2016-2017学年新人教A版必修3高中数学 2.3.2两个变量的线性相关(第1课时)教案 (1)(精品)
高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3
解:(1)画出散点图.
(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是 负相关?
解:(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x的值由小 变大时,另一个变量y的值也由小变大,所以它们具有正相关关系.
方法技巧 两个随机变量x和y是否具有相关关系的确定方法: (1)散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断 (如本题); (2)表格、关系式法:结合表格或关系式进行判断; (3)经验法:借助积累的经验进行分析判断.
4
4
解:(2)由表中的数据得: xi yi =52.5, x =3.5, y =3.5, xi2 =54,
i 1
i 1
n
所以 b =
xi yi n x y
i 1
n
xi2
2Hale Waihona Puke nx=52.5 4 3.5 3.5 54 4 3.52
=0.7,
i 1
a = y - b x =3.5-0.7×3.5=1.05,
年份x
储蓄存款 y(千亿元)
2013 5
2014 6
2015 7
2016 8
2017 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2 012,z=y-5 得到表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(1)求z关于t的线性回归方程;
5
5
解:(1) t =3, z =2.2, ti zi=45, ti2 =55,
知识探究
1.相关关系与函数关系不同 函数关系中的两个变量间是一种确定性关系,相关关系是一种不确定性关系. 2.正相关和负相关 (1)正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们就称它为正相关. (2)负相关 在散点图中,点散布在从左上角到右下角的区域,对于两个变量的这种相关 关系,我们就称它为负相关.
人教A版高中数学必修三第二章第3节 2.3.2两个变量的线性相关 课件(共28张PPT)
【学习目标】 1、理解线性相关、正相关、负相关、散点图; 2、理清线性相关和散点图之间的关系;(定性) 3、在两个变量具有线性相关关系时,会作出线
性直线。(定量) 【学法指导】
在解决统计问题的过程中,系统地经历数据 收集和处理的全过程,进一步体会用样本估计总 体的思想,理解数形结合的数学思想和回归分析 的统计思想。
【探究新知】
在一次对人体脂肪含量和年龄关系的研究中,研究人员获 得了一组样本数据:
.
根据上述数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
【小组合作】
探究一 收集数据 (1)回忆前面学过的统计知识,表中数据可能是如何收集到的?举例说明 (2)如何理解23岁对应的脂肪百分比为9.5? 探究二 分析数据 (1)统计学中常用什么方法分析收集到的数据? (2)高一在函数应用章节,如何根据已知数据预测其它数据? (3)你发现年龄与脂肪含量这两个变量之间是什么关系?怎样发现的? 探究三 寻找回归直线(定量) (1)回归直线一定过样本点的中心吗?为什么? (2)为什么要找回归直线?找到这条直线是否说明年龄与脂肪含量是函数关系? (3)假如我45岁,我的脂肪含量大约是多少?是表中的27.5吗? (4)如何具体求出这个回归直线的方程呢?回归直线与散点图中各点的位置应
人体内脂肪含量与年龄之间是相关关系
在一定年龄段内,随着年龄的增长,人体内的脂肪 含量会增加,但人体内的脂肪含量还与饮食习惯、体 育锻炼等有关,可能还与个人的先天体质有关。
对某一个人来说,他的体内脂肪含量不一定随年龄 增长而增加或减少,但是如果把很多个体放在一起, 就可能表现出一定的规律性.
散点图:
——具有函数关系. 2.如果所有的样本点都落在某一函数曲线附近,那么这两个 变量之间有关系吗?关系确定吗?是什么关系? ——有关系,不确定,有相关关系。 3. 如果所有的样本点都落在某一直线附近,变量之间就有线 性相关关系。线性相关又分正相关和负相关。(呈条形状) 4.如果散点图的点几乎没有什么规则,则这两个变量之间 关系又如何? ——没有相关关系
高中数学人教A版必修3课件:2-3-2《线性回归方程》
二倍角的正弦、余弦、 正切公式
2.3 变量间的相关关系
2.3.2 线性回归方程
3.1.3
二倍角的正弦、余弦、 正切公式
本课主要学习变量间的相关关系的相关内容,具体 包括线性回归方程的求解。 本课开始回顾了上节课所学变量间的相关关系与散 点图的相关内容,紧接着引入回归直线的定义及特征, 回归直线方程的定义及求法(最小二乘法),并且通过 例题和习题进行讲解。最后通过习题进行加深巩固。
y
500 450 400 350
水稻产量
300 10
(施化肥量)
20
30
40
50
x
3.1.3
二倍角的正弦、余弦、 正切公式
3、最小二乘法 假设我们已经得到两个具有线性相关的变量的一组数 据(x1,y1),(x2,y2),…(xn,yn).
n n ( xi x)( yi y ) xi yi nxy i 1 i 1 b n n 2 2 2 ( xi x) xi nx i 1 i 1 a y bx
注意:求回归直线方程的关键是如何用数学的方法来刻画“从整 体上看各点与此直线的距离最小”,即最贴近已知的数据点,最 能代表变量x与y之间的关系.
3.1.3
二倍角的正弦、余弦、 正切公式
在7块并排、形状大小相同的试验田上进行施化肥量对水稻产 量影响的试验,得到如下表所示的一组数据(单位:kg):
施化肥量x 水稻产量y 15 330 20 345 25 365 30 405 35 445 40 450 45 455
第四步:写出直线方程.
二倍角的正弦、余弦、 正切公式 解:1、列表
3.1.3
2、代入公式计算
数学知识点人教A版高中数学必修三 2.3.2 《两个变量的线性相关》 第2课时示范教案-总结
高中数学(2.3.2 两个变量的线性相关第2课时)示范教案新人教A版必修3导入新课思路1客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与题我们接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题(1)作散点图的步骤和方法?(2)正、负相关的概念?(3)什么是线性相关?(4)看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?(5)什么叫做回归直线?(6)如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?(7)利用计算机如何求回归直线的方程?(8)利用计算器如何求回归直线的方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.)1(,)())((2121121x b y a x n x yx n yx x x y y x x b n i i ni ii n i i ni i i其中,b 是回归方程的斜率,a 是截距.推导公式①的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理.假设我们已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ), 且所求回归方程是^y =bx+a,其中a 、b 是待定参数.当变量x 取x i (i=1,2,…,n)时可以得到^y =bx i +a(i=1,2,…,n), 它与实际收集到的y i 之间的偏差是y i -^y =y i -(bx i +a)(i=1,2,…,n).这样,用这n 个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的.由于(y i -^y )可正可负,为了避免相互抵消,可以考虑用∑=-ni i iy y1^||来代替,但由于它含有绝对值,运算不太方便,所以改用Q=(y 1-bx 1-a)2+(y 2-bx 2-a)2+…+(y n -bx n -a)2② 来刻画n 个点与回归直线在整体上的偏差.这样,问题就归结为:当a,b 取什么值时Q 最小,即总体偏差最小.经过数学上求最小值的运算,a,b 的值由公式①给出.通过求②式的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法(method of least square ). (7)利用计算机求回归直线的方程.根据最小二乘法的思想和公式①,利用计算器或计算机,可以方便地求出回归方程.以Excel 软件为例,用散点图来建立表示人体的脂肪含量与年龄的相关关系的线性回归方程,具体步骤如下:①在Excel 中选定表示人体的脂肪含量与年龄的相关关系的散点图(如下图),在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的回归方程^y =0.577x-0.448.(8)利用计算器求回归直线的方程.用计算器求这个回归方程的过程如下:所以回归方程为^y =0.577x-0.448.正像本节开头所说的,我们从人体脂肪含量与年龄这两个变量的一组随机样本数据中,找到了它们之间关系的一个规律,这个规律是由回归直线来反映的. 直线回归方程的应用:①描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系. ②利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间.③利用回归方程进行统计控制规定Y 值的变化,通过控制x 的范围来实现统计控制的目标.如已经得到了空气中NO 2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO 2的浓度. 应用示例思路1例1 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律; (3)求回归方程;(4)如果某天的气温是2 ℃,预测这天卖出的热饮杯数. 解:(1)散点图如下图所示:(2)从上图看到,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮杯数越少.(3)从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式①求出回归方程的系数.利用计算器容易求得回归方程^y =-2.352x+147.767.(4)当x=2时,^y =143.063.因此,某天的气温为2 ℃时,这天大约可以卖出143杯热饮. 思考气温为2 ℃时,小卖部一定能够卖出143杯左右热饮吗?为什么? 这里的答案是小卖部不一定能够卖出143杯左右热饮,原因如下:1.线性回归方程中的截距和斜率都是通过样本估计出来的,存在随机误差,这种误差可以导致预测结果的偏差.2.即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x 的预报值,能够与实际值y 很接近.我们不能保证点(x,y )落在回归直线上,甚至不能百分之百地保证它落在回归直线的附近,事实上,y=bx+a+e=^y +e.这里e 是随机变量,预报值^y 与实际值y 的接近程度由随机变量e 的标准差所决定. 一些学生可能会提出问题:既然不一定能够卖出143杯左右热饮,那么为什么我们还以“这天大约可以卖出143杯热饮”作为结论呢?这是因为这个结论出现的可能性最大.具体地说,假如我们规定可以选择连续的3个非负整数作为可能的预测结果,则我们选择142,143和144能够保证预测成功(即实际卖出的杯数是这3个数之一)的概率最大.由;(2)如果具有线性相关关系,求出线性回归方程.解:(1)在直角坐标系中画出数据的散点图,如下图.直观判断散点在一条直线附近,故具有线性相关关系. (2)计算相应的数据之和:∑=81i ix =1 031,∑=81i iy=71.6,∑=812i ix=137 835,∑=81i ii yx =9 611.7.将它们代入公式计算得b≈0.077 4,a=-1.024 1, 所以,所求线性回归方程为=0.077 4x-1.024 1.思路2(2)求出回归直线的方程. 解:(1)散点图如下图.b=230770003.39930787175⨯-⨯⨯-≈4.75,a=399.3-4.75×30≈257.从而得回归直线方程是^y =4.75x+257.例2 一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得解:在直角坐标系中画出数据的散点图,如下图.直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:∑===1012,7.91,55i ix y x =38 500,∑=1012i iy =87 777,∑=101i i i y x =55 950.b=22101210155********.915510559501010⨯-⨯⨯-=--∑∑==x xyx yx i ii ii≈0.668.a=x b y -=91.7-0.668×55≈54.96.因此,所求线性回归方程为^y =bx+a=0.668x+54.96.(2)求出回归直线的方程. 解:(1)散点图如下.(2)101=x (45+42+46+48+42+35+58+40+39+50)=44.50, 101=y (6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+8.72)=7.37. 设回归直线方程为^y =bx+a,则b=210121011010x xyx yx i ii ii --∑∑===0.175,a=x b y -=-0.418,所以所求回归直线的方程为^y =0.175x-0.148.点评:对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,再依系数a,b 的计算公式,算出a,b .由于计算量较大,所以在计算时应借助技术手段,认真细致,谨防计算中产生错误,求线性回归方程的步骤:计算平均数y x ,;计算x i 与y i 的积,求∑x i y i ;计算∑x i 2;将结果代入公式求b ;用a=x b y -求a ;写出回归直线方程.知能训练1.下列两个变量之间的关系哪个不是函数关系( )A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高 答案:D2.三点(3,10),(7,20),(11,24)的线性回归方程是( ) A.^y =5.75-1.75x B.^y =1.75+5.75x C.^y =1.75-5.75x D.^y =5.75+1.75x答案:D(1)线性回归方程^y =bx+a 的回归系数a,b ;(2)估计使用年限为10年时,维修费用是多少? 答案:(1)b=1.23,a=0.08;(2)12.38.4.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:y=6+4x ;模型2:y=6+4x+e .(1)如果x=3,e=1,分别求两个模型中y 的值;(2)分别说明以上两个模型是确定性模型还是随机模型. 解:(1)模型1:y=6+4x=6+4×3=18; 模型2:y=6+4x+e=6+4×3+1=19.(2)模型1中相同的x 值一定得到相同的y 值,所以是确定性模型;模型2中相同的x 值,因δ的不同,所得y 值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型.(2)用最小二乘法估计求线性回归方程. 解:(1)散点图如下图.(2)n=5,∑=51i ix=545,x =109,∑=51i iy=116,y =23.2,∑=512i ix=60 952,∑=51i ii yx =12 952,b=2545609525116545129525-⨯⨯-⨯≈0.199,a=23.2-0.199×109≈1.509, 所以,线性回归方程为y=0.199x+1.509. 拓展提升某调查者从调查中获知某公司近年来科研费用支出(X i )与公司所获得利润(Y i )的统计资料如下表:i i 解:设线性回归模型直线方程为:i i X Y 1^0^^ββ+=,因为:630==∑nXxi=5,6180==∑nYY i=30,01方法一:3006009001200540060003020061803010006)(2221^=--=-⨯⨯-⨯=--=∑∑∑∑i i ii i X X n Y Y X n β=2, x Y 1^0^ββ-==30-2×5=20.方法二:501005620030561000)(2221^=⨯-⨯⨯-=--=∑∑x n X Y x n Y X ii i β=2, x Y 1^0^ββ-==30-2×5=20.方法三:50100)())((21^=---=∑∑x X Y Y x X ii iβ=2,x Y 1^0^ββ-==30-2×5=20.所以利润(Y i )对科研费用支出(X i )的线性回归模型直线方程为:i Y ^=20+2X i . 课堂小结1.求线性回归方程的步骤: (1)计算平均数y x ,; (2)计算x i 与y i 的积,求∑x i y i ;(3)计算∑x i 2,∑y i 2,(4)将上述有关结果代入公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====xb y a x n x yx n yx x x y y x x b n i i ni ii ni i ni i i ,)())((1221121求b,a,写出回归直线方程.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 作业习题2.3A 组3、4,B 组1、2.设计感想本节课在上节课的基础上,利用实例分析了散点图的分布规律,推导出了线性回归直线的方程的求法,并利用回归直线的方程估计可能的结果,本节课讲得较为详细,实例较多,便于同学们分析比较.思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度,树立时间观,培养勤奋、刻苦的精神.。
人教版高中数学-两个变量的线性相关
《2.3.2两个变量的线性相关》一、内容和内容解析本节课是人教A版高中数学必修三2.3.2两个变量的线性相关的第二课时。
上节课通过大量的生活实例,学生已经初步认识两个变量间的相关关系,并可以借助散点图呈现收集的数据。
通过对单变量样本数据中“平均数的几何意义”(切合学生的认知需要)的介绍,为本节课的内容做了铺垫。
本节课的主要内容是用最小二乘法求线性回归方程,基础知识是回归直线的概念,也是本节课的核心概念;基本思想是“最小二乘法”思想;根据线性回归方程的系数公式求回归直线是本节课的基本技能.就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽,而后者是统计学学科研究的另一重要领域了解“最小二乘法”思想,比较各种“估算方法”,体会它的科学性,既是统计学教学发展的需要,又在体会此思想的过程中促进学生对核心概念的进一步理解.“样本估计总体”是本节课的上位思想也是整个第二章的核心思想,而“最小二乘法思想”作为本节课的核心思想,由此得以体现.回归思想和贯穿统计学科中的随机思想,也在本节课中有所渗透.本节课通过引导学生经历“收集数据一一整理数据(作散点图)一一探究并确定回归直线的数学意义一一求回归直线方程一一应用”完整的回归分析的过程,鼓励学生独立思考、自主探究、合作交流和计算机操作等方式展开学习,从而发挥本节课的育人价值。
整个学习过程渗透了数据分析和数学建模的核心素养。
通过引导学生对散点图中的点大致分布在一条直线附近的观察,渗透直观想象的核心素养;通过尝试提出找回归直线的想法、用自己的语言描述对这条直线的初步认识到探究从数学的角度定义回归直线的过程,渗透数学抽象和逻辑推理的核心素养;最后,根据回归直线方程的系数公式,引导学生先求出公式中的基本统计量,再代入公式的过程和指导学生利用Excel电子表格求回归方程的过程,提升数学运算的核心素养。
基于上述内容分析,本节课的教学重点为:了解最小二乘法思想,并能根据给出的线性回归方程的系数公式,建立线性回归方程二、目标和目标设置基于对本节课教学内容的解析,结合《普通高中数学课程标准(2017年版)》的要求,制定本节课的教学目标如下:1.了解一元线性回归模型的含义:(1)能根据散点图解释两个相关变量的线性相关关系;(2)能用自己的语言解释回归直线的统计意义;2. 了解最小二乘原理:(1)经历用不同方法确定回归直线的过程,能认识到回归直线是“从整体上看,各点与此直线上的点的距离最小”的直线;(2)能用数学符号刻画“从整体上看,各点与此直线上的点的距离最小”的表达方式;(3)通过对表达方式的转化(距离最小到偏差平方和最小),体会最小二乘法原理,并能用自己的语言表述;3.针对实际应用问题,能根据给出的线性回归方程系数公式建立线性回归方程;4.在经历完整的线性回归分析的过程中,重点提升数据分析和数学建模核心素养;5.针对实际应用问题,会用一元线性回归模型进行预测.第1页(共6页)三、学生学情分析在经历用不同估算方法描述两个变量线性相关的过程后,在学生现有知识能力范围内,如何选择一个最优方法,成为知识发展的逻辑必然而上节课的“从平均数的几何意义说起”符合学生的认知需要和支撑点,同时引起了学生的兴趣,为这节课的最小二乘法思想的产生做了重要的铺垫.“最小二乘法”作为经典的回归方程估算方法,通过用数学方法刻画“从整体上看,各点与此直线的距离最小”这一直观的几何描述,采取合适的数学处理方法,最终获得回归直线,对学生认可统计估算的科学性有很大帮助.其中对于数形结合发现距离与偏差的等价性,二元二次函数的特征辨识等都是这节课学生所要具备的认知基础.基于此,如何把“从整体上看,各点与此直线的距离最小”用合适的代数符号刻画并化简,化几何问题为代数问题,是学生顺利了解解“最小二乘法”思想的前提;而如何化简复杂的代数表达式,学生缺乏处理的经验,在计算能力的要求上也较高,这里就造成了已有认知与现需认知的差异,而且是学生不能独立突破的要了解“最小二乘法思想”,接受“由系数公式得到的线性方程”为回归方程,理解此方程可作为“两个具有线性相关关系的变量的代表”这一回归直线概念的本质,并体现相对于其他估算方法法的优越性,又必须要求对给出的系数公式来源进行一定的说理,这里的认知差异也是学生无法自己消除的,需要老师的引导和帮忙.知识发展的要求与学生能力和经验的欠缺成为本节课将会遇到的最大矛盾.教学中,要防止两种倾向:一是直接套用回归系数公式求解回归方程而回避说理过程;二是过多纠缠于数学刻画过程,甚至在课堂上花大量时间对回归系数公式进行证明说理.这两种倾向,都脱离了实际情况,前者忽略了“最小二乘法思想”迷失了本节课的教学目标后者人为拔高教材要求,脱离了本节课教学要求.所以,本节课的教学难点是:如何通过数学方法刻画“从整体上看,各点与此直线的距离最小”,并在此过程中了解最小二乘法思想对于该教学难点,教师通过精准问题串层层分解学生认知的难点,不断寻找学生的认知原点,关键处动画展示,直观形象,突破教学难点. 本节课涉及大量数据计算,形成操作上的一个难点,通过小组合作,教师培训模式突破难点.四、教学策略分析本节课在课前让学生收集身高与体重的数据,一方面对前面学过的知识有一个巩固,同时让本节课进行线性回归分析的过程更加完整;二是从学生身边的真实数据出发,更容易促进学习动机,而且给学生带来的体验也更为真实。
【课件】新课标人教A版数学必修3:2.3 两个变量的线性相关
.
预习引入:
1、现实生活中存在许多相关关系:商品销售与 广告、粮食生产与施肥量、人体的脂肪量与年 龄等等的相关关系.
2、通过收集大量的数据,进行统计,对数据 分析,找出其中的规律,对其相关关系作出 一定判断. 3、由于变量之间相关关系的广泛性和不确定 性,所以样本数据应较大,和有代表性.才能对 它们之间的关系作出正确的判断.
那么,我们该怎样来求出这个回归方程?
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
. 方案1、先画出一条直线,测量出各点与它
的距离,再移动直线,到达一个使距离的和最 小时,测出它的斜率和截距,得回归方程。
如图 :
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
.
方案2、在图中选两点作直线,使直线 两侧 的点的个数基本相同。
脂肪含量 40
35 30
25 20 15 35 40 45 50 55 60 65
方案3、如果多取几对点,确定多条直线,再 求出这些直线的斜率和截距的平均值作为回归直 线的斜率和截距。而得回归方程。 如图:
脂肪含量
观察人体的脂肪含量百分比和年龄的样本数 据的散点图,这两个相关变量成正相关.
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
如高原含氧量与海拔高度
的相关关系,海平面以上,
海拔高度越高,含氧量越
少。
含氧量
高中数学 (2.3.2 两个变量的线性相关)教案 新人教A版必修3
2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关整体设计教学分析变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.三维目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想.课时安排2课时教学过程第1课时导入新课思路1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?请同学们如实填写下表(在空格中打“√” ):好中差你的数学成绩你的物理成绩学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?推进新课新知探究提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23 27 38 41 45 49 50脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄53 54 56 57 58 60 61脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6 分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加.我们可以作散点图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例思路1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例 2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价:品牌所含热量的百分比口味记录A 25 89B 34 89C 20 80D 19 78E 26 75F 20 71G 19 65H 24 62I 19 60J 13 52(1)作出这些数据的散点图.(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.性别身高/cm 右手一拃长/cm 性别身高/cm 右手一拃长/cm 女152 18.5 女153 16.0女156 16.0 女157 20.0女158 17.3 女159 20.0女160 15.0 女160 16.0 女160 17.5 女160 17.5 女160 19.0 女160 19.0 女160 19.0 女160 19.5 女161 16.1 女161 18.0 女162 18.2 女162 18.5 女163 20.0 女163 21.5 女164 17.0 女164 18.5 女164 19.0 女164 20.0 女165 15.0 女165 16.0 女165 17.5 女165 19.5 女166 19.0 女167 19.0 女167 19.0 女168 16.0 女168 19.0 女168 19.5 女170 21.0 女170 21.0 女170 21.0 女171 19.0 女171 20.0 女171 21.5 女172 18.5 女173 18.0 女173 22.0 男162 19.0 男164 19.0 男165 21.0 男168 18.0 男168 19.0 男169 17.0 男169 20.0 男170 20.0 男170 21.0 男170 21.5 男170 22.0 男171 21.5 男171 21.5 男171 22.3 男172 21.5 男172 23.0 男173 20.0 男173 20.0 男173 20.0 男173 20.0 男173 21.0 男174 22.0 男174 22.0 男175 16.0 男175 20.0 男175 21.0 男175 21.2 男175 22.0 男176 16.0 男176 19.0 男176 20.0 男176 22.0 男176 22.0 男177 21.0 男178 21.0 男178 21.0 男178 22.5 男178 24.0 男179 21.5 男179 21.5 男179 23.0 男180 22.5 男181 21.1 男181 21.5 男181 23.0 男182 18.5 男182 21.5 男182 24.0 男183 21.2男185 25.0 男186 22.0男191 21.0 男191 23.0 (1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线. 同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线. 同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x(个)10 20 30 40 50 60 70 80 90 100 加工时间62 68 75 81 89 95 102 108 115 122y(min)画出散点图;关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积(m2)115 110 80 135 105销售价格(万元)24.8 21.6 18.4 29.2 22 (1)画出数据对应的散点图;(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系. 课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.作业习题2.3A组3、4(1).设计感想本节课学习了变量之间的相关关系和两个变量的线性相关的部分内容,通过身边的具体实例说明了两个变量的相关关系,并学会了利用散点图及其分布来说明两个变量的相关关系的种类,为下一节课作了铺垫,思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度和学习方法,树立时间观,培养勤奋、刻苦耐劳的精神.。
高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教
A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1
,
a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.
2.3.2 两个变量的线性相关
Q a bx1 y1 a bx2 y2 a bx3 y3
2
a 2b 1 a 4b 1.2 a 6b 2
2 2
2
3a 56b 24ab 8. 8.4 4a 37.6b M 2 2 3a 24b 8.4 a 56b 37.6b M 2 2 2 3 a 4b 1.4 56b 37.6b M 3 4b 1.4
3 3 3 3 3
…
…
…
…
…
yn yn n a bxn n
思考:如何化几何问题为代数问题。
退出
两个变量的线性相关(第一课时)
复习
探究 探究
原理
例题
练习
小结
作业
yi 的符号有正有负,直接相加可能会相互抵消。 ∵偏差 yi
怎么办?
Q yi a bxi
同学们不妨尝试着寻找一下,看看什 么样的直线是最优的拟合直线?
帮助
退出
两个变量的线性相关(第一课时)
复习
探究 探究
原理
例题
练习
小结
作业
想法一
连接最左侧点和最右侧点 让画出的直线上方的点和下方的 点数目相等。
想法二
想法三
求众多过两点的直线的斜率和截 距,再求它们的平均值,得到回 归直线的斜率和截距。
复习
探究
原理
例题
练习
小结
作业
1um(1微米)=0.001mm(0.001毫米)
退出
两个变量的线性相关(第一课时)
复习
y.5 x 4 43 2. 5 6
人教新课标版数学高一必修3课件2.3.2两个变量的线性相关(二)
解析答案
(2)从散点图中发现气温与热饮销售杯数之间有什么关系; 解 从上图看到,各点散布在从左上角到右下角的区域里, 因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮 杯数越少. (3)求回归方程; 解 从散点图可以看出,这些点大致分布在一条直线的附近, 因此,可用公式求出回归方程的系数. 利用计算器容易求得回归方程y^=-2.352x+147.767.
1.理解两个变量线性相关的概念; 2.了解用最小二乘法建立线性回归方程的思想,会用给出的公式建立回 归方程; 3.理解回归直线与观测数据的关系.
检查预习
课前预习课本相应部分,检查提问“自主学 习”部分
自主学习
知识点一 线性相关 思考 回顾上一节你看到的散点图,大致呈哪些形状? 答案 饼状,曲线状,直线状. 如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量 之间具有线性相关关系. 两个变量线性相关是相关关系的一种.
元时销售额为( )
A.63.6 万元
B.65.5 万元
C.67.7 万元
D.72.0 万元
解析答案
1 2345
4.四名同学根据各自的样本数据研究变量 x,y 之间的相关关系,并求得回
归方程,分别得到以下四个结论:
①y 与 x 负相关且y^ =2.347x-6.423;
②y 与 x 负相关且y^ =-3.476x+5.648;
解析答案
(2)通过计算可知这两个变量的回归方程为
^
y
=23.25x+102.15,假如一个
城市的人均GDP为12万元,那么可以断言,这个城市患白血病的儿童一定
人教A版高中数学必修三两个变量的线性相关教案
2.3.2两个变量的线性相关教学目标:经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
教学重点:经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
教学过程:1.回顾上节课的案例分析给出如下概念: (1)回归直线方程 (2)回归系数2.最小二乘法3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间。
(3)利用回归方程进行统计控制规定Y 值的变化,通过控制x 的范围来实现统计控制的目标。
如已经得到了空气中NO 2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO 2的浓度。
4.应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,最好先作出散点图; (3)回归直线不要外延。
5.实例分析: 某调查者从调查中获知某公司近年来科研费用支出(i X )与公司所获得利润(i Y )的统计资料如下表:i X i Y 要求估计利润(i Y )对科研费用支出(i X )的线性回归模型。
解:设线性回归模型直线方程为:i i X Y 10ˆˆˆββ+=因为:5630===∑n XX i306180===∑nYY i现利用公式(Ⅰ)、(Ⅱ)、(Ⅲ)求解参数10的估计值:23006009001200540060003020061803010006)(ˆ2221==--=-⨯⨯-⨯=--=∑∑∑∑∑i i i i i i X X n Y X Y X n β 205230ˆˆ10=⨯-=-=X Y ββ∑∑--=-=22110)(ˆˆˆX n X YX n Y X X Y ii i βββ 205230ˆˆ10=⨯-=-=X Y ββ25010056200305610002==⨯-⨯⨯-=∑∑---=-=2110)())((ˆˆˆX X Y Y X X X Y ii iβββ 205230ˆˆ10=⨯-=-=X Y ββ250100==所以:利润(i Y )对科研费用支出(i X )的线性回归模型直线方程为:i i X Y 220ˆ+=6、求直线回归方程,相关系数和作图,这些EXCEL 可以方便地做到。
高中数学教案2.3.2两个变量的线性相关1新课标必修三
④讨论:你能举出一些生活中的变量成正相关或负相关的例子吗?(比如高学历高收入现象)
⑤练习:一个工厂为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次调查,收集数据如下:
零件数
10
20
30
40
50
60
70
80
90
100பைடு நூலகம்
加工时间
62
68
75
81
89
95
102
108
115
122
1.画出散点图。
2.指出是正相关还是负相关。
3.关于加工零件的个数与加工时间,你能得出什么结论?
⑥小结:1.散点图的画法。2.正相关与负相关的概念。
26.3
28.2
年龄
53
54
56
57
58
60
61
脂肪
29.6
30.2
31.4
30.8
33.5
35.2
34.6
分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加。我们可以作散点图来进一步分析。
②散点图的概念:将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图。(1.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.2.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系。3.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)
人教A版高中数学必修三课件2.3两个变量的线性相关.pptx
年龄 脂肪 回归值
53 54 56 57 58 60 61 29.6 30.2 31.4 30.8 33.5 35.2 34.6 30.1 30.7 31.8 32.4 33.0 34.1 34.7
若某人65岁,可预测他体内脂肪含量在37.1 %(0.577×65-0.448=37.1%)附近的可能性 比较大。
3.如果所有的样本点都落在某一直线附近,变量 之间就有线性相关关系
只有散点图中的点呈条状集中在某一直线周 围的时候,才可以说两个变量之间具有线性关 系,才有两个变量的正线性相关和负线性相关 的概念,才可以用回归直线来描述两个变量之 间的关系
三、我们应该如何具体的求出这个回归方程呢?
方案一:采用测量的方法:先画一条直线,测 量出各点到它的距离,然后移动直线,到达一 个使距离之和最小的位置,测量出此时直线的 斜率和截距,就得到回归方程。
但不能说他体内脂肪含量一定是37.1%
原因:线性回归方程中的截距和斜率都是通
过样本估计的,存在随机误差,这种误差可 以导致预测结果的偏差,即使截距斜率没有 误差,也不可能百分百地保证对应于x,预报 值Y能等于实际值y
例2、假设关于某设备的使用年限x(年)和所支出的维修 费用y(万元),有如下的统计资料: 使用年限x(年)23456 维修费用y(万元)2.23.85.56.57.0 若资料知y,x呈线性相关关系,试求: (1)线性回归方程Y=bx+a的回归系数a、b; (2)估计使用年限为10年时,维修费用是多少?
思考:1、两个变量成负相关关系时,散点图有什么特点?
答:两个变量的散点图中点的分布的位置是从左上角到右
下角的区域,即一个变量值由小变大,而另一个变量值由
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2 两个变量的线性相关(第一课时)(新授课)
一、教学目标:
明确事物间的相互联系。
认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。
二、教学重点与难点
重点:利用散点图直观认识两个变量之间的线性关系.
难点:作散点图和理解两个变量的正相关和负相关。
三、教学过程:
(一)引入
1. 人的身高和体重之间的关系?
2. 学生设计一个统计问题,并指出问题涉及的总体是什么,所涉及的变量是什么.(二)讲授新课:
1、散点图
(1)例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23 27 38 41 45 49 50
脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄53 54 56 57 58 60 61
脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6
分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加。
我们可以作散点图来进一步分析。
(2)散点图的概念:将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图。
(1.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.2.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系。
3. 如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)
(3)正相关与负相关概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关。
如果散点图中的点散布在从左上角到右下角的区域内,称为负相关。
(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)
(4)讨论:你能举出一些生活中的变量成正相关或负相关的例子吗?(比如高学历高收入现象)
(三)课堂练习:
一个工厂为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次调查,收集数据如下:
零件数10 20 30 40 50 60 70 80 90 100
加工时间62 68 75 81 89 95 102 108 115 122
1. 画出散点图。
2. 指出是正相关还是负相关。
3. 关于加工零件的个数与加工时间,你能得出什么结论?
(四)课时小结:1.散点图的画法。
2.正相关与负相关的概念。
(五)布置作业:课本P98 A组 2 B组 1题(1)
四、课后反思。