九寨沟县高中2018-2019学年高二上学期第一次月考试卷数学

合集下载

高二数学上学期第一次月考试题(含解析)新版人教 版

高二数学上学期第一次月考试题(含解析)新版人教 版

2019年秋期高二第一次月考数学试题一、选择题(每小题5分,共60分)1. 等差数列{a n}中,,a2 +a5+a8 =33,则a6的值为()A. 10B. 9C. 8D. 7【答案】B【解析】等差数列中,故答案选2. 若{a n}是等比数列,已知a4 a7=-512,a2+a9=254,且公比为整数,则数列的a12是()A. -2048B. 1024C. 512D. -512【答案】A【解析】由等比数列性质可得,且公比为整数,联立解得又故答案选3. 在中,,则等于()A. B. 或 C. D.【答案】B【解析】在中,由正弦定理得,所以,因为,所以,又,所以或。

选B。

4. 数列1,,,……,的前n项和为( )A. B. C. D.【答案】B【解析】数列,的前项和点睛:在数列求和的过程中先找出通项,本题中的通项需要先进行化简,然后裂项形如:,然后运用裂项求和的方法求出结果。

当遇到通项含有分式的时候,可以思考是否能用裂项的方法解答。

5. △ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC 的面积为,那么b=()A. B. C. D.【答案】B【解析】成等差数列,,平方得,又的面积为,且故由,得由余弦定理解得又为边长,故答案选点睛:根据等差中项的性质可得运用平方求得边长的数量关系,再根据面积公式求出的值,代入余弦定理求得结果6. 已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( )A. 15B. 17C. 19D. 21【答案】B【解析】试题分析:,所以前8项的和为考点:等比数列性质7. 在中,若,三角形的面积,则三角形外接圆的半径为( )A. B. 2 C. D. 4【答案】B【解析】试题分析:,故选B.考点:解三角形.8. 设是等差数列,是其前n项和,且,,则下列结论错误的是( )A. B. C. D. 和均为的最大值【答案】C【解析】试题分析:由得,又,所以,故B正确;同理由得,因为,故A正确;而C选项即,可得,由结论,显然C错误;因为与均为的最大值,故D正确,故选C.考点:1、等差数列的性质;2、等差数列的前项和.9. 在△ABC中,若,则△ABC的形状是()A. 直角三角形B. 等腰或直角三角形C. 不能确定D. 等腰三角形【答案】B【解析】∵,∴,由正弦定理得,∴,∵,∴,∴,故。

高二数学上学期第一次月考试题

高二数学上学期第一次月考试题

2018年—2019年高二上学期第一次月考卷数学试卷一、选择题(本大题共12小题,共分)1.在中,,,,则A。

B、C、D、2.在中,,,,则A、B。

ﻩC。

ﻩD、或3.在等差数列中,,则A、 20ﻩB。

12 C。

10ﻩD。

364.在中,若,,,则边b等于A、B。

ﻩC。

D。

15.若的三个内角A,B,C满足:::12:13,则一定是A。

锐角三角形B、钝角三角形C、直角三角形ﻩD、无法确定6.已知数列满足,若,则等于A、 1 B、2ﻩC、 64ﻩD、1287.在中,,,,则a的值为A。

3 B。

23ﻩC、ﻩD、28.在中,,且的外接圆半径,则A、ﻩB。

C、D、9.已知等差数列中,,,则的前n项和的最大值是A、15 B。

20ﻩC、26ﻩD。

3010.已知数列满足,且,则A、B。

ﻩC。

ﻩD、 211.已知是等比数列,且,,那么的值等于A。

5ﻩB、 10ﻩC。

15 D。

2012.数列,前n项和为A。

B、ﻩC。

ﻩD、第II卷二、填空题(本大题共4小题,共分)13.在中,,,,则______、14.设等差数列的公差不为0,已知,且、、成等比数列,则______、15.如图所示,为测量一水塔AB的高度,在C处测得塔顶的仰角为,后退20米到达D处测得塔顶的仰角为,则水塔的高度为______米16.17.ﻭ18.数列前n项和为,则的通项等于______ 。

三、解答题(本大题共6小题,共分)19.已知等比数列,,20.求数列的通项公式、21.求的值、ﻭﻭ22.ﻭ23.24.ﻭ25.在三角形ABC中,角A,B,C所对的边为a,b,c,,,且、ﻭⅠ求b;26.Ⅱ求、ﻭ27.ﻭﻭﻭﻭﻭ28.已知等差数列满足:,,其前n项和为。

29.求数列的通项公式及;ﻭ若,求数列的前n项和为、ﻭ30.在中,角A,B,C所对的边分别为a,b,c,且、ﻭ求角A的值;31.若,求的面积S、ﻭ32.33.34.ﻭﻭﻭ35.设等差数列的前n项和满足,且,,成公比大于1的等比数列、36.求数列的通项公式;ﻭ设,求数列的前n项和、37.ﻭﻭ22、在海岸A处,发现北偏东方向,距离A为海里的B处有一艘走私船,在A处北偏西方向,距离A为2 海里的C处有一艘缉私艇奉命以海里时的速度追截走私船,此时,走私船正以10 海里时的速度从B处向北偏东方向逃窜Ⅰ问C船与B船相距多少海里?C船在B船的什么方向?Ⅱ问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间、ﻭﻭﻭ2018-2019上学期高二第一次月考数学答案和解析【答案】1、D2、Dﻩ3、C4。

高二数学上学期第一次月考试题 理 人教版.doc

高二数学上学期第一次月考试题 理 人教版.doc

2019-1高二第一次联考试卷理科数学注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码中“准考证号、姓名、考生科目”与本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|2}A x y x x ==-,{|21}xB y y ==+,则A B =IA .(1,2]B .(0,1]C .[1,2]D .[0,2]2.经过中央电视台《魅力中国城》栏目的三轮角逐,贵州省黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误的是A .旅游总人数逐年增加B . 2017年旅游总人数超过2015、2016两年的旅游总人数的和C . 年份数与旅游总人数成正相关D . 从2014年起旅游总人数增长加快3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是A .12B .13C .14D .16 4.已知向量()3,1=a ,()0,1=-b ,(),3k =c ,若()2-⊥a b c ,则k 等于A .23B .2C .3-D .15.圆1C :0222=++x y x 与圆2C :048422=++-+y x y x 的位置关系是A .相交B .外切C .内切D .相离 6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是A. 2B. 3C. 4D. 5 7.βα,是两个平面,n m ,是两条直线,则下列命题中错误的是A. 如果βα⊥⊥⊥n m n m ,,,那么βα⊥B. 如果βαα//,⊂m ,那么β//mC. 如果βαβα⊂=⋂m m l ,//,,那么l m //D. 如果βα//,,n m n m ⊥⊥,那么βα⊥ 8.设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭图象向右平移43π个单位后与原图象重合,则ω的最小值是A .23B .43C .3D .329.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作,它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图,执行该程序框图,求得该垛果子的总数S 为A .120B . 84C .56D .28 10.已知直线10()ax y a R -+=∈是圆22:(1)(2)4C x y -+-=的一条对称轴,过点(2,)A a --向圆C 作切线,切点为B ,则||AB =A .6B .10C .14D .3211.设a , b R ∈, 2226a b +=,则2a b +的最小值为A . 23-B .533-C .33-D . 732- 12.如图,已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是A .HF //BEB .13BM =C .∠MBN的余弦值为65 D .五边形FBEGH的面积为144第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知()tan 2πα+=)),0((πα∈,则=αsin .14.设变量y x ,,满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则y x z -=2的最小值为 .15.已知数列{}n a 满足:()23*1232222nn a a a a n n N ++++=∈L ,数列⎭⎬⎫⎩⎨⎧⋅+122log log 1n n a a 的前n 项和为n S ,则=⋅⋅⋅⋅⋅⋅1021S S S .16.正四面体ABCD 内切球半径与外接球半径之比为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知数列{}n a 的前n 项和为n S ,且2(1)n n S a n =+-)(+∈N n .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若2n an b =,求数列{}n b 的前n 项和n T .18.(本小题满分12分)ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且a c C b 2cos 2=+.(Ⅰ)求角B 的大小;(Ⅱ)若BD 为AC 边上的中线,1cos 7A =,129BD =,求ABC △的面积.19.(本小题满分12分)如图,三棱柱111C B A ABC -中,四边形11C CBB 四边均相等,点A 在面11C CBB 的射影为C B 1中点O .(Ⅰ)证明:C B AB 1⊥;(Ⅱ)若ο901=∠CAB ,ο601=∠CBB ,1=BC ,求O 点到面ABC 的距离.20.(本小题满分12分)张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:年龄x (岁) 7 8 9 10 11 12 13身高y(cm )121128 135 141 148 154 160(Ⅰ)求身高y 关于年龄x 的线性回归方程;(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()111211ni ni x x y y b xx==--=-∑∑),a yb x =-).21.(本小题满分12分)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,AB EF //,2=AB ,1==EF BC ,6=AE ,3=DE ,3π=∠BAD ,BC CG 21=. (Ⅰ)求证://FG 平面BED ;(Ⅱ)求直线EF 与平面BED 所成角的余弦值; (Ⅲ)求二面角E BD G --的正弦值.22.(本小题满分12分)已知过原点的动直线l 与圆1C :05622=+-+x y x 相交于不同的两点B A ,. (Ⅰ)求圆C 1的圆心坐标和半径r ;(Ⅱ)求线段AB 的中点M 的轨迹C 的方程;(Ⅲ)是否存在实数k ,使得直线)4(:1-=x k y l 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.2019-1高二第一次联考试卷理科数学答案第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-5ABBCB 6-10CDDBC 11-12AC第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.552 14. 15.111 16. 31 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分解:(Ⅰ)2(1)n n S a n =+-,211n n S a n ++=+,则22111(1)21n n n n n n S S a a n n a a n +++-=-+--=-+-, 即1121n n n a a a n ++=-+- ,∴数列{}n a 的通项公式为21n a n =-. (5分) (Ⅱ)2122n a n n b -==,∵21121242n n n n b b ++-==, ∴数列{}n b 是公比为4的等比数列,12b =,∴数列{}n b 的前n 项和2(41)3n n T =-.(10分)18.(本小题满分12分)解:(Ⅰ)a c C b 2cos 2=+,由正弦定理,得A C C B sin 2sin cos sin 2=+, ∵πA B C ++=,∴sin sin()sin cos cos sin A B C B C B C =+=+,∴2sin cos sin 2(sin cos cos sin )B C C B C B C +=+,∴C B C sin cos 2sin =, ∵0πC <<,∴0sin ≠C ,∴21cos =B.又∵0πB <<,∴π3B =.(6分) (Ⅱ)在ABD △中,由余弦定理得222129()2cos 222b bc c A =+-⋅,∴221291447b c bc =+-…①,在ABC △中,由正弦定理得sin sin c b C B=,由已知得43sin 7A =,∴sin sin()C A B =+sin cos cos sin A B A B =+53=,∴57c b =……②,由①,②解得75b c =⎧⎨=⎩,∴1sin 1032ABC S bc A ==△.(12分)19.(本小题满分12分)(Ⅰ)证明 连接BC 1,则O 为B 1C 与BC 1的交点. 因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO .由于AB ⊂平面ABO ,故B 1C ⊥AB .(6分)(Ⅱ)法一:解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形. 又BC =1,可得3OD =.由于AC ⊥AB 1,所以11122OA B C ==. 由OH ·AD =OD ·OA ,且227AD OD OA =+=,得21OH =.所以O 点到面ABC 的距离21OH =.(12分) 法二:(等体积法)(12分) 20.(本小题满分12分)解:(Ⅰ)由题意得()178910111213107x =++++++=,()11211281351411481541601417y =++++++=.(2分)()721941014928i i x x=-=++++++=∑,(4分)()()()()()()()()71320213160017213319182ii i xx y y =--=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,(6分)所以()()()12118213282iii ii x x y y b xxππ==--===-∑∑),(7分) $1314110762a yb x =-=-⨯=),所求回归方程为13762y x =+).(8分)(Ⅱ)由(Ⅰ)知,1302b =)>,故张三同学7岁至13岁的身高每年都在增高,平均每年增高6.5cm .将15x =代入(Ⅰ)中的回归方程,得131576173.52y =⨯+=),故预测张三同学15岁的身高为173.5cm .(12分)(21)(本小题满分12分)解:(Ⅰ)证明:取BD 的中点为O ,连接OG OE ,,在BCD ∆中, 因为G 是BC 的中点,所以DC OG //且121==DC OG , 又因为DC AB AB EF //,//,所以OG EF //且OG EF =, 即四边形OGFE 是平行四边形,所以OE FG //,(3分) 又⊄FG 平面BED ,⊂OE 平面BED , 所以//FG 平面BED .(4分)(Ⅱ)在ABD ∆中,060,2,1=∠==BAD AB AD ,由余弦定理可3=BD ,进而可得090=∠ADB ,即AD BD ⊥,又因为平面⊥AED 平面⊂BD ABCD ,平面ABCD ;平面I AED 平面AD ABCD =, 所以⊥BD 平面AED . 又因为⊂BD 平面BED , 所以平面⊥BED 平面AED .因为AB EF //,所以直线EF 与平面BED 所成角即为直线AB 与平面BED 所成角.(6分) 过点A 作DE AH ⊥于点H ,连接BH , 又因为平面I BED 平面ED AED =, 所以⊥AH 平面BED ,所以直线AB 与平面BED 所成角即为ABH ∠. 在ADE ∆中,6,3,1===AE DE AD ,由余弦定理可得32cos =∠ADE , 所以35sin =∠ADE ,因此35sin =∠⋅=ADE AD AH , 在AHB Rt ∆中,65sin ==∠AB AH ABH ,631cos =∠ABH 所以直线AB 与平面BED 所成角的余弦值为631.(9分)(Ⅲ)由(Ⅱ)知,二面角E BD G --为ADE ∠-π,而35sin =∠ADE 所以二面角E BD G --的正弦值35(12分)22.(本小题满分12分) 解:(Ⅰ)圆C 1的标准方程为(x -3)2+y 2=4. ∴圆C 1的圆心坐标为(3,0),半径为2.(2分)(Ⅱ)设动直线l 的方程为y =kx ,A ,B 两点坐标为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧(x -3)2+y 2=4,y =kx ⇒(k 2+1)x 2-6x +5=0,则Δ=36-4(k 2+1)×5>0⇒k 2<45.则x 1+x 2=6k 2+1.(6分) 所以16221+=+k ky y .(5分) ⇒AB 中点M 的轨迹C 的方程为—————————— 唐玲制作仅供学习交流 ——————————唐玲 ⎩⎪⎨⎪⎧x =3k 2+1,y =3k k 2+1,⎝ ⎛⎭⎪⎫-255<k <255,消去k得轨迹C 的方程为⎝ ⎛⎭⎪⎫x -322+y 2=94,53<x ≤3.(7分) (Ⅲ)联立⎩⎨⎧-==-+)4(0322x k y x y x 得016)83()1(222=++-+k x k x k 由0=∆得43±=k ,结合轨迹C 的图像知43±=k 满足题意。

高二数学上学期第一次月考试题 理新人教版 新版.doc

高二数学上学期第一次月考试题 理新人教版 新版.doc

2019学年度第一学期高二第一次大考数学(理科)试卷一、选择题:在每小题给出的四个选项中,只有一个是符合题目要求的(本大题共10小题,每小题5分,共50分)1.若,A B 表示点,a 表示直线,α表示平面,则下列叙述中正确的是( )A .若,AB αα⊂⊂,则AB α⊂ B .若,A B αα∈∈,则AB α∈C .若,A a a α∉⊂,则AB α∉D .若A a ∈,a α⊂,则A α∈ 2.已知正三角形ABC 的边长为2,那么△ABC 的直观图A B C '''∆的面积为( )A .43B .26C .46D . 33.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a ( )A .172B . 10C .192D .124.下列结论中正确的是( )A.若直线l 上有无数个点不在平面α内,则l //α.B .若直线l 与平面α平行,则直线l 与平面α内的任意一条直线都平行.C .若直线l 与平面α垂直,则直线l 与平面α内的任意一条直线都垂直.D .四边形确定一个平面.5.已知半径为1的动圆与定圆16)7()5(22=++-y x 相切,则动圆圆心的轨迹方程是( )A .25)7()5(22=++-y xB .3)7()5(22=++-y x 或15)7()5(22=++-y x C .9)7()5(22=++-y xD .25)7()5(22=++-y x 或9)7()5(22=++-y x 6.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .107.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos g x x ω=的图象,则只要将()f x 的图象( )A . 向左平移12π个单位长度 B . 向右平移12π个单位长度 C . 向左平移6π个单位长度 D . 向右平移6π个单位长度8. 在正方体1111D C B A ABCD -中,M 和N 分别为11B A 和1BB 的中点,那么直线AM 和CN 所成的角的余弦值是( )A .3B .10C .35D .259.如图,在△ABC 中,090=∠ACB ,直线l 过点A 且垂直于ABC 平面,动点l P ∈,当点P 逐渐远离点A 时,PCB ∠的大小( ) A .变大 B .变小 C .不变 D .有时变大有时变小10.如图,在四棱锥中,底面ABCD 为正方形,且SA SB SC SD ===,其中,,E M N 分别是,,BC CD SC 的中点,动点P 在线段MN 上运动时,下列四个结论:S ABCD -①EP AC ⊥;②//EP BD ;③//EP 面SBD ;④EP ⊥面SAC ,其中恒成立的为( )A . ①③B . ③④C . ①④D . ②③11.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面. 如图,在棱长为1的正方体1111ABCD A B C D -中,点,E F 分别是棱111,B B B C 的中点,点G 是棱1CC 的中点,则过线段AG 且平行于平面1A EF 的截面的面积为( ) A .1B .98 C . 89D . 2 12. 在等腰直角ABC ∆中,,2,AB AC BC M ⊥=为BC 中点,N 为AC 中点,D 为BC 边上一个动点,ABD ∆沿AD 翻折使BD DC ⊥,点A 在面BCD 上的投影为点O ,当点D 在BC 上运动时,以下说法错误的是( )A. 线段NO 为定长B. ||[1,2)CO ∈C. 180AMO ADB ∠+∠>︒D. 点O 的轨迹是圆弧二、填空题:把答案填在相应题号后的横线上(本大题共5小题,每小题5分,共25分).13.若(2,1)p 在圆22(1)25x y -+=的直径AB 上,则直线AB 的方程是_______.14.已知ABC ∆中,角A 、B 、C 的对边分别为,,a b c 且1,45,2ABC a B S ∆=∠=︒=,则b =______.15.如图,在直三棱柱111C B A ABC -中,侧棱长为2,AC =BC =1,90=∠ACB ,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使DF C 平面⊥AB 11,则线段B 1F 的长为_____.16.在直三棱柱111ABC A B C -中,底面为等腰直角三角形, 2AB BC == ,11AA = , 若E 、F 、D 别是棱AB 、CB 、11A C 的中点,则下列三个说法:1B E FD ⊥①; ②三棱锥1A BCC -的外接球的表面积为9π;③三棱锥1B DEF -的体积为13; 其中正确的说法有__________.(把所有正确命题的序号填在答题卡上)三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 17、已知圆221C x y :+=与直线:30l x y m -+=相交于不同的A B 、两点,O 为坐标原点.(1)求实数m 的取值范围; (2)若3AB =,求实数m 的值.18、如图,四棱锥P ABCD -的底面ABCD 为菱形,PB PD =,E ,F 分别为AB 和PD 的中点.(1)求证:EF ∥平面PBC .FP(2)求证:BD ⊥平面PAC .19.记n S 为各项为正数的等比数列{}n a 的前n 项和,已知35318,216a S S =-=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令12331log log 22n n n b a a ++=g ,求{}n b 的前n 项和n T . 20.己知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且3cos 2sin a A c C+=. (I)求角A 的大小;(II)若5b c +=,且ABC ∆的面积为3,求a 的值.21.如图,四棱锥P ABCD -中,22,//,,AB AD BC BC AD AB AD PBD ===⊥∆为正三角形. 且23PA =.(Ⅰ)证明:平面PAB ⊥平面PBC ;(Ⅱ)若点P 到底面ABCD 的距离为2,E 是线段PD 上一点,且PB //平面ACE ,求四面体A CDE -的体积.22.如图1,在长方形ABCD 中,4,2,AB BC O ==为DC 的中点,E 为线段OC 上一动点.现将AED ∆沿AE 折起,形成四棱锥D ABCE -.图1 图2 图3⊥ (如图2).证明:BE⊥平面ADE;(Ⅰ)若E与O重合,且AD BD=,求t的取值(Ⅱ)若E不与O重合,且平面ABD⊥平面ABC (如图3),设DB t范围.南康中学2018-2019学年度第一学期高二第一次大考数学(理科)参考答案一、选择题:在每小题给出的四个选项中,只有一个是符合题目要求的(本大题共10小题,每小题5分,共50分)D C C C D D D A D C A B C10.A 【解析】分析:如图所示,连接AC 、BD 相交于点O ,连接EM ,EN .(1)由正四棱锥S ﹣ABCD ,可得SO ⊥底面ABCD ,AC ⊥BD ,进而得到SO ⊥AC .可得AC ⊥平面SBD .由已知E ,M ,N 分别是BC ,CD ,SC 的中点,利用三角形的中位线可得EM ∥BD ,MN ∥SD ,于是平面EMN ∥平面SBD ,进而得到AC ⊥平面EMN ,AC ⊥EP;(2)由异面直线的定义可知:EP 与BD 是异面直线,因此不可能EP ∥BD ;(3)由(1)可知:平面EMN ∥平面SBD ,可得EP ∥平面SBD ;(4)由(1)同理可得:EM ⊥平面SAC ,可用反证法证明:当P 与M 不重合时,EP 与平面SAC 不垂直.11.【解析】在 取BC 的中点M ,连结,根据题意,结合线面面面平行的性质,得到满足条件的截面为等腰梯形,由正方体的棱长为1,可求得该梯形的上底为,下底为,高为,利用梯形的面积公式可求得,故选B.12.【解析】由于平面,所以,所以同理,由(1)可知点轨迹为圆弧,长度最小值为,最大值为,所以C 选项错误.二、填空题:把答案填在相应题号后的横线上(本大题共5小题,每小题5分,共25分).13.x-y-1=0 14.5 15.2116.①②③ 16.【解析】根据题意画出如图所示的直三棱柱111ABC A B C -: 其中,底面为等腰直角三角形, 2AB BC == , 11AA =, E 、F 、D 别是棱AB 、CB 、11A C 的中点.对于①,取11A B 中点G ,连接EG ,BG 交1B E 于点O ,连接DG .∵E 为AB 中点, 2AB =, 11AA =∴四边形1BEGB 为正方形,则1BG B E ⊥在111A B C ∆中, D , G 分别为11A B , 11A C 的中点,则DG ∥11B C ,且1112DG B C =. ∵F 为BC 的中点,且BC ∥11B C ∴BF ∥DG 且BF DG = ∴四边形DFBG 为平行四边形∴DF ∥BG ∴1B E FD ⊥,故正确; 对于②,易得1BC ,则221459AB BC +=+=.∵22211819AC AC CC =+=+=∴22211AB BC AC +=,即12ABC π∠=∵12ACC π∠=∴三棱锥1A BCC -的外接球的球心在线段1AC 的中点处,则外接球的半径为32∴三棱锥1A BCC -的外接球的表面积为23492ππ⎛⎫⨯= ⎪⎝⎭,故正确;对于③,易得1B D =EF =在Rt DGE ∆中, 11112DG B C ==, 11EG AA ==,DE ==同理可得DF =,则三棱锥1B DEF -为正四面体,其体积为111323V =⨯=,故正确;三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).17、解析:(1)由2210x y y m ⎧+=⎪-+= 消去y得22410x m ++-=,----------2分由已知得,22)16(1)0m -->得240m -<,得实数m 的取值范围是(2,2)-;---5分(2)因为圆心(0,0)C到直线:0l y m -+=的距离为2m d ==, ----7分DP A BCEF GO所以2222=22144m AB r d m -=-=-由已知得24=3m -,解得1m =±.---10分18、【解析】解:(1)证明:取PC 中点为G ,∵在PCD △中,F 是PD 中点,G 是PC 中点,∴FG CD ∥,且12FG CD =,------------------2分又∵底面ABCD 是菱形, ∴AB CD ∥, ∵E 是AB 中点,∴BE CD ∥,且12BE CD =,∴BE FG ∥,且BE FG =,∴四边形BEFG 是平行四边形,∴EF BG ∥,--------------------------------4分又EF ⊄平面PBC ,BG ⊄平面PBC ,∴EF ∥平面PBC .--------------------------------6分 (2)证明:设AC BD O =I ,则O 是BD 中点, ∵底面ABCD 是菱形,∴BD AC ⊥,-------------------------8分 又∵PB PD =,O 是BD 中点,∴BD PO ⊥,-----------------------------10分 又AC PO O =I ,∴BD ⊥平面PAC .----------------------------12分 19、解析:(Ⅰ)=,,=或-4(舍去)------------------------3分故,,.-------------------------------6分(Ⅱ),-------------------9分故.-----------------------12分20.【解析】(Ⅰ)由正弦定理得,,∵,---------------2分∴,即.--------------------------------4分∵∴,∴∴.-------------------6分(Ⅱ)由:可得.∴,--------------------8分∵,∴由余弦定理得:,-----------10分∴.-----------------------------12分21.解析:(Ⅰ)证明:,且,,又为正三角形,所以,又,,所以,-------------------2分又,//,,--------------------------------4分,所以平面,--------------------------------5分又因为平面,所以平面平面.---------------------------6分(Ⅱ)如图,连接,交于点,因为//,且,所以,--------------------7分连接,因为//平面,所以//,则,---9分由(Ⅰ)点到平面的距离为2,所以点到平面的距离为,----------10分所以,即四面体的体积为.-----------------12分22.解析:(Ⅰ)由与重合,则有,--------------------------2分因为DEAD⊥,DI,所以BDEBD=DE⊥AD平面,----------------------4分,所以平面. --------------------6分(Ⅱ)如图,作于,作于,连接.由平面平面且可得平面,故,由可得平面,故在平面图形中,三点共线且.--------------------8分设,由,故,-------------------10分,所以, .---------------------12分。

九寨沟县高级中学2018-2019学年上学期高三数学10月月考试题

九寨沟县高级中学2018-2019学年上学期高三数学10月月考试题

九寨沟县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 执行如图的程序框图,则输出的s=( )A .B .﹣C .D .﹣2. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)3. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 4. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为455. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.6. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i7. 与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)8. 设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则的取值范围是( ) A .{|2}a a ≤ B .{|1}a a ≤ C .{|1}a a ≥ D .{|2}a a ≥ 9. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .10.向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .二、填空题11.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.12.多面体的三视图如图所示,则该多面体体积为(单位cm ) .13.设有一组圆C k:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是(写出所有真命题的代号).14.已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则的值为.15.函数f(x)=2a x+1﹣3(a>0,且a≠1)的图象经过的定点坐标是.16.已知tanβ=,tan(α﹣β)=,其中α,β均为锐角,则α=.三、解答题17.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]18.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.19.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试. (Ⅰ)若选出的4名同学是同一性别,求全为女生的概率; (Ⅱ)若设选出男生的人数为X ,求X 的分布列和EX .20.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.21.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.22.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的 形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.九寨沟县高级中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】解:由题意,模拟执行程序,可得α=12°,s=1s=cos12°,α=24°不满足条件α>180°,s=cos12°cos24°,α=48°,不满足条件α>180°,s=cos12°cos24°cos48°,α=96°,不满足条件α>180°,s=cos12°cos24°cos48°cos96°,α=192°,满足条件α>180°,退出循环,输出s=cos12°cos24°cos48°cos96°,α=192°,由于s=cos12°cos24°cos48°cos96°=﹣sin6°cos12°cos24°cos48°=﹣=﹣=﹣=﹣=﹣=﹣=﹣.故选:B.【点评】本题主要考查了循环结构、流程图的识别、条件框等算法框图的应用,考查诱导公式及二倍角的正弦函数公式在三角函数化简求值中的应用,此题的突破点是分子变形后给分子分母都乘以16cos6°以至于造成了一系列的连锁反应,属于中档题.2.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.3. 【答案】B 【解析】4. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 5. 【答案】C6. 【答案】B【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,由z=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],整理得a 2+b 2=2a+2(b ﹣1)i .则,解得.所以z=1+i .故选B .【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.7. 【答案】C【解析】解:对于C 中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C .【点评】本题考查了向量共线定理的应用,属于基础题.8. 【答案】D 【解析】试题分析:∵A B ⊆,∴2a ≥.故选D . 考点:集合的包含关系. 9. 【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 10.【答案】B【解析】解:如果水瓶形状是圆柱,V=πr 2h ,r 不变,V 是h 的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D 错;由已知函数图可以看出,随着高度h 的增加V 也增加,但随h 变大, 每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓, 其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A 、C 错. 故选:B .二、填空题11.【答案】A【解析】12.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.13.【答案】②④【解析】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.14.【答案】.【解析】解:已知数列1,a1,a2,9是等差数列,∴a1+a2 =1+9=10.数列1,b1,b2,b3,9是等比数列,∴=1×9,再由题意可得b2=1×q2>0 (q为等比数列的公比),∴b2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.15.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).16.【答案】.【解析】解:∵tanβ=,α,β均为锐角,∴tan(α﹣β)===,解得:tanα=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.三、解答题17.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

九寨沟县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

九寨沟县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

三、解答题
19.如图,已知椭圆 C: +y2=1,点 B 坐标为(0,﹣1) ,过点 B 的直线与椭圆 C 另外一个交点为 A,且线
段 AB 的中点 E 在直线 y=x 上 (Ⅰ)求直线 AB 的方程
第 2 页,共 16 页
(Ⅱ)若点 P 为椭圆 C 上异于 A,B 的任意一点,直线 AP,BP 分别交直线 y=x 于点 M,N,证明:OM•ON 为定值.
x 2 x 3
为增函数,对于 C,函数定义域为 x 0 ,不为 R ,对于 D,函数 y x 为偶函数,在 , 0 上单调递减, 在 0, 上单调递增,故选 B.
第 6 页,共 16 页
考点:1、函数的定义域;2、函数的单调性. 5. 【答案】D 【解析】解:∵函数 f(x)=(x﹣3)ex, ∴f′(x)=ex+(x﹣3)ex=(x﹣2)ex, 令 f′(x)>0, 即(x﹣2)ex>0, ∴x﹣2>0, 解得 x>2, ∴函数 f(x)的单调递增区间是(2,+∞). 故选:D. 【点评】 本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题, 是基础题目. 6. 【答案】C 【解析】解:从 30 件产品中随机抽取 6 件进行检验, 采用系统抽样的间隔为 30÷6=5, 只有选项 C 中编号间隔为 5, 故选:C. 7. 【答案】D 【解析】解:二项式(x+ )4 展开式的通项公式为 Tr+1= 令 4﹣2r=0,解得 r=2,∴展开式的常数项为 6=a5, ∴a3a7=a52=36, 故选:D. 【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 8. 【答案】C 【解析】函数 f(x)=sin(2x+θ)(﹣ 因为两个函数都经过 P(0, 所以 sinθ= 又因为﹣ 所以 θ= , , ), <θ< )向右平移 φ 个单位,得到 g(x)=sin(2x+θ﹣2φ), •x4﹣2r,

九寨沟县高级中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县高级中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014C .2015D .20161111]2. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题 3. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .4. 在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形5. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.6. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非7. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)8. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.089. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.10.已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A .B .C .D .11.已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65B C .5 D12.已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.二、填空题13.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .14.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .15.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .16.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 . 17.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)18.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21x f x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤20.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,且AD=2CD=2,AA 1=2,∠A 1AD=.若O为AD 的中点,且CD ⊥A 1O (Ⅰ)求证:A 1O ⊥平面ABCD ;(Ⅱ)线段BC 上是否存在一点P ,使得二面角D ﹣A 1A ﹣P 为?若存在,求出BP 的长;不存在,说明理由.21.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.22.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.23.已知函数f(x)=的定义域为A,集合B是不等式x2﹣(2a+1)x+a2+a>0的解集.(Ⅰ)求A,B;(Ⅱ)若A∪B=B,求实数a的取值范围.24.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.九寨沟县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)2. 【答案】C 【解析】]试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;()()p q ⌝∨⌝是假命题.故选C.考点:命题真假判断. 3. 【答案】B【解析】解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, 则B (2,0,0),E (0,0,1),A (0,0,0),C (2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE 与AC 所成角为θ,则cos θ===.故选:B .4. 【答案】A 【解析】解:∵, 又∵cosC=,∴=,整理可得:b 2=c 2,∴解得:b=c .即三角形一定为等腰三角形. 故选:A .5. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 6. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C7. 【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a <﹣2; 综上所述,实数a 的取值范围是(﹣∞,﹣2); 故选:D .8. 【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D .【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.9. 【答案】D第Ⅱ卷(共90分)10.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.11.【答案】B考点:双曲线的性质. 12.【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 二、填空题13.【答案】.【解析】解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),∴当n ≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.14.【答案】±(7﹣i).【解析】解:设z=a+bi(a,b∈R),∵(1+3i)z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===,|ω|=,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i).故答案为±(7﹣i).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.15.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.16.【答案】[﹣1,﹣).【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.17.【答案】(0,2)【解析】解:令x=0,得y=a0+1=2∴函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)故答案为:(0,2).【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点18.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.三、解答题19.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:试题解析:(1)()()()22211x xf x e x x e x +='=++,()0f x ∴'≥,()()21xf x x ea ∴=+-在(),-∞+∞上为增函数.1a >,()010f a ∴=-<,又()1fa a =-=-,10,1a ->∴>,即0f >,由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f⋅<,()f x ∴在(上仅有一个零点。

九寨沟县一中2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县一中2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .42. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .3. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )13 (D ) 12- 4. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .5. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一6. 直角梯形OABC 中,,1,2AB OC AB OC BC === ,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )7. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥18. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB D 9. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 10.下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=11.若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]12.在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .2二、填空题13.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .14.设函数,若用表示不超过实数m的最大整数,则函数的值域为.15.若函数f(x),g(x)满足:∀x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=a x与g(x)=log a x(a>0,且a≠1)关于y=x分离,则a的取值范围是.16.若等比数列{a n}的前n项和为S n,且,则=.17.已知函数f(x)=,若f(f(0))=4a,则实数a=.18.log 3+lg25+lg4﹣7﹣(﹣9.8)0=.三、解答题19.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)20.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.21.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .22.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.23.对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.若集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω. 如当n=2时,E 2={1,2},P 2=.∀x 1,x 2∈P 2,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,所以P 2具有性质Ω.(Ⅰ)写出集合P 3,P 5中的元素个数,并判断P 3是否具有性质Ω. (Ⅱ)证明:不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B . (Ⅲ)若存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B ,求n 的最大值.24. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.九寨沟县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:由题意,S k+2﹣S k =,即3×2k =48,2k=16,∴k=4. 故选:D .【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.2. 【答案】C【解析】解:由于q=2,∴∴;故选:C .3. 【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.4. 【答案】D【解析】解:设F 2为椭圆的右焦点由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.又因为F 1F 2=2c ,所以∠PF 1F 2=30°,所以.根据椭圆的定义可得|PF 1|+|PF 2|=2a ,所以|PF 2|=2a ﹣c .所以2a ﹣c=,所以e=.故选D .【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.5. 【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C .【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.6. 【答案】C 【解析】试题分析:由题意得,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时, ()112(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符合,故选C.考点:分段函数的解析式与图象. 7. 【答案】D【解析】解:命题是特称命题,则命题的否定是∀x ∈R ,都有x ≤﹣1或x ≥1,故选:D .【点评】本题主要考查含有量词的命题的否定,比较基础.8. 【答案】C 【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+= ⎪⎝⎭.9. 【答案】A 【解析】考点:斜二测画法. 10.【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确.故选:C .11.【答案】D【解析】解:∵函数f (x )=﹣x 2+2ax 的对称轴为x=a ,开口向下,∴单调间区间为[a ,+∞)又∵f (x )在区间[1,2]上是减函数,∴a ≤1∵函数g (x )=在区间(﹣∞,﹣a )和(﹣a ,+∞)上均为减函数,∵g (x )=在区间[1,2]上是减函数,∴﹣a >2,或﹣a <1, 即a <﹣2,或a >﹣1,综上得a ∈(﹣∞,﹣2)∪(﹣1,1],故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.12.【答案】C【解析】因为角、、依次成等差数列,所以由余弦定理知,即,解得所以,故选C答案:C二、填空题13.【答案】①③④.【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.14.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.15.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.16.【答案】.【解析】解:∵等比数列{a n}的前n项和为S n,且,∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,∴(S4﹣S2)2=S2(S6﹣S4),∴(5S2﹣S2)2=S2(S6﹣5S2),解得S6=21S2,∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.17.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.18.【答案】.【解析】解:原式=+lg100﹣2﹣1=+2﹣2﹣1=,故选:【点评】本题考查了对数的运算性质,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,,令f′(x)=0,解得.x f x f x所以函数f(x)在区间上为单调递增,区间上为单调递减.所以函数f(x)在区间(0,+∞)上的最大值为f()==.g′(x)=,令g′(x)=0,解得x=n.x g′x g x(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,∴≥,即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,当n=1时,成立,当n≥2时,≥lnn,即≥0,设h(n)=,n≥2,则h(n)是减函数,∴继续验证,当n=2时,3﹣ln2>0,当n=3时,2﹣ln3>0,当n=4时, ,当n=5时,﹣ln5<﹣1.6<0, 则n 的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.20.【答案】【解析】解:(1)…令∴f (x )的单增区间为(﹣∞,﹣2)和(0,+∞); 单减区间为(﹣2,0).…(2)令∴x=0和x=﹣2,…∴∴f (x )∈[0,2e 2]…∴m <0…21.【答案】(1)详见解析;(2)详见解析. 【解析】试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.22.【答案】【解析】【知识点】等差数列【试题解析】(Ⅰ)由题意,得解得或(舍).所以.(Ⅱ)由(Ⅰ),得.所以.所以只需求出的最大值.由(Ⅰ),得.因为,所以当,或时,取到最大值.所以的最大值为.23.【答案】【解析】解:(Ⅰ)∵对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.∴集合P3,P5中的元素个数分别为9,23,∵集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω,∴P3不具有性质Ω.…..证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}.因为1∈E15,所以1∈A∪B,不妨设1∈A.因为1+3=22,所以3∉A,3∈B.同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾.所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.24.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=.所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分。

九寨沟县实验中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县实验中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题2. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .3. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0 C .1D .24. 下列函数中,在区间(0,+∞)上为增函数的是( )A .y=x ﹣1B .y=()xC .y=x+D .y=ln (x+1)5. 函数f (x )=log 2(3x ﹣1)的定义域为( )A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)6. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.7. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .48. 给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1B .2C .3D .49. 若复数z 满足=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i10.如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④11.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .312.已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð二、填空题13.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.已知函数f (x )=,若f (f (0))=4a ,则实数a= .16.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .17.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.三、解答题19.已知椭圆G:=1(a >b >0)的离心率为,右焦点为(2,0),斜率为1的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (﹣3,2). (Ⅰ)求椭圆G 的方程; (Ⅱ)求△PAB 的面积.20.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k﹣|≤,求k 的值.21.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.;(1)证明:AB PC(2)证明:平面PAB平面FGH.22.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.23.(本小题满分10分)已知曲线22:149x yC+=,直线2,:22,x tly t=+⎧⎨=-⎩(为参数).(1)写出曲线C的参数方程,直线的普通方程;(2)过曲线C上任意一点P作与夹角为30的直线,交于点A,求||PA的最大值与最小值.24.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.九寨沟县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,因此不正确;B.命题“∃x0∈R,x+x0﹣1<0”的否定是“∀x∈R,x2+x﹣1≥0”,因此不正确;C.命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D.命题“p或q”为真命题,则p,q中至少有一个为真命题,正确.故选:D.2.【答案】A【解析】进行简单的合情推理.【专题】规律型;探究型.【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a1×103+a2×102+a3×10+a4),括号内表示的10进制数,其最大值为9999;从大到小排列,第2013个数为9999﹣2013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A.【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.3.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.4.【答案】D【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.5. 【答案】D【解析】解:要使函数有意义, 则3x ﹣1>0, 即3x >1, ∴x >0. 即函数的定义域为(0,+∞),故选:D .【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.6. 【答案】C.【解析】由题意得,[11]A =-,,(,0]B =-∞,∴(0,1]U AC B =,故选C.7. 【答案】A【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线, ∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,∴两直线的距离为=,∴AB 的中点M 到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.8. 【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=,正确;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④不正确. 故选:B .【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X ,Y 的关系,属于基础题.9.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.10.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D11.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.12.【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A .二、填空题13.【答案】()0,1【解析】14.【答案】BC 【解析】【分析】验证发现,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合, A .M 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出, B .存在定点P 不在M 中的任一条直线上,观察直线的方程即可得到点的坐标.C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,由直线系的几何意义可判断,D .M 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出. 【解答】解:因为点(0,2)到直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合,A .由于直线系表示圆x 2+(y ﹣2)2=1的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点(0,2)不可能,故A 不正确;B .存在定点P 不在M 中的任一条直线上,观察知点M (0,2)即符合条件,故B 正确;C .由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,故C 正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.15.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.16.【答案】4【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.17.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 18.【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1xxe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+, 当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点, 当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,).点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题19.【答案】【解析】解:(Ⅰ)由已知得,c=,,解得a=,又b 2=a 2﹣c 2=4,所以椭圆G的方程为.(Ⅱ)设直线l 的方程为y=x+m ,由得4x 2+6mx+3m 2﹣12=0.①设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 的中点为E (x 0,y 0), 则x 0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.20.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a2=2a,则;当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,b n==.…(2)令,则n≤k+,又n∈N*,故当n≤k时,,当n≥k+1时,.…|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|=+()+…+()…=(k+1+…+b2k)﹣(b1+…+b k)=[+k]﹣[]=,由,得2k 2﹣6k+3≤0,解得,…又k ≥2,且k ∈N *,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.21.【答案】(1)证明见解析;(2)证明见解析. 【解析】考点:平面与平面平行的判定;空间中直线与直线的位置关系. 22.【答案】【解析】解:(1)∵EP 与⊙O 相切于点A ,∴∠ACB=∠PAB=25°,又BC 是⊙O 的直径,∴∠ABC=65°,∵四边形ABCD 内接于⊙O ,∴∠ABC+∠D=180°, ∴∠D=115°.证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB ,∠D=∠PBA ,∴△ADC ∽△PBA ,∴,又DA=BA ,∴DA 2=DC •BP .23.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2.【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=+-.则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取.当sin()1θα+=时,||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程. 24.【答案】【解析】解:(Ⅰ)由题意,因为sinB=,所以cosB=…又cos ∠ADC=﹣,所以sin ∠ADC=…所以sin ∠BAD=sin (∠ADC ﹣∠B )=×﹣(﹣)×=…(Ⅱ)在△ABD中,由正弦定理,得,解得BD=…故BC=15,从而在△ADC中,由余弦定理,得AC2=9+225﹣2×3×15×(﹣)=,所以AC=…【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题.。

九寨沟县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.与椭圆有公共焦点,且离心率的双曲线方程为()A.B.C.D.2.幂函数y=f(x)的图象经过点(﹣2,﹣),则满足f(x)=27的x的值是()A.B.﹣C.3 D.﹣33.若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是()A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)4.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a,b不能被5整除 D.a,b有1个不能被5整除5.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f()﹣f(x)>0的解集为()A.(0,1) B.(1,2) C.(1,+∞)D.(2,+∞)6.函数y=sin2x+cos2x的图象,可由函数y=sin2x﹣cos2x的图象()A.向左平移个单位得到B.向右平移个单位得到C.向左平移个单位得到D.向左右平移个单位得到7.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A.B.y=x2C.y=﹣x|x| D.y=x﹣28.设数列{a n}的前n项和为S n,若S n=n2+2n(n∈N*),则++…+=()A.B.C.D.9.以的焦点为顶点,顶点为焦点的椭圆方程为()A.B.C.D.10.已知命题p:存在x0>0,使2<1,则¬p是()A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<1C.存在x0>0,使2≥1 D.存在x0≤0,使2<111.是z的共轭复数,若z+=2,(z﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i12.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等()A.B.C.D.二、填空题13.已知线性回归方程=9,则b=.14.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.,对任意的m∈[﹣2,2],f(mx 15.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=3x x﹣2)+f(x)<0恒成立,则x的取值范围为_____.16.已知数列的前项和是, 则数列的通项__________17.用“<”或“>”号填空:30.830.7.18.一质点从正四面体A﹣BCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,…对于N∈n*,第3n次运动回到点A,第3n+1次运动经过的棱与3n﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为.三、解答题19.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.(Ⅰ)求证:BC⊥平面A1AC;(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.20.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I)求C的值;(Ⅱ)若c=2a,b=2,求△ABC的面积.21.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5A B 两班中各随机抽5名学生进行抽查,其成绩记录如下:x <y ,且A 和B 两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B 班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率; (Ⅱ)从被抽查的10名任取3名,X 表示抽取的学生中获得荣誉证书的人数,求X 的期望.22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.23.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图(1)求该几何体的体积V;111](2)求该几何体的表面积S.24.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.九寨沟县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.2.【答案】A【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.故选A.3.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.4.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.5.【答案】C【解析】解:令F(x)=,(x>0),则F′(x)=,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)为定义域上的减函数,由不等式x2f()﹣f(x)>0,得:>,∴<x,∴x>1,故选:C.6.【答案】C【解析】解:y=sin2x+cos2x=sin(2x+),y=sin2x﹣cos2x=sin(2x﹣)=sin[2(x﹣)+)],∴由函数y=sin2x﹣cos2x的图象向左平移个单位得到y=sin(2x+),故选:C.【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.7.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.8.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.9.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.10.【答案】A【解析】解:∵命题p:存在x0>0,使2<1为特称命题,∴¬p为全称命题,即对任意x>0,都有2x≥1.故选:A11.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.12.【答案】C【解析】解:∵M、G分别是BC、CD的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.二、填空题13.【答案】4.【解析】解:将代入线性回归方程可得9=1+2b,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.14.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.15.【答案】2 2,3⎛⎫-⎪⎝⎭【解析】16.【答案】【解析】当时,当时,,两式相减得:令得,所以答案:17.【答案】>【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.18.【答案】D.【解析】解:根据题意,质点运动的轨迹为:A→B→C→A→D→B→A→C→D→A接着是→B→C→A→D→B→A→C→D→A…周期为9.∵质点经过2015次运动,2015=223×9+8,∴质点到达点D.故答案为:D.【点评】本题考查了函数的周期性,本题难度不大,属于基础题.三、解答题19.【答案】【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点∴BC⊥AC …又圆柱OO1中,AA1⊥底面圆O,∴AA1⊥BC,即BC⊥AA1…而AA1∩AC=A∴BC⊥平面A1AC …(Ⅱ)取BC中点E,连结DE、O1E,∵D为AC的中点∴△ABC中,DE∥AB,且DE=AB …又圆柱OO1中,A1O1∥AB,且∴DE∥A1O1,DE=A1O1∴A1DEO1为平行四边形…∴A1D∥EO1…而A1D⊄平面O1BC,EO1⊂平面O1BC∴A1D∥平面O1BC …【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.20.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a,b=2,C=,∴由余弦定理可得c2=a2+b2﹣2abcosC,∴4a2=a2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC的面积S=absinC==21.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),∵,∴x+y=17,①∵,=,∵,得(x﹣8)2+(y﹣8)2=1,②由①②解得或,∵x<y,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,∴P(C)=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X所有可能的取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.22.【答案】23.【答案】(12)6 .【解析】(2)由三视图可知,该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDDC 均为矩形,2(11112)6S =⨯++⨯=+ 1考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 24.【答案】【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有10÷0.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为: 40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:×=2.9;(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只有一个科目得分为A,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,则P(B)=.【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.。

九寨沟县第三中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县第三中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知随机变量X服从正态分布N(2,σ2),P(0<X<4)=0.8,则P(X>4)的值等于()A.0.1 B.0.2 C.0.4 D.0.62.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?3.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣2)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣2,0)∪(2,+∞)D.(﹣2,0)∪(0,2)4.下列语句所表示的事件不具有相关关系的是()A.瑞雪兆丰年B.名师出高徒C.吸烟有害健康D.喜鹊叫喜5.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.(﹣∞,﹣2)B. D.上是减函数,那么b+c()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣6.已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(﹣2,0),则双曲线C的渐近线方程是()A.y=±x B.y=±C.xy=±2x D.y=±x7.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则△POF的面积为()A .1B .C .D .29. 与椭圆有公共焦点,且离心率的双曲线方程为( )A .B .C .D .10.已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .2 11.设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( )A .{x|x <﹣2或x >4}B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4} 12.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( ) A .B .C .D .二、填空题13.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .14.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .15.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.17.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sinα<sinβ其中正确命题的序号是.18.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.三、解答题19.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.20.(本小题满分10分)直线l的极坐标方程为θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲线C1的参数方程为⎩⎪⎨⎪⎧x =cos t y =1+sin t(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.21.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X 表示体重超过60kg 的学生人数,求X 的数学期望与方差.22.如图,三棱柱ABC ﹣A 1B 1C 1中,AB=AC=AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1C ;(2)求二面角C 1﹣AB ﹣C 的余弦值.23.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于点D ,过B 作O 的切线交AD 的延长线于点E . (Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.24.已知等差数列{a n },等比数列{b n }满足:a 1=b 1=1,a 2=b 2,2a 3﹣b 3=1.(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =a n b n ,求数列{c n }的前n 项和S n .九寨沟县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.2.【答案】B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=++满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.故选:B.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.3.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g (﹣x )====g (x ),∴函数g (x )为定义域上的偶函数, ∴x <0时,函数g (x )是增函数,又∵g (﹣2)==0=g (2),∴x >0时,由f (x )>0,得:g (x )<g (2),解得:0<x <2, x <0时,由f (x )>0,得:g (x )>g (﹣2),解得:x <﹣2, ∴f (x )>0成立的x 的取值范围是:(﹣∞,﹣2)∪(0,2). 故选:A .4. 【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系, 吸烟有害健康也具有相关关系,故选D .【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.5. 【答案】B【解析】解:由f (x )在上是减函数,知 f ′(x )=3x 2+2bx+c ≤0,x ∈,则⇒15+2b+2c ≤0⇒b+c ≤﹣.故选B .6. 【答案】A【解析】解:抛物线y 2=8x 的焦点(2,0),双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,c=2,双曲线C 过点P (﹣2,0),可得a=2,所以b=2.双曲线C 的渐近线方程是y=±x .故选:A .【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.7.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.8.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x|=2,P∴S△POF=|0F|•|x P|=.故选:C.9.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.10.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.11.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.12.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。

九寨沟县第一中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县第一中学2018-2019学年上学期高二数学12月月考试题含解析

九寨沟县第一中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .2. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .33. 已知a 为常数,则使得成立的一个充分而不必要条件是()A .a >0B .a <0C .a >eD .a <e4. 在中,,那么一定是( )ABC ∆22tan sin tan sin A B B A =AA ABC ∆A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形5. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3B4C5D66. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( )A .﹣2B .﹣4C .0D .47. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A .36种B .18种C .27种D .24种8. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=()A .2B .4C .8D .169. 已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )A .10个B .9个C .8个D .1个10.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A. B.11015C. D.3102511.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}12.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题13.1785与840的最大约数为 .14.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.15.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.16.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .17.不等式的解为 .18.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .三、解答题19.已知函数f (x )=xlnx+ax (a ∈R ).(Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986) 20.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。

九寨沟县第一中学2018-2019学年上学期高三数学10月月考试题

九寨沟县第一中学2018-2019学年上学期高三数学10月月考试题

九寨沟县第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D .2. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .3. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y=2x 3B .y=|x|+1C .y=﹣x 2+4D .y=2﹣|x|4. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形5. 设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111]6. 双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .7. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 8. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 9. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(10.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.11.集合{}{}2|ln 0,|9A x x B x x =≥=<,则AB =( )A .()1,3B .[)1,3C .[]1,+∞D .[],3e 12.已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.14.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .15.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 . 16.不等式()2110ax a x +++≥恒成立,则实数的值是__________.三、解答题17.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.18.如图,椭圆C 1:的离心率为,x 轴被曲线C 2:y=x 2﹣b 截得的线段长等于椭圆C 1的短轴长.C 2与y 轴的交点为M ,过点M 的两条互相垂直的直线l 1,l 2分别交抛物线于A 、B 两点,交椭圆于D 、E 两点, (Ⅰ)求C 1、C 2的方程;(Ⅱ)记△MAB ,△MDE 的面积分别为S 1、S 2,若,求直线AB 的方程.19.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.20.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .21.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)22.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九寨沟县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c2. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <03. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .94. 在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .55. 设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f6. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0)7. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是( )A .a >0B .﹣1<a <0C .a >1D .0<a <18. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥9. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A. B. C. D.10.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N11.集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( ) A .{x|x <1} B .{x|﹣1≤x ≤2} C .{x|﹣1≤x ≤1} D .{x|﹣1≤x <1}12.已知函数f (x )=Asin (ωx﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位二、填空题13.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .14.已知函数,则__________;的最小值为__________.15.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 16.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .17.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单 位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.18.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.三、解答题19.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.20.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.21.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.22.已知数列{a n}中,a1=1,且a n+a n+1=2n,(1)求数列{a n}的通项公式;(2)若数列{a n}的前n项和S n,求S2n.23.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.24.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.九寨沟县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a<c<b.故选:A.2.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.3.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.4.【答案】B【解析】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.5.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B6.【答案】A【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,则函数f(x)过定点(1,5).故选A.7.【答案】A【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)∴f′(x)≤0,x∈(,)恒成立即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立∵1﹣3x2≥0成立∴a>0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.8.【答案】C【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 9. 【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.10.【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6}, ∴M ∪N={1,2,3,6,7,8}, M ∩N={3};∁I M ∪∁I N={1,2,4,5,6,7,8}; ∁I M ∩∁I N={2,7,8},故选:D .11.【答案】D【解析】解:A ∩B={x|﹣1≤x ≤2}∩{x|x <1}={x|﹣1≤x ≤2,且x <1}={x|﹣1≤x <1}. 故选D .【点评】本题考查了交集,关键是理解交集的定义及会使用数轴求其公共部分.12.【答案】 A【解析】解:∵△EFG 是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f (x )=Asin ωx=sin(x﹣),g (x )=sin x ,由于f (x )=sin(x﹣)=sin[(x﹣)],故为了得到g (x )=Asin ωx 的图象,只需将f (x)的图象向左平移个长度单位. 故选:A .【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.二、填空题13.【解析】7sinsin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭=,sin cos 733sin 12ααπ-∴==,故答案为3.考点:1、同角三角函数之间的关系;2、两角和的正弦公式. 14.【答案】【解析】【知识点】分段函数,抽象函数与复合函数 【试题解析】当时,当时,故的最小值为故答案为:15.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。

相关文档
最新文档