B . 32.【答案】A【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得x =6,把x =6代入①,得y =4,原方程组的解为64x y =⎧⎨=⎩.故选A .33.【答案】A【解析】73838x y x y -=⎧⎨-=⎩①②,①-②×3,得:-2x =-16, 解得:x =8,将x =8代入②,得:24-y =8,解得:y =16,即a =8,b =16,则a +b =24,故选A .34.【答案】D 【解析】∵|321|20x y x y --++-=,∴321020x y x y --=⎧⎨+-=⎩, 将方程组变形为3212x y x y -=⎧⎨+=⎩①②, ①+②×2得,5x =5,解得x =1, 把x =1代入①得,3-2y =1,解得y =1,∴方程组的解为11x y =⎧⎨=⎩.故选D . 35.【答案】C【解析】A 、D =2132-=2×(-2)-3×1=-7,故A 选项正确,不符合题意; B 、D x =11122-=-2-1×12=-14,故B 选项正确,不符合题意;C、D y=21312=2×12-1×3=21,故C选项不正确,符合题意;D、方程组的解:x=147xDD-=-=2,y=217yDD=-=-3,故D选项正确,不符合题意,故选C.36.【答案】31 xy=⎧⎨=⎩【解析】225 x yx y-=⎧⎨+=⎩,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31 xy=⎧⎨=⎩,故答案为:31 xy=⎧⎨=⎩.37.【解析】1410x yx y+=⎧⎨+=⎩①②,②-①得:3x=9,解得:x=3,把x=3代入①得:y=-2,则方程组的解为32 xy=⎧⎨=-⎩.38.【解析】①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组的解为21x y =⎧⎨=⎩. 39.【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩.41.【解析】(1)解法一中的计算有误(标记略).(2)用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下: 由①-②,得33x -=,解得1x =-,把1x =-代入①,得135y --=,解得2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.【当堂达标】
1.在方程 中,如果用含有 的式子表示 ,则 _____.
2.在二元 一次方程 中,当 时, _____.
3.学校的篮球数比排球数的 倍少 个,篮球数与排球数的比是 ,求这两种各有多少个?若设篮球有 个,排球有 个,则依题意得到的方程组是__ ___.
4.解方程组:
(1) (2)
5.列方程组解答
学生具体操作。
3.【应用新知】
例题: 用代入法解方程组
师生活动:学生写出用代入法解这个方程组的过程,教师用课本上的框图说明这个过程。
4.【加深认识】
用代入法解下列方程组:
(1) (2)
5.【归纳总结】
1.通过本节课的学习,你认为代入法解二元一次方程组的关键是什么.
2.用代入消元法解二元一次方程组的步骤 是什么?
4.设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数?
2.【探究新知】
问题1篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?
方法一:列一元一次方程)解设胜x场,根据 题意得:
方法二:((列二元一次方程)解设胜x场,负y场.根据题意得:

教学内容
师生活动
复备
1.【复习导入】
1.在二元一次方程- x+3 y=2中,当x=4时,y=_______;当y=-1时,x=______.
2.已知方程2x+3y-4 =0,用含x的 代数式表示y 为:y=_______;用含y的代数式表示x为:x=________.
3.已知方程x-2y=8,用含x的式子表示y,则y=_________________,用含y的式子表示x,则x=________________.
将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
总结:将未知数的个数由多化少、逐一解决的想法是消元思想
设计意图:借助本题,让学生分析解题思路,并对比消哪个元计算更简捷。使学生再次经历代入法解二元方程组的过程。




教学
反思
学科年级
七年级
课题
代入消元法解二元一次方程组(1)
主备人
复备人
上课
时间
教学
目标
1.掌握代入消元法解二元一次方程组的步骤
2.理解解二元一次方程组的思路是”消元”,经历从未知向已知转化的过程,体会化归思想..
重点
重点:熟练运用代入法解二元一次方程组
难点
如何用代入法将“二元”转化为“一元”的消元过程



把(3)代入(2)得:2x+(10-y)=16。
解得:x=6。
设计意图:通过解具体的方程组明确消元的过程。
问题3怎样求y的值?
学生回答:把x=6代入(3)。得y=4。
问:代入(1)或(2)可不可以?哪种运算更简便?
问:你能写出这个方程组的解,并给出问题的答案吗?
问题4是否有办法得到关于y的一元一次方程?
上面的方程和方程组有什么联系?能否讲方程组转化为方程
、由x + y=10可得y=
、把2x+y=16中的y换成10 -x就化为一元一次方程
二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出来,再代入另一方程的方法是代入消元法.
问题2对于二元一次方程组 ,你能写出求的值的过程吗?
学生回答:
由(1)得:y=10-x。(3)
相关文档
最新文档