圆、二次函数、相似
二次函数与圆总结(经典)
二次函数与圆总结(经典)-CAL-FENGHAI.-(YICAI)-Company One1二次函数 济宁附中李涛考点一、二次函数的概念和图像 (3~8分)1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下:1、二次函数的性质函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像a>0a<0性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=a b 2-,顶点坐标是(ab2-,ab ac 442-);(3)在对称轴的左侧,即当x<a b2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增;(4)抛物线有最低点,当x=ab 2-时,y 有最小值,ab ac y 442-=最小值(1)抛物线开口向下,并向下无限延伸; (2)对称轴是x=a b 2-,顶点坐标是(ab 2-,ab ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而减小,简记左增右减;(4)抛物线有最高点,当x=a b 2-时,y 有最大值,a b ac y 442-=最大值 2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义: a 表示开口方向:a >0时,抛物线开口向上 a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:(0,c ) 3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。
2023年中考数学难点突破----二次函数专题研究之二次函数图象中的圆
2
【例3】(2019•日照)如图1,在平面直角坐标系中,直线y=-5x+5与轴,y轴分 别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.
(1)求抛物线解析式及B点坐标;
解:(1)直线y=-5x+5,x=0时,y=5 ,∴C(0,5) ; 当y=-5x+5=0时,x=1; ∴A(1,0)
【例2】(2020•西藏)在平面直角坐标系中,二次函数y= x2+bx+c的图象与x轴交于A (﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点. (2)如图甲,连接AC,PA,PC,若S△PAC= ,求点P的坐标;
(2)如图甲中,连接OP.设P(m, m2﹣m﹣4). 由题意,A(﹣2,0),C(0,﹣4), ∵S△PAC=S△AOC+S△OPC﹣S△AOP, ∴ = ×2×4+×4×m﹣ ×2×(﹣ m2+m+4), 整理得, m2+2m﹣15=0, 解得m=3或﹣5(舍弃), ∴P(3,﹣ ).
∴设抛物线表达式为:y=a(x+4)(x﹣2)
把C(0,4)带入得:4=a(0+4)(0﹣2)
∴a=﹣0.5
∴抛物线表达式为:y=﹣0.5(x+4)(x﹣2)=﹣0.5x2﹣x+4
【例4】(2018威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),
B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于
【例4】(2018威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0), B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴 交于点F,与BC交于点E,对称轴l与x轴交于点H.
圆与二次函数知识点
圆和二次函数知识点《圆》一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系<⇒点C在圆;1、点在圆⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 切(图4)⇒ 有一个交点 ⇒ d R r =-; 含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
2014年九年级数学下册复习测试题(二次根式、一元二次方程、圆、二次函数、相似)
九年级数学下册期末(二次根式、一元二次方程、圆、二次函数、相似)复习测试数学试卷(时间:120分钟,满分120分)一、选择题(每小题3分,共36分).1x 的取值范围是( )A .1x >B .1x ≥C .1x ≤D .1x <2的相反数是( ) A. BC.2- D.23.一元二次方程的2650x x +-=左边配成完全平方式后所得的方程为 ( )A .2(3)14x -=B .2(3)14x +=C .21(6)2x +=D .以上答案都不对 4.(2008湖北)下列方程中,有两个不等实数根的是( ) A .238x x =- B .2510x x +=- C .271470x x -+= D .2753x x x -=-+5.若b b -=-3)3(2,则( ) A .b>3 B .b<3 C .b ≥3 D .b ≤36.如图,△ABC 内接于⊙O ,∠A=400,则∠OBC 的度数为 ( )A. 200B. 400C. 500D. 707.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长是3,则弦AB 的长是 ( )8.若二次函数32)1(22--++=m m x m y 的图象经过原点,则m 的值必为 ( )A 、-1或3B 、-1C 、3D 、无法确定9.二次函数m x m x y 4)1(22++-=的图象与x 轴 ( )A 、没有交点B 、只有一个交点C 、只有两个交点D 、至少有一个交点10.二次函数222+-=x x y 有 ( )A 、最大值1 B 、最大值2 C 、最小值1 D 、最小值211.已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个12.将一个矩形纸片ABCD 沿AD 和BC 的中点的连线对折,要使矩形AEFB 与原矩形相似,则原矩形的长和宽的比应为( ) A .2:1 B .1:3 C .1:2 D .1:1图二、填空题:(每小题3分,共30分)13.当x __________时,式子31-x 有意义. 14.a -12-a 的有理化因式是____________.15.当1<x <4时,|x -4|+122+-x x =________________.16.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.17.已知a 2+3a=7,b 2+3b=7,且a≠b,则a+b=_______.18.已知210x x +-=,则323x x x +-+的值为19.将抛物线 y =2x 2 向下平移 2 个单位,所得的抛物线的解析式为 。
初中数学知识点及考点联系
初中数学知识框架及知识点之间的联系初中数学六册书共29各章节,每个章节难度不同,在中考中占的分数值不同,在学校学习期间学习时间也不相同,对学生的要求也不同;南通市学校学习这些章节时间和学期分布不尽相同,一般来说市区的学校学习的比较快,二中,三中,学习的比较慢,初三上学期的时候会学习最后几个章节的知识点,分别是二次函数,圆,相似,锐角三角形,占用的时间不是很多,周期短,学的比较快,但是这几个章节是中考的重点章节,大概占35--40,这个时候一点掉队会导致孩子在数学上没有信心;数学一共29个章节,初一两册书,一共10个章节,主要的考点有:(1)有理数,这个章节是小学与初中的衔接,也是初中数学的开篇和基础部分,初中的一些数学基础概念和知识点都在这一章节中体现,这个章节考试一般只有5分左右,但是知识点和概念对整个中学阶段的学习非常的重要,比如,绝对值,幂运算,在以后的高中数学学习中任然会有所涉及,高中不会详细讲解,初中打好基础是关键,学习好这一章节对后面整个数学数的分类比较清晰,如果基础知识和基础的概念不到位,学习实数的时候还要重新回顾这一章节的内容,不但时间上不允许,还可能导致学习新知识的掉队,下面的链接会帮助你更好的理解和掌握有理数内容;https:///view/2f1cab00647d27284b7351c5.html(2)整式的加减,本章节对基础概念和计算的要求比较高,基础概念一定要搞明白什么是单项式,什么是多项式,什么是同类项以及他们之间的区别和联系,计算的时候要认真仔细,是初中第一次接触较为复杂的计算,为以后的计算打下一个良好的基础,以后解一元一次方程,分式方程,因式分解都需要合并同类项,下面的链接有整式的训练https:///view/95403fefb8f67c1cfad6b8b7.html (3)一元一次方程,本章节是方程的基础,以后要学习的二元一次方程及二元一次方程组,三元一次方程,一元二次方程,最终都要化简成一元一次方程来解答,关于一元一次方程的解法一定要熟练,不然会影响以后方程的学习,如果这章节的内容掌握的很熟练,二元一次方程,一元二次方程,分式方程只需要掌握化成一元一次方程的解法即可;下面的练习可以训练方程的解法和方程的应用https:///view/e66b05f39b6648d7c0c74657.html https:///view/278a896ea0116c175e0e4836.html?from =search(4)图形的认识,几何的基础,考试中一般不会直接体现,但是后面几何中一些角,线段,射线的概念正在本章中体现,这一章节主要是概念的训练,弄清楚各个概念之间的区别于联系,是几何的日门知识,对平行线和三角形问题有相当重要的帮助;(5)相交线与平行线,本章知识是几何的开端,这一章节教授一些几何一些基本性质和几何的证明方法与步骤,是后面证明题书写的模板,也是关系到后面几何证明过程能不能得到满分的关键,要认真学习,一旦本章知识不过关,后面几何证明会出现对而不全,得不到满分,十分遗憾,下面的网址可以帮助你学习几何的证明https:///view/be92c2247fd5360cba1adb8c.html?from =search(6)平面直角坐标系,这一章节一般不会在中考中出现,但是是后面函数的基础,学习该章节的知识的时候,注意象限,对称点之间的问题,本章节的知识是函数的基础,不打扎实,画函数图像会出现很大问题,下面网址有利于坐标系的练习https:///view/dc01bc6f783e0912a2162a36.html?from =search(7)三角形,本章节在中考中一般会一选这题和填空题的形式出现,结合着平行线与角的关系出题,一般在3--6分之间,分数虽然不大,但是为后面全等三角形,等腰三角形,四边形,相似,中位线打下基础的,一定要要学扎实,主要注意的是三角形边与角之间的关系,初中阶段学习这一章节,高中的时候也会涉及并且是一个重要的考点,初中阶段一定要学好,否则初中阶段的三角形全等,四边形证明,高中不等式涉及到的三角形都会出现问题,下面的网址有利于里练习三角形的知识点https:///view/df126a7b2b160b4e767fcf81.html (9)二元一次方程及方程组,这一章节在中考中会以计算题的形式出现,一般5分左右,也可能不会出现,本章节的内容尤其是数学思想比较重要,有时候会出现在一些未知数比较多的题目中,可以设不同的未知数,列出方程进行解答,主要应该注意的是二元一次方程的解法和应用,应用的时候尤其重要,方程的审题是关键;https:///view/650e1b74a5e9856a56126081.html?from =searchhttps:///view/fa97498d52ea551811a68709.html (10)数据的搜集,本章节比较简单,主要弄吧定义及概念就可以,做题的时候细心一点,一般不会出现问题;(11)第十一个知识点开始就是初二上册,全等三角形,全等三角形在中考中出现的概率比较大,不会直接要求证明三角形全等,往往是证明线段相等或者是角相等的时候,需要三角形全等,同时三角形全等还是四边形证明的一个非常重要的基础,本章节需要主要的是三角形全等证明的方法及需要强调不用方法运用在不同题目的前提,综合训练的时候针对不同的条件要不同的分析,这一章节知识对后面四边的性质及证明,勾股定理有着很重要的作业,学习不过关,会导致在一些综合题目中边与边相等无法证明,下面的链接可以帮助你巩固三角形全等https:///view/7593c5f91ed9ad51f11df240.html?fr om=search(基础练习)https:///view/3912120b14791711cc791718.html? from=search(经典练习)https:///view/1075d2fda58da0116c174984.html?from=search(难题)(12)轴对称与旋转是初中阶段的重点与难点,无论对老师还是学生的考研都比较大,一般还会结合懂点一起考察,主要是建立在三角形,四边形的基础上,求最小距离,最小面积,边的长度,角的大小等问题,讲解这类问题的时候主要抓住关键的对称轴与边和角的关系,旋转以后边的长度不变,角的变化情况,这类问题的关系还是在三角形和四边形方面,如果学不好,后面综合题目的时候懂点问题则无从下手,学好后,动点问题及存在问题能后轻易得到满分,下面网址可以帮助你https:///view/17c1d3d20408763231126edb6f1aff00be d570c3.html?from=search(13)实数,在初中阶段,数的具体分类,主要是概念的问题,中考一般贸易这样的题目出现,但是在一些题目的题设中会出现,a,b 都是有理数或者都是实数的区别,实数是二次根式的基础,学好实数不跟才能学好二次根式(14)二次根式,是初中阶段六中运算中的最后一种,是平方的逆运算,主要平方根与算术平方根的区别和联系,被开发数有意义的条件,考试形式主要会结合因式分解,分式计算,化简求值,计算的时候一定要小心仔细;二次根式会与化简求值综合考察,二次根式不过关直接导致求值题目的错误,下面的网址可以帮助你联系二次根式及实数https:///view/7a30d574bcd126fff6050b10.html?from=search(15)整式的乘除及因为分解,本章节是一元二次方程与二次函数的基础,中考的时候会以填空题的形式出现,3分,尤其是因为分解三中方法,在一元二次方程和二次函数中都有体现,一定要扎实,考试会出现一些化简求职问题,也是建立在因式分解的基础上,因式分解不过关则一元二次方程和二次函数学习起来会很空难,下面网址可以解决你这个问题https:///view/8b3e8d5fbe23482fb4da4cee.html?from= search(16)分式相对整式而言,分式与分数的概念有几分相似,分式的乘除运算相对简单一些,主要是因为分解的问题,分式的加减问题需要通分与约分,对计算要求比较高,需要多交仔细,分式还有一个很重要的知识点,分式方程,分式方程解答完成后,多整式方程多出一项,检验,分式的应用题在中中考中也会有所涉及,关键是审题和列式,还要注意的是检验和实际问题是否有意义,分式的计算是综合因式分解,整式的加减,方程,这章节知识综合程度比较高,下面的网址可以锻炼你的分式https:///view/09175b227e21af45b307a89e.html?from =search(基础)https:///view/f2c7533f67ec102de2bd89a0.html(精选)https:///view/589e51cd8762caaedd33d467.html?from=search(分式应用)(17)一次函数,第一次解除函数,函数的三中表达是,函数的三要素,函数图像,函数图像的变化,这些基础概念一定要把握到位,第一次接触的时候要讲懂,讲解透彻,一次函数在考试中一般不会单独出现,会与反比例函数,二次函数一起出现,一次函数的应用也比价难,需要仔细,尤其是结合运动的时候,首选要看懂图形所表达的意义,一次函数是函数的基础,学好后有利于学习反比函数和二次函数,下面的链接可以帮助你练习一次函数https:///view/a31fb32df7ec4afe05a1df39.html?from=s earch(18)勾股定理,是解直角三角形的延伸,主要体现在一些求线段的长度和垂直的证明上面,本身的知识点比较简单,在其他中和题目出现的时候要能想到,勾股定理学习不过关会导致综合题目求值无法解答,学好有利于锐角三角函数和高中三角函数的学习,下面的网址有利于你练习沟谷定理https:///view/eac05a1c312b3169a451a45c.html?from =search(基础练习)https:///view/4943e43cf78a6529647d53ea.html?from =search(中考题)(19)四边形是三角形的延伸,考试的时候主要是四边形的性质和证明,近几年的中考则是建立在四边形的基础上,动点问题或者是存在问题,首先要理解平行四边形,矩形,菱形及正反的性质才能解答初懂点和存在问题,学好本章节的知识点对高中的应用题有很大帮助,下面的网址有利益练习四边https:///view/d67912cf58f5f61fb7366699.html?mark_ pay_doc=0&mark_rec_page=1&mark_rec_position=3&clear_uda_param =1(基础练习)https:///view/a1c44d547f1922791788e868.html(中考题)(20)数据分析,只要是平均数,众数,中位数,方差概念的理解。
圆、相似三角形、二次函数经典综合题
中考数学《圆》综合复习【1】已知:如图,△ABC 内接于⊙O ,∠BAC 的平分线交BC 于D ,交⊙O 于E ,EF ∥BC 且交AC 延长线于F ,连结CE.求证:(1)∠BAE=∠CEF ;(2)CE 2=BD ·EF.【2】如图,△ABC 内接于圆,D 为BA 延长线上一点,AE 平分∠BAC 的外角,交BC 延长线于E ,交圆于F.若AB=8,AC=5,EF=14.求AE 、AF 的长.【3】如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接 CO 并延长CO 交于⊙O 于点D ,连接AD . (1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.【4】如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GECD ,的交点为M ,且ME = :2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.B CF E A D O .A B D C EF 第9题图【5】如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。
(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 【6】【7】如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C. (1)求证:O 2C ⊥O 1O 2; (2)证明:AB ·BC=2O 2B ·BO 1;(3)如果AB ·BC=12,O 2C=4,求AO 1的长.O 1O 2A B【8】如图,在平面直角坐标系中,点A (10,0),以OA 为 直径在第一象限内作半圆C ,点B 是该半圆周上一动点,连 结OB 、AB ,并延长AB 至点D ,使DB=AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF (1)当∠AOB =30°时,求弧AB 的长度; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由.【9】 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根. (1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+第24题图图(3)l '【10】如图l0.在平面直角坐标系xoy中,AB在x轴上,AB=10.以AB为直径的⊙O’与y轴正半轴交于点C.连接BC,AC。
人教中考数学压轴题专题复习——圆的综合的综合及详细答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
初中数学八大几何模型归纳
初中数学八大几何模型归纳
初中数学中的八大几何模型包括:
1. 三角形相关模型:三角形的各种性质、三角形的面积计算、三角形的周长计算等;
2. 四边形相关模型:四边形的各种性质、四边形的面积计算、四边形的周长计算等;
3. 圆相关模型:圆的各种性质、圆的面积计算、圆的周长计算、圆的弧长计算等;
4. 相似三角形相关模型:相似三角形的定义、相似三角形的判定、相似三角形的面积计算等;
5. 直角三角形相关模型:直角三角形的定义、直角三角形的判定、直角三角形的面积计算等;
6. 二次函数相关模型:二次函数的定义、二次函数的图像、二次函数的值域、二次函数的对称轴等;
7. 轴对称相关模型:轴对称的定义、轴对称的图像、轴对称的性质、轴对称的图形设计等;
8. 平移相关模型:平移的定义、平移的性质、平移的图像等。
这些几何模型是初中数学中非常重要的知识点,学生在学习过程中需要熟练掌握。
此外,这些模型也是中考数学考试中经常出现的知识点,学生需要在平时的学习中多加练习,熟练掌握各种计算方法和技巧。
专题15 巧用相似解二次函数与圆相关题型(解析版)
专题15 巧用相似解二次函数与圆相关题型解题方法:与圆相关的题型中借助相似三角形的性质将面积最值转化为线段最值求解,要灵活运用平行线切割线段成比例的性质.下面具体看几个例子,帮助同学们加以理解.1. (2019·江苏苏州中考)如图①,抛物线y =-x 2+(a +1)x -a 与x 轴交于A ,B 两点(点A 位于点B 的左侧),与y 轴交于点C .已知△ABC 的面积是6.(1)求a 的值;(2)求△ABC 外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,△QPB 的面积为2d ,且∠PAQ =∠AQB ,求点Q 的坐标.【答案】见解析.【解析】解:(1)∵y =-x 2+(a +1)x -a令y =0,即-x 2+(a +1)x -a =0,解得x 1=a ,x 2=1,由图象知:a <0,∴A (a ,0),B (1,0)∵S △ABC =6 ∴()()112a a --=6,解得:a =-3, a =4(舍去), 即a=-3.(2)设直线AC 的解析式为:y =kx +b ,由A (-3,0),C (0,3),可得-3k +b =0,且b =3,解得:k=1,b=3 即直线AC:y=x+3,∴A、C的中点D坐标为3322⎛⎫-⎪⎝⎭,,∴线段AC的垂直平分线解析式为:y=-x,线段AB的垂直平分线为x=-1 联立解得:y=1,即△ABC外接圆圆心的坐标(-1,1)(3)过P作作PM⊥x轴于M,则S△BAP=122AB PM d⨯⨯=,∴S△BAP=S△BQP,∴A、Q到PB的距离相等,即AQ∥PB设直线PB解析式为:y=x+b,∵直线经过点B(1,0),∴直线PB的解析式为y=x-1,联立y=x-1,y=-x2-2x+3,解得:x=-4,y=-5或x=1,y=0(舍),∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP,∴PQ=AB=4设Q(x,x+3),由PQ=4,得:(x+4)2+(x+8)2=42,解得:m=-4,m=-8(舍去)∴Q 坐标为(-4,-1).2. (2019·山东潍坊中考)如图,在平面直角坐标系xoy 中,O 为坐标原点,点A (4,0),点B (0,4),△ABO 的中线AC 与y 轴交于点C ,且⊙M 经过O ,A ,C 三点.(1)求圆心M 的坐标;(2)若直线AD 与⊙M 相切于点A ,交y 轴于点D ,求直线AD 的函数表达式;(3)在过点B 且以圆心M 为顶点的抛物线上有一动点P ,过点P 作PE ∥y 轴,交直线AD 于点E .若以PE 为半径的⊙P 与直线AD 相交于另一点F .当EF =P 的坐标.【答案】见解析.【解析】解:(1)点B (0,4),则点C (0,2),∵点A (4,0),则点M (2,1);(2)∵⊙P 与直线AD ,则∠CAD =90°,设∠CAO =α,则∠CAO =∠ODA =∠PEH =α,tan ∠CAO =12OC OA =,即tanα=12,则sinα,cosα由勾股定理得:AC则CD=10sin AC CDA ==∠, ∴点D (0,﹣8),设直线AD 的解析式为:y =mx +n ,得:408m n n +=⎧⎨=-⎩,解得:m =2,n =-8, ∴直线AD 的表达式为:y =2x ﹣8;(3)设抛物线的表达式为:y =a (x ﹣2)2+1, 将点B 坐标代入上式并解得:a =34, 即抛物线的表达式为:y =34x 2﹣3x +4,过点P 作PH ⊥EF ,则EH =12EF =∴在Rt △PEH 中,cos ∠PEH =EH PE = 解得:PE =5, 设点P (x ,34x 2﹣3x +4),则点E (x ,2x ﹣8), 则PE =34x 2﹣3x +4﹣2x +8=5, 解得x =143,x =2(舍去), 则点P (143,193).3. (2019·湖南岳阳中考)如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧)(1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积;(3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)在抛物线上,当x=-4时,y=-4,即A(4,-4),当y=-2时,x=-1,或x=-6,∵点A 在点B 的左侧,∴B(-1,-2).(2)过点B 作BE ⊥x 轴于E ,过B’作B’G⊥x 轴于G ,∴OE=1,BE=2,∠BEO=∠B’GO=90°,由旋转性质知,OB=OB’,∠BOB’=90°,∴∠B’OG=∠OBE ,∴△B’OG≌△OBE ,∴OG=BE=2,B’G=OE=1,∴B’(2,-1),A’(4,-4),,将A’,B’坐标代入抛物线F 2:24y ax bx =++,得: 164444241a b a b ++=-⎧⎨++=-⎩,解得:143a b ⎧=⎪⎨⎪=-⎩, 即抛物线F 2:21344y x x =-+,对称轴为:x=6, 设M(6,m),则OM 2=m 2+36,A’M 2=m 2+8m+20,∵点A’在以OM 为直径的圆上,∴∠OA’M=90°,OA’2+A’M 2=OM 2,(222+m +8m+20=36+m ,解得:m=-2,∴S △OA’M=11''22OA A M ⋅=⨯(3)由A(-4,4),得OA 与x 轴的夹角为45°,①当点D 在x 轴负半轴或y 轴负半轴时,∠AOD=45°,由B’(2,-1)得直线OB’的解析式为:y=12-x , 联立:2121344y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩,得:C(8,-4), ∴A’C∥x 轴,∴∠OA’C=135°,∠A’OC≠45°,∠OCA’ ≠45°,即此时△ADO 和△OA’C 不会相似;②当点D 在x 轴正半轴或y 轴正半轴时,若△AOD ∽△OA’C,则1''OD OA A C OA ==, 则OD=A’C=4,∴D(4,0)或(0,4);若△DOA ∽△OA’C,则''4OD OA A O CA ===∴OA’=8,∴D(8,0)或(0,8),综上所述,点D 的坐标为:(4,0),(0,4),(8,0),(0,8).4. (2019·湖北鄂州中考)如图,已知抛物线y =-x 2+bx +c 与x 轴交于A 、B 两点,AB =4,交y 轴于点C ,对称轴是直线x =1.(1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线x =1的对称点F 正好落在BC 上,求点F 的坐标;(3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为t (t >0)秒.①若△AOC 与△BMN 相似,请直接写出t 的值;②△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.【答案】见解析.【解析】解:(1)∵点A 、B 关于直线x=1对称,AB =4,∴A (-1,0),B (3,0),代入y=-x 2+bx+c 中,得:b=2,c=3∴抛物线的解析式为y=-x 2+2x+3,∴C 点坐标为(0,3).(2)设直线BC 的解析式为y=mx+n ,则有:m=-1,n=3∴直线BC 的解析式为y=-x+3∵点E 、F 关于直线x=1对称,E 到对称轴的距离为1,∴ EF=2∴F 点的横坐标为2,将x=2代入y=-x+3中,得:y=-2+3=1∴F (2,1).(3)①t=1②∵M (2t,0),MN ⊥x 轴∴Q (2t,3-2t )∵△BOQ 为等腰三角形,∴分三种情况讨论第一种,当OQ =BQ 时,∵QM ⊥OB∴OM =MB∴2t=3-2t ∴t=34, 第二种,当BO =BQ 时,在Rt △BMQ 中∵∠OBQ =45°∴BQ =,即3=√2(3−2t),∴t 第三种,当OQ =OB 时,则点Q 、C 重合,此时t=0,而t>0,故不符合题意,综上,当t=34BOQ 为等腰三角形.5.(2019·台州模拟)如图,△ABC是⊙O的内接三角形,直径AB=10.sinA=35,点D为线段AC上一动点(不运动至端点A、C),作DF⊥AB于F,连结BD,井延长BD交⊙O于点H,连结CF.(1)当DF经过圆心O时,求AD的长;(2)求证:△ACF∽△ABD;(3)求CF・DH的最大值.【答案】见解析.【解析】(1)解:当DF经过圆心O时,AF=OA=5,∵AB为直径,AB=10,∴∠ACB=90°,∴sinA=35 BCAB=,∴BC=6,由勾股定理得:AC=8,∵AB⊥DE,∴∠AFD=∠ACB=90°,∵∠A=∠A,∴△ADF∽△ABC,∴AD AF AB AC=,∴AD=254 AF ABAC⋅=;(2)证明:由(1)得:AD AF AB AC=,即: AD AB AF AC=,又∵∠A为△ACF和△ABD的公共角,∴△ACF∽△ABD;(3)解:连接CH,如图所示,由(2)知△ACF∽△ABD,∴∠ABD=∠ACF,∵∠ABD=∠ACH,∴∠ACH=∠ACF,又∵∠CAF=∠H,∴△ACH∽△HCD,∴CF AFCD DH,即CF•DH=CD•AF,设AD=x,则CD=8﹣x,AF=45x,∴CF•DH=45x(8﹣x)=﹣45x2+325x=﹣45(x﹣4)2+645,∴当x=4时,CF•DH的最大值为645.6. (2019·湖南怀化中考)如图,在直角坐标系中有Rt△AOB,O为坐标原点,OB=1,tan∠ABO=3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形;③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.【答案】见解析.【解析】解:(1)由题意知,OB =1,tan ∠ABO =3, ∴OA =3,OC =3,即点A 、B 、C 的坐标分别为(0,3)、(﹣1,0)、(3,0), 将点(0,3)、(﹣1,0)代入y =﹣x 2+bx +c得二次函数表达式为:y =﹣x 2+2x +3,顶点坐标为:P (1,4);(2)联立y =﹣x 2+2x +3,y =kx -k +3得: x 2﹣(2﹣k )x ﹣k =0,设点M 、N 的坐标为(x 1,y 1)、(x 2,y 2),则x 1+x 2=2﹣k ,x 1x 2=﹣k ,y 1+y 2=k (x 1+x 2)﹣2k +6=6﹣k 2,同理:y 1y 2=9﹣4k 2,①y =kx ﹣k +3,当x =1时,y =3,即点Q (1,3), ∵S △PMN =2∴2=12PQ ×(x 2﹣x 1),即x 2﹣x 1=4, ∴(x 2﹣x 1)2=16,即(x 1+x 2)2-2x 1x 2=16,可得:k =±②点M 、N 的坐标为(x 1,y 1)、(x 2,y 2)、点P (1,4), 由勾股定理得:()()2221114PM x y =-+-,()()2222214PN x y =-+-, ()()2221212MN x x y y =-+-,∴()()222222121212122834PM PN x x y y x x y y +=+++-+-++=()()222221212228634x x y y k k +++----+ =2222212128218x x y y k k +++++- ()()2221212MN x x y y =-+-=()()2222212122294x x y y k k +++---- =2222212128218x x y y k k +++++- ∴222PM PN MN +=,故无论k 为何值,△PMN 恒为直角三角形;③取MN 的中点H ,则点H 是△PMN 外接圆圆心,设点H 坐标为(x ,y ),则x =12222x x k +-=, y =212622y y k +-=, 整理得:y =﹣2x 2+4x +1,即:该抛物线的表达式为:y =﹣2x 2+4x +1.。
专题9二次函数与圆综合问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(解析版)
专题9二次函数与圆综合问题解决函数与圆的综合问题的关键是找准函数与圆的结合点,弄清题目的本质,利用圆的基本性质和函数的性质、数形结合、方程思想、全等与相似,以便找到对应的解题途径.常见的考法有:1.直线与圆的位置关系:平面直角坐标系中的直线与圆的位置关系问题关键是圆心到直线的距离等于半径的大小,常用的方法有:(1)利用圆心到直线的距离等于半径的大小这一数量关系列出关系式解决问题(2)利用勾股定理解决问题(3)利用相似列出比例式解决问题2.函数与圆的新定义题目:利用已掌握的知识和方法理解新定义,化生为熟3.函数与圆的性质综合类问题:利用几何性质,结合图形,找到问题中的“不变”关键因素和“临界位置”.【例1】【例1】(2021•花都区三模)如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在y轴上是否存在点P使得∠OBP+∠OBC=45°,若存在,求出点P的坐标,若不存在,请说明理由;(3)点M是BC为直径的圆上的动点,将点M绕原点O顺时针旋转90°得点N,连接NA,求NA的取值范围.【分析】(1)将点A(﹣1,0),B(4,0)代入y=ax2+bx+2即可求解析式;(2)过点P作PH⊥BC交于点H,设P(0,t),CH=x,由已知分别可求BC=2,BH=2﹣x,HP=BH=2﹣x,在Rt△CPH中,sin∠PCH===,cos∠PCH===,求出t=﹣,则P(0,﹣),与x轴对称点为(0,),此点也满足所求;(3)当M点在B点处时,N点在F(0,﹣4)处,当M点在O点处时,N点在E(2,0)处,∠EOF=90°,EF=BC=2,可以判断N点在以EF为直径的圆上运动,连接OO',O'(1,﹣2),NA有最大值和最小值,O'A=2,则可求NA最大值为2+,NA最小值为2﹣,进而求得2﹣≤NA≤2+.【解答】解:(1)将点A(﹣1,0),B(4,0)代入y=ax2+bx+2,得,解得,∴y=﹣x2+x+2;(2)过点P作PH⊥BC交于点H,设P(0,t),CH=x,∵C(0,2),B(4,0),∴BC=2,∴BH=2﹣x,∵∠OBP+∠OBC=45°,∴∠CBP=45°,∴HP=BH=2﹣x,在Rt△CPH中,sin∠PCH==,cos∠PCH==,在Rt△BOC中,sin∠PCH=,cos∠PCH=,∴=,=,∴x=,t=﹣,∴P(0,﹣),P点关于x轴对称点为(0,),此点也满足∠OBP+∠OBC=45°,∴满足条件的P点坐标为(0,﹣)或(0,);(3)当M点在B点处时,N点在F(0,﹣4)处,当M点在C点处时,N点在E(2,0)处,∵∠EOF=90°,EF=BC=2,可以判断N点在以EF为直径的圆上运动,连接OO',当NA经过圆心O'时,NA有最大值和最小值,∴O'(1,﹣2),∵A(﹣1,0),∴O'A=2,∴NA最大值为2+,NA最小值为2﹣,∴2﹣≤NA≤2+.【例2】(2020•遵义)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.【分析】(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+94x+c求出a与c的值即可得出抛物线的解析式;(2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH=32,tan60°=QHOH,求出Q(3√32,32),把x=3√32代入y=−34x2+94x+3,得y=27√38−3316≠32,则假设不成立;②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT=32,tan60°=QTOT,求出Q(−3√32,32),把x=−3√32代入y=−34x2+94x+3,得y=−27√38−3316≠32,则假设不成立;(3)求出B(4,0),待定系数法得出BC直线的解析式y=−34x+3,当M在线段BC上,⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,代入即可得出结果;当M在BC延长线,⊙M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,⊙M与y轴相切时,延长PD交x轴于D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=34x2−94x﹣3,MD=34x﹣3,代入即可得出结果.【解答】解:(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+94x+c得:{0=a−94+c3=c,解得:{a =−34c =3,∴抛物线的解析式为:y =−34x 2+94x +3; (2)不存在,理由如下:①当点Q 在y 轴右边时,如图1所示: 假设△QCO 为等边三角形, 过点Q 作QH ⊥OC 于H , ∵点C (0,3), ∴OC =3,则OH =12OC =32,tan60°=QH OH , ∴QH =OH •tan60°=32×√3=3√32, ∴Q (3√32,32), 把x =3√32代入y =−34x 2+94x +3, 得:y =27√38−3316≠32, ∴假设不成立,∴当点Q 在y 轴右边时,不存在△QCO 为等边三角形; ②当点Q 在y 轴的左边时,如图2所示: 假设△QCO 为等边三角形, 过点Q 作QT ⊥OC 于T , ∵点C (0,3), ∴OC =3,则OT =12OC =32,tan60°=QT OT , ∴QT =OT •tan60°=32×√3=3√32, ∴Q (−3√32,32), 把x =−3√32代入y =−34x 2+94x +3, 得:y =−27√38−3316≠32,∴假设不成立,∴当点Q 在y 轴左边时,不存在△QCO 为等边三角形;综上所述,在抛物线上不存在一点Q ,使得△QCO 是等边三角形;(3)令−34x 2+94x +3=0, 解得:x 1=﹣1,x 2=4, ∴B (4,0),设BC 直线的解析式为:y =kx +b , 把B 、C 的坐标代入则{0=4k +b 3=b ,解得:{k =−34b =3,∴BC 直线的解析式为:y =−34x +3,当M 在线段BC 上,⊙M 与x 轴相切时,如图3所示: 延长PM 交AB 于点D ,则点D 为⊙M 与x 轴的切点,即PM =MD , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =−34x 2+94x +3,MD =−34x +3, ∴(−34x 2+94x +3)﹣(−34x +3)=−34x +3, 解得:x 1=1,x 2=4(不合题意舍去), ∴⊙M 的半径为:MD =−34+3=94;当M 在线段BC 上,⊙M 与y 轴相切时,如图4所示: 延长PM 交AB 于点D ,过点M 作ME ⊥y 轴于E ,则点E 为⊙M 与y 轴的切点,即PM =ME ,PD ﹣MD =EM =x , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =−34x 2+94x +3,MD =−34x +3, ∴(−34x 2+94x +3)﹣(−34x +3)=x , 解得:x 1=83,x 2=0(不合题意舍去), ∴⊙M 的半径为:EM =83;当M 在BC 延长线,⊙M 与x 轴相切时,如图5所示:点P 与A 重合, ∴M 的横坐标为﹣1,∴⊙M 的半径为:M 的纵坐标的值, 即:−34×(﹣1)+3=154; 当M 在CB 延长线,⊙M 与y 轴相切时,如图6所示:延长PM 交x 轴于D ,过点M 作ME ⊥y 轴于E ,则点E 为⊙M 与y 轴的切点,即PM =ME ,PD ﹣MD =EM =x , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =34x 2−94x ﹣3,MD =34x ﹣3, ∴(34x 2−94x ﹣3)﹣(34x ﹣3)=x ,解得:x 1=163,x 2=0(不合题意舍去), ∴⊙M 的半径为:EM =163; 综上所述,⊙M 的半径为94或83或154或163.【点评】本题是二次函数综合题,主要考查了待定系数法求解析式、等边三角形的性质、圆的性质、三角函数等知识;熟练掌握待定系数法求解析式是解题的关键.【例3】(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE与⊙C的位置关系,并说明理由.【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt △BCM中,利用勾股定理求出半径以及点C的坐标即可解决问题.(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.【解答】解:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.∵与y轴相切于点D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四边形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴C(5,4),∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.(2)结论:AE是⊙C的切线.理由:连接AC,CE.∵CM⊥AB,∴AM=BM=3,∴A(2,0),B(8,0)设抛物线的解析式为y=a(x﹣2)(x﹣8),把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=1 4,∴抛物线的解析式为y=14(x﹣2)(x﹣8)=14x2−52x+4=14(x﹣5)2−94,∴抛物线的顶点E(5,−9 4),∵AE=√32+(94)2=154,CE=4+94=254,AC=5,∴EC2=AC2+AE2,∴∠CAE=90°,∴CA⊥AE,∴AE是⊙C的切线.【点评】本题属于二次函数综合题,考查了矩形的判定和性质,解直角三角形,圆的方程,切线的判定等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考压轴题.【例4】(2020•西藏)在平面直角坐标系中,二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,交y 轴于点C ,点P 是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC ,P A ,PC ,若S △P AC =152,求点P 的坐标; (3)如图乙,过A ,B ,P 三点作⊙M ,过点P 作PE ⊥x 轴,垂足为D ,交⊙M 于点E .点P 在运动过程中线段DE 的长是否变化,若有变化,求出DE 的取值范围;若不变,求DE 的长.【分析】(1)由二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,可得二次函数的解析式为y =12(x +2)(x ﹣4),由此即可解决问题.(2)根据S △P AC =S △AOC +S △OPC ﹣S △AOP ,构建方程即可解决问题.(3)结论:点P 在运动过程中线段DE 的长是定值,DE =2.根据AM =MP ,根据方程求出t ,再利用中点坐标公式,求出点E 的纵坐标即可解决问题.【解答】解:(1)∵二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,∴二次函数的解析式为y =12(x +2)(x ﹣4),即y =12x 2﹣x ﹣4.(2)如图甲中,连接OP .设P (m ,12m 2﹣m ﹣4).由题意,A (﹣2,0),C (0,﹣4),∵S △P AC =S △AOC +S △OPC ﹣S △AOP ,∴152=12×2×4+12×4×m −12×2×(−12m 2+m +4), 整理得,m 2+2m ﹣15=0,解得m =3或﹣5(舍弃),∴P (3,−52).(3)结论:点P 在运动过程中线段DE 的长是定值,DE =2.理由:如图乙中,连接AM ,PM ,EM ,设M (1,t ),P [m ,12(m +2)(m ﹣4)],E (m ,n ).由题意A (﹣2,0),AM =PM ,∴32+t 2=(m ﹣1)2+[12(m +2)(m ﹣4)﹣t ]2, 解得t =1+14(m +2)(m ﹣4),∵ME =PM ,PE ⊥AB ,∴t =n+12(m+2)(m−4)2,∴n=2t−12(m+2)(m﹣4)=2[1+14(m+2)(m﹣4)]−12(m+2)(m﹣4)=2,∴DE=2,另解:∵PD•DE=AD•DB,∴DE=AD⋅DBPD=(m+2)(4−m)4+m−m2=2,为定值.∴点P在运动过程中线段DE的长是定值,DE=2.【点评】本题属于二次函数综合题,考查了三角形的面积,三角形的外接圆,三角形的外心等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.【例5】(2020•宜宾)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.【分析】(1)设二次函数表达式为:y=ax2,将(2,1)代入上式,即可求解;(2)△PMN是等边三角形,则点P在y轴上且PM=4,故PF=2√3,即可求解;(3)在Rt△FQE中,EN=√(2−1)2+(1−14)2=54,EF=√(1−0)2+(1−14)2=54,即可求解.【解答】解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=1 4,故二次函数表达式为:y=14x 2;(2)将y=1代入y=14x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2√3;∵点F (0,1),∴点P 的坐标为(0,1+2√3)或(0,1﹣2√3);(3)假设二次函数的图象上存在一点E 满足条件,设点Q 是FN 的中点,则点Q (1,1),故点E 在FN 的中垂线上.∴点E 是FN 的中垂线与y =14x 2图象的交点,∴y =14×12=14,则点E (1,14), EN =√(2−1)2+(1−14)2=54,同理EF =√(1−0)2+(1−14)2=54,点E 到直线y =﹣1的距离为|14−(﹣1)|=54, 故存在点E ,使得以点E 为圆心半径为54的圆过点F ,N 且与直线y =﹣1相切. 【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本的性质、等边三角形的性质等,综合性强,难度适中.【例6】(2021•嘉兴二模)定义:平面直角坐标系xOy 中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P (2,2),以P 为圆心,为半径作圆.请判断⊙P 是不是二次函数y =x 2﹣4x +3的坐标圆,并说明理由;(2)已知二次函数y =x 2﹣4x +4图象的顶点为A ,坐标圆的圆心为P ,如图1,求△POA 周长的最小值;(3)已知二次函数y =ax 2﹣4x +4(0<a <1)图象交x 轴于点A ,B ,交y 轴于点C ,与坐标圆的第四个交点为D ,连结PC ,PD ,如图2.若∠CPD =120°,求a 的值.【分析】(1)先求出二次函数y=x2﹣4x+3图象与x轴、y轴的交点,再计算这三个交点是否在以P(2,2)为圆心,为半径的圆上,即可作出判断.(2)由题意可得,二次函数y=x2﹣4x+4图象的顶点A(2,0),与y轴的交点H(0,4),所以△POA周长=PO+P A+OA=PO+PH+2≥OH+2,即可得出最小值.(3)连接CD,P A,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,设PE=m,由∠CPD=120°,可得P A=PC=2m,CE=m,PF=4﹣m,因为二次函数y=ax2﹣4x+4图象的对称轴l 为,AB=,所以AF=BF=,,在Rt△P AF中,利用勾股定理建立方程,求得m的值,进而得出a的值.【解答】解:(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图象与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴P A=PB=PC=,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+P A+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD,P A,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,∵AB=,∴AF=BF=,∵∠CPD=120°,PC=PD,C(0,4),∴∠PCD=∠PDC=30°,设PE=m,则P A=PC=2m,CE=m,PF=4﹣m,∵二次函数y=ax2﹣4x+4图象的对称轴l为,∴,即,在Rt△P AF中,P A2=PF2+AF2,∴,即,化简,得,解得,∴.【题组一】1.(2020•雨花区校级一模)如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.【分析】(1)令y=0,求得抛物线与x轴的交点A、B的坐标,令x=0,用a表示C点的坐标,再由三角函数列出a的方程,便可求得a的值;(2)过M点作MH⊥AB于点H,连接MA、MC,用d表示出M的坐标,根据MA=MC,列出a、d的关系式,再通过关系式求得结果;(3)取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y =x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当P为直线y=x与⊙M的切点时,∠APB达到最大,利用圆圆周角性质和解直角三角形的知识求得结果便可.【解答】解:(1)连接BC,令y=0,得y=ax2﹣12ax+32a=0,解得,x=4或8,∴A(4,0),B(8,0),令x=0,得y=ax2﹣12ax+32a=32a,∴C(0,32a),又∠ABC=30°,∴tan∠ABC=OCOB=32a8=√33,解得,a=√3 12;(2)过M点作MH⊥AB于点H,连接MA、MC,如图2,∴AH=BH=12AB=2,∴OH=6,设M(6,d),∵MA=MC,∴4+d2=36+(d﹣32a)2,得2ad=32a2+1,∴d=16a+12a=(4√a√2a)2+4√2,∴当4√a=1√2a时,有d最小=4√2,即当a=√28时,有d最小=4√2;(3)∵P(t,t),∴点P在直线y=x上,如图3,取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当⊙M与直线y=x相切时,有∠APB=∠AKB>∠AP′B,∴∠APB最大,此时相切点为P,设M(6,d),而T(6,0),∴S(6,6),∴∠PSM=90°﹣∠SOT=45°,又MP=MB=√4+d2,∴MS=√2MP=√2d2+8,∵MS+MT=ST=6,∴√2d2+8+d=6,解得,d=2(负根舍去),经检验,d=2是原方程的解,也符合题意,∴M(6,2),∴MB=2√2,∵∠AMB=2∠APB,MT⊥AB,MA=MB,∴∠AMT=∠BMT=12∠AMB=∠APB,∴sin∠APB=sin∠BMT=BTMB=√22.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,解直角三角形,圆周角定理和圆与直线切线性质,难度较大,第(3)题的关键是构造辅助圆确定当∠APB 达到最大时的P点位置.2.(2020•汇川区三模)如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.【分析】(1)将三个已知点坐标代入抛物线的解析式中列出方程组求得a 、b 、c ,便可得抛物线的解析式;(2)1°用待定系数法求出直线BC 的解析式,再设M 的横坐标为t ,用t 表示MN 的距离,再根据二次函数的性质求得MN 的最大值;2°分三种情况:当∠PMN =90°时;当∠PNM =90°时;当∠MPN =90°时.分别求出符合条件的P 点坐标便可.【解答】解:(1)把A 、B 、C 三点的坐标代入抛物线y =ax 2+bx +c (a ≠0)中,得 {a +b +c =09a +3b +c =0c =3, 解得,{a =1b =−4c =3,∴抛物线的解析式为:y =x 2﹣4x +3;(2)1°设直线BC 的解析式为y =mx +n (m ≠0),则 {3m +n =0n =3, 解得,{m =−1n =3,∴直线BC 的解析式为:y =﹣x +3,设M (t ,﹣t +3)(0<t <3),则N (t ,t 2﹣4t +3), ∴MN =﹣t 2+3t =−(t −32)2+94,∴当t =32时,MN 的值最大,其最大值为94;2°∵△PMN 的外接圆圆心Q 在△PMN 的边上, ∴△PMN 为直角三角形,由1°知,当MN 取最大值时,M (32,32),N (32,−34),①当∠PMN =90°时,PM ∥x 轴,则P 点与M 点的纵坐标相等, ∴P 点的纵坐标为32,当y =32时,y =x 2﹣4x +3=32, 解得,x =4+√102,或x =4−√102<32(舍去), ∴P (4+√102,32);②当∠PNM =90°时,PN ∥x 轴,则P 点与N 点的纵坐标相等, ∴P 点的纵坐标为−34,当y =−34时,y =x 2﹣4x +3=−34, 解得,x =52,或x =32(舍去), ∴P (52,−34);③当∠MPN =90°时,则MN 为△PMN 的外接圆的直径, ∴△PMN 的外接圆的圆心Q 为MN 的中点, ∴Q (32,38),半径为12MN =98,过Q 作QK ∥x 轴,与在MN 右边的抛物线图象交于点K ,如图②,令y =38,得y =x 2﹣4x +3=38, 解得,x =8−√224<32(舍),或x =8+√224, ∴K (8+√224,38),∴QK =2+√224>98,即K 点在以MN 为直径的⊙Q 外, 设抛物线y =x 2﹣4x +3的顶点为点L ,则l (2,﹣1), 连接LK ,如图②,则L 到QK 的距离为38+1=118,LK =(8+√224−2)2+(38+1)2=√2098, 设Q 点到LK 的距离为h ,则12QK ⋅118=12LK ⋅ℎ,∴ℎ=118QKLK =118×2+√224√2098=22√209+11√209×224×209≈1.27>98, ∴直线LK 下方的抛物线与⊙Q 没有公共点,∵抛物线中NL 部分(除N 点外)在过N 点与x 轴平行的直线下方,∴抛物线中NL 部分(除N 点外)与⊙Q 没有公共点, ∵抛物线K 点右边部分,在过K 点与y 轴平行的直线的右边,∴抛物线K 点右边部分与⊙Q 没有公共点,综上,⊙Q 与MN 右边的抛物线没有交点, ∴在线段MN 右侧的抛物线上不存在点P ,使△PMN 的外接圆圆心Q 在MN 边上; 综上,点P 的坐标为(4+√102,32)或(52,−34). 【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的最值的应用,直角三角形的存在性质的探究,圆的性质,第(2)题的1°题关键是把MN 表示成t 二次函数,用二次函数求最值的方法解决问题;第(2)2°小题关键是分情况讨论.难度较大.3.(2020•望城区模拟)如图,在平面直角坐标系中,抛物线y =12x 2﹣bx +c 交x 轴于点A ,B ,点B 的坐标为(4,0),与y 轴于交于点C (0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D ,若点D 的横坐标为5,求点D 的坐标及∠ADB 的度数; (3)在(2)的条件下,设抛物线对称轴l 交x 轴于点H ,△ABD 的外接圆圆心为M (如图1),①求点M 的坐标及⊙M 的半径;②过点B 作⊙M 的切线交于点P (如图2),设Q 为⊙M 上一动点,则在点运动过程中QH QP的值是否变化?若不变,求出其值;若变化,请说明理由.【分析】(1)c =﹣2,将点B 的坐标代入抛物线表达式得:0=12×16−4b ﹣2,解得:b =−32,即可求解; (2)S △ABD =5×32=3√5×BN 2,则BN =√5,sin ∠BDH =BH BD=√22,即可求解; (3)①∠ADB =45°,则∠AMB =2∠ADB =90°,MA =MB ,MH ⊥AB ,AH =BH =HM =52,点M 的坐标为(32,52)⊙M 的半径为√5; ②PH =HB =5,则MH MQ=525√22=√22,MQ MP=5√2252=√22,故△HMQ ∽△QMP ,则QH QP=MH MQ=√22,即可求解. 【解答】解:(1)c =﹣2,将点B 的坐标代入抛物线表达式得:0=12×16−4b ﹣2,解得:b =−32,∴抛物线的解析式为y =12x 2−32x ﹣2;(2)当x =5时,y =12x 2−32x ﹣2=3,故D 的坐标为(5,3), 令y =0,则x =4(舍去)或﹣1,故点A (﹣1,0), 如图①,连结BD ,作BN ⊥AD 于N ,∵A (﹣1,0),B (4,0),C (0,﹣2), ∴AD =3√5,BD =√10, ∵S △ABD =5×32=3√5×BN2, ∴BN =√5,∴sin ∠BDH =BHBD =√22, ∴∠BDH =45°;(3)①如图②,连接MA ,MB ,∵∠ADB =45°,∴∠AMB =2∠ADB =90°, ∵MA =MB ,MH ⊥AB , ∴AH =BH =HM =52,∴点M 的坐标为(32,52)⊙M 的半径为5√22; ②如图③,连接MQ ,MB ,∵过点B 作⊙M 的切线交1于点P , ∴∠MBP =90°, ∵∠MBO =45°, ∴∠PBH =45°, ∴PH =HB =5, ∵MH MQ=525√22=√22,MQ MP=5√2252=√22, ∵∠HMQ =∠QMP , ∴△HMQ ∽△QMP , ∴QH QP=MH MQ=√22, ∴在点Q 运动过程中QH QP的值不变,其值为√22.【点评】本题考查用待定系数法求二次函数解析式,锐角三角函数的定义,相似三角形的判定与性质.圆的基本性质.解决(3)问的关键是构造相似三角形实现比的转换.4.(2020•天桥区二模)如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.【分析】(1)用抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式,即可求解;(2)分点P在x轴下方、点P在x轴上方两种情况,分别求解即可;(3)证明BN是△OEM的中位线,故BN=12EM=12,而BD=√(2−1)2+(0+2)2=√5,而BD﹣BN≤ND≤BD+BN,即可求解.【解答】解:(1)由抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式并解得:a=1 2,故抛物线的表达式为:y=12(x﹣2)2﹣2=12x2﹣2x①;(2)点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),当点P在x轴下方时,如图1,∵tan∠MBC=2,故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,故直线BP的表达式为:y=﹣2x+2②,联立①②并解得:x=±2(舍去﹣2),故m=2;当点P在x轴上方时,同理可得:m=4±2√3(舍去4﹣2√3);故m=2或4+2√3;(3)存在,理由:连接BN、BD、EM,则BN是△OEM的中位线,故BN=12EM=12,而BD=√(2−1)2+(0+2)2=√5,在△BND中,BD﹣BN≤ND≤BD+BN,即√5−0.5≤ND≤√5+0.5,故线段DN的长度最小值和最大值分别为√5−0.5和√5+0.5.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、中位线的性质等,综合性强,难度适中.【题组二】5.(2021•乐山模拟)如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值【分析】(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,列方程组求a、b的值;(2)作AE⊥AB交y轴于点E,连结CE,作BF⊥x轴于点F,证明∠ABC=90°及△BCF≌△EAO,从而证明四边形ABCE是矩形且求出点E的坐标;(3)在(2)的基础上,作FL⊥BC于点L,证明△FCL∽△BCF及△DCL∽△BCD,得到LD=DB,再根据DA+LD≥AL,求出AL的长即为所求的最小值.【解答】解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,得,解得,∴抛物线的解析式为y=x2+x+2.(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).当y=0时,由x2+x+2=0,得x1=1,x2=4,∴C(4,0),∴CF=AO=1,AF=3﹣(﹣1)=4;又∵BF=2,∴,∵∠BFC=∠AFB=90°,∴△BFC∽△AFB,∴∠CBF=∠BAF,∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,∴BC∥AE,∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,∴△BCF≌△EAO(ASA),∴BC=EA,∴四边形ABCE是矩形;∵OE=FB=2,∴E(0,﹣2).(3)如图2,作FL⊥BC于点L,连结AL、CD.由(2)得∠BFC=90°,BF=2,CF=1,∴CF=CD,CB==.∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),∴△FCL∽△BCF,∴=,∴=,∵∠DCL=∠BCD(公共角),∴△DCL∽△BCD,∴=,∴LD=DB;∵DA+LD≥AL,∴当DA+LD=AL,即点D落在线段AL上时,DA+DB=DA+LD=AL最小.∵CL=CF=,∴BL==,∴BL2=()2=,又∵AB2=22+42=20,∴AL===,DA+DB的最小值为.6.(2021•河北区二模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+3的对称轴是直线x=2,与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C.(Ⅰ)求抛物线的解析式及顶点坐标;(Ⅱ)M为第一象限内抛物线上的一个点,过点M作MN⊥x轴于点N,交BC于点D,连接CM,当线段CM=CD时,求点M的坐标;(Ⅲ)以原点O为圆心,AO长为半径作⊙O,点P为⊙O上的一点,连接BP,CP,求2PC+3PB的最小值.【分析】(Ⅰ)由x=2=﹣=﹣,解得b=1,即可求解;(Ⅱ)当线段CM=CD时,则点C在MD的中垂线上,即y C=(y M+y D),即可求解;(Ⅲ)在OC上取点G,使=,即,则△POG∽△COP,故2PC+3PB =2(PB+PC)=2(BP+PG),故当B、P、G三点共线时,2PC+3PB最小,最小值为3BG,进而求解.【解答】解:(Ⅰ)∵对称轴是直线x=2,故x=2=﹣=﹣,解得b=1,故抛物线的表达式为y=﹣x2+x+3=﹣(x﹣2)2+4,∴抛物线的顶点为(2,4);(Ⅱ)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=6或﹣2,令x=0,则y=3,故点A、B、C的坐标分别为(﹣2,0)、(6,0)、(0,3),设直线BC的表达式为y=mx+n,则,解得,故直线BC的表达式为y=﹣x+3,设点M的坐标为(x,﹣x2+x+3),则点D的坐标为(x,﹣x+3),当线段CM=CD时,则点C在MD的中垂线上,即y C=(y M+y D),即3=(﹣x2+x+3﹣x+3),解得x=0(舍去)或2,故点M的坐标为(2,4);(Ⅲ)在OC上取点G,使=,即,则OG=,则点G(0,),∵,∠GOP=∠COP,∴△POG∽△COP,∴,故PG=PC,则2PC+3PB=3(PB+PC)=3(BP+PG),故当B、P、G三点共线时,2PC+3PB最小,最小值为3BG,则2PC+3PB的最小值3BG=3=2.7.(2021•长沙模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点.(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;(2)如图2,延长线段OC至N,使得ON=,若∠OBN=∠ONA,且,求抛物线的解析式;(3)如图3,抛物线y=ax2+bx+c的对称轴为直线,与y轴交于(0,5),经过点C 的直线l:y=kx+m(k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D =∠CP2D=90°,求k的取值范围.【分析】(1)由点C的路径长=,即可求解;(2)证明△ONA∽△OBN,则OA•OB=ON2=3,即,得到c=3a,而a+b+c=1,tan∠ABM=,得到(1﹣4a)2﹣4a•3a=13,即可求解;(3)由点D、C的坐标得到k==t﹣4,若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,得到(﹣1)2+(﹣1)2=()2,求出t=3+,进而求解.【解答】解:(1)点C的路径长==;(2)∵∠ONA=∠OBN,∠AON=∠NOB,∴△ONA∽△OBN,∴,即OA•OB=ON2=3,即,故c=3a,∵a+b+c=1,在△ABM中,tan∠ABM===,∴b2﹣4ac=13,即(1﹣4a)2﹣4a•3a=13,解得a=﹣1(舍去)或3,∴抛物线的表达式为y=3x2﹣11x+9;(3)由题意得:,解得,故抛物线的表达式为:y=x2﹣5x+5;设点D(t,n),n=t2﹣5t+5,而点C(1,1),将点D、C的坐标代入函数表达式得,则k==t﹣4,若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,则点H(,),则HP=HC,即(﹣1)2+(﹣1)2=()2,化简得:3t2﹣18t+19=0,解得:t=3+(不合题意的值已舍去),k=t﹣4=.若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,则以DC为直径的圆H和x轴相交,∴0<k<.8.(2020•东海县二模)如图,△AOB的三个顶点A、O、B分别落在抛物线C1:y=x2+ x上,点A的坐标为(﹣4,m),点B的坐标为(n,﹣2).(点A在点B的左侧)(1)则m=﹣4,n=﹣1.(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线C2:y=ax2+bx+4经过A'、B'两点,延长OB'交抛物线C2于点C,连接A'C.设△OA'C的外接圆为⊙M.①求圆心M的坐标;②试直接写出△OA'C的外接圆⊙M与抛物线C2的交点坐标(A'、C除外).【分析】(1)把x=﹣4代入抛物线C1解析式求得y即得到点A坐标;把y=﹣2代入抛物线C1解析式,解方程并判断大于﹣4的解为点B横坐标.(2)①根据旋转90°的性质特点可求点A'、B'坐标(过点作x轴垂线,构造全等得到对应边相等)及OA'的长,用待定系数法求抛物线F2的解析式,求出直线OC的解析式,构建方程组确定点C的坐标,求出线段OA′,线段A′C的垂直平分线的解析式,构建方程组解决问题即可.②设⊙M与抛物线C2的交点为P(m,m2﹣3m+4).根据PM=OM,构建方程求解即可.【解答】解:(1)当x=﹣4时,y=×(﹣4)2+×(﹣4)=﹣4,∴点A坐标为(﹣4,﹣4),当y=﹣2时,x2+x=﹣2,解得:x1=﹣1,x2=﹣6,∵点A在点B的左侧,∴点B坐标为(﹣1,﹣2),∴m=﹣4,n=﹣1.故答案为﹣4,﹣1.(2)①如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G.∴∠BEO=∠OGB'=90°,OE=1,BE=2,∵将△AOB绕点O逆时针旋转90°得到△A'OB′,∴OB=OB',∠BOB'=90°,∴∠BOE+∠B'OG=∠BOE+∠OBE=90°,∴∠B'OG=∠OBE,在△B'OG与△OBE中,,∴△B'OG≌△OBE(AAS),∴OG=BE=2,B'G=OE=1,∵点B'在第四象限,∴B'(2,﹣1),同理可求得:A'(4,﹣4),∴OA=OA'==4,∵抛物线F2:y=ax2+bx+4经过点A'、B',∴,解得:,∴抛物线F2解析式为:y=x2﹣3x+4,∵直线OB′的解析式为y=﹣x,由,解得或,∴点C(8,﹣4),∵A′(4,﹣4),∴A′C∥x轴,∵线段OA′的垂直平分线的解析式为y=x﹣4,线段A′C的垂直平分线为x=6,∴直线y=x﹣4与x=6的交点为(6,2),∴△OA′C的外接圆的圆心M的坐标为(6,2).②设⊙M与抛物线C2的交点为P(m,m2﹣3m+4).则有(m﹣6)2+(m2﹣3m+2)2=62+22,解得m=0或12或4或8,∵A'、C除外,∴P (0,4),或(12,4).9.(2019•鄂尔多斯)如图,抛物线y =ax 2+bx ﹣2(a ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点M ,使得△BCM 是以CM 为直角边的直角三角形?若存在,直接写出M 点坐标;若不存在,说明理由.【分析】(1)直接利用待定系数法即可得出结论;(2)先判断出过点P 平行于直线EF 的直线与抛物线只有一个交点时,PH 最大,再求出此直线l 的解析式,即可得出结论;(3)分两种情况:①当∠BMC =90°时,先求出BM 的长,进而求出BD ,DM 1的长,再构造出相似三角形即可得出结论;②当∠BCM =90°时,利用锐角三角函数求出点M 3的坐标,最后用对称的性质得出点M 4的坐标,即可得出结论.【解答】解:(1)∵抛物线y =ax 2+bx ﹣2(a ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,∴{9a −3b −2=0a +b −2=0,∴{a =23b =43, ∴抛物线的解析式为y =23x 2+43x ﹣2;(2)如图1,过点P 作直线l ,使l ∥EF ,过点O 作OP '⊥l , 当直线l 与抛物线只有一个交点时,PH 最大,等于OP ', ∵直线EF 的解析式为y =﹣x ,设直线l 的解析式为y =﹣x +m ①,∵抛物线的解析式为y =23x 2+43x ﹣2②,联立①②化简得,23x 2+73x ﹣2﹣m =0, ∴△=499−4×23×(﹣2﹣m )=0, ∴m =−9724, ∴直线l 的解析式为y =﹣x −9724,令y =0,则x =−9724, ∴M (−9724,0),∴OM =9724,在Rt △OP 'M 中,OP '=OM √2=97√248, ∴PH 最大=97√248.(3)①当∠CMB =90°时,如图2,∴BM 是⊙O 的切线,∵⊙C 半径为1,B (1,0),∴BM 2∥y 轴,∴∠CBM 2=∠BCO ,M 2(1,﹣2),∴BM 2=2,∵BM 1与BM 2是⊙C 的切线,∴BM 1=BM 2=2,∠CBM 1=∠CBM 2,∴∠CBM 1=∠BCO ,∴BD =CD ,在Rt △BOD 中,OD 2+OB 2=BD 2,∴OD2+1=(2﹣OD)2,∴OD=3 4,∴BD=5 4,∴DM1=3 4过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴OBM1Q =ODDQ=BDDM1,∴1M1Q =34DQ=5434,∴M1Q=35,DQ=920,∴OQ=34+920=65,∴M1(−35,−65),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC=OCOB=2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=√5 5,∴M3H=2m=2√55,OH=OC﹣CH=2−√55,∴M3(−2√55,√55−2),而点M4与M3关于点C对称,∴M 4(2√55,−√55−2), 即:满足条件的点M 的坐标为(−35,−65)或(1,﹣2)或(−2√55,√55−2)或(2√55,−√55−2).【点评】此题是二次函数综合题,主要考查了待定系数法,平行线的性质,勾股定理,切线的性质,相似三角形的判定和性质,构造出相似三角形是解本题的关键. 10.(2019•日照)如图1,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A ,C 两点,抛物线y =x 2+bx +c 经过A ,C 两点,与x 轴的另一交点为B . (1)求抛物线解析式及B 点坐标;(2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC ,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若P 点是半径为2的⊙B 上一动点,连接PC 、P A ,当点P 运动到某一位置时,PC +12P A 的值最小,请求出这个最小值,并说明理由.【分析】(1)由直线y =﹣5x +5求点A 、C 坐标,用待定系数法求抛物线解析式,进而求得点B 坐标.(2)从x 轴把四边形AMBC 分成△ABC 与△ABM ;由点A 、B 、C 坐标求△ABC 面积;设点M 横坐标为m ,过点M 作x 轴的垂线段MH ,则能用m 表示MH 的长,进而求△ABM 的面积,得到△ABM 面积与m 的二次函数关系式,且对应的a 值小于0,配方即求得m 为何值时取得最大值,进而求点M 坐标和四边形AMBC 的面积最大值. (3)作点D 坐标为(4,0),可得BD =1,进而有BD BP=BP AB=12,再加上公共角∠PBD=∠ABP ,根据两边对应成比例且夹角相等可证△PBD ∽△ABP ,得PD PA等于相似比12,进而得PD =12AP ,所以当C 、P 、D 在同一直线上时,PC +12P A =PC +PD =CD 最小.用两点间距离公式即求得CD 的长.【解答】解:(1)直线y =﹣5x +5,x =0时,y =5 ∴C (0,5)y =﹣5x +5=0时,解得:x =1 ∴A (1,0)∵抛物线y =x 2+bx +c 经过A ,C 两点 ∴{1+b +c =00+0+c =5 解得:{b =−6c =5 ∴抛物线解析式为y =x 2﹣6x +5。
圆、概率和二次函数的基本知识
圆、概率、二次函数和相似三角形的基本知识一、圆的基本知识:1)与圆有关的概念:1. 圆上各点到圆心的距离都等于半径.2. 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心.3.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧;推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.圆心角、弧和弦之间的关系:在同圆或等圆中,如果两个圆心角相等,那么它们所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两个弧相等,那么它们所对的圆心角相等,所对的弦也相等。
在同圆或等圆中,如果两个弦相等,那么它们所对的圆心角相等,所对的弧也相等。
5.圆周角定理和推论在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半.推论1:直径或半圆所对的圆周角是直角,90°的圆周角所对的弦是直径.推论2:在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧相等2)与圆有关的位置关系(1)点与圆的位置关系1. 点与圆的位置关系共有三种:①点在圆上,②点在圆内,③点在圆外;2.设⊙O的半径为r,点P到圆心O的距离为d,①点P在《=》 d r,②点P在《=》 d r,③点P在《=》d r.(注:从左到右是性质,从右到左是判定)(2)直线与圆的位置关系1.直线与圆的位置关系共有三种:①相离,②相切,③相交.2.设⊙O的半径为r,圆心O到直线l的距离为d,①直线l与⊙O 相《=》d r,②直线l与⊙O 相《=》d r,③直线l与⊙O 相《=》 d r. (注:从左到右是性质,从右到左是判定)(3)圆与圆的位置关系1.圆与圆的位置关系共有五种:①外离,②外切,③相交,④内切,⑤内含;2.设两圆的圆心距d和两圆的半径分别是R、r(R﹥r)①两圆《=》d>R+r,②两圆《=》d=R+r,③两圆《=》R-r<d<R+r,④两圆《=》d=R-r,⑤两圆《=》d<R-r. (注:从左到右是性质,从右到左是判定)3)切线的性质圆的切线垂直于过切点的半径;(直线l切⊙O于点A,通常作的辅助线是连接,得)简称:连半径得垂直切线的判定定理经过半径的的外端,并且垂直于这条半径的直线是圆的切线.(直线l 经过⊙O 上的一点A ,求证直线l 是⊙O 的切线,通常作的辅助线是连接 证明 )简称:连半径证垂直切线长定理从圆外一点可以向圆引两条切线, 它们的切线长相等,并且这点和圆心的连线平分两条切线的夹角.4)三角形的外接圆和内切圆1.三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点.2.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三个角平分线 的交点,叫做三角形的内心 .(如果三角形的周长为l ,面积为S ,它的内切圆的半径为r ,则S= 。
二次函数背景下的与圆有关的问题(解析版)
备战2020年中考数学压轴题之二次函数专题10 二次函数背景下的与圆有关的问题【方法综述】圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。
而二次函数与圆的结合则常常是高难度的压轴题。
以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内容。
解答要点是结合相关知识,对于已知条件进行数形结合。
【典例示范】类型一 圆的基本性质应用例1:如图,抛物线y =ax 2﹣2ax +m 的图象经过点P (4,5),与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,且S △P AB =10.(1)求抛物线的解析式;(2)在抛物线上是否存在点Q 使得△P AQ 和△PBQ 的面积相等?若存在,求出Q 点的坐标,若不存在,请说明理由;(3)过A 、P 、C 三点的圆与抛物线交于另一点D ,求出D 点坐标及四边形P ACD 的周长.【答案】(1)y =x 2﹣2x ﹣3;(2)点Q 的坐标为:(﹣2,5)或(﹣13,﹣209);(3). 【思路引导】(1)因为抛物线y =ax 2﹣2ax +m ,函数的对称轴为:x =1,S △P AB =10=12×AB ×y P =12AB ×5,解得AB=4,即可求解;(2)分A 、B 在点Q (Q′)的同侧;点A 、B 在点Q 的两侧两种情况,分别求解即可;(3)过点P 作PO′⊥x 轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A 、P 、C 三点的圆,即可求解.【详解】解:(1)y=ax2﹣2ax+m,函数的对称轴为:x=1,S△P AB=10=12×AB×y P=12AB×5,解得:AB=4,故点A、B的坐标分别为:(﹣1,0)、(3,0),抛物线的表达式为:y=a(x+1)(x﹣3),将点P的坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)①当A、B在点Q(Q′)的同侧时,如图1,△P AQ′和△PBQ′的面积相等,则点P、Q′关于对称轴对称,故点Q′(﹣2,5);②当A、B在点Q的两侧时,如图1,设PQ交x轴于点E,分别过点A、B作PQ的垂线交于点M、N,△P AQ和△PBQ的面积相等,则AM=BN,而∠BEN=∠AEM,∠AME=∠BNE=90°,∴△AME≌△BNE(AAS),∴AE=BE,即点E是AB的中点,则点E(1,0),将点P、E的坐标代入一次函数表达式并解得:直线PQ的表达式为:y=53x﹣53…②,联立①②并解得:x=﹣13或4(舍去4),故点Q(﹣13,﹣209),综上,点Q的坐标为:(﹣2,5)或(﹣13,﹣209);(3)过点P作PO′⊥x轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A、P、C三点的圆,设点D(m,m2﹣2m﹣3),点O′(4,0),则DO′=5,即(m﹣4)2+(m2﹣2m﹣3)2=25,化简得:m(m+1)(m﹣1)(m﹣4)=0,解得:m=0或﹣1或1或4(舍去0,﹣1,4),故:m=1,故点D(1,﹣4);四边形P ACD的周长=P A+AC+CD+PD=【方法总结】本题考查了二次函数与三角形面积、三点共圆、四边形的周长、长度公式,综合性较强,灵活运用二次函数的知识是解题的关键.针对训练1.如图,一次函数y=2x与反比例函数y=kx(k>0)的图象交于A、B两点,点P在以C(-2,0)为圆心,1为半径的圆上,Q是AP的中点(1)若k的值;(2)若OQ长的最大值为32,求k的值;(3)若过点C的二次函数y=ax2+bx+c同时满足以下两个条件:①a+b+c=0;②当a≤x≤a+1时,函数y的最大值为4a,求二次项系数a的值.【答案】(1)2;(2)3225;(3)a的值为-3或2或-4或1.【解析】(1)设A(m,n),∵∴m2+n2=5,∵一次函数y=2x的图象经过A点,∴n=2m,∴m2+(2m)2=5,解得m=±1,∵A在第一象限,∴m=1,∴A(1,2),∵点A在反比例函数y=kx(k>0)的图象上,∴k=1×2=2;(2)如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=12 BP,∵OQ长的最大值为32,∴BP长的最大值为32×2=3,如图2,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t-(-2)=t+2,BD=-2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(-2t)2,t=0(舍)或-45,∴B(-45,-85),∵点B在反比例函数y=kx(k>0)的图象上,∴k=-45×(-85)=3225;(3)∵抛物线经过点C(-2,0),∴4a-2b+c=0,又∵a+b+c=0,∴b=a,c=-2a,∴y=ax2+ax-2a=a(x+12)2-94a,∵-12<a≤x≤a+1或a≤x≤a+1<-12,当x=a时,取得最大值4a,则a•a2+a•a-2a=4a,解得a=-3或2,当x=a+1时,取得最大值4a,则a(a+1)2+a(a+1)-2a=4a,解得a=-4或1,综上所述所求a的值为-3或2或-4或1.2.对于平面直角坐标系xOy中的点P,Q和图形G,给出如下定义:点P,Q都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点P,Q是图形G的一对“关联点”.例如,点P(1,2)和点Q(2,1)是直线y=﹣x+3的一对关联点.(1)请写出反比例函数y=6的图象上的一对关联点的坐标:;x(2)抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).点A,B是抛物线y=x2+bx+c 的一对关联点,直线AB与x轴交于点D(1,0).求A,B两点坐标.(3)⊙T的半径为3,点M,N是⊙T的一对关联点,且点M的坐标为(1,m)(m>1),请直接写出m的取值范围.【答案】(1)(2,3),(3,2).(2)A,B两点坐标为(﹣1,2)和(2,﹣1).(3)1<m≤1+3√2.【解析】解:(1)∵2×3=3×2=6,∴点(2,3),(3,2)是反比例函数y=6的图象上的一对关联点.x故答案为:(2,3),(3,2).(2)∵抛物线y=x2+bx+c的对称轴为直线x=1,=1,∴﹣b2解得:b=﹣2.∵抛物线y=x2+bx+c与y轴交于点C(0,﹣1),∴c=﹣1,∴抛物线的解析式为y=x2﹣2x﹣1.由关联点定义,可知:点A,B关于直线y=x对称.又∵直线AB与x轴交于点D(1,0),∴直线AB 的解析式为y =﹣x +1.联立直线AB 及抛物线解析式成方程组,得:{y =﹣x +1y =x 2﹣2x ﹣1, 解得:{x 1=−1y 1=2 ,{x 2=−1y 2=2, ∴A ,B 两点坐标为(﹣1,2)和(2,﹣1).(3)由关联点定义,可知:点M ,N 关于直线y =x 对称,∴⊙T 的圆心在直线y =x 上.∵⊙T 的半径为3,∴M 1M 2=√22×2×3=3√2,∴m 的取值范围为1<m≤1+3√2. .3.已知:直线y=-x -4分别交x 、y 轴于A 、C 两点,点B 为线段AC 的中点,抛物线y=ax 2+bx 经过A 、B 两点,(1)求该抛物线的函数关系式;(2)以点B 关于x 轴的对称点D 为圆心,以OD 为半径作⊙D ,连结AD 、CD ,问在抛物线上是否存在点P ,使S △ACP =2S △ACD ?若存在,请求出所有满足条件的点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若E 为⊙D 上一动点(不与A 、O 重合),连结AE 、OE ,问在x 轴上是否存在点Q ,使∠ACQ :∠AEO=2:3?若存在,请求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+2x;(2)P坐标为(-3)或(-3+,7);(3)Q坐标为8,0)、(--8,0)、(4,0).【解析】解:(1)∵直线y=-x-4中,y=0时,x=-4;x=0时,y=-4,∴A(-4,0),C(0,-4),∵点B为AC中点,∴B(-2,-2),∵抛物线y=ax2+bx经过A、B两点,∴1640 422a ba b-=⎧⎨-=-⎩,解得:122ab⎧=⎪⎨⎪=⎩,∴抛物线的函数关系式为y=12x2+2x.(2)在抛物线上存在点P使S△ACP=2S△ACD.如图1,连接AD并延长交y轴于点F,∵y=12x2+2x=12(x-2)2-2,∴点B为抛物线的顶点,∵点D为点B关于x轴的对称点,∴D(-2,2)在抛物线的对称轴上,∴DA=DO,∠DAO=∠DOA=45°,∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∴∠DAC=∠DAO+∠OAC=90°,∴S △ACD =12AC•AD , ∵∠AOF=90°,∴AF 为⊙D 直径,即点F 在⊙D 上,∴AF=2AD ,OF=OA=4即F(0,4),∵S △ACP =2S △ACD =2•12AC•AD=12AC•2AD=12AC•AF , ∴点P 在过点F 且平行于直线y=-x -4的直线上,∴直线PF 解析式为y=-x+4, ∵24122y x y x x =-+⎧⎪⎨=+⎪⎩,解得:1137x y ⎧=--⎪⎨=+⎪⎩;2237x y ⎧=-+⎪⎨=-⎪⎩∴点P 坐标为(-3)或(-7;(3)在x 轴上存在点Q 使∠ACQ :∠AEO=2:3. ∵∠OAD=∠ODA=45°,∴∠ADO=90°,∵点E 在⊙D 上且不与A 、O 重合,∠ACQ :∠AEO=2:3. ①如图2,当点E 在优弧AO 上时,∠AEO=12∠ADO=45°, ∴∠ACQ=23∠AEO=30°,过点Q作QG垂直直线AC于点G,设QG=t,∴Rt△CQG中,CQ=2QG=2t,.∴∠GAQ=∠OAC=45°,∴Rt△AGQ中,AG=QG=t,t.i)若点Q在线段AO上时,如图2:则,解得:-,∴(4=,∴x Q=-8;ii)若点Q在线段OA延长上时,如图3:则AC=CG-t-t=4,解得:t=,∴(4=,∴x Q=-4--8,②当点E在劣弧AO上时,∠AEO=12(360°-∠ADO)=135°,∴∠ACQ=23∠AEO=90°.∵∠CAO=45°,△ACO是等腰直角三角形,∴Q点与A点对称,A (-4,0)∴x Q=4.综上所述:满足条件的点Q有三个,坐标分别为8,0)、(--8,0)、(4,0)4.已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=−m的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P2的值.的半径记为r,求lr【答案】(1)证明见解析;(2)①定点F的坐标为(0,1);②10+6√5.5【解析】(1)令y=0,则x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴△>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,则x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,则y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB=OBOC =m+22(m+2)=12,在Rt△AOF中,tan∠OAF=OFOA =OF2=12,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1).∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED =∠OCB ,∴tan ∠BED =12, 设BD =n ,在Rt △BDE 中,tan ∠BED =BD BE =n BE =12, ∴BE =2n ,根据勾股定理得:DE =√BD 2+BE 2=√5n ,∴l =BD+BE+DE =(3+√5)n ,r =12DE =√52n , ∴l r =√5)√52n =10+6√55. 5..如图①,已知抛物线2139424y x x =-+的顶点为点P ,与y 轴交于点B .点A 坐标为(3,2).点M 为抛物线上一动点,以点M 为圆心,MA 为半径的圆交x 轴于C ,D 两点(点C 在点D 的左侧).(1)如图②,当点M 与点B 重合时,求CD 的长;(2)当点M 在抛物线上运动时,CD 的长度是否发生变化?若变化,求出CD 关于点M 横坐标x 的函数关系式;若不发生变化,求出CD 的长;(3)当△ACP 与△ADP 相似时,求出点C 的坐标.【答案】(1) CD=4;(2)不发生变化,CD=4;(3)点C 坐标为:(1,0),()1-,()1+ 【解析】(1)如图:连结BC ,BD ,由题意得:904B ⎛⎫ ⎪⎝⎭,,(3,2),∴AB =∴2OC ==,∴CD=2OC=4;(2)如图:作MH ⊥x 轴,连结MA ,MC ,设()M x y ,,则半径AM =∴CH ====2=, ∵MH ⊥CD ,∴CD=2CH=4,(3)①当△APC ∽△APD ,即全等时,∴PC=PD ,P 与M 重合,∵P (3,0),CD=4,∴C (1,0)②如图,点M 在点P 的左侧,△APC ∽△DPA ,2PA PD PC =⨯,设PC=x ,x (x -4)=4,解得2x =±,∴()1C -, ③如图,点M 在点P 的右侧△APC ∽△DPA ,2PA PD PC =⨯,设PC=x ,x (x+4)=4,解得2x =-±,∴()C ,综上所述,点C 坐标为:C (1,0);()1C -;()C ; 6.已知抛物线 C 1:y =ax 2 过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC 的三个顶点都在抛物线C 1 上,且边 AC 所在的直线解析式为y =x +b ,若 AC 边上的中线 BD 平行于 y 轴,求AC 2BD 的值;(3)如图,点 P 的坐标为(0,2),点 Q 为抛物线上C 1 上一动点,以 PQ 为直径作⊙M ,直线 y =t 与⊙M 相交于 H 、K 两点是否存在实数 t ,使得 HK 的长度为定值?若存在,求出 HK 的长度;若不存在,请说明理由.【答案】(1)y=12x 2 ;(2)16;(3)见解析.【解析】(1)把点(2,2)坐标代入y =ax2,解得:a =12,∴抛物线的解析式为y =x2;(2)把y =x+b 和y =12x2得:x2﹣2x ﹣2b =0,设A 、C 两点的坐标为(x1,y1)、(x2,y2),则:x1+x2=2,x1•x2=﹣2b ,点D 坐标为(x 1+x 22,y 1+y 22),即D (1,﹣b ),B 坐标为(1,12), AC2=[√2(x2﹣x1)]2=16b+8,BD =12+b , ∴AC 2BD =16;(3)设点Q 坐标为(a ,12a2),点P 的坐标为(0,2),由 P 、Q 坐标得点M 的坐标为(a 2,14a2+1), 设圆的半径为 r ,由P (0,2)、M 两点坐标可得r2=a 24+(14a2﹣1)2=116a4﹣14a2+1,设点M 到直线y =t 的距离为d ,则d2=(a2+1﹣t )=116a4+12a2+1+t2﹣2t ﹣12a2t ,则 HK =2√r 2−d 2=2√(12t −34)a 2+2t −t 2,当12t −34=0 时,HK 为常数,t =32, HK =√3.7.(浙江省湖州市南浔区2017-2018学年九年级上学期期末)已知在平面直角坐标系xOy 中,O 是坐标原点,如图1,直角三角板△MON 中,OM=ON=√3,OQ=1,直线l 过点N 和点N ,抛物线y=ax 2+2√33x+c 过点Q 和点N .(1)求出该抛物线的解析式;(2)已知点P 是抛物线y=ax 2+2√33x+c 上的一个动点.①初步尝试若点P 在y 轴右侧的该抛物线上,如图2,过点P 作PA ⊥y 轴于点A ,问:是否存在点P ,使得以N 、P 、A 为顶点的三角形与△ONQ 相似.若存在,求出点P 的坐标,若不存在,请说明理由;②深入探究若点P 在第一象限的该抛物线上,如图3,连结PQ ,与直线MN 交于点G ,以QG 为直径的圆交QN 于点H ,交x 轴于点R ,连结HR ,求线段HR 的最小值.【答案】(1)y=﹣√33x2+2√33x+√3(2)①(1,4√33)、(3,0)、(5,﹣4√3)②3√2+64【解析】 (1)由题意可知,Q (﹣1,0),N (0,√3),∴c=√3,即y=ax2+2√33x+√3, 将Q (﹣1,0)代入解析式得0=a ﹣2√33+√3,解得a=﹣√33, ∴抛物线解析式是y=﹣√33x2+2√33x+√3; (2)①分三种情况,如图2,情况一:点P 在第一象限时,△APN ∽△ONQ ,设AN=m ,则AP=√3m ,则P 的坐标(√3m ,m+√3),而点P 在抛物线上,代入可得m+√3=﹣√33(√3m )2++2√33(√3m )+√3, 解得m=√33,∴P1(1,4√33); 情况二:点P 恰好在x 轴上,P2(3,0),情况三:P 在第四象限内,同情况一方法可解得P3(5,﹣4√3),②连结CH 和CR ,如图3,∵∠NQ0=60°,∴∠HCR=120°,∵CH=CR ,∴HR=√3CH ,∴HR 最小时,只需要半径最小,即直径最小即可,∴过Q作NM的垂线,垂直时,QG最小,∴用面积法求出,QG=√6+√22,HR最小值=3√2+64.8.如图,在平面直角坐标系中,O为原点,A点坐标为(−8, 0),B点坐标为(2, 0),以AB为直径的圆P与y轴的负半轴交于点C.(1)求图象经过A,B,C三点的抛物线的解析式;(2)设M点为所求抛物线的顶点,试判断直线MC与⊙P的关系,并说明理由.【答案】(1)14x2+32x−4;(2)直线MC与⊙P相切,理由见解析【解析】解:(1)连接AC、BC;∵AB是⊙P的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵∠BCO+∠CBO=90°,∴∠CBO=∠ACO,∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴AOOC =OC OB,∴OC2=OA·OB=16,∴OC=4,故C(0,﹣4),设抛物线的解析式为:y=a(x+8)(x ﹣2),代入C 点坐标得:a(0+8)(0﹣2)=﹣4,a=14,故抛物线的解析式为:y=14(x+8)(x ﹣2)=14x 2+32x ﹣4;(2)由(1)知:y=14x 2+32x ﹣4=14(x +3)2﹣254;则M(﹣3,﹣254), 又∵C(0, ﹣4),P(﹣3, 0),∴MP=254,PC=5,MC=154,∴MP 2=MC 2+PC 2,即△MPC 是直角三角形,且∠PCM=90°,故直线MC 与⊙P 相切.9.已知抛物线y=ax 2+bx 过点A (1,4)、B (﹣3,0),过点A 作直线AC ∥x 轴,交抛物线于另一点C ,在x 轴上有一点D (4,0),连接CD .(1)求抛物线的表达式;(2)若在抛物线上存在点Q ,使得CD 平分∠ACQ ,请求出点Q 的坐标;(3)在直线CD 的下方的抛物线上取一点N ,过点N 作NG ∥y 轴交CD 于点G ,以NG 为直径画圆在直线CD 上截得弦GH ,问弦GH 的最大值是多少?(4)一动点P 从C 点出发,以每秒1个单位长度的速度沿C ﹣A ﹣D 运动,在线段CD 上还有一动点M ,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t 的值;若不存在,请说明理由.【答案】(1)直线CE 的表达式为y=﹣43x ﹣43;(2)点Q 的坐标为(﹣13,﹣89);(3)弦GH 的最大值81√580;(4)存在,t 的值为3或7【解析】解:(1)∵抛物线y=a x 2+bx 过点A (1,4)、B (﹣3,0),∴{a +b =49a −3b =0,解得:a=1,b=3, ∴抛物线的表达式为y=x 2+3x .(2)当y=4时,有x 2+3x=4,解得:x 1=﹣4,x 2=1,∴点C 的坐标为(﹣4,4),∴AC=1﹣(﹣4)=5.∵A (1,4),D (4,0),∴AD=5.取点E (﹣1,0),连接CE 交抛物线于点Q ,如图1所示.∵AC=5,DE=4﹣(﹣1)=5,AC ∥DE ,∴四边形ACED 为平行四边形,∵AC=AD ,∴四边形ACED 为菱形,∴CD 平分∠ACQ .设直线CE 的表达式为y=mx+n (m≠0),将C (﹣4,4)、E (﹣1,0)代入y=mx+n ,得:{−4m +n =4−m +n =0 ,解得:{m =−43n =−43, ∴直线CE 的表达式为y=﹣43x ﹣43.联立直线CE 与抛物线表达式成方程组,得:{y =−43x −43y =x 2+3x, 解得:{x 1=−4y 1=4 ,{x 2=−13y 2=−89 , ∴点Q 的坐标为(﹣13,﹣89).(3)设直线CD 的表达式为y=kx+c (k≠0),将C (﹣4,4)、D (4,0)代入y=kx+c ,得:{−4k +c =44k +c =0 ,解得:{k =−12c =2 , ∴直线CD 的表达式为y=﹣12x+2.设点N 的坐标为(x ,x2+3x ),则点G 的坐标为(x ,﹣12x+2),∴NG=﹣12x+2﹣(x2+3x )=﹣x2﹣72x+2=﹣(x+74)2+8116,∵﹣1<0,∴当x=﹣74时,NG 取最大值,最大值为8116. 以NG 为直径画⊙O′,取GH 的中点F ,连接O′F ,则O′F ⊥BC ,如图2所示.∵直线CD 的表达式为y=﹣12x+2,NG ∥y 轴,O′F ⊥BC , ∴tan ∠GO′F=GF O′F =12, ∴GF O′G =√12+22=√55, ∴GH=2GF=2√55 O′G=√55NG ,∴弦GH 的最大值为√55×8116=81√580.(4)取点E(﹣1,0),连接CE、AE,过点E作EP1⊥AC于点P1,交CD于点M1,过点E作EP2⊥AD 于点P2,交CD于点M2,如图3所示.∵四边形ACED为菱形,∴点A、E关于CD对称,∴AM=EM.∵AC∥x轴,点A的坐标为(1,4),∴EP1=4.由菱形的对称性可知EP2=4.∵点E的坐标为(﹣1,0),∴点P1的坐标为(﹣1,4),∴CP1=DP2=﹣1﹣(﹣4)=3,又∵AC=AD=5,∴t的值为3或7.10.如图,在平面直角坐标系中,点A(10, 0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB 并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=________°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?【答案】(1)90;(2)y=−18x2+54x;(3) 以P、O、A、E为顶点的四边形面积S等于16时,相应的点P有且只有3个.【解析】解:(1)90;(2)连接OC,如图1所示,∵由(1)知OB⊥AC,又AB=BC,∴OB是AC的垂直平分线,∴OC=OA=10,在Rt△OCD中,OC=10,CD=8,∴OD=6,∴C(6, 8),B(8, 4)∴OB所在直线的函数关系为y=12x,又∵E点的横坐标为6,∴E点纵坐标为3,即E(6, 3),抛物线过O(0, 0),E(6, 3),A(10, 0),∴设此抛物线的函数关系式为y=ax(x−10),把E点坐标代入得:3=6a(6−10),解得a=−18.∴此抛物线的函数关系式为y=−18x(x−10),即y=−18x2+54x;(3)设点P(p, −18p2+54p),①若点P在CD的左侧,延长OP交CD于Q,如右图2,OP 所在直线函数关系式为:y =(−18p +54)x∴当x =6时,y =−34p +152,即Q 点纵坐标为−34p +152, ∴QE =−34p +152−3=−34p +92,S 四边形POAE =S △OAE +S △OPE =S △OAE +S △OQE −S △PQE =12⋅OA ⋅DE +12QE ⋅OD −12⋅QE ⋅P x •=12×10×3+12×(−34p +92)×6−12•(−34p +92)⋅(6−p ), =−38p 2+94p +15, ②若点P 在CD 的右侧,延长AP 交CD 于Q ,如右图3,P(p, −18p 2+54p),A(10, 0) ∴设AP 所在直线方程为:y =kx +b ,把P 和A 坐标代入得,{10k +b =0pk +b =−18p 2+54p, 解得{k =−18p b =54p. ∴AP 所在直线方程为:y =−18px +54p ,∴当x =6时,y =−18p ⋅6+54p =12P ,即Q 点纵坐标为12P ,∴QE =12P −3,∴S 四边形POAE=S △OAE +S △APE =S △OAE +S △AQE −S △PQE =12⋅OA ⋅DE +12⋅QE ⋅DA −12⋅QE •(P x −6)=12×10×3+12⋅QE •(DA −P x +6)=15+12•(12p −3)⋅(10−p) =−14p 2+4p =−14(p −8)2+16,∴当P 在CD 右侧时,四边形POAE 的面积最大值为16,此时点P 的位置就一个,令−38p 2+94p +15=16,解得,p =3±√573, ∴当P 在CD 左侧时,四边形POAE 的面积等于16的对应P 的位置有两个,综上所知,以P 、O 、A 、E 为顶点的四边形面积S 等于16时,相应的点P 有且只有3个.类型二 与圆有关的位置关系例2.如图1,二次函数y =ax 2﹣2ax ﹣3a (a <0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴的正半轴交于点C ,顶点为D .(1)求顶点D 的坐标(用含a 的代数式表示);(2)若以AD 为直径的圆经过点C .①求抛物线的函数关系式;②如图2,点E 是y 轴负半轴上一点,连接BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1:2,求点M 、N 的坐标;③点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相切,如图3,求点Q 的坐标.【答案】(1)(1,﹣4a );(2)①y=﹣x 2+2x+3;②M (52,74)、N (32,154);③点Q 的坐标为(1,﹣)或(1,﹣4﹣).【思路引导】 (1)将二次函数的解析式进行配方即可得到顶点D 的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD 是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD 的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.【解析】(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=5 2 .∴M(52,74)、N(32,154).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C (0,3)、D (1,4),∴CH =DH =1,即△CHD 是等腰直角三角形,∴△QGD 也是等腰直角三角形,即:QD 2=2QG 2;设Q (1,b ),则QD =4﹣b ,QG 2=QB 2=b 2+4;得:(4﹣b )2=2(b 2+4),化简,得:b 2+8b ﹣8=0,解得:b =﹣;即点Q 的坐标为(1,4-+)或(1,4--.【方法总结】此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD 和⊙Q 半径间的数量关系是解题题目的关键.针对训练1.抛物线y =﹣23x 2+73x ﹣1与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y =t (t <2524)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象.(1)点A ,B ,D 的坐标分别为 , , ;(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围;(3)如图②,当t =0时,若Q 是“M ”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)A (12,0);B (3,0);D (74,2524);(2)1548≤t≤2548;(3)存在以CQ 为直径的圆与x 轴相切于点P ,点P的坐标为(75-0)、(311,0)、(1,0)或(75+,0). 【解析】解:(1)当y=0时,﹣23x 2+73x ﹣1=0, 解得x 1=12,x 2=3, ∴点A 的坐标为(12,0),点B 的坐标为(3,0), ∵y=﹣23x 2+73x ﹣1=﹣23(x -74)2+2524, ∴点D 的坐标为(74,2524); (2)∵点E 、点D 关于直线y=t 对称,∴点E 的坐标为(74,2t ﹣2524). 当x=0时,y=﹣23x 2+73x ﹣1=﹣1, ∴点C 的坐标为(0,﹣1).设线段BC 所在直线的解析式为y=kx+b ,将B (3,0)、C (0,﹣1)代入y=kx+b ,301k b b +=⎧⎨=-⎩,解得:131k b ⎧=⎪⎨⎪=-⎩, ∴线段BC 所在直线的解析式为y=13x ﹣1. ∵点E 在△ABC 内(含边界),∴2520242517212434tt⎧-≤⎪⎪⎨⎪-≥⨯-⎪⎩,解得:1548≤t≤2548.(3)当x<12或x>3时,y=﹣23x2+73x﹣1;当12≤x≤3时,y=﹣23x2+73x﹣1.假设存在,设点P的坐标为(12m,0),则点Q的横坐标为m.①当m<12或m>3时,点Q的坐标为(m,﹣23x2+73x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣23m2+73m)2=14m2+1+14m2+(﹣23m2+73m﹣1)2,整理,得:m1,m2,∴点P 0,0); ②当12≤m≤3时,点Q 的坐标为(m,23x 2-73x +1)(如图2), ∵以CQ 为直径的圆与x 轴相切于点P , ∴CP ⊥PQ ,∴CQ 2=CP 2+PQ 2,即m 2+(23m 2﹣73m+2)2=14m 2+1+14m 2+(23m 2﹣73m+1)2, 整理,得:11m 2﹣28m+12=0,解得:m 3=611,m 4=2, ∴点P 的坐标为(311,0)或(1,0).综上所述:存在以CQ 为直径的圆与x 轴相切于点P ,点P 0)、(311,0)、(1,0)或(75+,0). 2.如图1,抛物线y =ax 2+bx+c 的顶点(0,5),且过点(﹣3,114),先求抛物线的解析式,再解决下列问题:(应用)问题1,如图2,线段AB =d (定值),将其弯折成互相垂直的两段AC 、CB 后,设A 、B 两点的距离为x ,由A 、B 、C 三点组成图形面积为S ,且S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上):(1)填空:线段AB 的长度d = ;弯折后A 、B 两点的距离x 的取值范围是 ;若S =3,则是否存在点C ,将AB 分成两段(填“能”或“不能”) ;若面积S =1.5时,点C 将线段AB 分成两段的长分别是 ;(2)填空:在如图1中,以原点O 为圆心,A 、B 两点的距离x 为半径的⊙O ;画出点C 分AB 所得两段AC 与CB 的函数图象(线段);设圆心O 到该函数图象的距离为h ,则h = ,该函数图象与⊙O 的位置关系是 .(提升)问题2,一个直角三角形斜边长为c (定值),设其面积为S ,周长为x ,证明S 是x 的二次函数,求该函数关系式,并求x 的取值范围和相应S 的取值范围.【答案】抛物线的解析式为:y =﹣14x 2+5;(1)<x <;(2,相离或相切或相交;(3)相应S 的取值范围为S >14c 2.【解析】解:∵抛物线y =ax 2+bx+c 的顶点(0,5), ∴y =ax 2+5, 将点(﹣3,114)代入, 得114=a×(﹣3)2+5, ∴a =14﹣ , ∴抛物线的解析式为:y =2154x +﹣ ;(1)∵S 与x 的函数关系如图所示(抛物线y =ax 2+bx+c 上MN 之间的部分,M 在x 轴上),在y =2154x +﹣,当y =0时,x 1=x 2=﹣∴M (0),即当x =S =0,∴d 的值为∴弯折后A 、B 两点的距离x 的取值范围是0<x <当S =3 时,设AC =a ,则BC =a ,∴12a (a )=3,整理,得a 2﹣=0, ∵△=b 2﹣4ac =﹣4<0, ∴方程无实数根;当S =1.5时,设AC =a ,则BC =a ,∴12a (a )=1.5,整理,得a 2﹣=0,解得1a 2a∴当a +a当a a +∴若面积S =1.5时,点C 将线段AB +故答案为:0<x <+(2)设AC =y ,CB =x ,则y =﹣1所示的线段PM ,则P (0,,M (0), ∴△OPM 为等腰直角三角形,∴PM OP =, 过点O 作OH ⊥PM 于点H ,则OH =12PM ,∴当0<x 时,AC 与CB 的函数图象(线段PM )与⊙O 相离;当x 时,AC 与CB 的函数图象(线段PM )与⊙O 相切;<x <AC 与CB 的函数图象(线段PM )与⊙O 相交;,相离或相切或相交; (3)设直角三角形的两直角边长分别为a ,b , 则222-a b c a b x c ++=,= , ∵(a+b )2=a 2+b 2+2ab , ∴(x ﹣c )2=c 2+2ab ,∴2111242ab x cx =-, 即S =()22211114244x cx x c c -=-+,∴x 的取值范围为:x >c , 则相应S 的取值范围为S >214c .3.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-. (1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值; (3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩,则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴,QHN OCA ∠∠∴=,1tan QHN2∠∴=,则sin QHN ∠=,将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.4.如图1,对于平面内的点P 和两条曲线L 1、L 2给出如下定义:若从点P 任意引出一条射线分别与L 1、L 2交于Q 1、Q 2,总有PQ 1PQ 2是定值,我们称曲线L 1与L 2“曲似”,定值PQ1PQ 2为“曲似比”,点P 为“曲心”.例如:如图2,以点O ′为圆心,半径分别为r 1、r 2(都是常数)的两个同心圆C 1、C 2,从点O ′任意引出一条射线分别与两圆交于点M 、N ,因为总有O ′MO ′N =r 1r 是定值,所以同心圆C 1与C 2曲似,曲似比为r1r 2,“曲心”为O ′.(1)在平面直角坐标系xOy中,直线y=kx与抛物线y=x2、y=12x2分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使⊙O 与直线BC相切?若存在,求出k的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“y=12x2”改为“y=1mx2”,其他条件不变,当存在⊙O与直线BC相切时,直接写出m的取值范围及k与m之间的关系式.【答案】(1)两抛物线曲似,理由详见解析;(2)存在k值,使⊙O与直线BC相切,k=±√3;(3)m>1,k2=m2−1.【解析】(1)是,过点A、B作x轴的垂线,垂足分别为D、C,依题意可得A(k,k2)、B(2k,2k2),因此D(k,0)、C(2k,0),∵AD ⊥x 轴、BC ⊥x 轴, ∴AD//BC , ∴OA OB=OD OC=k 2k=12,∴两抛物线曲似,曲似比为12;(2)假设存在k 值,使⊙O 与直线BC 相切, 则OA =OC =2k ,又∵OD =k 、AD =k 2,并且OD 2+AD 2=OA 2, ∴k 2+(k 2)2=(2k)2, 解得:k =√3(负值舍去), 由对称性可取k =−√3, 综上,k =±√3;(3)根据题意得A(k,k 2)、B(mk,mk 2), 因此D(k,0)、C(mk,0), ∵⊙O 与直线BC 相切, ∴OA =OC =mk , 由OA >OD 可得mk >k , 则m >1,由OD =k 、AD =k 2,并且OD 2+AD 2=OA 2, ∴k 2+(k 2)2=(mk)2, 整理,得:k 2=m 2−1.5.已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线l 过()01-,点.(1)求一次函数与二次函数的解析式;(2)判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明;(3)把二次函数的图象向右平移 2 个单位,再向下平移 t 个单位(t >0),二次函数的图象与x 轴交于 M ,N 两点,一次函数图象交y 轴于 F 点.当 t 为何值时,过 F ,M ,N 三点的圆的面积最小?最小面积是多少?【答案】(1)一次函数的解析式为314y x =-+;二次函数解析式为214y x =. (2)相切,证明见解析(3)当3t =时,过F M N ,,三点的圆面积最小,最小面积为4π. 【解析】()1把()4,4A -代入1y kx =+得34k =-∴一次函数的解析式为314y x =-+ ∴二次函数图象的顶点在原点,对称轴为y 轴,∴二次函数的解析式为2y ax =,将()4,4A -代入解析式得14a =-∴二次函数的解析式为214y x =-()2由231414y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得44x y =-⎧⎨=⎩或114x y =⎧⎪⎨=⎪⎩,11,4B ⎛⎫∴ ⎪⎝⎭,取,A B 的中点317,28P ⎛⎫- ⎪⎝⎭, 过P 作直线l 的垂线,垂足为N ,则3,12N ⎛⎫-- ⎪⎝⎭1725188PN ∴=+=,而直径254AB ∴==12PN AB ∴=,即圓心到直线l 的距离等于半径, 以AB 为直径的圆与直线l 相切.()3平移后二次函数的解析式为()2124y x t =--,令0,y =得()212120,224x t x x --==-=过,,F M N 三点的國的圆心C 一定在平移后抛物线的对称轴.上,要使圓面积最小,圆半径应等于点F 到直线2x =2的距离,点C 坐标为()2,1. 此时,半径为2,面积为4π设圆心为,C MN 的中点为E ,连接,CE CM ,则1CE =,在三角形CEM 中,ME =MN ∴=2134MN x x t =-=∴= ∴当3t 4=时,过,,F M N 三点的圓面积最小,最小面积为4π. 6.如图,在平面角坐标系中,抛物线C 1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),抛物线C 2:y=2x 2+x+1,动直线x=t 与抛物线C 1交于点N ,与抛物线C 2交于点M . (1)求抛物线C 1的表达式;(2)直接用含t 的代数式表示线段MN 的长;(3)当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值;(4)在(3)的条件下,设抛物线C 1与y 轴交于点P ,点M 在y 轴右侧的抛物线C 2上,连接AM 交y 轴于点k ,连接KN ,在平面内有一点Q ,连接KQ 和QN ,当KQ=1且∠KNQ=∠BNP 时,请直接写出点Q 的坐标.【答案】(1)抛物线C1:解析式为y=x 2+x ﹣1;(2)MN=t 2+2;(3)t 的值为1或0;(4)满足条件的Q 点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125)【解析】(1)∵抛物线C1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),∴{1=4a −2b −1−1=a −b −1,解得:{a =1b =1 , ∴抛物线C1:解析式为y=x 2+x ﹣1;(2)∵动直线x=t 与抛物线C1交于点N ,与抛物线C2交于点M ,∴点N 的纵坐标为t 2+t ﹣1,点M 的纵坐标为2t 2+t+1,∴MN=(2t 2+t+1)﹣(t 2+t ﹣1)=t 2+2;(3)共分两种情况①当∠ANM=90°,AN=MN 时,由已知N (t ,t 2+t ﹣1),A (﹣2,1),∴AN=t ﹣(﹣2)=t+2,∵MN=t 2+2,∴t 2+2=t+2,∴t1=0(舍去),t2=1,∴t=1;②当∠AMN=90°,AN=MN 时,由已知M (t ,2t 2+t+1),A (﹣2,1),∴AM=t ﹣(﹣2)=t+2,∵MN=t 2+2,∴t 2+2=t+2,∴t 1=0,t 2=1(舍去),∴t=0,故t 的值为1或0;(4)由(3)可知t=1时M 位于y 轴右侧,根据题意画出示意图如图:易得K (0,3),B 、O 、N 三点共线,∵A (﹣2,1),N (1,1),P (0,﹣1),∴点K 、P 关于直线AN 对称,设⊙K 与y 轴下方交点为Q2,则其坐标为(0,2),∴Q2与点O 关于直线AN 对称,∴Q2是满足条件∠KNQ=∠BNP ,则NQ2延长线与⊙K 交点Q1,Q1、Q2关于KN 的对称点Q3、Q4也满足∠KNQ=∠BNP ,由图形易得Q1(﹣1,3),设点Q3坐标为(a ,b ),由对称性可知Q3N=NQ1=BN=2√2,由∵⊙K 半径为1,∴{(a −1)2+(b −1)2=(2√2)2a 2+(b −3)2=12,解得:{a 1=35b 1=195 ,{a 2=−1b 2=3 , 同理,设点Q4坐标为(a ,b ),由对称性可知Q4N=NQ2=NO=√2,∴{(a −1)2+(b −1)2=(√2)2a 2+(b −3)2=12 ,解得:{a 3=45b 3=125 ,{a 4=0b 4=2 , ∴满足条件的Q 点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125).7.如图,直线2y x =+与抛物线222y x mx m m =-++交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,抛物线的对称轴与直线AB 交于点M .(1)当四边形CODM 是菱形时,求点D 的坐标;(2)若点P 为直线OD 上一动点,求APB ∆的面积;(3)作点B 关于直线MD 的对称点B ',以点M 为圆心,MD 为半径作M ,点Q 是M上一动点,求2QB '+的最小值. 【答案】(1);(2)3;(3【解析】(1) (,)D m m,OD =, 菱形CODM2OD OC ∴===m ∴= (2)①2y x =+与抛物线222y x mx m m =-++交于,A B 两点,∴联立,222y x mx m m =-++,2y x =+解得1111x m y m =-⎧⎨=+⎩,2224x m y m =+⎧⎨=+⎩ ∵点A 在点B 的左侧(1,1)A m m ∴-+,(2,4)B m m ++AB ∴==∴直线OD 的解析式为y x =,直线AB 的解析式为2y x =+//AB OD ∴,两直线,AB OD 之间距离22h =⨯=11322APBS AB h ∴=⋅=⨯=(3) (1,1)A m m -+,(2,4)B m m ++1AM ∴==2BM ==由M 点坐标(,2)m m +,D 点坐标(,)m m 可知以MD 为半径的圆的半径为(2)2m m +-=取MB 的中点N ,连接,,QB QN QB ',则12MN BM ==⨯=MN QMMN QM QM BM ==QMN BMQ ∠=∠, ~MNQ MQB ∴,2QN MN OB OM ∴==,QN ∴=由三角形三边关系,当,,Q N B '三点共线时QB '+最小, ∵直线AB 的解析式为2y x =+,∴直线AB 与对称轴夹角为45°,∵点,B B '关于对称轴对称, 90BMB '︒∴∠=,由勾股定理得,2QB '+最小值===.8.如图,已知以E(3,0)为圆心,5为半径的☉E 与x 轴交于A ,B 两点,与y 轴交于C 点,抛物线y=ax 2+bx+c(a≠0)经过A ,B ,C 三点,顶点为F.(1)求A ,B ,C 三点的坐标;(2)求抛物线的解析式及顶点F 的坐标;(3)已知M 为抛物线上的一动点(不与C 点重合),试探究:①若以A ,B ,M 为顶点的三角形面积与△ABC 的面积相等,求所有符合条件的点M 的坐标;②若探究①中的M 点位于第四象限,连接M 点与抛物线顶点F ,试判断直线MF 与☉E 的位置关系,并说明理由.【答案】(1)A(-2,0),B(8,0),C(0,-4);(2)抛物线的解析式为y=14x 2-32x -4,F (3,−254);(3)①所点M 的坐标为(6,-4),(√41+3,4),(-√41+3,4);②若M 点位于第四象限,则M 点即为M1点,此时直线MF 和☉E 相切,理由见解析.【解析】(1)由题图可得点A 的横坐标为3-5=-2,点B 的横坐标为3+5=8,连接CE ,则CE=5,又OE=3,。
九年级数学圆-二次函数知识点大全(习题解答)
圆的知识点1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径。
2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
3.圆上任意两点间的部分叫作圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
能够重合的两个圆叫做等圆。
在同圆或等圆中,能够互相重合的弧叫做等弧。
4.圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
5.垂直于弦的直径平分弦,并且平分弦所对的两条弧。
6.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
7.我们把顶点在圆心的角叫做圆心角。
8.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
9.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
10.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
11.顶点在圆上,并且两边都与圆相交的角叫做圆周角。
12.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
13.半圆(或半径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
14.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
15.在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定相等。
16.圆内接四边形的对角互补。
17.点P在圆外——d > r 点P在圆上——d = r 点P在圆内——d < r18.不在同一直线上的三个点确定一个圆。
19.经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心。
20.直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。
21.直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
圆与二次函数知识点
圆与二次函数知识点 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】圆和二次函数知识点《圆》一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;A2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图4图5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
初中数学难度章节排行榜 -回复
初中数学难度章节排行榜 -回复
初中数学难度章节排行榜如下:
1、初中数学第二十七章:相似
2、初中数学第二十六章:二次函数
3、初中数学第二十二章:一元二次方程
4、初中数学第二十四章:圆
5、初中数学第二十三章:旋转
6、初中数学第二十一章:二次根式
7、初中数学第十五章:整式的乘除与因式分解
8、初中数学第十四章:一次函数
9、初中数学第十七章:反比例函数
10、初中数学第十六章:分式
大概就是这些内容比较难一些,要说最难的就是相似,二次函数和旋转中的全等问题,这些内容主要都集中在初三,注意一下即可。
小红讲数学思维圆
小红讲数学思维圆
众所周知,《圆》是初中数学三大压轴题型:《二次函数》《相似型》《圆》中的一种;且《圆》是初中常见平面几何的一个分支,在学习了直线图形的有关性质的基础上来研究的一种特殊的曲线图形。
在初中数学中占有重要地位,中考分值也占有一定比例,与其它知识的综合性强。
《圆》章节各小结的知识分类:
1、圆的有关概念和性质。
2、圆与圆的位置关系。
3、圆切线的有关性质。
4、正多边形与圆。
圆的记忆口诀:
常把半径直径连,有弦可做弦心距,它定垂直平分弦,直圆周角立上边。
圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆,
直角相对成共弦,试试加一个辅助圆,若是证题打转轴,四点共圆可解难,
要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连
直线与圆未给点,需证半径作垂线,四边形有内切圆,对边和
等是条件,
如果遇到圆与圆,弄清位置很关键,圆相切做公切,两圆相交连工弦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆一.知识框架二.知识概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
12.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
13.有关定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14.圆的计算公式 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=n πr/18015.扇形面积S=π(R^2-r^2) 5.圆锥侧面积S=πrl 九年级数学(下)知识点人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容。
第二十六章 二次函数 一.知识框架二..知识概念 1.二次函数:一般地,自变量x 和因变量y 之间存在如下关系:一般式:y=ax^2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。
2.二次函数的解析式三种形式。
一般式 y=ax 2 +bx+c(a ≠0) 顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 交点式 12()()y a x x x x =-- 3.二次函数图像与性质对称轴:2bx a=-顶点坐标:24(,)24b ac b a a-- 与y 轴交点坐标(0,c )4.增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小y xO5.二次函数图像画法:勾画草图关键点:○1开口方向 ○2对称轴 ○3顶点 ○4与x 轴交点 ○5与y 轴交点 6.图像平移步骤(1)配方 2()y a x h k =-+,确定顶点(h,k )(2)对x 轴 左加右减;对y 轴 上加下减 7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x +=8.根据图像判断a,b,c 的符号 (1)a ——开口方向(2)b ——对称轴与a 左同右异 9.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.教师在讲解本章内容时应注重培养学生数形结合的思想和独立思考问题的能力。
第二十七章 相似二.知识概念:1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似三角形2.错误!未指定书签。
相似三角形的判定方法:根据相似图形的特征来判断。
(对应边成比例,对应角相等) ○1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似; ○2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似; ○3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; ○4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似; 3.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。
○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
4.错误!未指定书签。
相似三角形的性质:○1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
○2.相似三角形周长的比等于相似比。
○3.相似三角形面积的比等于相似比的平方。
本章内容通过对相似三角形的学习,培养学生认识和观察事物的能力和利用所学知识解决实际问题的能力。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列说法正确的是 ( )A. 掷两枚硬币,一枚正面朝上,一枚反面超上是不可能事件 B .随意地翻到一本书的某页,这页的页码为奇数是随机事件 C .经过某市一装有交通信号灯的路口,遇到红灯是必然事件D .某一抽奖活动中奖的概率为1001,买100张奖券一定会中奖 2.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A B C D3. 将抛物线y =x 2平移得到抛物线y =x 2+3,则下列平移过程正确的是 ( ) A. 向上平移3个单位 B. 向下平移3个单位 C. 向左平移3个单位 D. 向右平移3个单位4.下列一元二次方程中,有两个相等的实数根的是 ( )A .x 2+1=0B .9x 2-6x +1=0C .x 2-x +2=0D .x 2-2x -3=05. 已知圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 ( ) A. 5πcm 2 B. 10πcm 2 C. 14πcm 2 D. 20πcm 26. 如图,为了测量某棵树的高度,小明用长为2m 的竹竿作 测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好 落在地面的同一点.此时竹竿与这一点相距6m,与树相距 15m ,则树的高度为 ( )A. 4mB. 5mC. 7mD. 9m 7. 已知二次函数y =ax 2+bx +c 的图象如右图所示,则下列结论中正确的是 ( )A .a >0B .c <0C .042<-ac b D .a +b +c >08. 已知O 为圆锥顶点, OA 、OB 为圆锥的母线, C 为OB 中点, 一只小蚂蚁从点C 开始沿圆锥侧面爬行到点A , 另一只小蚂蚁绕着圆锥侧面爬行到点B ,它们所爬行的最短路线的痕迹如右图所示. 若沿OA 剪开,则得到的圆锥侧面展开图为 ( )A B C D 二、填空题(本题共16分,每小题4分)9. 方程042=-x x 的解是 .10. 如图, △ABD 与△AEC 都是等边三角形, 若∠ADC = 15︒,则 ∠ABE = ︒ .11. 若432z y x ==(x , y , z 均不为0),则z z y x -+2的值为 .12.用两个全等的含30︒角的直角三角形制作如图1所示的两种卡片, 两种卡片中扇形的 半径均为1, 且扇形所在圆的圆心分别为长直角边的中点和30︒角的顶点, 按先A 后B 的顺序交替摆放A 、B 两种卡片得到图2所示的图案. 若摆放这个图案共用两种卡片 8张,则这个图案中阴影部分的面积之和为 ; 若摆放这个图案共用两种 卡片(2n +1)张( n 为正整数), 则这个图案中阴影部分的面积之和为 . (结果 保留π )……A 种B 种图1 图 2, 三、解答题(本题共29分, 第13题~第15题各5分, 第16题4分, 第17题、第18题各5分)13.解方程:x 2-8x +1=0. 解:11x O yADB CE O B (A )C OA BC C BAOO A B (A )C O A B (A )C OA B (A )CC (A )B AO B A14.如图,在△ABC 中,D 、E 分别是AC 、AB 边上的点,∠AED =∠C ,AB =6,AD =4, AC =5, 求AE 的长. 解:15. 抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表:x…-2-1 01 2 … y …0 -4-48…(1)根据上表填空:① 抛物线与x 轴的交点坐标是 和 ;② 抛物线经过点 (-3, );③ 在对称轴右侧,y 随x 增大而 ; (2)试确定抛物线y =ax 2+bx +c 的解析式.解: (1)① 抛物线与x 轴的交点坐标是 和 ;② 抛物线经过点 (-3, );③ 在对称轴右侧,y 随x 增大而 .(2)16. 如图, 在正方形网格中,△ABC 的顶点和O 点都在格点上. (1)在图1中画出与△ABC 关于点O 对称的△A ′B ′C ′;(2)在图2中以点O 为位似中心,将△ABC 放大为原来的2倍(只需画出一种即可). 解:图1 图2结论: 为所求.A CB D E O A BC O AB C17.已知关于x 的方程(k -2)x 2+2(k -2)x +k +1=0有两个实数根,求正整数k 的值. 解:18.在一个口袋中有3个完全相同的小球,把它们分别标号为1, 2, 3, 随机地摸出一个 小球记下标号后放回, 再随机地摸出一个小球记下标号, 求两次摸出小球的标号 之和等于4的概率. 解:四、解答题(本题共21分,第19题、第20题各5分, 第21题6分, 第22题5分) 19.某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双) 与销售单价x (元)满足280w x =-+(20≤x ≤40),设销售这种手套每天的利润为y (元). (1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少? 解:20.已知二次函数y =m x 2+(3-m )x -3 (m >0)的图象与x 轴交于点 (x 1, 0)和(x 2, 0), 且x 1<x 2.(1)求x 2的值;(2)求代数式96)3(112121++-++x m x m x m x m 的值.21. 如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD . (1)求证:BD 是⊙O 的切线; (2)若AE =9, CE =12, 求BF 的长.解:22. 已知△ABC 的面积为a ,O 、D 分别是边AC 、BC 的中点.(1)画图:在图1中将点D 绕点O 旋转180︒得到点E , 连接AE 、CE . 填空:四边形ADCE 的面积为 ;(2)在(1)的条件下,若F 1是AB 的中点,F 2是AF 1的中点, F 3是AF 2的中点,…,F n 是AF n -1的中点 (n 为大于1的整数), 则△F 2CE 的面积为 ; △F n CE 的面积为 .解: (1)画图:图1填空:四边形ADCE 的面积为 .(2)△F 2CE 的面积为 ; △F n CE 的面积为 .备用图DOCBA E F OB DC AD O CB A五、解答题(本题共22分,第23题7分, 第24题7分,第25题8分)23. 已知二次函数y =ax 2+bx +c 的图象与反比例函数x a y 4+=的图象交于点A (a , -3),与y 轴交于点B .(1)试确定反比例函数的解析式;(2)若∠ABO =135︒, 试确定二次函数的解析式;(3)在(2)的条件下,将二次函数y =ax 2 + bx + c 的图象先沿x 轴翻折, 再向右平移到 与反比例函数x a y 4+=的图象交于点P (x 0, 6) . 当x 0 ≤x ≤3时, 求平移后的二次函数y 的取值范围. 解:24. 已知在□ABCD 中,AE ⊥BC 于E ,DF 平分∠ADC 交线段AE 于F .(1)如图1,若AE =AD ,∠ADC =60︒, 请直接写出线段CD 与AF +BE 之间所满足的等量关系;(2)如图2, 若AE =AD ,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论 加以证明, 若不成立, 请说明理由;(3)如图3, 若AE : AD =a : b ,试探究线段CD 、AF 、BE 之间所满足的等量关系, 请直接写出你的结论.解: (1)线段CD 与AF +BE 之间所满足的等量关系为:.(2) 图1DA AB ECD FOxy-1-111234-2-3-4-4-3-2432图2(3)线段CD 、AF 、BE 之间所满足的等量关系为:.图325. 如图, 已知抛物线经过坐标原点O 及)0,32( A ,其顶点为B (m ,3),C 是AB 中点, 点E 是直线OC 上的一个动点 (点E 与点O 不重合),点D 在y 轴上, 且EO =ED . (1)求此抛物线及直线OC 的解析式;(2)当点E 运动到抛物线上时, 求BD 的长;(3)连接AD , 当点E 运动到何处时,△AED 的面积为433,请直接写出此时E 点的 坐标. 解:B ECDA F CBAy xO11。