综合练习:相似三角形的性质与判定

合集下载

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学资料一、相似三角形的性质和判定综合【知识探索】1.(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

(2)直角三角形相似的判定方法①以上各种判定方法均适用②垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

【错题精练】例1.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训定有()A. △ADE∽△ECFB. △ECF∽△AEFC. △ADE∽△AEFD. △AEF∽△ABF【解答】解:在矩形ABCD中,∵∠D=∠C=90°,∠AEF=90°,∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.故选:A.【答案】A例2.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于()A. sinαB. cosαC. sin2αD. cos2α【答案】D例3.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,第2页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√3例4.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,第3页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5)=10+6√5.故答案为10+6√5【答案】10+6√5例5.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=______.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE=√22+12=√5,∵AO⊥DE,∴12×DE×AO=12×AE×AD,∴AO=2√55.故答案为2√55.【答案】2√55例6.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.第4页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【答案】证明:(1)∵△ABC是等腰直角三角形,∴∠B=45°,∴∠1+∠2=135°又∵△DEF是等腰直角三角形,∴∠3=45°∴∠1+∠4=135°∴∠2=∠4,∵∠B=∠C=45°,∴△BEM∽△CNE;(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE,又∵BE=EC,∴ECCN =EMNE,∴ECEM =CNNE,又∵∠ECN=∠MEN=45°,∴△ECN∽△MEN.例7.如图,△ABC内接于⊙O,AD是边BC上的高,AE是⊙O的直径,连BE.(1)求证:△ABE与△ADC相似;(2)若AB=2BE=4DC=8,求△ADC的面积.【答案】第5页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例8.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB•BE=BC•BD;(2)若AB=26,CD=24,求sin∠CBD.【答案】(1)证明:连接AD,∵AB是直径,∴∠ADB=90°,∵BE⊥CD∴∠ADB=∠CEB∵∠A=∠C∴△CBE∽△ABD∴ABBC =BD BE∴AB•BE=BC•BD;(2)解:连接DO并延长交⊙O于点F,∵DF是直径,∴∠FCD=90°∴∠F=∠CBD AB=DF=26∴CD=24∴sin∠CBD=sin∠F=CDDF =2426=1213【举一反三】第6页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页 共23页 自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训1.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则S △ABE :S △ECF 等于( )A. 1:2B. 4:1C. 2:1D. 1:4【答案】B2.矩形ABCD 中,AD=2AB=2√2,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME=α(0°<α<90°),有下列结论:①BM=CN ;②AM+CN=√2;③S △EMN =1sin 2α,其中正确的是( )A. ①B. ②③C. ①③D. ①②③【解答】解:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,{∠AEM =∠FENAE =EF ∠MAE =∠NFE,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN ,故①正确;∴CF=AM+CN=12BC=√2,当点M 在AB 的延长线上时,AM-CN=√2,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=AEEM,∴EM=√2sinα,∴S△EMN=12EM2=1sin2α,故③正确,故选:C.【答案】C3.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为.【答案】2√34.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.【答案】(1)证明:∵DC2=CE•CA,∴DCCE =CADC,而∠ACD=∠DCE,第8页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=r6√2,∴r=4,即⊙O的半径为4.5.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.第9页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5-3=2,由(1)得:△ABE∽△ECD,∴ABBE =ECCD,∴43=2CD,∴CD=32;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.6.已知,正方形DEFG内接于△ABC中,且点E、F在BC上,点D,G分别在AB,AC上.第10页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)如图①,若△ABC是直角三角形,∠A=90°,AB=4,AC=3,求正方形的边长;(2)如图②,若S△ADG=1,S△BDE=3,S△FCG=1,求正方形的边长.【答案】解:(1)设正方形DEFG的边长是x,∵△ABC是直角三角形,∠A=90°,AB=4,AC=3,∴由勾股定理得:BC=5,过A作AM⊥BC于M,交DG于N,由三角形面积公式得:12AB×AC=12BC×AM,∵AB=4,AC=3,BC=5,∴AM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DG∥BC,∴△ADG∽△ABC,∴DGBC =AN AM,∴x5=2.4−x2.4,x=6037,即正方形DEFG的边长是6037;(2)过A作AM⊥BC于M,交DG于N,设正方形DEFG的边长是a,AN=b,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=a,DG∥BC,∵S△ADG=1,S△BDE=3,S△FCG=1,∴12ab=1,12BE•a=3,12CF•a=1,∴BE=3b,CF=b,∴S△ADG+S△BED+S CFG=12ab+32ab+12ab=1+3+1=5,∴ab=2,∴b=2a①,=1(BE+EF+CF)×(AN+MN)-(S△ADG+S△BDE+S△CFG)2(a+4b)(a+b)-5=a2,=12∴a=2b②,由①②得:a=2,即正方形的边长是2.7.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=√BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,,∴x=53∴5≤CF≤3.≤CF≤3.故答案为:538.如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C 除外),AF与DC的延长线相交于点M.(1)求证:△AFD∽△CFM;(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.【答案】1.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A. ∠1>∠2B. ∠1<∠2C. ∠1=∠2D. 无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【答案】C2.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.5【答案】A3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1=S2B. S1>S2C. S1<S2D. 3S1=2S2S矩形AEFC,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=12故选:A.【答案】A4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.=FCDF=3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=12×BG×AB=20.5.如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为______.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,6.已知,如图,在圆O中,AB=CD。

相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题(附答案)

相似三⾓形的判定与性质练习题(附答案)相似三⾓形的判定与性质练习题⼀、单选题1.如果两个相似三⾓形的相似⽐是1:2, 那么这两个相似三⾓形的⾯积⽐是( ) A.2:1B. 1:2C.1:2D.1:42.如图,点D 是△ABC 的边AB 上的⼀点,过点D 作BC 的平⾏线交AC 于点E,连接BE,过点D 作BE 的平⾏线交AC 于点F,则下列结论错误的是( )A.AD AEBD EC =B. AF DF AE BE =C. AE AF EC FE =D. DE AF BC FE= 3.下列四条线段中,不能组成⽐例线段的是() A.3,6,2,4a b c d ==== B.1,2,3,6a b c d ====C.4,6,5,10a b c d ====D.2,5,23,15a b c d ====4.如图,在ABC ?中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ~△△ ( )A. AED B ∠=∠B. ADE C ∠=∠C.AD ACAE AB=D.AD AEAB AC=5.如图27-4-4,在四边形ABCD 中,BD 平分,90,ABC BAD BDC E ∠∠=∠=°为BC 的中点,AE 与BD 相交于点F.若4,30BC CBD =∠=°,则DF 的长为( )A.235B.233C.334D.4356.如图,在中,E是边AD的中点,EC交对⾓线BD于点F,则:EF FC等于( )A.3:2B.3:1C.1:1D.1:27.如图,点A,B,C,D的坐标分别是(1,7),(11),,(41),,(61),,以C,D,E为顶点的三⾓形与△ABC相似,则点E的坐标不可能是()A.(60),B.(63),C.(65),D.(42),8.如图,在正⽅形⽹格上,若使△ABC∽△PBD,则点P应在处( )A.P1B.P2C.P3D.P49.如图所⽰,在平⾏四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.如图,在等边三⾓形ABC 中,D 、E 分别在AC 、AB 上,且AD ︰AC=1︰3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD11.如图所⽰,四边形ABCD 是正⽅形,E 是CD 的中点,P 是BC 边上的⼀点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P 是BC 的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP 的有( )A.4个B.3个C.2个D.1个 12.如图,在ABC △中,CB CA =,90ACB ∠?=,点D 在边BC 上(与,B C 不重合),四边形ADEF 为正⽅形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:AC FG =;四边形1:2FAB 四边形CBFG S :S =△③ABC ABF ∠=∠;④2AD FQ AC =,其中正确结论有()A.1个B.2个C.3个D.4个13.如图,点A 在线段BD 上.在BD 的同侧作等腰Rt ABC △和等腰Rt ADE △,CD 与BE ,AE 分别交于点,P M .对于下列结论:① BAE CAD △△;②MP MD MA ME ?=?;③22CB CP CM =?.其中正确的是( )A.①②③B.①C.①②D.②③14.如图,在平⾏四边形ABCD 中, E 为CD 上⼀点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ??=,则:?DE EC = ( )A. 2:3B. 2:5C. 3:5D. 3?:?2 ⼆、证明题15.如图,已知,,B C E 三点在同⼀条直线上,ABC △与DCE △都是等边三⾓形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F ,连接GF .求证:(1)ACE BCD ?△△;(2)AG AFGC FE=. 16.如图,在等边三⾓形ABC 中,点P 是BC 边上任意⼀点,AP 的垂直平分线分别交,AB AC 于点,M N .求证:BP CP BM CN ?=?.17.如图,D BC 已知是边上的中点,且AD AC =,DE BC ⊥,DE BA E 与相交于点,EC AD F 与相交于点.(1)求证:ABCFCD △△;(2)若5FCD S =△,10BC =,求DE 的长18.如图,已知AD 平分BAC ∠, AD 的垂直平分线EP 交BC 的延长线于点P . 求证:2.PD PB PC =?19.如图,//AB FC ,D 是AB 上⼀点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G(1)求证:ADE CFE ?△△;(2)若2GB =,4BC =,1BD =,求AB 的长.20.如图,在ABCD 中,,AM BC AN CD ⊥⊥,垂⾜分别为,M N .求证:(1)AMB AND △△;(2)AM MNAB AC=. 三、解答题21.如图,在4x3的正⽅形⽅格中,ABC △和DEC △的顶点都在边长为1的⼩正⽅形的顶点上.(1) 填空:ABC ∠= ,BC = ; (2) 判断ABC △和DEC △是否相似,并证明你的结论.22.如图,在平⾯直⾓坐标系中,已知OA=12厘⽶,OB=6厘⽶,点P 从点O 开始沿OA 边向点A 以1厘⽶/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘⽶/秒的速度移动.如果P,Q 同时出发,⽤t(秒)表⽰移动的时间(0≤t≤6),那么1.设△POQ 的⾯积为y,求y 关于t 的函数关系式;2.当t 为何值时,△POQ 与△AOB 相似.23.如图,已知矩形ABCD 的⼀条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA △△;(2)若OCP △与PDA △的⾯积⽐为1:4,求边AB 的长.24.如图,在平⾯直⾓坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上⼀动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标.25.如图,在矩形ABCD 中,12AB = cm ,6BC = cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P ,Q 同时出发,⽤()t s 表⽰移动的时间(06t ≤≤),那么:(1)当t 为何值时,QAP △为等腰直⾓三⾓形?(2)对四边形QAPC 的⾯积,提出⼀个与计算结果有关的结论(3)当t 为何值时,以点Q ,A ,P 为顶点的三⾓形与ABC △相似?四、填空题26.如图,在直⾓梯形ABCD 中, 90ABC ∠=,//AD BC ,4AD =,5AB =,6BC =,点P 是AB 上⼀个动点,当PC PD +的和最⼩时, PB 的长为__________.27.如图,若AB∥CD,则△__________∽△__________,__________=__________=AOCO.28.如图,在等边三⾓形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且90ADF BED CFE ∠=∠=∠=?,则DEF ?与ABC ?的⾯积之⽐为__________29.已知578a b c==,且329a b c -+=,则243a b c +-的值为 . 30.如图,已知在Rt ABC △中,5,3AB BC ==,在线段AB 上取⼀点D ,作DE AB ⊥交AC 于E ,将ADE △沿DE 析叠,设点A 落在线段BD 上的对应点为11,A DA 的中点为,F 若1FEA FBE △△,则AD= .31.已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为__________.32.如图,正三⾓形ABC 的边长为2,以BC 边上的⾼1AB 为边作正三⾓形11AB C ,ABC △与1ABC △公共部分的⾯积记为1S ,再以正三⾓形11AB C 的边1C 上的⾼2AB 为边作正三⾓形22AB C ,11AB C △与22AB C △公共部分的⾯积记为2S ,……,以此类推,则n S = .(⽤含n 的式⼦表⽰,n 为正整数)33.如图,在正⽅形ABCD 中,点E 是BC 边上⼀点,且 : 2:1,BE EC AE =与BD 交于点F ,则AFD △与四边形DFEC 的⾯积之⽐是 .34.如图,在△ABC 中,∠C=90°,BC=16cm,AC=12cm,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts,当t=__________时,△CPQ 与△CBA 相似.35.如图,在正⽅形ABCD 中,E 是BC 的中点,F 是CD 上⼀点,且1,4CF CD =下列结论: ①30BAE ∠=°; ②;ABE ECF △△③AE EF ⊥; ④ADF ECF △△.其中正确结论是 .(填序号)36.如图27-4-9,在ABC △中,90,8m 10m,C BC AB ∠===,°点 P 从B 点出发,沿BC ⽅向以2m/s 的速度移动,点Q 从C 出发,沿CA ⽅向以1m/s 的速度移动.若P Q 、同时分别从B C 、出发,经过____________s,CPQ CBA △△~.37.如图24-4-10,ABC △的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FGAG=________.参考答案1.答案:C 解析:2.答案:D 解析:3.答案:C解析:A 选项,因为3:62:4=,所以,,,a b c d 四条线段成⽐例B 选项,因为232,2226==,所以,,,a b c d 四条线段成⽐例C 选项,因为4:56:10≠,所以,,,a b c d 四条线段不成⽐例D 选项,因为252325,55515==,所以,,,a b c d 四条线段成⽐例故选C 4.答案:D解析:∵DAE CAB ∠=∠,∴当AED B ∠=∠或ADE C ∠=∠时,由两⾓分别相等的两个三⾓形相似,可以得出ABC AED ~△△; 当AD ACAE AB=时,由两边成⽐例且夹⾓相等的两个三⾓形相似,可得ABC AED ~△△. 只有选项D 中条件不能判断ABC AED ~△△,故选D. 5.答案:D解析:如图,在Rt BDC △中,4,30,BC CBD =∠=°2,2 3.CD BD ∴=∴=连接,90,DE BDC ∠=°,点E 是BC 中点,12.2DE BE CE C ∴====30,30,CBD BDE DBC ∠=∴∠=∠=°°,30,BD CBC ABD DBC ∠∴∠=∠=°,//,,ABD BDE DE AB DEF BAF ∴∠=∠∴∴△△~.DF DE BF AB∴=在Rt ABD △中,230,23,3,,3DF ABD BD AD BF ∠==∴=∴=°22243,23,555DF DF BD BD ∴=∴==?=故选D.6.答案:D解析:在中, //AD BC ,∴DEF BCF ?~?,∴DE EFBC CF=. ∴点E 是边AD 的中点,∴12AE DE AD ==,∴12EF CF =. 7.答案:B解析:ABC ?中, 90,6,3,:2ABC AB BC AB BC ∠====.A 、当点E 的坐标为()6,0时, 90,2,1CDE CD DE ∠===,则::,AB BC CD DE CDE ABC =?~?,故本选项不符合题意;B 、当点E 的坐标为()6,3时, 90,2,2CDE CD DE ∠===,则::,AB BC CD DE CDE ≠?与ABC ?不相似,故本选项符合题意;C 、当点E 的坐标为()6,5时, 90,2,4CDE CD DE ∠===,则::,AB BC DE CD EDC ABC =?~?,故本选项不符合题意;D 、当点E 的坐标为()4,2时, 90,2,1ECD CD CE ∠===,则::,?AB BC CD CE DCE ABC =?~?,故本选项不符合题意; 故选:B. 8.答案:C 解析:从图中可知,要使△ABC 与△PBD相似,根据勾股定理,得BC =BD =12BC AB BD BP ===,因为AB=2,那么BP=4,故选择P 3处 . 考点:相似三⾓形点评:该题主要考查学⽣对相似三⾓形概念的理解,以及对其性质的应⽤。

相似三角形的性质及判定方法

相似三角形的性质及判定方法

相似三角形的性质及判定方法相似三角形是指具有相同形状但可能不同大小的两个或多个三角形。

在几何学中,相似三角形具有一些特定的性质和判定方法。

本文将探讨相似三角形的性质以及如何判定两个三角形是否相似。

一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角相等,那么它们是相似的。

具体而言,如果两个三角形的对应角分别相等,则它们是相似的。

记为AA相似性质。

2. 对应边的比例性质:如果两个三角形的两对对应边的比例相等,那么它们是相似的。

具体而言,如果两个三角形的对应边所对应的长度比例相等,则它们是相似的。

记为SSS相似性质。

3. 角和对边的比例性质:如果两个三角形的对应角相等且对应边的长度比例相等,那么它们是相似的。

具体而言,如果两个三角形的对应角相等且对应边的长度比例相等,则它们是相似的。

记为SAS相似性质。

二、相似三角形的判定方法1. AA判定法:如果两个三角形的两个角分别相等,则它们一定是相似的。

即,如果两个三角形的两个角分别相等,则它们的第三个角也必然相等,从而满足AA相似性质。

2. SSS判定法:如果两个三角形的三对对应边的长度比例相等,则它们一定是相似的。

即,如果两个三角形的三对对应边的长度比例相等,则它们满足SSS相似性质。

3. SAS判定法:如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们一定是相似的。

即,如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们满足SAS相似性质。

三、实例分析为了更好地理解相似三角形的判定方法,我们来看一个实例。

已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,且AB/DE = BC/EF = CA/FD,我们需要判定这两个三角形是否相似。

根据给定条件可知,∠A=∠D,∠B=∠E,且BC/EF = CA/FD。

根据SAS判定法,如果对应角相等且对应边的长度比例相等,则两个三角形相似。

由此得出结论,三角形ABC和三角形DEF是相似的。

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。

其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

相似三角形的性质和判定同步练习题

相似三角形的性质和判定同步练习题

相似三角形的性质和判定同步练习一、仔仔细细,记录自信1.如图1,△OED ∽△OCB ,且OE =6,EC =21,则△OCB 与△OED 的相似比是( )A .37 B .52 C .85 D .352.如图2,点E ,F 分别在矩形ABCD 的边DC ,BC 上,∠AEF =90°,∠AFB =2∠DAE =72°,则图中甲、乙、丙三个三角形中相似的是( )A .只有甲与乙B .只有乙与丙C .只有甲与丙D .甲与乙与丙3.如图3,D 是AB 的中点,E 是AC 的中点,则△ADE 与四边形BCED 的面积比是( )A .1B .12C .13D .144.在相同水压下,口径为4cm 的水管的出水量是口径为1cm 的水管出水量的( )A .4倍B .8倍C .12倍D .16倍5.对于下列说法:(1)相似且有一边为公共边的两个三角形全等;(2)相似且面积相等的两个三角形全等;(3)相似且周长相等的两个三角形全等.其中说法正确的有( )A .0个B .1个C .2个D .3个6.我国国土面积约为960万平方千米,画在比例尺为1∶1 000万的地图上的面积约是( )A .960平方千米B .960平方米C .960平方分米D .960平方厘米7、如果△ABC ∽△A ′B ′C ′,相似比为k (k ≠1),则k 的值是( )A .∠A :∠A ′B .A ′B ′:ABC .∠B :∠B ′D .BC :B ′C ′8、若△ABC ∽△A ′B ′C ′,∠A=40°,∠C=110°,则∠B ′等于( )A .30°B .50°C .40°D .70°9、三角形三边之比3:5:7,与它相似的三角形最长边是21cm ,另两边之和是( )A .15cmB .18cmC .21cmD .24cm10如图AB ∥CD ∥EFA .1对B .2对C .3对D .4对11△ABC ∽△A 1B 1C 1,相似比为2:3,△A 1B 1C 1∽△A 2B 2C 2,相似比为5:4,则△ABC 与△A 2B 2C 2的相似比为( )A .B .C .D .12、在比例尺1:10000的地图上,相距2cm 的两地的实际距离是( )A .200cmB .200dmC .200mD .200km13、已知线段a=10,线段b 是线段a 上黄金分割的较长部分,则线段b 的长是( )A .B .C .D . 14、若则下列各式中不正确的是( )A .B .C .D .15、已知△ABC 中,D 、E 分别在AB 、AC 上,且AE=1.2,EC=0.8,AD=1.5,DB=1,则下列式子正确的是( )A .B .C .D .16、如图:在△ABC 中,DE ∥AC ,则DE :AC=( )A .8:3B .3:8C .8:5D .5:8二、认认真真,书写快乐7.已知A B CA B C '''△∽△,且4A B =,6A B ''=,8B C ''=则BC = .8.两个相似三角形,其中一个三角形的两个内角分别是40°和30°,则另一个三角形的最大内角的度数是.9.如图4,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b满足关系时,△ABC∽△CDB.10.如图5,P是等腰梯形ABCD上底AD上一点,若∠A=∠BPC,则和△ABP相似的三角形有个.11.相似三角形对应、、的比都等于相似比.12.相似多边形的周长比等于,面积比等于.13.把一个三角形三边同时扩大4倍,则周长扩大了倍,面积扩大了倍.,则面积比是.14.两个相似三角形对应中线的比为23三、平心静气,展示智慧15.如图6,已知△ABC∽△DEF,AB=6,BF=2,CE=8,CA=10,DE=15.求线段DF,FC的长.16.要做两个形状相同的三角形框架,其中一个三角形框架的三边长分别是4,5,6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?想想看,你有几种解决方案?17.如图7,已知△ABC∽△DEF,AM、DN是中线,试判断△ABM与△DEN是否相似?为什么?18.如图8,AD是△ABC角平分线,试判断B D A B是否成立?D C A C。

相似三角形的性质与判定作业

相似三角形的性质与判定作业

相似三角形的性质与判定1.[2011·北京] 如图J22-1,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若AD =1,BC =3,则OA OC的值为( ) A.12 B.13 C.14 D.19图J22-1 图J22-22.[2010·北京] 如图J22-2,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,若AD ∶AB =3∶4,AE =6,则AC 等于( ) A. 3 B. 4 C. 6 D. 81.[2015·朝阳二模] 如图J22-3,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E .若AD DB =23,AE =6,则EC 的长为( ) A .6 B .9C .15 D .18图J22-3 图J22-42.[2015·石景山一模] 如图J22-4,△ABC 中,D 是边AC 上一点,连接B D.要使△ABD ∽△ACB ,需要补充的一个条件为________.3.[2014·东城二模] 如图J22-5,在△ABC 中,∠C =90°,点D 在AC 上,将△BCD 沿BD 翻折,点C 落在斜边AB 上,若AC =12 cm ,DC =5 cm ,则BC ∶AB 的值为________.图J22-54.[2013·大兴一模] 已知:如图J22-6,在△ABC 中,AB =AC ,延长AB 到点D ,使BD =AB ,取AB 的中点E ,连接CD 和CE .求证:CD =2CE .图J22-6一、选择题1.[2015·西城二模] 如图J22-7,在△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥B C.如果AD AB =23,AC =6,那么AE 的长为( ) A .3 B .4 C .9 D .12图J22-7 图J22-82.[2012·海淀一模] 如图J22-8,在△ABC 中,∠C =90°, 点D 在CB 上,DE ⊥AB 于点E .若DE =2, CA =4,则DB AB的值为( ) A.14 B.13 C.12 D.233.[2015·昌平] 如图J22-9,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于( )A.12B.14C.18D.19图J22-9 图J22-104.如图J22-10,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC =14B C.图中相似三角形共有( )A .1对B .2对C .3对D .4对5.如图J22-11,在矩形AOBC 中,点A 的坐标是(-2,1),点C 的纵坐标是4,则B ,C 两点的坐标分别是( )图J22-11A .(32,3),(-23,4)B .(32,3),(-12,4) C .(74,72),(-23,4) D .(74,72),(-12,4) 6.如图J22-12,在△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点,过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )图J22-12图J22-13二、填空题7.[2015·石景山] 如图J22-14,在△ABC 中,AB =8,AC =6,点D 在AC 上且AD =2,如果要在AB 上找一点E ,使△ADE 与△ABC 相似,那么AE =________.图J22-14 图J22-158.如图J22-15,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D ,OD =45 cm.当它的一端B 着地时,另一端A 离地面的高度AC 为________cm.9.如图J22-16,在△ABC 中,AB =AC =10,D 是边BC 上一动点(不与点B ,C 重合),∠ADE=∠B =α,DE 交AC 于点E ,且cos α=45.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD =8或252;④0<CE ≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)图J22-16三、解答题10.如图J22-17,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.(1)求证:△ACD≌△CBE;(2)已知AD=4,DE=1,求EF的长.图J22-17参考答案北京真题演练1.B2.D [解析] 本题主要考查平行线分线段成比例定理,对应线段一定要找准确.∵DE ∥BC ,∴AD ∶AB =AE ∶AC ,∴3∶4=6∶AC ,∴AC =8.故选D.北京模拟训练1.B2.答案不唯一,如∠ABD =∠C 等3.574.证明:由E 是AB 的中点,可设AE =BE =x .∵AB =AC ,BD =AB ,则有AC =2x ,AD =4x ,∴AE AC =AC AD =12. 又∵∠A =∠A ,∴△AEC ∽△ACD ,∴CE CD =12,∴CD =2CE . 北京自测训练1.B 2.C 3.D4.C [解析] △ADE ∽△ECF ,△ADE ∽△AEF ,△AEF ∽△ECF .5.B [解析] 如图,作BE ⊥x 轴于点E ,AF ∥x 轴,CF ⊥AF ,交AF 于点F ,AD ⊥x 轴于点D.∵四边形AOBC 是矩形,∴AC ∥OB ,AC =OB ,∴∠CAF =∠BOE .在△ACF 和△OBE 中,⎩⎪⎨⎪⎧∠F =∠BEO =90°,∠CAF =∠BOE ,AC =OB ,∴△CAF ≌△BOE (AAS ),∴BE =CF =4-1=3.∵∠AOD +∠BOE =∠BOE +∠OBE =90°,∴∠AOD =∠OBE .∵∠ADO =∠OEB =90°,∴△AOD ∽△OBE ,∴AD OE =OD BE ,即1OE =23,∴OE =32,即点B (32,3),∴AF =OE =32,∴点C 的横坐标为-(2-32)=-12,∴C (-12,4). 6.B [解析] 分点Q 在AC 上和BC 上两种情况进行讨论即可.当点Q 在AC 上时(0≤x ≤12),∵∠A =30°,AP =x ,∴PQ =x tan30°=33x ,∴y =12AP ·PQ =12x ·33x =36x 2;当点Q 在BC 上时(x >12),∵AP =x ,AB =16,∠A =30°,∴BP =16-x ,∠B =60°,∴PQ =BP ·tan60°=3(16-x ).∴S △APQ =12AP ·PQ =12x ·3(16-x )=-32x 2+8 3x .∴该函数图象前半部分是抛物线,开口向上,后半部分也为抛物线,开口向下.故选B. 7.83或328.909.①②③④ [解析] ∵AB =AC ,∴∠B =∠C.又∵∠ADE =∠B ,∴∠ADE =∠C ,∴△ADE ∽△ACD ,故①正确.∵AB =AC =10,∠ADE =∠B =α,cos α=45,∴BC =2AB ·cos B =2×10×45=16.∵BD =6,∴DC =10,∴AB =DC.在△ABD 与△DCE 中,⎩⎪⎨⎪⎧∠BAD =∠CDE ,∠B =∠C ,AB =DC ,∴△ABD ≌△DCE (ASA ).故②正确.当∠AED =90°时,由①可知:△ADE ∽△ACD ,∴∠ADC =∠AED .∵∠AED =90°,∴∠ADC =90°,即AD ⊥B C.∵AB =AC ,∴BD =CD ,∴∠ADE =∠B =α且cos α=45,AB =10,BD =8.当∠CDE =90°时,易知△CDE ∽△BAD ,∵∠CDE =90°,∴∠BAD =90°.∵∠B =α且cos α=45,AB =10,∴cos B =ABBD =45,∴BD =252.故③正确.易证得△CDE ∽△BAD ,由②可知BC =16,设BD =y ,CE =x , ∴ABDC =BDCE ,∴1016-y =yx , 整理得y 2-16y +64=64-10x ,即(y -8)2=64-10x ,∴0<x ≤6.4,故④正确.10.解:(1)证明:∵AD ⊥CE ,∴∠2+∠3=90°.又∵∠1+∠2=90°,∴∠1=∠3.又∵BE ⊥CE ,AD ⊥CE , ∴∠E =∠ADC =90°.在△ACD 和△CBE 中,⎩⎪⎨⎪⎧∠ADC =∠E ,∠3=∠1,AC =CB ,∴△ACD ≌△CBE .(2)∵△ACD ≌△CBE ,∴CE =AD =4,∴CD =CE -DE =4-1=3=BE . ∵∠E =∠ADF ,∠BFE =∠AFD , ∴△BEF ∽△ADF ,∴BE AD =EF DF .设EF =x ,则DF =1-x , ∴34=x1-x ,解得x =37.∴EF =37.。

相似三角形判定与性质专题

相似三角形判定与性质专题

专题-相似三角形判定与性质专题典型训练题1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似多边形对应边的比叫做相似比。

2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。

专题典型题考法及解析【例题1】如图,在Rt△ABC中,△C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ△AB 交BC于点Q,D为线段PQ的中点,当BD平分△ABC时,AP的长度为()B.C.D.A.【例题2】在△ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【例题3】如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【例题4】如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【例题5】如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.专题典型训练题一、选择题1.如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对2.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1B.2C.3D.43.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE △BC ,若AD =2,AB =3,DE =4,则BC 等于( )A .5B .6C .7D .84.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( )A .2B .3C .2D .55.如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .= B .= C .= D .=6. 如图,在ABC 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC 的面积为( ) A.B .4 C. D .8D ABC7.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG =()A.2:3B.3:2C.9:4D.4:99.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题10.如图所示,Rt△ABC中,△C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的△P与△ABC的一边相切时,AP的长为.11. 一张直角三角形纸片ABC ,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为________.12.如图,矩形ABCD 中,AB =3,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF的长是 .13.如图,在矩形ABCD 中,AD =3AB =310.点P 是AD 的中点,点E 在BC 上,CE =2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN =__________.14.如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)15.如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 .P EDA三、解答题16.如图,△ABD=△BCD=90°,DB平分△ADC,过点B作BM△CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.17.在矩形ABCD中,AE△BD于点E,点P是边AD上一点.(1)若BP平分△ABD,交AE于点G,PF△BD于点F,如图△,证明四边形AGFP是菱形;(2)若PE△EC,如图△,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.18.如图,Rt△ABC中,△ACB=90°,AC=BC,P为△ABC内部一点,且△APB=△BPC=135°.(1)求证:△P AB△△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.19.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.。

相似三角形的判定与性质(六大类型)(题型专练)(原卷版)

相似三角形的判定与性质(六大类型)(题型专练)(原卷版)

专题02 相似三角形的判定与性质(六大类型)【题型1 相似三角形的概念】【题型2 三边对应成比例,两三角形相似】【题型3两边对应成比例且夹角相等,两三角形相似】【题型4 两角对应相等,两三角形相似】【题型5 相似三角形的性质】【题型6相似三角形的性质与判定综合应用】【题型1 相似三角形的概念】1.(2023春•阳信县月考)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是()A.B.C.D.2.(2022秋•道外区期末)下列三角形一定相似的是()A.两个等腰三角形B.两个等边三角形C.两个直角三角形D.有一角为70°的两个等腰三角形3.(2022秋•武城县期末)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组4.(2022秋•承德县期末)如图所示,网格中相似的两个三角形是()A.①与②B.①与③C.③与④D.②与③5.(2022秋•襄都区校级期末)下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似【题型2 三边对应成比例,两三角形相似】6.(2022秋•常州期末)如图,△ABC∽△DEF,则DF的长是()A.B.C.2D.3 7.(2023•陇南模拟)两个相似三角形的相似比是4:9,则其面积之比是()A.2:3B.4:9C.9:4D.16:81 8.(2023•沙坪坝区校级模拟)如图,△ABO∽△CDO,若BO=6,DO=3,AB=4,则CD的长是()A.1B.2C.3D.49.(2022秋•鼓楼区期末)已知△ABC∽△DEF,若△ABC的三边分别长为6,8,10,△DEF的面积为96,则△DEF的周长为.10.(2023•惠城区校级一模)若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=cm.11.(2022秋•于洪区期末)两个相似三角形的周长比是3:4,其中较小三角形的面积为18cm2,则较大三角形的面积为cm2.12.(2022秋•鸡西期末)如果两个相似三角形的周长比为1:6,那么这两个三角形的面积比为.13.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是.14.(2022秋•内乡县期末)如图,已知△ABC∽△ADE,AD=6,BD=3,DE =4,则BC=.15.(2022秋•零陵区期末)若△ABC∽△A′B′C′,且,△ABC 的面积为12cm2,则△A′B′C′的面积为cm2.【题型3两边对应成比例且夹角相等,两三角形相似】16.(2022秋•仓山区校级月考)如图,D、E分别是△ABC的边AB、AC上的点,AB=8,BD=5,AC=6,CE=2,求证:△ADE∽△ACB.17.(2021秋•武陵区期末)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.18.(2022秋•丰泽区校级期中)如图,E是△ABC的边BC上的点,已知∠BAE =∠CAD,,AB=18,AE=15.求证:△ABC∽△AED.19.(2022春•丰城市校级期末)如图,已知∠B=∠E=90°,AB=6,BF=3,CF=5,DE=15,DF=25.求证:△ABC∽△DEF.【题型4 两角对应相等,两三角形相似】20.(2022秋•蚌山区月考)已知:如图D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=80°,∠AED=60°,求证:△ADE∽△ACB.21.(2022秋•龙胜县期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.求证:△ABC∽△CBD.22.(2022•江夏区模拟)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.求证:△ABC∽△DEC.23.(2021秋•晋江市校级期末)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠B.求证:△AED∽△ADC.24.(2022•南昌模拟)如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC 的平分线.求证:△ABC∽△BDC.【题型5 相似三角形的性质】25.(2020秋•思南县校级月考)判断图中的两个三角形是否相似,并说明理由.26.(大观区校级期中)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF的顶点都在格点上,请判断△ABC和△DEF是否相似,并说明理由.【题型6相似三角形的性质与判定综合应用】27.(2022秋•历城区校级月考)如图,AB∥CD,AC与BD交于点E,且AB=4,AE=2,AC=8.(1)求CD的长;(2)求证:△ABE∽△ACB.28.(2023•殷都区一模)如图,O是直线MN上一点,∠AOB=90°,过点A 作AC⊥MN于点C,过点B作BD⊥MN于点D.(1)求证:△AOC∽△OBD;(2)若OA=5,OC=OD=3,求BD的长.29.(2023•西湖区校级二模)如图,在菱形ABCD中,点M为对角线BD上一点,连接AM并延长交BC于点E,连接CM.(1)求证:CM=AM.(2)若∠ABC=60°,∠EMC=30°,求的值.30.(2023•港南区四模)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.31.(2023春•鼓楼区校级期末)如图,点C是△ABD边AD上一点,且满足∠CBD=∠A.(1)证明:△BCD∽△ABD;(2)若BC:AB=3:5,AC=16,求BD的长.32.(2022秋•顺平县期末)矩形ABCD中,E为DC上的一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=4,AD=8,求CE的长.33.(2022秋•南京期末)如图,在矩形ABCD中,点E,F分别在边BC,CD 上,AE,BF交于点G.(1)若=,求证AE⊥BF;(2)若E,F分别是BC,CD的中点,则的值为.34.(2023•桐乡市校级开学)如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.35.(2022秋•海陵区校级期末)如图,矩形DEFG的四个顶点分别在等腰三角形ABC的边上.已知△ABC的AB=AC=10,BC=16,记矩形DEFG的面积为S,线段BE为x.(1)求S关于x的函数表达式;(2)当S=24时,求x的值.36.(2022秋•平城区校级期末)如图,已知在△ABC中,边BC=6,高AD=3,正方形EFGH的顶点F,G在边BC上,顶点E,H分别在边AB和AC上,求这个正方形的边长.。

相似三角形性质与判定的综合运用专题及答案

相似三角形性质与判定的综合运用专题及答案

相似三角形性质与判定的综合运用一、解答题1.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边上的点C1处,点D落在点D1处,C1D1交线段AE于点G.(1)求证:△BC1F∽△AGC1;(2)若C1是AB的中点,AB=6,BC=9,求AG的长.2.已知:如图,在正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE−BE.(2)连接BF,如果AFBF =DFAD,求证:EF=EP.3.如图,四边形ABCD、CDEF、EFGH都是正方形.(1)△ACF与△ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.4.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√3,AF=4√3,求AE的长.5.如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在D点处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长GH=4米,如果小明的身高为1.7米,求路灯A离地面的高度.6.已知:如图,△ABC为等腰直角三角形,∠ACB=90°,点E、F是AB边所在直线上的两点,且∠ECF=135°.(1)求证:△ECA∽△CFB;(2)若AE=3,设AB=x,BF=y,求y与x之间的函数关系式,并写出x的取值范围.7.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB⋅AD;(2)求证:△AFD∽△CFE.8.如图,在四边形ABCD中,AB//DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.9.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE//AC,EF//AB.(1)求证:△BDE∽△EFC.(2)设AFFC =12,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.10.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?.答案和解析1.【答案】解:(1)证明:由题意可知∠A=∠B=∠GC1F=90∘,∴∠BFC1+∠BC1F=90∘,∠AC1G+∠BC1F=90∘,∴∠BFC1=∠AC1G,∴△BC1F∽△AGC1.(2)∵C1是AB的中点,AB=6,∴AC1=BC1=3,∵CF=C1F,∴C1F=BC−BF=9−BF,∵∠B=90∘,∴BF2+BC12=C1F2,即BF2+32=(9−BF)2,解得BF=4,由(1)得△AGC1∽△BC1F,∴AGBC1=AC1BF,∴AG3=34,解得AG=94.【解析】本题考查相似三角形的判定与性质、矩形的性质、翻折变化,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似和勾股定理解答.(1)根据题意和图形可以找出△BC1F∽△AGC1的条件,从而可以解答本题;(2)根据勾股定理和(1)中的结论可以求得AG的长.2.【答案】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°.∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.在△ABE和△DAF中,∵{∠BEA=∠AFD,∠1=∠3,AB=DA,∴△ABE≌△DAF,∴BE=AF,∴EF=AE−AF=AE−BE.(2)如图,∵AFBF =DFAD,而AF=BE.∴BEBF =DFAD,∴BEDF =BFAD,∴Rt△BEF∽Rt△DFA,∴∠4=∠3.∵∠1=∠3,∴∠4=∠1.∵∠5=∠1,∴∠4=∠5.即BE平分∠FBP,而BE⊥EP,∴EF=EP.【解析】本题主要考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.也考查了全等三角形的判定与性质和正方形的性质.(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用AFBF =DFAD和AF=BE得到BEDF=BFAD,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.3.【答案】解:(1)相似.理由:设正方形的边长为a,AC=√a2+a2=√2a,∵ACCF =√2aa=√2,CGAC=√2a=√2,∴ACCF =CGAC,∵∠ACF=∠ACF,∴△ACF∽△GCA;(2)∵△ACF∽△GCA,∴∠1=∠CAF,∵∠CAF+∠2=45°,∴∠1+∠2=45°.【解析】(1)设正方形的边长为a,求出AC的长为√2a,再求出△ACF与△GCA中夹∠ACF 的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF 与△GCA相似;(2)根据相似三角形的对应角相等可得∠1=∠CAF,再根据三角形的一个外角等于和它不相邻的两个内角的和,∠2+∠CAF=∠ACB=45°,所以∠1+∠2=45°.本题主要利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质以及三角形的外角性质,求出两三角形的对应边的比值相等是解本题的关键.4.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AD//BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴ADDE =AFCD,∴DE=AD⋅CDAF =√3×84√3=12.在Rt△ADE中,由勾股定理得:AE=√DE2−AD2=6.【解析】(1)根据四边形ABCD为平行四边形,利用平行四边形的对边平行且相等,得到一对同旁内角互补,一对内错角相等,根据已知角相等,利用等角的补角相等得到两组对应角相等,从而推知:△ADF∽△DEC;(2)由△ADF∽△DEC,得比例,求出DE的长.利用勾股定理求出AE的长.此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.5.【答案】解:∵CD//AB,∴△EAB∽△ECD,∴CDAB =DEBE,即1.7AB=33+BD①,∵FG//AB,∴△HFG∽△HAB,∴FGAB =HGHB,即1.7AB=4BD+5+4②,由①②得33+BD =4BD+5+4,解得BD=15,∴1.7AB =315+3,解得AB=10.2.答:路灯A离地面的高度为10.2m.【解析】根据相似三角形的判定,由CD//AB 得△EAB∽△ECD ,利用相似比有1.7AB =33+BD ,同理可得1.7AB =4BD+5+4,然后解关于AB 和BD 的方程组求出AB 即可.本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决. 6.【答案】(1)证明:∵△ABC 为等腰直角三角形,∠ACB =90°,∴AC =BC ,∴∠CAB =∠CBA =45°,∴∠CAE =180°−45°=135°,同理∠CBF =135°,∴∠CAE =∠CBF ,∵∠ECF =135°,∠ACB =90°,∴∠ECA +∠BCF =45°,∵∠ECA +∠E =∠CAB =45°,∴∠E =∠BCF ,∵∠CAE =∠CBF ,∴△ECA∽△CFB ;(2)解:∵AB =x ,∠CAB =45°,∠ACB =90°,AC =BC ,∴sin45°=CB x , ∴CB =√22x =AC ,∵由(1)知△ECA∽△CFB ,∴AE CB =AC BF ,∴3√22x =√22x y ,∴y =16x 2,x 的取值范围是x >0,即y 与x 之间的函数关系式是y =16x 2,x 的取值范围是x >0.【解析】(1)根据等腰直角三角形性质求出∠CAE =∠CBF =135°,求出∠ECA +∠BCF =45°,∠E +∠ACE =45°,推出∠E =∠BCF ,即可推出两三角形相似;(2)根据等腰直角三角形性质和锐角三角函数定义求出AC和BC长,根据两时间相似得出比例式,代入即可求出答案.本题考查了相似三角形的性质和判定,等腰直角三角形性质,锐角三角函数的定义等知识点,通过做此题培养了学生的分析问题和解决问题的能力.7.【答案】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB⋅AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE//AD,∴△AFD∽△CFE.【解析】(1)根据两组对角对应相等的两个三角形相似证明即可;(2)根据直角三角形的性质得到CE=BE=AE,根据等腰三角形的性质得到∠EAC=∠ECA,推出AD//CE即可解决问题;本题考查的是相似三角形的判定和性质、平行线的判定,掌握相似三角形的判定定理和性质定理是解题的关键.8.【答案】(1)证明:∵CD//AB,∴∠BAC=∠DCA又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC;(2)解:在Rt△ABC中,AC=√AB2−BC2=8,由(1)知,△ACD∽△BAC,∴DCAC =ACBA,即 DC 8=810 解得:DC =6.4; (3)能.由运动知,BF =2t ,BE =t ,△EFB 若为等腰三角形,可分如下三种情况:①当 BF =BE 时,10−2t =t ,解得t =103秒.②当EF =EB 时,如图,过点E 作AB 的垂线,垂足为G ,则BG =12BF =12(10−2t).此时△BEG∽△BAC∴BEAB =BGBC ,即t 10=12(10−2t)6, 解得:t =258;③当FB =FE 时,如图2,过点F 作AB 的垂线,垂足为H则BH =12BE =12t.此时△BFH∽△BAC∴BFAB =BHBC ,即10−2t 10=12t 6, 解得:t =6017综上所述:当△EFB 为等腰三角形时,t 的值为103秒或258秒或6017秒.【解析】(1)利用平行线判断出∠BAC =∠DCA ,即可得出结论;(2)先根据勾股定理求出AC =8,由(1)知,△ACD∽△BAC ,得出DC AC =ACBA ,即可得出结论;(3)分三种情况,利用等腰三角形的性质构造出相似三角形,得出比例式建立方程求解即可得出结论.此题是相似形综合题,主要考查了平行线的性质,相似三角形的判定和性质,等腰三角形的性质,构造出相似三角形得出比例式是解本题的关键. 9.【答案】(1)证明:∵DE//AC ,∴∠DEB =∠FCE ,∵EF//AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF//AB,∴BEEC =AFFC=12,∵EC=BC−BE=12−BE,∴BE12−BE =12,解得:BE=4;②∵AFFC =12,∴FCAC =23,∵EF//AB,∴△EFC∽△BAC,∴S△EFCS△ABC =(FCAC)2=(23)2=49,∴S△ABC=94S△EFC=94×20=45.【解析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出BEEC =AFFC=12,即可得出结果;②先求出FCAC =23,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.本题考查了相似三角形的判定与性质、平行线的性质等知识;熟练掌握相似三角形的判定与性质是解题的关键.10.【答案】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,∴△ABE∽△CDE,∴ABCD =AECE,∴AB1.6=212.5,∴AB=13.44(米).答:教学大楼的高度AB是13.44米.【解析】根据反射定律,∠1=∠2,又因为FE⊥EC,所以∠3=∠4,再根据垂直定义得到∠BAE=∠DCE,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.。

人教版九年级下册数学作业课件 第27章 综合滚动练习:相似三角形的性质与判定

人教版九年级下册数学作业课件 第27章 综合滚动练习:相似三角形的性质与判定

(2)求证:2BG2=BH·BD. 证明:∵∠BEH=∠EDB=45°,∠EBH=∠DBE, ∴△BEH∽△BDE.∴BBDE=BBHE. ∴BE2=BD·BH. ∵BE= 2BG, ∴2BG2=BH·BD.(12 分)
15.(14 分)如图,在 Rt△ABC 中,∠ACB=90°,AC= BC,P 为△ABC 内部一点,且∠APB=∠BPC=135°. (1)求证:△PAB∽△PBC; 证明:∵∠ACB=90°,AC=BC, ∴∠ABC=45°=∠PBA+∠PBC. 又∠APB=135°, ∴∠PAB+∠PBA=45°.∴∠PBC=∠PAB. 又∵∠APB=∠BPC=135°,∴△PAB∽△PBC.(4 分)
一、选择题(每小题 5 分,共 30 分) 1.已知△ABC∽△A′B′C′,AB=8,A′B′=6,则 BB′CC′=( B ) A.2 B.43 C.3 D.196
2.如图,已知∠1=∠2,欲证△ADE∽△ACB,可 补充的条件是( D ) A.∠B=∠D B.DE=AB C.AADB=DBCE D.∠D=∠C
5.如图,⊙O 是△ABC 的外接圆,已知 AD 平分
∠BAC 交⊙O 于点 D,交 BC 边于点 E,AD=5,
BD=2,则 DE 的长为( D )
A.35
B.245
C.225
D.45
6.如图,在 Rt△ABC 中,∠ACB=90°,AC=6, BC=12,点 D 在边 BC 上,点 E 在线段 AD 上, EF⊥AC 于点 F,EG⊥EF 交 AB 于点 G.若 EF=EG, 则 CD 的长为( B ) A.3.6 B.4 C.4.8 D.5 解析:如图,作 DH∥EG 交 AB 于点 H, 则△AEG∽△ADH,∴AADE=DEGH.

相似三角形的性质与判定典型题

相似三角形的性质与判定典型题

相似三角形的判定与性质练习一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个2.(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.123.(2011•乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.14.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:55.(2011•潼南县)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC 于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④6.(2011•铜仁地区)已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A.B.C.D.8.(2011•台湾)如图为梯形纸片ABCD,E点在BC上,且∠AEC=∠C=∠D=90°,AD=3,BC=9,CD=8.若以AE为折线,将C折至BE上,使得CD与AB交于F点,则BF长度为何()A.B.5 C.D.69.(2011•遂宁)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD②AC2=AD•DB③BC2=BD•BA④CD2=AD•DB.A.1个B.2个C.3个D.4个10.(2011•锦州)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为()A.3 B.4 C.5 D.611.(2011•河北)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2 C.3 D.412.(2011•大连)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于()A.B.1 C.D.2二.填空题(共12小题)15.(2011•牡丹江)在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC交边AC所在直线于点E,则CE的长为_________.16.(2010•梧州)如图,在平行四边形ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD的长为_________.17.(2009•烟台)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DE=CF;③△ADE∽△FDB;④∠BFD=∠CAF其中正确的结论是_________.18.(2009•黄石)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=_________.21.(2007•厦门)如图,在平行四边形ABCD中,AF交DC于E,交BC的延长线于F,∠DAE=20°,∠AED=90°,则∠B=_________度;若=,AD=4厘米,则CF=_________厘米.23.(2006•绵阳)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为_________.28.(2011•眉山)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.30.(2011•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=_________.请予证明.。

初中数学相似三角形的判定与性质专题练习

初中数学相似三角形的判定与性质专题练习

初中数学相似三角形的判定与性质专题练习1.定义各角对应相等,各边对应成比例的两个三角形叫做相似三角形.当相似比为1时,两个三角形就称为全等.2.判定(1)平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;3.性质(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.4.相似三角形中常见的基本图形:条件:DE∥BC,∠1=∠B,∠1=∠B条件:AB∥DE ∠A=∠D CD是斜边AB上的高如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)【答案】∠ADE=∠ACB,答案不唯一【名师指南】此类问题是开放型问题,考查了相似三角形的判定,答案不唯一,熟练掌握相似三角形的判定方法是解题的关键.【例1】如图,在大小为4×4的正方形网格中,是相似三角形的是( )①② ③ ④A.①和②B.②和③C.①和③D.②和④【答案】C【解析】试题分析:本题主要应用两三角形相似的判定定理,有两个对应角相等的三角形相似,即可完成题目.:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;210由勾股定理求出③的各边长分别为2、2、2,25∴,,22222=225210=即,22222=5210=∴两三角形的三边对应边成比例,∴①③相似.故选C .考点: 相似三角形的判定.【例2】在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,这样的直线最多可以作()A .2条B .3条C .4条D .6条【答案】C .考点:1.坐标与图形性质;2.相似三角形的判定.【名师指南】此类问题实际上考查了相似三角形的判定,学生容易错误选2条或3条,一般三角形满足条件的直线最多可以作4条,直角三角形满足条件的直线最多可以作3条.【例3】如图,下列条件中不能判定的是()A .B.C .D.【答案】A考点:三角形相似的判定.【例4】如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且,(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.【答案】(1)∠1=∠2;(2)△ABE∽△ACD.【解析】试题分析:(1)由,得到△ABC∽△AED,推出∠BAC=∠EAD,即可得到∠1=∠2;(2)由,得,根据两边对应成比例且夹角相等得到△ABE∽△ACD.试题解析:(1)∠1与∠2相等.在△ABC和△AED中,∵,∴△ABC∽△AED,∴∠BAC=∠EAD,∴∠1=∠2.(2)△ABE与△ACD相似.由,得,在△ABE和△ACD中,∵,∠1=∠2,∴△ABE∽△ACD.考点:相似三角形的判定与性质.【例5】如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=________.【答案】8.5【解析】试题分析:因为△ADE∽△ABC,所以, 又因为AD=3,DC=4,AE=2,所以,解得BE=8.5.考点:相似三角形的性质.【例6】如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.【答案】(1)证明见试题解析;(2)9.考点:1.等边三角形的性质;2.相似三角形的判定与性质.【名师指南】备考兵法:1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定, 要注意基本图形的应用,如“A型”“X型”“母子型”等.2.用相似三角形的知识解决现实生活中实际问题, 关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.3.用直角坐标系中的点描述物体的位置, 用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.注意问题:1.在探索三角形是否相似时,我可以参照学习全等的方法(全等是相似的一种特殊情况):(1)寻找:缺什么找什么,例如已经知道有两边对应成比例,证明其夹角相等,则必定是证第三边也成比例;已知一组角相等,要证明夹这个角的两边成比例,则必定是再找一组角相等;等等.(2)构造:对于在题目中不能直截找到相似三角形的问题,我们还可以通过作辅助线的方法构造相似三角形,实现线段或角的转化将问题解决.当然这种情况要有一定的想象力与比较扎实的基础.(3)学会灵活转化:角的替换、比例式的替换、相等线段的替换,可以让我们更快捷地寻找证明相似的条件.2.在利用相似三角形的性质解题时注意下面几点常见的转化方法与解题的思路:(1)比例式的转化,利用不同的相似三角形所得到的比例式相互替代(或比例式中的相等的线段的替换),实现比例式的变更从而产生新的比例式.(2)利用比例式来求出线段之间的函数关系,用方程来求解.(3)应当根据求解的问题的形式,灵活把所得到比例式进行加减乘除运算,实现问题的转化.(4)在图形中注意添加辅助线的方法构造相似三角形或相似三角形的对应量.相似三角形中有关证(解)题规律与辅助线作法1、证明四条线段成比例的常用方法: (1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系2、证明题常用方法归纳:(1)总体思路:“等积”变“比例”,“比例”找“相似” (2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。

中考数学复习之相似三角形的性质与判定,考点过关与基础练习题

中考数学复习之相似三角形的性质与判定,考点过关与基础练习题

AD是Rt△ABC 斜边上的高 29. 相似三角形➢ 知识过关1. 相似三角形的概念:如果两个三角形的对应角_________,对应边_______,那么这两个三角形叫做相似三角形. 2. 相似三角形的性质:对应角________,对应边________;周长之比等于_______;面积之比等于_______.3. 相似三角形的判定(1)两_______对应相等的两个三角形相似;(2)两边对应成比例,且______相等的两个三角形相似; (3)_______边对应成比例的两个三角形相似;(4)若一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和直角边对应______,那这两个直角三角形相似. 4.相似三角形的几种基本图形DE △BC △B =△AED △B △ACDA 型➢ 考点分类考点1相似三角形的判定例1如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 为AD 的中点,连接BE 交AC 于点F ,连接FD .若∠BF A =90°,给出以下三对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABO .其中相似的有_____________(填写序号).CB BCD E ADAEDAAD B CODBACCAO D BX 型母子型∠B ∠CAC ∥BD CB D AOFE DCBA考点2相似三角形的性质例2如图1所示,AB △BD ,CD △BD ,垂足分别为B ,D .AD ,BC 交于点E ,过E 作EF △BD于点F ,则可以得到111AB CD EF+=.若将图1中的垂直改为斜交,如图2所示,AB △CD ,AD ,BC 交于点E ,过E 作EF △AB 交BD 于点F ,试问:111AB CD EF+=还成立吗?请说明理由.考点3相似三角形的判定和性质综合例3如图,在Rt △ABC 中,∠ACB =90°,点D 在AC 上 (1)已知:AC =4,BC =2,∠CBD =∠A ,求BD 的长;(2)取AB ,BD 的中点E ,F ,连接CE ,EF ,FC ,求证:△CEF ∽△BAD .➢ 真题演练1.如图,点D 、E 分别在△ABC 边AB 、AC 上,AB AD=AE CE=3,且∠AED =∠B ,那么AD AC的值为( )A .12B .13C .14D .23F EDCBA图1F EDCBA图22.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,下列结论中,错误的是( )A .AD AC=AC ABB .AD AC=CD BCC .AD AC=BD BCD .AD CD=CD BD3.如图,边长为a 的正方形ABCD 中,对角线AC ,BD 交于点O ,E 在BD 上,作EF ⊥CE 交AB 于点F ,连结CF 交BD 于H ,则下列结论:①EF =EC ;②△FCG ∽△ACF ;③BE •DH =a 2;④若BF :AF =1:3,则tan ∠ECG =14,正确的是( )A .①②④B .②③④C .①②③D .①②③④4.如图,在▱ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .下列结论:①EG GC=AG GD;②EF FC=BF DF;③FC GF=BF DF;④EAEB=AG AD;⑤CF 2=GF •EF ,其中正确的个数是( )A .5B .4C .3D .25.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针90°旋转后,得到△AFB ,连接EF .下列结论中正确的个数有( ) ①∠EAF =45°; ②△ABE ∽△ACD ; ③EA 平分∠CEF ; ④BE 2+DC 2=DE 2.A .1个B .2个C .3个D .4个6.如图,在矩形ABCD中,过点A作对角线BD的垂线并延长,与DC的延长线交于点E,与BC交于点F,垂足为点G,连接CG,且CD=CF,则下列结论正确的有()个①CE=AD②∠DGC=∠BFG③CF2=BF•BC④BG=GE−√2CGA.1B.2C.3D.47.如图,在△ABC中,AC=BC=5,AB=6,以BC为边向外作正方形BCDE,连接AD,则AD=.8.如图,已知正方形ABCD的对角线AC与BD相交于点O,若AC=2√2cm,点E在DC 边的延长线上,若∠CAE=15°,则AE=cm.9.如图,点E在正方形ABCD边CD上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF,P、Q分别是AF、AB的中点,连接PQ.若AB=7,CE=5,则PQ=.10.如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,若PQ =12,当AQ = 时,△AQD 与△BCP 相似.11.如图,AB =16cm ,AC =12cm ,动点P ,Q 分别以每秒2cm 和1cm 的速度同时开始运动,其中点P 从点A 出发,沿AC 边一直移到点C 为止,点Q 从点B 出发沿BA 边一直移到点A 为止(点P 到达点C 后,点Q 继续运动),当t = 时,△APQ 与△ABC 相似.12.某数学兴趣小组在学习了尺规作图、等腰三角形和相似三角形的有关知识后,在等腰△ABC 中,其中AB =AC ,如图Ⅰ,进行了如下操作:第一步,以点A 为圆心,任意长为半径画弧,分别交BA 的延长线和AC 于点E ,F ,如图Ⅱ;第二步,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点D ,作射线AD ;第三步,以D 为圆心,DA 的长为半径画弧,交射线AE 于点G ; (1)填空;写出∠CAD 与∠GAD 的大小关系为 ; (2)△请判断AD 与BC 的位置关系,并说明理由. △当AB =AC =6,BC =2时,连接DG ,请直接写出AD AG= ;(3)如图△,根据以上条件,点P 为AB 的中点,点M 为射线AD 上的一个动点,连接PM ,PC ,当△CPM =△B 时,求AM 的长.13.如图:在矩形ABCD中,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向C点移动,同时动点Q以1m/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动的时间为t秒(0<t<5).(1)t为多少时,以P、Q、C为顶点的三角形与△ABC相似?(2)在P、Q两点移动过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时t的值;若不能,请说明理由.课后练习1.如图,将矩形ABCD沿着GE,EC,GF翻折,使得点A,B,D恰好都落在点O处,且点G,O,C在同一条直线上,点E,O,F在另一条直线上.以下结论正确的是()A.△COF∽△CEG B.OC=3OF C.AB:AD=4:3D.GE=√6DF 2.如图,在△ABC中,P为AB上一点,下列四个条件中:①AC2=AP•AB;②AB•CP=AP •CB;③∠APC=∠ACB;④∠ACP=∠B能满足△APC与△ACB相似的条件是()A.①②③B.①②④C.①③④D.②③④3.如图,△ABC∽△DBE,延长AD,交CE于点P,若∠DEB=45°,AC=2√2,DE=√2,BE=1.5,则tan∠DPC=()A .√2B .2C .3+√22D .124.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,则下列结论:(1)sin ∠BAE =12;(2)BE 2=AB •CF ;(3)CD =3CF ;(4)△ABE ∽△AEF ,其中结论正确的个数有( )A .1个B .2个C .3个D .4个5.如图,在四边形ABCD 中,∠BAC =90°,AB =6,AC =8,E 是BC 的中点,AD ∥BC ,AE ∥DC ,EF ⊥CD 于点F .下列结论错误的是( )A .四边形AECD 的周长是20B .△ABC ∽△FEC C .∠B +∠ACD =90°D .EF 的长为2456.如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则以下结论中:①S△ABM=4S △FDM ;②PN =2√6515;③tan ∠EAF =34;④△PMN ∽△DPE ,正确的是( )A .①②③B .①②④C .①③④D .②③④7.如图,正方形ABCD 中,AB =2√5,点N 为AD 边上一点,连接BN ,作AP ⊥BN 于点P ,点M 为AB 边上一点,且∠PMA =∠PCB ,连接CM .下列结论正确的个数有( ) (1)△P AM ∽△PBC (2)PM ⊥PC ;(3)∠MPB =∠MCB ; (4)若点N 为AD 中点,则S △PCN =6 (5)AN =AMA.5个B.4个C.3个D.2个8.如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=12;②S△EBH:S△DHF=3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,动点D,E分别在AB,CB边上,且BE=√2AD.连接CD,AE相交于点P,连接BP,则△CAD∽△,BP的最小值为.10.在△ABC中,AB=8,BC=16,AP=BP,点Q是BC边上一个动点,当BQ=时,△BPQ与△BAC相似.11.如图,四边形ABCD,CDEF,EFHG是三个正方形,∠2+∠3=.12.如图,在矩形ABCD中,点E,F分别在边AD,DC上,BE⊥EF,AB=6,AE=9,DE=2,则EF的长是.13.如图,小明想测量一棵大树AB的高度,他发现树的影子落在地面和墙上,测得地面上的影子BC的长为5m,墙上的影子CD的长为2m.同一时刻,一根长为1m垂直与地面标杆的影长为0.5m,则大树的高度AB为m.14.小明和小杰去公园游玩,小明给站在观景台边缘的小杰拍照时,发现他的眼睛、凉亭顶端、小杰的头顶三点恰好在一条直线上(如图所示).已知小明的眼睛离地面的距离AB 为1.6米,凉亭的高度CD为6.6米,小明到凉亭的距离BD为12米,凉亭与观景台底部的距离DF为42米,小杰身高为1.8米.那么观景台的高度为米.15如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.(1)求证:△DAE≌△DCF;(2)求证:△ABG∽△CFG.16.如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4.(1)如图①,在AB 上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求D 、E 两点的坐标;(2)如图②,若OE 上有一动点P (不与O ,E 重合),从点O 出发,以每秒1个单位的速度沿OE 方向向点E 匀速运动,设运动时间为t 秒(0<t <5),过点P 作PM ⊥OE 交OD 于点M ,连接ME ,求当t 为何值时,以点P 、M 、E 为顶点的三角形与△ODA 相似?➢ 冲击A+在正方形ABCD 中,点G 是边AB 上的一个动点,点F 、E 在边BC 上,BF =FE =AG ,且AG ≤12AB ,GF 、DE 的延长线相交于点P .(1)如图1,当点E 与点C 重合时,求∠P 的度数;(2)如图2,当点E 与点C 不重合时,问:(1)中∠P 的度数是否发生变化,若有改变,请求出∠P 的度数,若不变,请说明理由;(3)在(2)的条件下,作DN ⊥GP 于点N ,连接CN 、BP ,取BP 的中点M ,连接MN ,在点G 的运动过程中,求证:MN NC为定值.。

相似三角形的性质与判定练习题 含答案

相似三角形的性质与判定练习题 含答案


相似.
,点 p 在 BD 上移动,
【答案】 或 12cm 或 2cm
【解析】解:由




,则








变形得:
,即

因式分解得:

解得:


所以
或 12cm 时,








,解得:


综上,
或 12cm 或 时,


故答案为: 或 12cm 或 2cm.
设出
,由
表示出 PD 的长,若

综上所述,当
或 时,

相似.
故答案为 或 .
19. 如图,在平行四边形 ABCD 中,E 为边 BC 上一点,AC
与 DE 相交于点 F,若

,则
等于_____.
20.
21.
【答案】11
【解析】【分析】
此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形
的相似条件,然后利用其性质即可求解 由于四边形 ABCD 是平行四边形,所以得到
根据对称性可知:


,根据相似的性质可得出:
,又 ,
,所以 ,在
中,由勾股定理可求得 AC 的值,

【解答】
解:设 BE 的长为 x,则


中,
,将这些值代入该式求出 BE 的值.


两对对应角相等的两三角形相似
, 故选:C.

相似三角形的性质与判定典型题(30道题之后是分析、解答、点评)

相似三角形的性质与判定典型题(30道题之后是分析、解答、点评)

相似三角形的判定与性质练习同学们:这份试题难度较大,希望能够通过大家的研究掌握相似三角形的一些基本图形及应用,并从中总结一些解题规律和方法。

一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个2.(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.123.(2011•乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.14.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:55.(2011•潼南县)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC 于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④6.(2011•铜仁地区)已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A.B.C.D.7.(2011•台湾)如图为一△ABC,其中D、E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A.∠1>∠3 B.∠2=∠4 C.∠1>∠4 D.∠2=∠38.(2011•台湾)如图为梯形纸片ABCD,E点在BC上,且∠AEC=∠C=∠D=90°,AD=3,BC=9,CD=8.若以AE为折线,将C折至BE上,使得CD与AB交于F点,则BF长度为何()A.4.5 B.5 C.5.5 D.69.(2011•遂宁)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD②AC2=AD•DB③BC2=BD•BA④CD2=AD•DB.A.1个B.2个C.3个D.4个10.(2011•锦州)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为()A.3 B.4 C.5 D.611.(2011•河北)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2 C.3 D.412.(2011•大连)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于()A.B.1 C.D.213.(2011•北京)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.14.(2010•湘西州)如图,△ABC中,DE∥BC,=,DE=2cm,则BC=()A.6cm B.4cm C.8cm D.7cm二.填空题(共12小题)15.(2011•牡丹江)在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC交边AC所在直线于点E,则CE的长为_________.16.(2010•梧州)如图,在平行四边形ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD的长为_________.17.(2009•烟台)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DE=CF;③△ADE∽△FDB;④∠BFD=∠CAF其中正确的结论是_________.18.(2009•黄石)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=_________.19.(2008•衢州)如图,点D、E分别在△ABC的边上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为_________.20.(2008•南宁)如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB= _________.21.(2007•厦门)如图,在平行四边形ABCD中,AF交DC于E,交BC的延长线于F,∠DAE=20°,∠AED=90°,则∠B=_________度;若=,AD=4厘米,则CF=_________厘米.22.(2007•乌鲁木齐)如图,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=_________.23.(2006•绵阳)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为_________.24.(2006•鄂州)如图,D为△ABC边AB上一点,要使AC2=AD•AB成立则需添加一个条件,这个条件可以是_________.25.(2006•长春)图中x=_________.26.(2004•芜湖)如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_________ cm.三.解答题(共4小题)27.(2011•佛山)如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.28.(2011•眉山)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.29.(2011•济南)如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DMP的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.30.(2011•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=_________.请予证明.答案与评分标准一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档